
WHITE PAPER

Under the Hood: Redis CRDTs 
(Conflict-free Replicated Data Types)

Cihan Biyikoglu, VP Product Marketing, Redis Labs

CONTENTS

Introduction 2

Under the Hood: Redis CRDT 2

Redis Enterprise Overview 2

Redis CRDTs Architecture 3

Achieving High Performance Reads and Writes with CRDBs 3

Bidirectional Replication and CRDB Syncer 3

Uninterrupted Availibility with Active-Active Multi-Region Deployments 4

Simplified Development with Smart Auto-Conflict Resolution 5

Getting Started with Redis CRDTs 5



2

Introduction
Twelve years after the original CAP theorem, Eric Brewer wrote a great article on how the rules have changed on CAP. The 
summary is that using CRDTs (Conflict-free Replicated Data Types), one can create a new balance between C, A and P—
commonly referred to as “strong eventual consistency.” 

Redis Enterprise implements CRDTs using a multi-master replication architecture. Redis CRDTs provide great benefits:

• Sub-millisecond latency reads and writes for globally distributed apps: Redis CRDTs create a globally spanning database 
that reaches across multiple datacenters, providing low latency reads and writes to apps in each datacenter. 

• Uninterrupted availability with active-active multi-region deployments: With Redis CRDTs, applications gain the ability 
to read and write without interruptions across multiple data centers in distant regions. Read and write availability is 
continuous, even when some data centers are completely unavailable or the network between data centers splits com-
munication.

• Simplified development with smart auto-conflict resolution: You can streamline the development of complex, mis-
sion-critical applications with global workloads using built-in Redis types and commands while Redis CRDTs automati-
cally handle conflicting concurrent reads and writes.

Let's look under the hood to understand how Redis CRDTs provide high performance, availability and smart conflict 
resolution.

Under the Hood: Redis CRDT
Redis Enterprise Overview

Redis Enterprise is a distributed database platform composed of identical nodes that are deployed within a datacenter or 
stretched across local availability zones. Each node contains services that compose a management path (depicted in the 
blue layer in Figure 1 below) and data access path (depicted in the red layer in Figure 1 below). 

Figure 1. Redis Enterprise nodes, with blue tiles representing the management path and red tiles representing the data access path 
with Redis as the shards.

• The Management path includes the cluster manager, proxy and secure REST API/UI for programmatic administration. 
The cluster manager is responsible for orchestrating the cluster and the placement of database shards, as well as detect-
ing and mitigating failures. The proxy helps scale connections with smart connection management. The management 
path coordinates the creation and ongoing management of Redis CRDTs.

• The Data Access path is composed of multiple master and slave Redis shards. Clients perform data operations on the 

Redis Enterprise Cluster Manager
detecting failures and orchestrating auto-failover

Redis Shards
Master and Slave maintained using 
in-memory replication over LAN

https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
https://en.wikipedia.org/wiki/Eventual_consistency


3

master shard. Master shards maintain slave shards using the in-memory replication for protection against failures that 
may render the master shard inaccessible. There can be multiple databases in a single Redis Enterprise cluster and each 
database can contain multiple shards. 

Redis CRDT Architecture
Redis CRDTs are implemented in Redis Enterprise using a global database that spans multiple clusters. These globally 
spanning databases are called “Conflict-free Replicated Databases” or “CRDBs.” 

Global CRDBs are made up of local databases in each participating cluster called “member CRDBs.” CRDBs establish 
a bidirectional replication between each one of the member CRDBs. It is important to note that from an application 
perspective, member CRDBs that applications connect to for reading and writing data behave just like a regular Redis 
database. 

Figure 2. Bidirectional replication for geo-distributed, active-active reads and writes topology

Achieving High Performance Reads and Writes with CRDBs

Locally deployed applications connect to member CRDBs in participating clusters. This delivers the same sub-millisecond 
latencies Redis applications enjoy with CRDBs. Applications can read and write to the same keys across member CRDBs 
concurrently. With the bidirectional replication, changes made to each member CRDB are replicated and conflicting 
concurrent write operations are resolved based on the defined rules per data type. 

Bidirectional Replication and CRDB Syncer

CRDB Syncer, is a process that coordinates the WAN-based replication between all member CRDBs. The Syncer process 
sits in all the clusters that are participating in the CRDB deployment and is responsible for both the initial and ongoing sync 
of data.

CRDB Syncer establishes concurrent connections to the other member CRDBs and reads changes from the slave shards. 
This is done to provide better assurance that only data that has been locally replicated and durable is replicated to the other 
member CRDBs. The changes are communicated in a streaming fashion and are applied to the local member CRDB. Data on 
the wire is compressed. This can provide bandwidth savings when crossing long distances via the WAN.

App Server



4

Figure 3. Architecture of WAN-based Replication with CRDB Syncer

CRDB Syncer automatically handles interruptions due to network failures or topology changes in source or destination 
databases. During interruptions, Syncer continues to poll and resume replication. In some cases, resuming replication may 
require a full sync of a stale member CRDB.

Uninterrupted Availability with Active-Active Multi-Region Deployments

Datacenters can experience either momentary or long-lasting failures, or simply undergo maintenance. Unlike the auto-
failover Redis Enterprise performs under node, rack or zone failures, the geo-failovers with active-active deployments are 
not automatically executed by Redis Enterprise. Applications can simply do the geo-failover by redirecting their users to one 
of the participating clusters in another geography.

Geo failovers are a problem gracefully solved by CRDTs. Without CRDTs, handling geo failover is complex and can result in 
lost updates. Here is an example:

Imagine we have a shopping-cart maintained in a Redis Set and the following events take place over time:

• User in the west coast maintains a shop-
ping cart under the key “cart1.” Cart is 
updated at time “t1” with the user adding 
a new product called "costume". 

• At time “t2,” before the replication can 
sync the update to the shopping cart 
“cart1” to the east coast data center, the 
west coast data center fails. The user 
is then directed to the east coast data 
center for continuous availability. 

• At time “t3,” the east coast data center 
has not yet received the item “costume” 
in the shopping cart “cart1.” However, 
the user adds a new product to the cart 
called “mask.” At this point the west coast 
data center shopping cart contains product "costume" and the east coast data center shopping cart contains product 
“mask.” 

• At time “t4,” the west coast data center recovers and bidirectional replication resumes. If you happen to be using a 
database that does conflict resolution using mechanisms like LWW (last-writer-wins), the shopping cart can only contain 
either only "costume" or "mask" because only one of your updates to the “cart1” shopping cart key will survive. The 
result would be a lost update to the shopping cart! CRDTs make sure no update is lost to the shopping cart. With Redis 
CRDTs, the shopping cart correctly reflects all items user added because the SADD method with the Redis SET data type 

was used.

SYNCER
SECURE AND COMPRESSED STREAM

!me

t1

t2

t3

t4

t5

US Data Center

SADD cart1 “costume”

US Data Center Fails - Sync Fails

US Data Center Recovers - Resume Sync

SMEMBERS cart1
“costume”

“mask”

EU Data Center

SADD cart1 “mask”

SMEMBERS cart1
“costume”

“mask”

https://redis.io/topics/data-types


5

Simplified Development with Smart Auto-conflict Resolution

CRDTs provide a mathematical model for handling conflicting writes. The goal of CRDTs is to provide well defined conflict 
resolution behaviors for common use cases. Combined with Redis types and commands, CRDTs detect the “developers 
intent” during conflict resolution. For example, when using methods like INCR, Redis CRDTs behave in a way that allow 
you to build distributed counters. When using SET type with SADD or SREM methods, Redis CRDTs use a “Add-Wins with 
Observed-Remove Set” behavior defined in CRDTs. 

Overall, Redis CRDTs simply allow users to focus on developing their business logic instead of coding custom conflict 
resolution logic to handle all kinds of concurrent write scenarios. Developers can pick the data type and conflict resolution 
rules that work for their applications and Redis CRDTs automatically resolve the conflicts using the well defined rules for 
each type and command. To achieve this effect, Redis CRDTs keep additional metadata per type. This additional metadata 
is later used in bidirectional replication to synchronize all participating clusters. You can find the detailed developer’s guide 
and rules and behaviors governing conflict resolution for Redis types with CRDBs in Redis Enterprise Documentation.

Getting Started with Redis CRDTs
Getting started with Redis Enterprise and Redis CRDTs is simple. Please visit the following links:

• Getting started with Redis CRDTs

• Administering CRDBs

• Developing Applications with CRDBs

• Working with Redis Hashes in CRDBs

• Working with Redis String in CRDBs

• Working with Redis Sets in CRDBs

For an overview of how active-active geo-distributed applications work, you can also watch the webcast featuring Redis 
CRDTs.

https://redislabs.com/redis-enterprise-documentation/developing/crdbs/
https://redislabs.com/redis-enterprise-documentation/getting-started/creating-database/crdbs/
https://redislabs.com/redis-enterprise-documentation/administering/database-operations/create-crdb/
https://redislabs.com/redis-enterprise-documentation/developing/crdbs/
https://redislabs.com/redis-enterprise-documentation/developing/crdbs/developing-hashes-crdb/
https://redislabs.com/redis-enterprise-documentation/developing/crdbs/strings/
https://redislabs.com/redis-enterprise-documentation/developing/crdbs/developing-sets-crdb/
https://redislabs.com/resources/webinars/past/?post_id=29070


700 E El Camino Real, Suite 250 

Mountain View, CA 94040 

(415) 930-9666 

redislabs.com

CRDB Architecture-rgb-v1




