Skip to main content

Plant Growth-Promoting Bacteria: An Emerging Tool for Sustainable Crop Production Under Salt Stress

  • Chapter
  • First Online:
Bioremediation of Salt Affected Soils: An Indian Perspective

Abstract

Salinization, recognized as one of the most devastating soil degradation threats on earth, has endangered the potential use of soil on almost an estimated land area of about 1 billion ha globally, representing about 7 % of earths continental extent of which about 20 % is cultivated land area. It is not only suppressing plant growth but is also disturbing the sustainability of beneficial microorganisms associated with the plant rhizosphere. The agricultural crops under salinity are known to exhibit a spectrum of responses ranging from crop yield declines to disturbance in ecological balance of the region. It is a major cause of land abandonment and aquifers for agricultural purposes. The impacts include poor agricultural productivity, low economic returns and soil erosions. PGPRs, which live in association with plant roots that alleviate salt stress for better growth and yield, through their own mechanisms for osmotolerance, osmolyte accumulation, asymbiotic N2 fixation, solubilization of mineral phosphate and other essential nutrients, enhanced NPK uptakes, production of plant hormones, ACC production, scavenging ROS, ISR and IST, are an important alternative to traditional agricultural techniques. The present chapter focuses on the advantages of PGPR-based mechanics through an engineered increase in tolerance to salinity and conceptual understanding of crop productivity as a complex product of plant genetics and microbial community function. The direct and indirect mechanics of PGPR through bio-fertilization, stimulation of root growth, rhizo-remediation and plant antibiosis and induction of systemic resistance, nutrient competition and niches that assists to sustain healthy growth of plants enhancing the crop productivity are also accentuated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrol, I. P., Yadav, J. S. P., & Massoud, F. I. (1988). Salt-affected soils and their management. Food and Agriculture Organization of the United Nations, Soils Bull. 39, Rome, Italy.

    Google Scholar 

  • Aeron, A., Kumar, S., Pandey, P., & Maheshwari, D. K. (2011). Emerging role of plant growth promoting rhizobacteria in agrobiology. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Crop ecosystems (pp. 1–36). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  • Akbarimoghaddam, H., Galavi, M., Ghanbari, A., & Panjehkeh, N. (2011). Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia Journal of Sciences, 9(1), 43–50.

    Google Scholar 

  • Alami, Y., Achouak, W., Marol, C., & Heulin, T. (2000). Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing rhizobium sp. strain isolated from sunflower roots. Applied and Environmental Microbiology, 66(8), 3393–3398.

    Google Scholar 

  • Amara, U., Khalid, R., & Hayat, R. (2015). Soil bacteria and phytohormones for sustainable crop production. In D. K. Maheshwari (Ed.), Bacterial metabolites in sustainable agroecosystem (pp. 87–103). Springer International.

    Google Scholar 

  • Antoun, H., & Prévost, D. (2005). Ecology of plant growth promoting rhizobacteria. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertilization (pp. 1–38). Netherlands: Springer.

    Google Scholar 

  • Arshad, M., & Frankenberger, W. T. (1998). Plant growth-regulating substances in the rhizosphere: Microbial production and functions. Advances in Agronomy, 62, 46–152.

    Google Scholar 

  • Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216.

    Article  CAS  Google Scholar 

  • Ashraf, M., Hasnain, S., Berge, O., & Mahmood, T. (2004). Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biology and Fertility of Soils, 40(3), 157–162.

    Article  CAS  Google Scholar 

  • Atzorn, R., Crozier, A., Wheeler, C. T., & Sandberg, G. (1988). Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta, 175, 532–538.

    Article  CAS  Google Scholar 

  • Bano, A., & Fatima, M. (2009). Salt tolerance in Zea mays (L) following inoculation with Rhizobium and Pseudomonas. Biology and Fertility of Soils, 45(4), 405–13.

    Article  Google Scholar 

  • Barassi, C. A., Ayrault, G., Creus, C. M., Sueldo, R. J., & Sobrero, M. T. (2006). Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Scientia Horticulturae, 109(1), 8–14.

    Article  CAS  Google Scholar 

  • Bashan, Y. (1999). Interactions of Azospirillum spp. in soils: A review. Biology and Fertility of Soils, 29(3), 246–256.

    Article  CAS  Google Scholar 

  • Blaylock, A. D. (1994). Soil salinity, salt tolerance and growth potential of horticultural and landscape plants. Laramie, Wyoming: Co-operative Extension Service, University of Wyoming, Department of Plant, Soil and Insect Sciences, College of Agriculture

    Google Scholar 

  • Botella, M. A., Martinez, V., Pardines, J., & Cerdá, A. (1997). Salinity induced potassium deficiency in maize plants. Journal of Plant Physiology, 150(1–2), 200–205.

    Article  CAS  Google Scholar 

  • Burdman, S., Jurkevitch, E., Okon, Y., Subba-Rao, N. S., & Dommergues, Y. R. (2000). Recent advances in the use of plant growth promoting rhizobacteria (PGPR) in agriculture. In N. S. Subba Rao & Y. R. Dommergues (Eds.), Microbial interactions in agriculture and forestry (Vol. 2, pp. 229–250). Enfield, NH: Science Publishers.

    Google Scholar 

  • Caravaca, F., Figueroa, D., Barea, J. M., Azcon-Aguilar, C., & Roldan, A. (2004). Effect of mycorrhizal inoculation on nutrient acquisition, gas ex-change, and nitrate reductase activity of two Mediterranean-autochthonous shrub species under drought stress. Journal of Plant Nutrition, 27(1), 57–74.

    Article  CAS  Google Scholar 

  • Casanovas, E. M., Barassi, C. A., Andrade, F. H., & Sueldo, R. J. (2003a). Azospirillum-inoculated maize plant responses to irrigation restraints imposed during flowering. Cereal Research Communications, 31(3–4), 395–404.

    Google Scholar 

  • Casanovas, E. M., Barassi, C. A., Andrade, F. H., & Sueldo, R. J. (2003b). Azospirillum-inoculated maize plant responses to irrigation restraints imposed during flowering and consequent metabolic remodeling following over expression of a fungal oxalate decarboxylase. Plant Physiology, 162(1), 364–378.

    Google Scholar 

  • Chinnusamy, V., Zhu, J., & Zhu, J.-K. (2006). Gene regulation during cold acclimation in plants. Physiologia Plantarum, 126(1), 52–61.

    Article  CAS  Google Scholar 

  • Compant, S., Duffy, B., Nowak, J., Clement, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71, 4951–4959.

    Article  CAS  Google Scholar 

  • Dardenelli, M. S., Fernandez de Cordoba, F. J., Rosario, E. M., Rodriguez, C. M. A., Soria, D.M.E., Gil, S. A. M., et al. (2008). Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under stress. Soil Biology and Biochemistry, 40, 2713–2721.

    Google Scholar 

  • Diby, P., Bharathkumar, S., & Sudha, N. (2005a). Osmotolerance in biocontrol strain of Pseudomonas pseudoalcaligenes MSP-538: A study using osmolyte, protein and gene expression profiling. Annals of Microbiology, 55(4), 243–247.

    CAS  Google Scholar 

  • Diby, P., Sarma, Y. R., Srinivasan, V., & Anandaraj, M. (2005b). Pseudomonas fluorescens mediated vigour in black pepper (Piper nigrum L.) under green-house cultivation. Annals of Microbiology, 55(3), 171–174.

    Google Scholar 

  • Dobbelaere, S., Vanderleyden, J., & Okon, Y. (2003). Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences, 22, 107–149.

    Article  CAS  Google Scholar 

  • Dodd, I. C. (2009). Rhizosphere manipulations to maximize crop per drop during deficit irrigation. Journal of Experimental Botany, 60(9), 2454–2459.

    Article  CAS  Google Scholar 

  • Dutta, S., & Podile, A. R. (2010). Plant growth promoting rhizobacteria (PGPR): The bugs to debug the root zone. Critical Reviews in Microbiology, 36, 232–244.

    Article  Google Scholar 

  • Egamberdieva, D. (2012). Pseudomonas chlororaphis: A salt-tolerant bacterial inoculant for plant growth stimulation under saline soil conditions. Acta Physiologia Plantarum, 34(2), 75–56.

    Article  CAS  Google Scholar 

  • Elmer, W. H. (2003). Local and systemic effects of NaCl on root composition, rhizobacteria, and Fusarium crown and root rot of asparagus. Phytopathology, 93(2), 186–192.

    Google Scholar 

  • FAO (2008). Land and plant nutrition management service. htpp://www.fao.org/ag/agl/agll/spush.

  • Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L., et al. (2012). Emerging fungal threats to animal, plant and ecosystem health. Nature, 484, 186–194.

    Google Scholar 

  • Flowers, T. J. (2004). Improving salt tolerance. Journal of Experimental Botany, 55, 307–319.

    Article  CAS  Google Scholar 

  • Fu, Q. L., Liu, C., Ding, N. F., Lin, Y. C., & Guo, B. (2010). Ameliorative effects of inoculation with the plant growth-promoting rhizobacterium Pseudomonas sp. DW1 on growth of eggplant (Solanum melongena L.) seedlings under salt stress. Agricultural Water Management, 97(12), 1994–2000.

    Article  Google Scholar 

  • Glick, B. R. (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41, 109–117.

    Article  CAS  Google Scholar 

  • Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Science, 2012, 15.

    Google Scholar 

  • Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169, 30–39.

    Article  CAS  Google Scholar 

  • Glick, B. R., Cheng, Z., Czarny, J., & Duan, J. (2007). Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology, 119(3), 329–339.

    Article  CAS  Google Scholar 

  • Glick, B. R., Penrose, D. M., & Li, J. (1998). A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. Journal of Theoretical Biology, 190(1), 63–68.

    Article  CAS  Google Scholar 

  • Goswami, D., Dhandhukia, P., Patel, P., & Thakker, J. N. (2014). Screening of PGPR from saline desert of Kutch: Growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiological Research, 169, 66–75.

    Article  CAS  Google Scholar 

  • Goswami, D., Thakker, J. N., & Dhandukia, P. C. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food and Agriculture. doi:10.1080/23311932.2015.1127500.

    Google Scholar 

  • Govindasamy, V., Senthilkumar, M., Magheshwaran, V., Kumar, U., Bose, P., Sharma, V., et al. (2011). Bacillus and Paenibacillus spp.: Potential PGPR for sustainable agriculture. In D. K. Maheshwari (Ed.), Plant growth and health promoting bacteria (pp. 333–364). Berlin: Springer-Verlag.

    Google Scholar 

  • Grattan, S. R., & Grieve, C. M. (1994). Mineral nutrient acquisition and response by plants grown in saline environments. In M. Pessarakli (Ed.), Handbook of plant and crop stress (2nd ed., pp. 203–226). New York, NY: Marcel Dekker.

    Google Scholar 

  • Gutierrez-Manero, F. J., Ramos-Solano, B., Probanza, A., Mehouachi, J., Tadeo, F., & Talon, M. (2001). The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum, 111, 206–211.

    Article  Google Scholar 

  • Haas, D., & Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 3, 307–319.

    Article  CAS  Google Scholar 

  • Hamaoui, B., Abbadi, J. M., Burdman, S., Rashid, A., Sarig, S., & Okon Y. (2001). Effects of inoculation with Azospirillum brasilense on chik peas (Cicer arietnum) faba beans (Vicia faba) under different growth conditions Agronomie, 21, 553–560.

    Google Scholar 

  • Hamdia, M. B. E., Shaddad, M. A. K., & Doaa, M. M. (2004). Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regulation, 44(2), 165–174.

    Article  CAS  Google Scholar 

  • Hammer, P. E., Hill, D. S., Lam, S. T., Van Pée, K. H., & Ligon, J. M. (1997). Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Applied and Environmental Microbiology, 63, 2147–2154.

    CAS  Google Scholar 

  • Han, H. S., & Lee, K. D. (2005). Physiological responses of soybean inoculation of Bradyrhizobium japonicum PGPR in saline soil conditions. Research Journal of Agricultural Biological Sciences, 1(3), 216–221.

    Google Scholar 

  • Hedden, P., & Phillips, A. L. (2000). Gibberellin metabolism: New insights revealed by the genes. Trends in Plant Science, 5, 523–530.

    Article  CAS  Google Scholar 

  • Hichem, H., Naceur, E. A., & Mounir, D. (2009). Effects of salt stress on photosynthesis, PSII photochemistry and thermal energy dissipation in leaves of two corn (Zea mays L.) varieties. Photosynthetica, 47(4), 517–526.

    Article  CAS  Google Scholar 

  • Hiltner, L. (1904). About recent experiences and problems the field of soil bacteriology with special consideration of green manure and fallow. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft, 98, 59–78.

    Google Scholar 

  • Howell, T. A. (2001). Enhancing water use efficiency in irrigated agriculture. Agronomy Journal, 93(2), 281–289.

    Article  Google Scholar 

  • Hu, Y., & Schmidhalter, U. (2002). Limitation of salt stress to plant growth. In B. Hock, & C. F. Elstner (Eds.), Plant toxicology (pp. 91–224). New York, NY: Marcel Dekker Inc.

    Google Scholar 

  • Jamil, A., Riaz, S., Ashraf, M., & Foolad, M. R. (2011). Gene expression profiling of plants under salt stress. Critical Review of Plant Science, 30(5), 435–458.

    Article  Google Scholar 

  • Javid, M. G., Sorooshzadeh, A., Moradi, F., Sanavy Seyed, A. M. M., & Allahdadi, I. (2011). The role of phytohormones in alleviating salt stress in crop plants. Australian Journal of Crop Science, 5(6), 726–734.

    CAS  Google Scholar 

  • Jha, C. K., Aeron, A., Patel, B. V., Maheshwari, D. K., & Saraf, M. (2011). Enterobacter: Role in plant growth promotion. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Plant growth responses (pp. 159–182). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  • Jha, C. K., Patel, B., & Saraf, M. (2012). Stimulation of the growth of Jatropha curcas by the plant growth promoting bacterium Enterobacter cancerogenus MSA2. World Journal of Microbiology and Biotechnology, 28, 891–899.

    Article  CAS  Google Scholar 

  • Jha, C. K., & Saraf, M. (2015). Plant growth promoting rhizobacteria (PGPR): A review. Journal of Agricultural Research and Development, 5, 108–119.

    Google Scholar 

  • Johnson, H. E., Broadhurst, D., Goodacre, R., & Smith, A. R. (2003). Metabolic fingerprinting of salt-stressed tomatoes. Phytochemistry, 62(6), 919–928.

    Article  CAS  Google Scholar 

  • Kaymak, H. C., Guvenc, I., Yarali, F., & Donmez, M. F. (2009). The effects of biopriming with PGPR on germination of radish (Raphanus sativus L.) seeds under saline conditions. Turkish Journal of Agriculture, 33(2), 173–179.

    CAS  Google Scholar 

  • Kloepper, J. W., & Schroth, M. N. (1978.) Plant growth-promoting rhizobacteria on radishes. Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, 2, 879–882.

    Google Scholar 

  • Kohler, J., Hernandez, J. A., Caravaca, F., & Roldan, A. (2009). Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environmental and Experimental Botany, 65(2–3), 245–252.

    Article  CAS  Google Scholar 

  • Ladeiro, B. (2012). Saline agriculture in the 21st century : Using salt contaminated resources to cope food requirements. Journal of Botany. doi:10.1155/201/310705.

    Google Scholar 

  • Leclere, V., Bechet, M., Adam, A., Guez, J. S., Wathelet, B., Ongena, M., et al. (2005). Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Applied and Environmental Microbiology, 71, 4577–4584.

    Google Scholar 

  • Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556.

    Article  CAS  Google Scholar 

  • MacMillan, J. (2001). Occurrence of gibberellins in vascular plants, fungi, and bacteria. Journal of Plant Growth Regulation, 20, 387–442.

    Article  CAS  Google Scholar 

  • Maheshwari, D. K., Dheeman, S., & Agarwal, M. (2015). Phytohormone-producing PGPR for sustainable agriculture. In D. K. Maheshwari (Ed.), Bacterial metabolites in sustainable agroecosystem (pp. 159–182). Springer International.

    Google Scholar 

  • Makela, A., Landsberg, J., Ek, A. R., Burk, T. E., Ter-Mikaelian, M., & Agren, G. I. (2000). Process-based models for forest ecosystem management: Current state of the art and challenges for practical implementation. Tree Physiology, 20(5–6), 289–298.

    Article  Google Scholar 

  • Marcelis, L. F. M., & Van Hooijdonk, J. (1999). Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L.). Plant and Soil, 215(1), 57–64.

    Article  CAS  Google Scholar 

  • Mayak, S., Tirosh, T., & Glick, B. R. (2004). Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry, 42, 565–572.

    Article  CAS  Google Scholar 

  • Mittova, V., Tal, M., Volokita, M., & Guy, M. (2002). Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiologia Plantarum, 115(3), 393–400.

    Article  CAS  Google Scholar 

  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell Environment, 25, 239–250.

    Article  CAS  Google Scholar 

  • Munns, R., & James, R. A. (2003). Screening methods for salinity tolerance: A case study with tetraploid wheat. Plant and Soil, 253, 201–218.

    Article  CAS  Google Scholar 

  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–81.

    Article  CAS  Google Scholar 

  • Nadeem, S. M., Zahir, Z. A., Naveed, M., & Arshad, M. (2007). Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Canadian Journal of Microbiology, 53(10), 1141–1149.

    Article  CAS  Google Scholar 

  • Nadeem, S. M., Zahir, Z. A., Naveed, M., & Nawaz, S. (2013). Mitigation of salinity- induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions. Annals of Microbiology, 63(1), 225–232.

    Article  CAS  Google Scholar 

  • Nautiyal, C. S., Govindarajan, R., Lavania, M., & Pushpangadan, P. (2008). Novel mechanism of modulating natural antioxidants in functional foods: Involvement of plant growth promoting rhizobacteria NRRLB-30488. Journal of Agricultural Food Chemistry, 56(12), 4474–4481.

    Article  CAS  Google Scholar 

  • Neiendam-Nielsen, M., & Sørensen, J. (1999). Chitinolytic activity of Pseudomonas fluorescens isolates from barley and sugar beet rhizosphere. FEMS Microbiology Ecology, 30, 217–227.

    Article  CAS  Google Scholar 

  • Netondo, G. W., Onyango, J. C., & Beck, E. (2004). Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Science, 44, 806–811.

    Article  Google Scholar 

  • Oberson, A., Frossard, E., Bühlmann, C., Mayer, J., Mäder, P., & Lüscher, A. (2013). Nitrogen fixation and transfer in grass-clover leys under organic and conventional cropping systems. Plant and Soil, 371, 237–255.

    Article  CAS  Google Scholar 

  • Ondrasek, G., Rengel, Z., Romic, D., & Savic, R. (2010). Environmental salinization processes in agro-ecosystem of neretva river estuary. Novenytermeles, 59, 223–226.

    Google Scholar 

  • Ortíz-Castro, R., Valencia-Cantero, E., & López-Bucio, J. (2008). Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signaling and Behavior, 3, 263–265.

    Article  Google Scholar 

  • Patel, B. B., & Dave, R. S. (2011). Studies on infiltration of saline –alkali soils of several parts of Mehsana and Patan Districts of North Gujarat. Journal of Applied Technolgy Environment and Sanitation, 1(1), 87–92.

    Google Scholar 

  • Patten, C. L., & Glick, B. R. (1996). Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology, 42, 207–220.

    Article  CAS  Google Scholar 

  • Paul, D., & Nair, S. (2008). Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. Journal of Basic Microbiology, 48(5), 378–384.

    Article  CAS  Google Scholar 

  • Paul, D., & Sarma, Y. R. (2006). Plant growth promoting rhizobacteria [PGPR] mediated root proliferation in Black pepper (Piper nigrum L.) as evidenced through GS Root software. Archives of Phytopathology Plant Protection, 39(4), 311–314.

    Article  CAS  Google Scholar 

  • Payne, S. M. (1994). Detection, isolation, and characterization of siderophores. Methods in Enzymology, 235, 329–344.

    Article  CAS  Google Scholar 

  • Peng, Y. L., Gao, Z. W., Gao, Y., Liu, G. F., Sheng, L. X., & Wang, D. L. (2008). Eco-physiological characteristics of alfalfa seedlings in response to various mixed salt-alkaline stresses. Journal of Integrated Plant Biology, 50(1), 29–39.

    Article  CAS  Google Scholar 

  • Ramos-Solano, B., Barriuso, J., & Gutiérrez-Mañero, F. J. (2008). Physiological and molecular mechanisms of plant growth promoting rhizobacteria (PGPR). In I. Ahmad, J. Pichtel, & S. Hayat (Eds.), Plant–bacteria interactions: Strategies and techniques to promote plant growth (pp. 41–54). Weinheim: Wiley VCH.

    Chapter  Google Scholar 

  • Rangarajan, S., Saleena, L. M., Vasudevan, P., & Nair, S. (2003). Biological suppression of rice diseases by Pseudomonas spp. under saline soil conditions. Plant and Soil, 251(1), 73–82.

    Article  Google Scholar 

  • Rashid, N., Imanaka, H., Fukui, T., Atomi, H., & Imanaka, T. (2004). Presence of a novel phosphopentomutase and a 2-deoxyribose 5-phosphate aldolase reveals a metabolic link between pentoses and central carbon metabolism in the hyperthermophilic archaeon Thermococcus kodakaraensis. Journal of Bacteriology, 186(13), 4185–4191.

    Article  CAS  Google Scholar 

  • Rengasamy, P. (2006). World salinization with emphasis on Australia. Journal of Experimantal Botany, 57, 1017–1023.

    Article  CAS  Google Scholar 

  • Roberson, E. B., & Firestone, M. K. (1992). Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Applied and Environmental Microbiology, 58(4), 1284–1291.

    CAS  Google Scholar 

  • Rodriguez, R., & Redman, R. (2008). More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. Journal of Experimental Botany, 59, 1109–1114.

    Article  CAS  Google Scholar 

  • Rojas-Tapias, D., Moreno-Galvan, A., Pardo-Diaz, S., Obando, M., Rivera, D., & Bonilla, R. (2012). Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Applied Soil Ecology, 61, 264–272.

    Article  Google Scholar 

  • Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., & Pare, P. W. (2004). Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology, 134(3), 1017–1026.

    Article  CAS  Google Scholar 

  • Sadfi, N., Cherif, M., Fliss, I., Boudabbous, A., & Antoun, H. (2001). Evaluation of bacterial isolates from salty soils and Bacillus thuringiensis strains for the biocontrol of Fusarium dry rot of potato tubers. Journal of Plant Pathology, 83, 101–117.

    CAS  Google Scholar 

  • Saleem, M., Arshad, M., Hussain, S., & Bhatti, A. S. (2007). Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Indian Microbiology and Biology, 34(10), 635–648.

    Article  CAS  Google Scholar 

  • Sandhya, V., Ali, S. Z., Grover, M., Reddy, G., & Venkateswarlu, B. (2010). Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regulation, 62(1), 21–30.

    Article  CAS  Google Scholar 

  • Sarvanakumar, D., & Samiyappan, R. (2007). ACC Deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. Journal of Applied Microbiology, 102, 1283–1292.

    Article  CAS  Google Scholar 

  • Sharpley, A. N., Meisinger, J. J., Power, J. F., & Suarez, D. L. (1992). Root extraction of nutrients associated with long-term soil management. In J. L. Hatfiedl, & B. A. Stewart (Eds.), Limitations to plant growth. Advances in Soil Science, 19, pp. 151–217.

    Google Scholar 

  • Shen, X., Hu, H., Peng, H., Wang, W., & Zhang, X. (2013). Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics, 14, 271.

    Article  CAS  Google Scholar 

  • Shukla, P. S., Agarwal, P. K., & Jha, B. (2012). Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. Journal of Plant Growth Regulation, 31(2), 195–206.

    Article  CAS  Google Scholar 

  • Siddikee, M. A., Chauhan, P. S., Anandham, R., Han, G. H., & Sa, T. (2010). Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. Journal of Microbiology and Biotechnology, 20(11), 1577–84.

    Article  CAS  Google Scholar 

  • Singh, K. N., & Chatrath, R. (2001.) Salinity tolerance. In M. P. Reynolds, J. I. O. Monasterio, & A. McNab (Eds.), Application of physiology in wheat breeding (pp. 101–110). Mexico, DF: CIMMYT.

    Google Scholar 

  • Son, H. J., Park, G. T., Cha, M. S., & Heo, M. S. (2006). Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresource Technology, 97(2), 204–210.

    Article  CAS  Google Scholar 

  • Spychalla, J. P., & Desborough, S. L. (1990). Superoxide dismutase, catalase, and alpha-tocopherol content of stored potato tubers. Plant Physiology, 94(3), 1214–1228.

    Article  CAS  Google Scholar 

  • Stacey, G., Burris, R. H., & Evans, H. J. (Eds.). (1992). Biological nitrogen fixation. Berlin: Springer Science & Business Media.

    Google Scholar 

  • Tabur, S., & Demir, K. (2010). Role of some growth regulators on cytogenetic activity of barley under salt stress. Plant Growth Regulators, 60, 99–104.

    Article  CAS  Google Scholar 

  • Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91, 503–507.

    Article  CAS  Google Scholar 

  • Triky-Dotan, S., Yermiyahu, U., Katan, J., & Gamliel, A. (2005). Development of crown and root rot disease of tomato under irrigation with saline water. Phytopathology, 95(12), 1438–1444.

    Article  Google Scholar 

  • Upadhyay, S. K., Singh, J. S., Saxena, A. K., & Singh, D. P. (2012). Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biology, 14(4), 605–611.

    Article  CAS  Google Scholar 

  • Upadhyay, S. K., Singh, J. S., & Singh, D. P. (2011). Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere, 21(2), 214–222.

    Article  CAS  Google Scholar 

  • van Loon, L. C., Bakker, P. A., & Pieterse, C. M. (1998). Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology, 36(1), 453–483.

    Article  Google Scholar 

  • Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizer. Plant and Soil, 255, 571–586.

    Article  CAS  Google Scholar 

  • Wong, W. S., Tan, S. N., Ge, L., Chen, X., & Yong, J. W. H. (2015). The importance of phytohormones and microbes in biofertilizers. In D. K. Maheshwari (Ed.), Bacterial metabolites in sustainable agroecosystem (pp. 105–158). Springer International.

    Google Scholar 

  • Yao, L. X., Wu, Z. S., Zheng, Y. Y., Kaleem, I., & Li, C. (2010). Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. European Journal of Soil Biology, 46(1), 49–54.

    Article  CAS  Google Scholar 

  • Zhang, H., Kim, M. S., Sun, Y., Dowd, S. E., Shi, H., & Pare, P. W. (2008). Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Molecular Plant Microbe Interactions, 21(6), 737–744.

    Article  CAS  Google Scholar 

  • Zhu, J. K. (2002). Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53, 247–273.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We express our gratitude to Ms Nidhi Tripathi, SRF, ICAR-IISR, Lucknow, currently placed at Seoul National University, Seoul, South Korea, for providing prompt access to the latest publications as and when required, during the chapter writing. The assistance provided by the staff at Organic Chemistry Lab, ICAR-Indian Institute of Sugarcane Research, Lucknow, during the process is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pushpa Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Singh, S.R., Joshi, D., Tripathi, N., Singh, P., Srivastava, T.K. (2017). Plant Growth-Promoting Bacteria: An Emerging Tool for Sustainable Crop Production Under Salt Stress. In: Arora, S., Singh, A., Singh, Y. (eds) Bioremediation of Salt Affected Soils: An Indian Perspective. Springer, Cham. https://doi.org/10.1007/978-3-319-48257-6_6

Download citation

Publish with us

Policies and ethics