4/3 ArcCoth[3 + 2 x]^4 + Log[16] Log[x] + 2 ArcTanh[(-3 + x)/(5 + x)] Log[x]^2 + Log[x]^4/3 - 6 Log[1 + x] - 1/3 Log[x]^3 Log[1 + x] + 2 Log[1 + x]^2 + Log[4] Log[x] Log[1 + x]^2 - 2 Log[x]^2 Log[1 + x]^2 + 1/3 Log[1 + x]^3 - 4/3 Log[2] Log[1 + x]^3 + 3 Log[x] Log[1 + x]^3 - 13/12 Log[1 + x]^4 + 8 ArcCoth[1 + 2 x] Log[2 + x] + 2 Log[x]^2 Log[2 + x] - Log[x]^3 Log[2 + x] - Log[x]^2 Log[1 + x] Log[2 + x] + 3 Log[x] Log[1 + x]^2 Log[2 + x] - 2/3 Log[1 + x]^3 Log[2 + x] + Log[x]^2 Log[2 + x]^2 - Log[x] Log[1 + x] Log[2 + x]^2 + 4/3 ArcCoth[1 + 2 x] Log[2 + x]^3 + 1/12 Pi^2 (8 ArcCoth[3 + 2 x]^2 + 3 Log[x]^2 - 3 Log[2 + x]^2 - 2 Log[x] (4 Log[1 + x] + Log[2 + x]) + 4 Log[1 + x] (-1 + 3 Log[2 + x])) - 2 Log[1 + x]^2 Log[x (2 + x)] + x Log[1 + 1/x] (-6 + (-1 + Log[x]) Log[1 + x] Log[2 + x] - Log[x] Log[(1 + x) (2 + x)] + 2 Log[x (1 + x) (2 + x)]) + (2 - Log[x]^2 + 2 (-1 + Log[x]) Log[1 + x]) PolyLog[2, -1 - x] + 2 Log[1 + 1/x] (-1 + Log[2 + x]) PolyLog[2, -x] - 2 (2 + 2 Log[x] (-1 + Log[1 + x]) - Log[1 + x]^2) PolyLog[ 2, -(x/2)] + 2 (1 + Log[x] - 2 Log[1 + x]) PolyLog[3, -1 - x] + 2 (-1 + Log[3 + 2/x + x]) PolyLog[3, -x] + 4 (-1 + Log[x]) PolyLog[3, -(x/2)] + 2 (-1 + 4 ArcCoth[1 + 2 x] + Log[2 + x]) PolyLog[3, 1/(1 + x)] + 2 Log[x/(1 + x)] PolyLog[3, 1/(2 + x)] + 2 Log[x/(1 + x)] PolyLog[3, x/(2 + x)] + 2 Log[1 + 1/x] PolyLog[3, -((2 + x)/x)] + 4 Log[1 + 1/x] PolyLog[3, x/(2 + 2 x)] + 2 PolyLog[4, -1 - x] - 2 PolyLog[4, -x] - 4 PolyLog[4, -(x/2)] + 2 PolyLog[4, 1/(1 + x)] - 6 PolyLog[4, x/(1 + x)] + PolyLog[4, -(x/(2 + x))] - PolyLog[4, x/(2 + x)] + 2 PolyLog[4, (1 + x)/(2 + x)] + 1/2 PolyLog[4, (x (2 + x))/(1 + x)^2] + 4 PolyLog[4, x/(2 + 2 x)] + 1/4 (15 Log[x] - 14 Log[1 + x] - Log[2 + x]) Zeta[3]