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Abstract
Very high dimensional learning systems become theoretically possible when training examples are
abundant. The computing cost then becomes the limiting factor. Any efficient learning algorithm
should at least take a brief look at each example. But should all examples be given equal attention?

This contribution proposes an empirical answer. We first present an online SVM algorithm
based on this premise. LASVM yields competitive misclassification rates after a single pass over
the training examples, outspeeding state-of-the-art SVM solvers. Then we show how active exam-
ple selection can yield faster training, higher accuracies, and simpler models, using only a fraction
of the training example labels.

1. Introduction

Electronic computers have vastly enhanced our ability to compute complicated statistical models.
Both theory and practice have adapted to take into account the essential compromise between the
number of examples and the model capacity (Vapnik, 1998). Cheap, pervasive and networked com-
puters are now enhancing our ability to collect observations to an even greater extent. Data sizes
outgrow computer speed. During the last decade, processors became 100 times faster, hard disks
became 1000 times bigger.

Very high dimensional learning systems become theoretically possible when training examples
are abundant. The computing cost then becomes the limiting factor. Any efficient learning algorithm
should at least pay a brief look at each example. But should all training examples be given equal
attention?
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This contribution proposes an empirical answer:

• Section 2 presents kernel classifiers such as Support Vector Machines (SVM). Kernel classi-
fiers are convenient for our purposes because they clearly express their internal states in terms
of subsets of the training examples.

• Section 3 proposes a novel online algorithm,LASVM , which converges to the SVM solution.
Experimental evidence on diverse data sets indicates that it reliably reaches competitive ac-
curacies after performing a single pass over the training set. It uses lessmemory and trains
significantly faster than state-of-the-art SVM solvers.

• Section 4 investigates two criteria to select informative training examples at each iteration
instead of sequentially processing all examples. Empirical evidence showsthat selecting in-
formative examples without making use of the class labels can drastically reduce the training
time and produce much more compact classifiers with equivalent or superioraccuracy.

• Section 5 discusses the above results and formulates theoretical questions. The simplest ques-
tion involves the convergence of these algorithms and is addressed by the appendix. Other
questions of greater importance remain open.

2. Kernel Classifiers

Early linear classifiers associate classesy = ±1 to patternsx by first transforming the patterns into
feature vectorsΦ(x) and taking the sign of a linear discriminant function:

ŷ(x) = w′Φ(x)+b. (1)

The parametersw andb are determined by running some learning algorithm on a set of training
examples(x1,y1) · · ·(xn,yn). The feature functionΦ is usually hand chosen for each particular
problem (Nilsson, 1965).

Aizerman et al. (1964) transform such linear classifiers by leveraging two theorems of theRe-
producing Kerneltheory (Aronszajn, 1950).

TheRepresentation Theoremstates that manyΦ-machine learning algorithms produce parame-
ter vectorsw that can be expressed as a linear combinations of the training patterns:

w =
n

∑
i=1

αiΦ(xi).

The linear discriminant function (1) can then be written as akernel expansion

ŷ(x) =
n

∑
i=1

αiK(x,xi)+b, (2)

where thekernel function K(x,y) represents the dot productsΦ(x)′Φ(y) in feature space. This
expression is most useful when a large fraction of the coefficientsαi are zero. Examples such that
αi 6= 0 are then calledSupport Vectors.

Mercer’s Theoremprecisely states which kernel functions correspond to a dot product for some
feature space. Kernel classifiers deal with the kernel functionK(x,y) without explicitly using the
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corresponding feature functionΦ(x). For instance, the well knownRBFkernelK(x,y) = e−γ‖x−y‖2

defines an implicit feature space of infinite dimension.
Kernel classifiers handle such large feature spaces with the comparatively modest computational

costs of the kernel function. On the other hand, kernel classifiers mustcontrol the decision funcion
complexity in order to avoid overfitting the training data in such large feature spaces. This can be
achieved by keeping the number of support vectors as low as possible (Littlestone and Warmuth,
1986) or by searching decision boundaries that separate the examples with the largest margin (Vap-
nik and Lerner, 1963; Vapnik, 1998).

2.1 Support Vector Machines

Support Vector Machines were defined by three incremental steps. First, Vapnik and Lerner (1963)
propose to construct theOptimal Hyperplane, that is, the linear classifier that separates the training
examples with the widest margin. Then, Guyon, Boser, and Vapnik (1993) propose to construct
the Optimal Hyperplane in the feature space induced by a kernel function.Finally, Cortes and
Vapnik (1995) show that noisy problems are best addressed by allowingsome examples to violate
the margin condition.

Support Vector Machines minimize the following objective function in feature space:

min
w,b
‖w‖2 +C

n

∑
i=1

ξi with

{

∀ i yi ŷ(xi)≥ 1−ξi

∀ i ξi ≥ 0.
(3)

For very large values of the hyper-parameterC, this expression minimizes‖w‖2 under the constraint
that all training examples are correctly classified with a marginyi ŷ(xi) greater than 1. Smaller values
of C relax this constraint and produce markedly better results on noisy problems (Cortes and Vapnik,
1995).

In practice this is achieved by solving the dual of this convex optimization problem. The coef-
ficientsαi of the SVM kernel expansion (2) are found by defining the dual objective function

W(α) = ∑
i

αiyi−
1
2 ∑

i, j

αiα jK(xi ,x j) (4)

and solving the SVMQuadratic Programming(QP) problem:

max
α

W(α) with















∑i αi = 0
Ai ≤ αi ≤ Bi

Ai = min(0,Cyi)
Bi = max(0,Cyi).

(5)

The above formulation slightly deviates from the standard formulation (Cortesand Vapnik, 1995)
because it makes theαi coefficients positive whenyi = +1 and negative whenyi =−1.

SVMs have been very successful and are very widely used becausethey reliably deliver state-
of-the-art classifiers with minimal tweaking.

Computational Cost of SVMs There are two intuitive lower bounds on the computational cost
of any algorithm able to solve the SVM QP problem for arbitrary matricesKi j = K(xi ,x j).
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1. Suppose that an oracle reveals whetherαi = 0 or αi = ±C for all i = 1. . .n. Computing the
remaining 0< |αi | < C amounts to inverting a matrix of sizeR×R whereR is the number
of support vectors such that 0< |αi | < C. This typically requires a number of operations
proportional toR3.

2. Simply verifying that a vectorα is a solution of the SVM QP problem involves computing
the gradients ofW(α) and checking the Karush-Kuhn-Tucker optimality conditions (Vapnik,
1998). Withn examples andSsupport vectors, this requires a number of operations propor-
tional tonS.

Few support vectors reach the upper boundC when it gets large. The cost is then dominated by
theR3≈ S3. Otherwise the termn Sis usually larger. The final number of support vectors therefore
is the critical component of the computational cost of the SVM QP problem.

Assume that increasingly large sets of training examples are drawn from anunknown distribu-
tion P(x,y). Let B be the error rate achieved by the best decision function (1) for that distribution.
WhenB > 0, Steinwart (2004) shows that the number of support vectors is asymptotically equiv-
alent to 2nB. Therefore, regardless of the exact algorithm used, the asymptotical computational
cost of solving the SVM QP problem grows at least liken2 whenC is small andn3 whenC gets
large. Empirical evidence shows that modern SVM solvers (Chang and Lin, 2001-2004; Collobert
and Bengio, 2001) come close to these scaling laws.

Practice however is dominated by the constant factors. When the number ofexamples grows,
the kernel matrixKi j = K(xi ,x j) becomes very large and cannot be stored in memory. Kernel values
must be computed on the fly or retrieved from a cache of often accessed values. When the cost of
computing each kernel value is relatively high, the kernel cache hit rate becomes a major component
of the cost of solving the SVM QP problem (Joachims, 1999). Larger problems must be addressed
by using algorithms that access kernel values with very consistent patterns.

Section 3 proposes an Online SVM algorithm that accesses kernel valuesvery consistently.
Because it computes the SVM optimum, this algorithm cannot improve on then2 lower bound.
Because it is an online algorithm, early stopping strategies might give approximate solutions in
much shorter times. Section 4 suggests that this can be achieved by carefullychoosing which
examples are processed at each iteration.

Before introducing the new Online SVM, let us briefly describe other existing online kernel
methods, beginning with the kernel Perceptron.

2.2 Kernel Perceptrons

The earliest kernel classifiers (Aizerman et al., 1964) were derived from the Perceptron algorithm (Rosen-
blatt, 1958). The decision function (2) is represented by maintaining the setSof the indicesi of the
support vectors. The bias parameterb remains zero.

Kernel Perceptron
1) S ← /0, b← 0.
2) Pick a random example(xt ,yt)
3) Compute ˆy(xt) = ∑i∈S αi K(xt ,xi)+b
4) If yt ŷ(xt) ≤ 0 then S ← S ∪{t}, αt ← yt

5) Return to step 2.
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SuchOnline Learning Algorithmsrequire very little memory because the examples are pro-
cessed one by one and can be discarded after being examined.

Iterations such thatyt ŷ(xt) < 0 are calledmistakesbecause they correspond to patterns mis-
classified by the perceptron decision boundary. The algorithm then modifies the decision boundary
by inserting the misclassified pattern into the kernel expansion. When a solution exists, Novikoff’s
Theorem (Novikoff, 1962) states that the algorithm converges after a finite number of mistakes, or
equivalently after inserting a finite number of support vectors. Noisy datasets are more problematic.

Large Margin Kernel Perceptrons The success of Support Vector Machines has shown that large
classification margins were desirable. On the other hand, the Kernel Perceptron (Section 2.2) makes
no attempt to achieve large margins because it happily ignores training examples that are very close
to being misclassified.

Many authors have proposed to close the gap with online kernel classifiers by providing larger
margins. The Averaged Perceptron (Freund and Schapire, 1998) decision rule is the majority vote of
all the decision rules obtained after each iteration of the Kernel Perceptron algorithm. This choice
provides a bound comparable to those offered in support of SVMs. Other algorithms (Frieß et al.,
1998; Gentile, 2001; Li and Long, 2002; Crammer and Singer, 2003) explicitely construct larger
margins. These algorithms modify the decision boundary whenever a trainingexample is either
misclassified or classified with an insufficient margin. Such examples are theninserted into the
kernel expansion with a suitable coefficient. Unfortunately, this change significantly increases the
number of mistakes and therefore the number of support vectors. The increased computational cost
and the potential overfitting undermines the positive effects of the increased margin.

Kernel Perceptrons with Removal Step This is why Crammer et al. (2004) suggest an additional
step forremovingsupport vectors from the kernel expansion (2). The Budget Perceptron performs
very nicely on relatively clean data sets.

Budget Kernel Perceptron (β,N)
1) S ← /0, b← 0.
2) Pick a random example(xt ,yt)
3) Compute ˆy(xt) = ∑i∈S αi K(xt ,xi)+b
4) If yt ŷ(xt) ≤ β then,

4a) S ← S ∪{t}, αt ← yt

4b) If |S |> N thenS ← S −{argmaxi∈S yi (ŷ(xi)−αi K(xi ,xi))}
5) Return to step 2.

Online kernel classifiers usually experience considerable problems with noisy data sets. Each
iteration is likely to cause a mistake because the best achievable misclassificationrate for such prob-
lems is high. The number of support vectors increases very rapidly and potentially causes overfitting
and poor convergence. More sophisticated support vector removal criteria avoid this drawback (We-
ston et al., 2005). This modified algorithm outperforms all otheronlinekernel classifiers on noisy
data sets and matches the performance of Support Vector Machines with less support vectors.

3. Online Support Vector Machines

This section proposes a novel online algorithm namedLASVM that converges to the SVM solution.
This algorithm furthers ideas first presented by Bordes and Bottou (2005). Unlike this previous
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work, LASVM relies on the traditional “soft margin” SVM formulation, handles noisy data sets, and
is nicely related to the SMO algorithm. Experimental evidence on multiple data sets indicates that
it reliably reaches competitive test error rates after performing a single pass over the training set. It
uses less memory and trains significantly faster than state-of-the-art SVM solvers.

3.1 Quadratic Programming Solvers for SVMs

Sequential Direction Search Efficient numerical algorithms have been developed to solve the
SVM QP problem (5). The best known methods are the Conjugate Gradientmethod (Vapnik, 1982,
pages 359–362) and the Sequential Minimal Optimization (Platt, 1999). Both methods work by
making successive searches along well chosen directions.

Each direction search solves the restriction of the SVM problem to the half-line starting from the
current vectorα and extending along the specified directionu. Such a search yields a new feasible
vectorα+λ∗u, where

λ∗ = argmaxW(α+λu) with 0≤ λ≤ φ(α,u). (6)

The upper boundφ(α,u) ensures thatα+λu is feasible as well:

φ(α,u) = min







0 if ∑k uk 6= 0
(Bi−αi)/ui for all i such thatui > 0
(A j −α j)/u j for all j such thatu j < 0.







(7)

Calculus shows that the optimal value is achieved for

λ∗ = min

{

φ(α,u) ,
∑i gi ui

∑i, j uiu j Ki j

}

(8)

whereKi j = K(xi ,x j) andg = (g1 . . .gn) is the gradient ofW(α), and

gk =
∂W(α)

∂αk
= yk−∑

i

αiK(xi ,xk) = yk− ŷ(xk)+b. (9)

Sequential Minimal Optimization Platt (1999) observes that direction search computations are
much faster when the search directionu mostly contains zero coefficients. At least two coefficients
are needed to ensure that∑k uk = 0. TheSequential Minimal Optimization(SMO) algorithm uses
search directions whose coefficients are all zero except for a single+1 and a single−1.

Practical implementations of the SMO algorithm (Chang and Lin, 2001-2004; Collobert and
Bengio, 2001) usually rely on a small positive toleranceτ > 0. They only select directionsu such
thatφ(α,u) > 0 andu′g > τ. This means that we can move along directionu without immediately
reaching a constraint and increase the value ofW(α). Such directions are defined by the so-called
τ-violating pair (i, j):

(i, j) is aτ-violating pair ⇐⇒







αi < Bi

α j > A j

gi−g j > τ.
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SMO Algorithm
1) Setα← 0 and compute the initial gradientg (equation 9)

2) Choose aτ-violating pair(i, j). Stop if no such pair exists.

3) λ←min

{

gi−g j

Kii +K j j −2Ki j
, Bi−αi , α j −A j

}

αi ← αi +λ , α j ← α j −λ
gs← gs−λ(Kis−K js) ∀s∈ {1. . .n}

4) Return to step (2)

The above algorithm does not specify how exactly theτ-violating pairs are chosen. Modern
implementations of SMO select theτ-violating pair(i, j) that maximizes the directional gradientu′g.
This choice was described in the context of Optimal Hyperplanes in both (Vapnik, 1982, pages 362–
364) and (Vapnik et al., 1984).

Regardless of how exactly theτ-violating pairs are chosen, Keerthi and Gilbert (2002) assert
that the SMO algorithm stops after a finite number of steps. This assertion is correct despite a slight
flaw in their final argument (Takahashi and Nishi, 2003).

When SMO stops, noτ-violating pair remain. The correspondingα is called aτ-approximate
solution. Proposition 13 in appendix A establishes that such approximate solutions indicate the
location of the solution(s) of the SVM QP problem when the toleranceτ become close to zero.

3.2 OnlineLASVM

This section presents a novel online SVM algorithm namedLASVM . There are two ways to view
this algorithm.LASVM is an online kernel classifier sporting a support vector removal step: vectors
collected in the current kernel expansion can be removed during the online process.LASVM also is
a reorganization of the SMO sequential direction searches and, as such, converges to the solution of
the SVM QP problem.

Compared to basic kernel perceptrons (Aizerman et al., 1964; Freund and Schapire, 1998), the
LASVM algorithm features a removal step and gracefully handles noisy data. Compared to kernel
perceptrons with removal steps (Crammer et al., 2004; Weston et al., 2005), LASVM converges to the
known SVM solution. Compared to a traditional SVM solver (Platt, 1999; Chang and Lin, 2001-
2004; Collobert and Bengio, 2001),LASVM brings the computational benefits and the flexibility
of online learning algorithms. Experimental evidence indicates thatLASVM matches the SVM
accuracy after a single sequential pass over the training examples.

This is achieved by alternating two kinds of direction searches namedPROCESSandREPRO-
CESS. Each direction search involves a pair of examples. Direction searches of the PROCESSkind
involve at least one example that is not a support vector of the current kernel expansion. They po-
tentially can change the coefficient of this example and make it a support vector. Direction searches
of theREPROCESSkind involve two examples that already are support vectors in the currentkernel
expansion. They potentially can zero the coefficient of one or both support vectors and thus remove
them from the kernel expansion.

Building Blocks The LASVM algorithm maintains three essential pieces of information: the set
S of potential support vector indices, the coefficientsαi of the current kernel expansion, and the
partial derivativesgi defined in (9). Variablesαi andgi contain meaningful values wheni ∈ S only.
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The coefficientαi are assumed to be null ifi /∈ S . On the other hand, setS might contain a few
indicesi such thatαi = 0.

The two basic operations of the OnlineLASVM algorithm correspond to steps 2 and 3 of the
SMO algorithm. These two operations differ from each other because theyhave different ways to
selectτ-violating pairs.

The first operation,PROCESS, attempts to insert examplek /∈ S into the set of current support
vectors. In the online setting this can be used to process a new example at timet. It first adds
examplek /∈ S into S (step 1-2). Then it searches a second example inS to find theτ-violating pair
with maximal gradient (steps 3-4) and performs a direction search (step 5).

LASVM PROCESS(k)
1) Bail out if k∈ S .

2) αk← 0 , gk← yk−∑s∈S αsKks , S ← S ∪{k}

3) If yk = +1 then
i← k , j ← argmins∈Sgs with αs > As

else
j ← k , i← argmaxs∈Sgs with αs < Bs

4) Bail out if (i, j) is not aτ-violating pair.

5) λ←min

{

gi−g j

Kii +K j j −2Ki j
, Bi−αi , α j −A j

}

αi ← αi +λ , α j ← α j −λ
gs← gs−λ(Kis−K js) ∀s∈ S

The second operation,REPROCESS, removes some elements fromS . It first searches theτ-
violating pair of elements ofS with maximal gradient (steps 1-2), and performs a direction search
(step 3). Then it removes blatant non support vectors (step 4). Finally itcomputes two useful
quantities: the bias termb of the decision function (2) and the gradientδ of the mostτ-violating pair
in S .

LASVM REPROCESS
1) i← argmaxs∈S gs with αs < Bs

j ← argmins∈S gs with αs > As

2) Bail out if (i, j) is not aτ-violating pair.

3) λ←min

{

gi−g j

Kii +K j j −2Ki j
, Bi−αi , α j −A j

}

αi ← αi +λ , α j ← α j −λ
gs← gs−λ(Kis−K js) ∀s∈ S

4) i← argmaxs∈S gs with αs < Bs

j ← argmins∈S gs with αs > As

For alls∈ S such thatαs = 0
If ys =−1 andgs≥ gi then S = S −{s}
If ys = +1 andgs≤ g j then S = S −{s}

5) b← (gi +g j)/2 , δ← gi−g j
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Online LASVM After initializing the state variables (step 1), the OnlineLASVM algorithm al-
ternatesPROCESSandREPROCESSa predefined number of times (step 2). Then it simplifies the
kernel expansion by runningREPROCESSto remove allτ-violating pairs from the kernel expansion
(step 3).

LASVM
1) Initialization :

SeedS with a few examples of each class.
Setα← 0 and compute the initial gradientg (equation 9)

2) Online Iterations:
Repeat a predefined number of times:

- Pick an examplekt

- RunPROCESS(kt).
- RunREPROCESSonce.

3) Finishing:
RepeatREPROCESSuntil δ≤ τ.

LASVM can be used in the online setup where one is given a continuous stream of fresh random
examples. The online iterations process fresh training examples as they come. LASVM can also be
used as a stochastic optimization algorithm in the offline setup where the complete training set is
available before hand. Each iteration randomly picks an example from the training set.

In practice we run theLASVM online iterations in epochs. Each epoch sequentially visits all
the randomly shuffled training examples. After a predefined numberP of epochs, we perform the
finishing step. A single epoch is consistent with the use ofLASVM in the online setup. Multiple
epochs are consistent with the use ofLASVM as a stochastic optimization algorithm in the offline
setup.

Convergence of the Online Iterations Let us first ignore the finishing step (step 3) and assume
that online iterations (step 2) are repeated indefinitely. Suppose that thereare remainingτ-violating
pairs at iterationT.

a.) If there areτ-violating pairs(i, j) such thati ∈ S and j ∈ S , one of them will be exploited by
the nextREPROCESS.

b.) Otherwise, if there areτ-violating pairs(i, j) such thati ∈ S or j ∈ S , each subsequentPRO-
CESShas a chance to exploit one of them. The interveningREPROCESSdo nothing because
they bail out at step 2.

c.) Otherwise, allτ-violating pairs involve indices outsideS . Subsequent calls toPROCESSand
REPROCESSbail out until we reach a timet > T such thatkt = i andkt+1 = j for someτ-
violating pair (i, j). The firstPROCESSthen insertsi into S and bails out. The following
REPROCESSbails out immediately. Finally the secondPROCESSlocates pair(i, j).

This case is not important in practice. There usually is a support vectors∈ S such that
As < αs < Bs. We can then writegi −g j = (gi −gs)+ (gs−g j) ≤ 2τ and conclude that we
already have reached a 2τ-approximate solution.
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The LASVM online iterations therefore work like the SMO algorithm. Remainingτ-violating
pairs is sooner or later exploited by eitherPROCESSor REPROCESS. As soon as aτ-approximate
solution is reached, the algorithm stops updating the coefficientsα. Theorem 18 in the appendix
gives more precise convergence results for this stochastic algorithm.

The finishing step (step 3) is only useful when one limits the number of online iterations. Run-
ning LASVM usually consists in performing a predefined numberP of epochs and running the fin-
ishing step. Each epoch performsn online iterations by sequentially visiting the randomly shuffled
training examples. Empirical evidence suggests indeed that asingle epochyields a classifier almost
as good as the SVM solution.

Computational Cost ofLASVM BothPROCESSandREPROCESSrequire a number of operations
proportional to the numberSof support vectors in setS . PerformingP epochs of online iterations
requires a number of operations proportional ton PS̄. The average number̄S of support vectors
scales no more than linearly withn because each online iteration brings at most one new support
vector. The asymptotic cost therefore grows liken2 at most. The finishing step is similar to running
a SMO solver on a SVM problem with onlyS training examples. We recover here then2 to n3

behavior of standard SVM solvers.
Online algorithms access kernel values with a very specific pattern. Most of the kernel values

accessed byPROCESSandREPROCESSinvolve only support vectors from setS . Only PROCESS
on a new examplexkt accessesS fresh kernel valuesK(xkt ,xi) for i ∈ S .

Implementation Details Our LASVM implementation reorders the examples after everyPRO-
CESSor REPROCESSto ensure that the current support vectors come first in the reorderedlist
of indices. The kernel cache records truncated rows of the reordered kernel matrix. SVMLight
(Joachims, 1999) andLIBSVM (Chang and Lin, 2001-2004) also perform such reorderings, but do
so rather infrequently (Joachims, 1999). The reordering overhead isacceptable during the online
iterations because the computation of fresh kernel values takes much more time.

Reordering examples during the finishing step was more problematic. We eventually deployed
an adaptation of theshrinkingheuristic (Joachims, 1999) for the finishing step only. The setS of
support vectors is split into an active setSa and an inactive setSi . All support vectors are initially
active. TheREPROCESSiterations are restricted to the active setSa and do not perform any reorder-
ing. About every 1000 iterations, support vectors that hit the boundaries of the box constraints are
either removed from the setS of support vectors or moved from the active setSa to the inactive set
Si . When allτ-violating pairs of the active set are exhausted, the inactive set examplesare trans-
ferred back into the active set. The process continues as long as the merged set containsτ-violating
pairs.

3.3 MNIST Experiments

The OnlineLASVM was first evaluated on the MNIST1 handwritten digit data set (Bottou et al.,
1994). Computing kernel values for this data set is relatively expensivebecause it involves dot
products of 784 gray level pixel values. In the experiments reported below, all algorithms use the
same code for computing kernel values. The ten binary classification tasksconsist of separating
each digit class from the nine remaining classes. All experiments use RBF kernels withγ = 0.005

1. This data set is available athttp://yann.lecun.com/exdb/mnist.
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Figure 1: Compared test error rates for the ten
MNIST binary classifiers.

Figure 2: Compared training times for the ten
MNIST binary classifiers.

and the same training parametersC = 1000 andτ = 0.001. Unless indicated otherwise, the kernel
cache size is 256MB.

LASVM versus Sequential Minimal Optimization Baseline results were obtained by running
the state-of-the-art SMO solverLIBSVM (Chang and Lin, 2001-2004). The resulting classifier ac-
curately represents the SVM solution.

Two sets of results are reported forLASVM . TheLASVM×1 results were obtained by performing
a single epoch of online iterations: each training example was processed exactly once during a
single sequential sweep over the training set. TheLASVM×2 results were obtained by performing
two epochs of online iterations.

Figures 1 and 2 show the resulting test errors and training times.LASVM×1 runs about three
times faster thanLIBSVM and yields test error rates very close to theLIBSVM results. Standard
paired significance tests indicate that these small differences are not significant. LASVM×2 usually
runs faster thanLIBSVM and very closely tracks theLIBSVM test errors.

Neither theLASVM×1 or LASVM×2 experiments yield the exact SVM solution. On this data
set,LASVM reaches the exact SVM solution after about five epochs. The first two epochs represent
the bulk of the computing time. The remaining epochs run faster when the kernel cache is large
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Algorithm Error Time
LIBSVM 1.36% 17400s
LASVM×1 1.42% 4950s
LASVM×2 1.36% 12210s

Figure 3: Training time as a function of the
number of support vectors.

Figure 4: Multiclass errors and training times
for the MNIST data set.

Figure 5: Compared numbers of support vec-
tors for the ten MNIST binary clas-
sifiers.

Figure 6: Training time variation as a func-
tion of the cache size. Relative
changes with respect to the 1GB
LIBSVM times are averaged over all
ten MNIST classifiers.

enough to hold all the dot products involving support vectors. Yet the overall optimization times are
not competitive with those achieved byLIBSVM .

Figure 3 shows the training time as a function of the final number of support vectors for the
ten binary classification problems. BothLIBSVM andLASVM×1 show a linear dependency. The
OnlineLASVM algorithm seems more efficient overall.
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Figure 4 shows the multiclass error rates and training times obtained by combiningthe ten
classifiers using the well known 1-versus-rest scheme (Schölkopf and Smola, 2002).LASVM×1
provides almost the same accuracy with much shorter training times.LASVM×2 reproduces the
LIBSVM accuracy with slightly shorter training time.

Figure 5 shows the resulting number of support vectors. A single epoch of the OnlineLASVM
algorithm gathers most of the support vectors of the SVM solution computed by LIBSVM . The first
iterations of the OnlineLASVM might indeed ignore examples that later become support vectors.
Performing a second epoch captures most of the missing support vectors.

LASVM versus the Averaged Perceptron The computational advantage ofLASVM relies on its
apparent ability to match the SVM accuracies after a single epoch. Therefore it must be compared
with algorithms such as the Averaged Perceptron (Freund and Schapire,1998) that provably match
well known upper bounds on the SVM accuracies. TheAVGPERC×1 results in Figures 1 and 2 were
obtained after running a single epoch of the Averaged Perceptron. Although the computing times are
very good, the corresponding test errors are not competitive with thoseachieved by eitherLIBSVM
or LASVM . Freund and Schapire (1998) suggest that the Averaged Perceptron approaches the actual
SVM accuracies after 10 to 30 epochs. Doing so no longer provides the theoretical guarantees. The
AVGPERC×10 results in Figures 1 and 2 were obtained after ten epochs. Test errorrates indeed
approach the SVM results. The corresponding training times are no longercompetitive.

Impact of the Kernel Cache Size These training times stress the importance of the kernel cache
size. Figure 2 shows how theAVGPERC×10 runs much faster on problems 0, 1, and 6. This is hap-
pening because the cache is large enough to accomodate the dot productsof all examples with all
support vectors. Each repeated iteration of the Average Perceptron requires very few additional ker-
nel evaluations. This is much less likely to happen when the training set size increases. Computing
times then increase drastically because repeated kernel evaluations become necessary.

Figure 6 compares how theLIBSVM andLASVM×1 training times change with the kernel cache
size. The vertical axis reports the relative changes with respect toLIBSVM with one gigabyte of
kernel cache. These changes are averaged over the ten MNIST classifiers. The plot shows how
LASVM tolerates much smaller caches. On this problem,LASVMwith a 8MB cache runs slightly
faster thanLIBSVMwith a 1024MB cache.

Useful orders of magnitude can be obtained by evaluating how large the kernel cache must be
to avoid the systematic recomputation of dot-products. Following the notations ofSection 2.1, letn
be the number of examples,Sbe the number of support vectors, andR≤ S the number of support
vectors such that 0< |αi |< C.

• In the case ofLIBSVM , the cache must accommodate aboutnR terms: the examples selected
for the SMO iterations are usually chosen among theR free support vectors. Each SMO
iteration needsn distinct dot-products for each selected example.

• To perform asingleLASVM epoch, the cache must only accommodate aboutSRterms: since
the examples are visited only once, the dot-products computed by aPROCESSoperation can
only be reutilized by subsequentREPROCESSoperations. The examples selected byRE-
PROCESSare usually chosen amont theR free support vectors; for each selected example,
REPROCESSneeds one distinct dot-product per support vector in setS .
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• To performmultiple LASVM epochs, the cache must accommodate aboutnS terms: the
dot-products computed by processing a particular example are reused when processing the
same example again in subsequent epochs. This also applies to multiple Averaged Perceptron
epochs.

An efficient single epoch learning algorithm is therefore very desirable when one expectsS to be
much smaller thann. Unfortunately, this may not be the case when the data set is noisy. Section
3.4 presents results obtained in such less favorable conditions. Section 4 then proposes an active
learning method to contain the growth of the number of support vectors, andrecover the full benefits
of the online approach.

3.4 Multiple Data Set Experiments

Further experiments were carried out with a collection of standard data setsrepresenting diverse
noise conditions, training set sizes, and input dimensionality. Figure 7 presents these data sets and
the parameters used for the experiments.

Kernel computation times for these data sets are extremely fast. The data eitherhas low di-
mensionality or can be represented with sparse vectors. For instance, computing kernel values for
two Reuters documents only involves words common to both documents (excluding stop words).
The Forest experiments use a kernel implemented with hand optimized assembly code (Graf et al.,
2005).

Figure 8 compares the solutions returned byLASVM×1 andLIBSVM . TheLASVM×1 experi-
ments call the kernel function much less often, but do not always run faster. The fast kernel com-
putation times expose the relative weakness of our kernel cache implementation. TheLASVM×1
accuracies are very close to theLIBSVM accuracies. The number of support vectors is always
slightly smaller.

LASVM×1 essentially achieves consistent results over very diverse data sets, after performing
one single epoch over the training set only. In this situation, theLASVM PROCESSfunction gets
only once chance to take a particular example into the kernel expansion andpotentially make it a
support vector. The conservative strategy would be to take all examplesand sort them out during
the finishing step. The resulting training times would always be worse thanLIBSVM ’s because
the finishing step is itself a simplified SMO solver. ThereforeLASVM online iterations are able to
very quickly discard a large number of examples with a high confidence. This process is not perfect
because we can see that theLASVM×1 number of support vectors are smaller thanLIBSVM ’s. Some
good support vectors are discarded erroneously.

Figure 9 reports the relative variations of the test error, number of support vectors, and training
time measured before and after the finishing step. The online iterations pretty much select the right
support vectors on clean data sets such as “Waveform”, “Reuters” or“USPS”, and the finishing step
does very little. On the other problems the online iterations keep much more examples as potential
support vectors. The finishing step significantly improves the accuracy on noisy data sets such as
“Banana”, “Adult” or “USPS+N”, and drastically increases the computation time on data sets with
complicated decision boundaries such as “Banana” or “Forest”.
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Train Size Test Size γ C Cache τ Notes

Waveform1 4000 1000 0.05 1 40M 0.001 Artificial data, 21 dims.
Banana1 4000 1300 0.5 316 40M 0.001 Artificial data, 2 dims.
Reuters2 7700 3299 1 1 40M 0.001 Topic “moneyfx” vs. rest.
USPS3 7329 2000 2 1000 40M 0.001 Class “0” vs. rest.
USPS+N3 7329 2000 2 10 40M 0.001 10% training label noise.
Adult3 32562 16282 0.005 100 40M 0.001 As in (Platt, 1999).
Forest3 (100k) 100000 50000 1 3 512M 0.001 As in (Collobert et al., 2002).
Forest3 (521k) 521012 50000 1 3 1250M 0.01 As in (Collobert et al., 2002).

1 http://mlg.anu.edu.au/∼raetsch/data/index.html
2 http://www.daviddlewis.com/resources/testcollections/reuters21578
3 ftp://ftp.ics.uci.edu/pub/machine-learning-databases

Figure 7: Data Sets discussed in Section 3.4.

LIBSVM LASVM×1
Data Set Error SV KCalc Time Error SV KCalc Time

Waveform 8.82% 1006 4.2M 3.2s 8.68% 948 2.2M 2.7s
Banana 9.96% 873 6.8M 9.9s 9.98% 869 6.7M 10.0s
Reuters 2.76% 1493 11.8M 24s 2.76% 1504 9.2M 31.4s
USPS 0.41% 236 1.97M 13.5s 0.43% 201 1.08M 15.9s
USPS+N 0.41% 2750 63M 305s 0.53% 2572 20M 178s
Adult 14.90% 11327 1760M 1079s 14.94% 11268 626M 809s
Forest (100k) 8.03% 43251 27569M 14598s 8.15% 41750 18939M 10310s
Forest (521k) 4.84% 124782 316750M 159443s 4.83% 122064 188744M 137183s

Figure 8: Comparison ofLIBSVM versusLASVM×1: Test error rates (Error), number of support
vectors (SV), number of kernel calls (KCalc), and training time (Time). Boldcharacters
indicate significative differences.

Relative Variation
Data Set Error SV Time

Waveform -0% -0% +4%
Banana -79% -74% +185%
Reuters 0% -0% +3%
USPS 0% -2% +0%
USPS+N% -67% -33% +7%
Adult -13% -19% +80%
Forest (100k) -1% -24% +248%
Forest (521k) -2% -24% +84%

Figure 9: Relative variations of test error, number of support vectorsand training time measured
before and after the finishing step.
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3.5 The Collection of Potential Support Vectors

The final step of theREPROCESSoperation computes the current value of the kernel expansion bias
b and the stopping criterionδ:

gmax = max
s∈S

gs with αs < Bs b =
gmax+gmin

2
gmin = min

s∈S
gs with αs > As δ = gmax−gmin.

(10)

The quantitiesgmin andgmax can be interpreted as bounds for the decision thresholdb. The quantity
δ then represents an uncertainty on the decision thresholdb.

The quantityδ also controls howLASVM collects potential support vectors. The definition of
PROCESSand the equality (9) indicate indeed thatPROCESS(k) adds the support vectorxk to the
kernel expansion if and only if

yk ŷ(xk) < 1+
δ
2
− τ. (11)

Whenα is optimal, the uncertaintyδ is zero, and this condition matches the Karush-Kuhn-Tucker
condition for support vectorsyk ŷ(xk)≤ 1.

Intuitively, relation (11) describes howPROCESScollects potential support vectors that are com-
patible with the current uncertainty levelδ on the thresholdb. Simultaneously, theREPROCESS
operations reduceδ and discard the support vectors that are no longer compatible with this reduced
uncertainty.

The online iterations of theLASVM algorithm make equal numbers ofPROCESSandREPRO-
CESSfor purely heuristic reasons. Nothing guarantees that this is the optimal proportion. The
results reported in Figure 9 clearly suggest to investigate this arbitrage moreclosely.

Variations on REPROCESS Experiments were carried out with a slightly modifiedLASVM al-
gorithm: instead of performing a singleREPROCESS, the modified online iterations repeatedly run
REPROCESSuntil the uncertaintyδ becomes smaller than a predefined thresholdδmax.

Figure 10 reports comparative results for the “Banana” data set. Similar results were obtained
with other data sets. The three plots report test error rates, training time, and number of support
vectors as a function ofδmax. These measurements were performed after one epoch of online it-
erations without finishing step, and after one and two epochs followed by the finishing step. The
correspondingLIBSVM figures are indicated by large triangles on the right side of the plot.

Regardless ofδmax, the SVM test error rate can be replicated by performing two epochs followed
by a finishing step. However, this does not guarantee that the optimal SVM solution has been
reached.

Large values ofδmax essentially correspond to the unmodifiedLASVM algorithm. Small values
of δmax considerably increases the computation time because each online iteration callsREPROCESS
many times in order to sufficiently reduceδ. Small values ofδmax also remove theLASVM ability
to produce a competitive result after a single epoch followed by a finishing step. The additional
optimization effort discards support vectors more aggressively. Additional epochs are necessary to
recapture the support vectors that should have been kept.

There clearly is a sweet spot aroundδmax = 3 when one epoch of online iterations alone almost
match the SVM performance and also makes the finishing step very fast. This sweet spot is difficult
to find in general. Ifδmax is a little bit too small, we must make one extra epoch. Ifδmax is a little
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Figure 10: Impact of additionalREPROCESSmeasured on “Banana” data set. During theLASVM
online iterations, calls toREPROCESSare repeated untilδ < δmax.

bit too large, the algorithm behaves like the unmodifiedLASVM . Short of a deeper understanding
of these effects, the unmodifiedLASVM seems to be a robust compromise.

SimpleSVM The right side of each plot in Figure 10 corresponds to an algorithm that optimizes
the coefficient of the current support vectors at each iteration. This isclosely related to the Sim-
pleSVM algorithm (Vishwanathan et al., 2003). BothLASVM and the SimpleSVM update a current
kernel expansion by adding or removing one or two support vectors ateach iteration. The two key
differences are the numerical objective of these updates and their computational costs.

Whereas each SimpleSVM iteration seeks the optimal solution of the SVM QP problem re-
stricted to the current set of support vectors, theLASVM online iterations merely attempt to improve
the value of the dual objective functionW(α). As a a consequence,LASVM needs a finishing step
and the SimpleSVM does not. On the other hand, Figure 10 suggests that seeking the optimum
at each iteration discards support vectors too aggressively to reach competitive accuracies after a
single epoch.

Each SimpleSVM iteration updates the current kernel expansion using rank 1 matrix updates
(Cauwenberghs and Poggio, 2001) whose computational cost grows as the square of the number of
support vectors.LASVM performs these updates using SMO direction searches whose cost grows
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linearly with the number of examples. Rank 1 updates make good sense when one seeks the optimal
coefficients. On the other hand, all the kernel values involving supportvectors must be stored in
memory. TheLASVM direction searches are more amenable to caching strategies for kernel values.

4. Active Selection of Training Examples

The previous section presentsLASVM as an Online Learning algorithm or as a Stochastic Opti-
mization algorithm. In both cases, theLASVM online iterations pick random training examples.
The current section departs from this framework and investigates more refined ways to select an
informative example for each iteration.

This departure is justified in the offline setup because the complete training setis available
beforehand and can be searched for informative examples. It is also justified in the online setup
when the continuous stream of fresh training examples is too costly to process, either because the
computational requirements are too high, or because it is inpractical to labelall the potential training
examples.

In particular, we show that selecting informative examples yields considerable speedups. Fur-
thermore, training example selection can be achieved without the knowledge of the training example
labels. In fact, excessive reliance on the training example labels can havevery detrimental effects.

4.1 Gradient Selection

The most obvious approach consists in selecting an examplek such that thePROCESSoperation
results in a large increase of the dual objective function. This can be approximated by choosing the
example which yields theτ-violating pair with the largest gradient. Depending on the classyk, the
PROCESS(k) operation considers pair(k, j) or (i,k) wherei and j are the indices of the examples in
S with extreme gradients:

i = argmax
s∈S

gs with αs < Bs , j = argmin
s∈S

gs with αs > As.

The corresponding gradients aregk−g j for positive examples andgi −gk for negative examples.
Using the expression (9) of the gradients and the value ofb andδ computed during the previous
REPROCESS(10), we can write:

whenyk=+1, gk−g j = yk gk−
gi +g j

2
+

gi−g j

2
= 1+

δ
2
−yk ŷ(xk)

whenyk=−1, gi−gk =
gi +g j

2
+

gi−g j

2
+yk gk = 1+

δ
2
−yk ŷ(xk).

This expression shows that theGradient Selection Criterionsimply suggests to pick the most mis-
classified example

kG = argmin
k/∈S

yk ŷ(xk). (12)

4.2 Active Selection

Always picking the most misclassified example is reasonable when one is veryconfident of the train-
ing example labels. On noisy data sets, this strategy is simply going to pick mislabelledexamples
or examples that sit on the wrong side of the optimal decision boundary.
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When training example labels are unreliable, a conservative approach chooses the examplekA

that yields the strongest minimax gradient:

kA = argmin
k/∈S

max
y=±1

yŷ(xk) = argmin
k/∈S

|ŷ(xk)| . (13)

This Active Selection Criterionsimply chooses the example that comes closest to the current deci-
sion boundary. Such a choice yields a gradient approximatively equal to1+ δ/2 regardless of the
true class of the example.

Criterion (13) does not depend on the labelsyk. The resulting learning algorithm only uses the
labels of examples that have been selected during the previous online iterations. This is related to
thePool Based Active Learningparadigm (Cohn et al., 1990).

Early active learning literature, also known asExperiment Design(Fedorov, 1972), contrasts
the passive learner, who observes examples(x,y), with the active learner, who constructs queriesx
and observes their labelsy. In this setup, the active learner cannot beat the passive learner because
he lacks information about the input pattern distribution (Eisenberg and Rivest, 1990). Pool-based
active learning algorithms observe the pattern distribution from a vast poolof unlabelled examples.
Instead of constructing queries, they incrementally select unlabelled examples xk and obtain their
labelsyk from an oracle.

Several authors (Campbell et al., 2000; Schohn and Cohn, 2000; Tong and Koller, 2000) propose
incremental active learning algorithms that clearly are related to Active Selection. The initialization
consists of obtaining the labels for a small random subset of examples. A SVM is trained using
all the labelled examples as a training set. Then one searches the pool for the unlabelled example
that comes closest to the SVM decision boundary, one obtains the label of this example, retrains the
SVM and reiterates the process.

4.3 Randomized Search

Both criteria (12) and (13) suggest a search through all the training examples. This is impossible in
the online setup and potentially expensive in the offline setup.

It is however possible to locate an approximate optimum by simply examining a small constant
number of randomly chosen examples. The randomized search first samples M random training
examples and selects the best one among theseM examples. With probability 1−ηM, the value
of the criterion for this example exceeds theη-quantile of the criterion for all training examples
(Scḧolkopf and Smola, 2002, theorem 6.33) regardless of the size of the training set. In practice this
means that the best among 59 random training examples has 95% chances to belong to the best 5%
examples in the training set.

Randomized search has been used in the offline setup to accelerate various machine learning
algorithms (Domingo and Watanabe, 2000; Vishwanathan et al., 2003; Tsang et al., 2005). In the
online setup, randomized search is the only practical way to select training examples. For instance,
here is a modification of the basicLASVM algorithm to select examples using the Active Selection
Criterion with Randomized Search:

1597



BORDES, ERTEKIN, WESTON, AND BOTTOU

LASVM + Active Example Selection + Randomized Search
1) Initialization :

SeedS with a few examples of each class.
Setα← 0 andg← 0.

2) Online Iterations:
Repeat a predefined number of times:

- PickM random exampless1 . . .sM.
- kt ← argmin

i=1...M
| ŷ(xsi ) |

- RunPROCESS(kt).
- RunREPROCESSonce.

3) Finishing:
RepeatREPROCESSuntil δ≤ τ.

Each online iteration of the above algorithm is aboutM times more computationally expen-
sive that an online iteration of the basicLASVM algorithm. Indeed one must compute the kernel
expansion (2) forM fresh examples instead of a single one (9). This cost can be reduced byheuris-
tic techniques for adaptingM to the current conditions. For instance, we present experimental
results where one stops collecting new examples as soon asM contains five examples such that
| ŷ(xs) |< 1+δ/2.

Finally the last two paragraphs of appendix A discuss the convergence of LASVM with example
selection according to the gradient selection criterion or the active selectioncriterion. The gradient
selection criterion always leads to a solution of the SVM problem. On the other hand, the active
selection criterion only does so when one uses the sampling method. In practice this convergence
occurs very slowly. The next section presents many reasons to preferthe intermediate kernel classi-
fiers visited by this algorithm.

4.4 Example Selection for Online SVMs

This section experimentally compares theLASVM algorithm using different example selection
methods. Four different algorithms are compared:

• RANDOM example selection randomly picks the next training example among those that have
not yet beenPROCESSed. This is equivalent to the plainLASVM algorithm discussed in
Section 3.2.

• GRADIENT example selection consists in sampling 50 random training examples among those
that have not yet beenPROCESSed. The sampled example with the smallestyk ŷ(xk) is then
selected.

• ACTIVE example selection consists in sampling 50 random training examples among those
that have not yet beenPROCESSed. The sampled example with the smallest|ŷ(xk)| is then
selected.

• AUTOACTIVE example selection attempts to adaptively select the sampling size. Sampling
stops as soon as 5 examples are within distance 1+ δ/2 of the decision boundary. The max-
imum sample size is 100 examples. The sampled example with the smallest|ŷ(xk)| is then
selected.
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Figure 11: Comparing example selection criteria on the Adult data set. Measurements were per-
formed on 65 runs using randomly selected training sets. The graphs showthe error
measured on the remaining testing examples as a function of the number of iterations
and the computing time. The dashed line represents theLIBSVM test error under the
same conditions.

Adult Data Set We first report experiments performed on the “Adult” data set. This data set
provides a good indication of the relative performance of the Gradient and Active selection criteria
under noisy conditions.

Reliable results were obtained by averaging experimental results measuredfor 65 random splits
of the full data set into training and test sets. Paired tests indicate that test error differences of 0.25%
on a single run are statistically significant at the 95% level. We conservatively estimate that average
error differences of 0.05% are meaningful.

Figure 11 reports the average error rate measured on the test set as a function of the number
of online iterations (left plot) and of the average computing time (right plot). Regardless of the
training example selection method, all reported results were measured after performing theLASVM
finishing step. More specifically, we run a predefined number of online iterations, save theLASVM
state, perform the finishing step, measure error rates and number of support vectors, and restore the
savedLASVM state before proceeding with more online iterations. Computing time includes the
duration of the online iterations and the duration of the finishing step.

The GRADIENT example selection criterion performs very poorly on this noisy data set. A
detailed analysis shows that most of the selected examples become support vectors with coefficient
reaching the upper boundC. TheACTIVE andAUTOACTIVE criteria both reach smaller test error
rates than those achieved by the SVM solution computed byLIBSVM . The error rates then seem to
increase towards the error rate of the SVM solution (left plot). We believe indeed that continued
iterations of the algorithm eventually yield the SVM solution.

Figure 12 relates error rates and numbers of support vectors. TheRANDOM LASVM algorithm
performs as expected: a single pass over all training examples replicates the accuracy and the num-
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Figure 12: Comparing example selection criteria on the Adult data set. Test error as a function of
the number of support vectors.

ber of support vectors of theLIBSVM solution. Both theACTIVE andAUTOACTIVE criteria yield
kernel classifiers with the same accuracy and much less support vectors. For instance, theAUTOAC-
TIVE LASVM algorithm reaches the accuracy of theLIBSVM solution using 2500 support vectors
instead of 11278. Figure 11 (right plot) shows that this result is achievedafter 150 seconds only.
This is about one fifteenth of the time needed to perform a fullRANDOM LASVM epoch.2

Both theACTIVE LASVM andAUTOACTIVE LASVM algorithms exceed theLIBSVM accuracy
after a few iterations only. This is surprising because these algorithms only use the training labels
of the few selected examples. They both outperform theLIBSVM solution by using only a small
subset of the available training labels.

MNIST Data Set The comparatively clean MNIST data set provides a good opportunity to verify
the behavior of the various example selection criteria on a problem with a much lower error rate.

Figure 13 compares the performance of theRANDOM, GRADIENT andACTIVE criteria on the
classification of digit “8” versus all other digits. The curves are averaged on 5 runs using different
random seeds. All runs use the standard MNIST training and test sets. Both theGRADIENT and
ACTIVE criteria perform similarly on this relatively clean data set. They require about as much
computing time asRANDOM example selection to achieve a similar test error.

Adding ten percent label noise on the MNIST training data provides additional insight regarding
the relation between noisy data and example selection criteria. Label noise was not applied to the
testing set because the resulting measurement can be readily compared to test errors achieved by
training SVMs without label noise. The expected test errors under similar label noise conditions
can be derived from the test errors measured without label noise. Figure 14 shows the test errors
achieved when 10% label noise is added to the training examples. TheGRADIENT selection cri-

2. The timing results reported in Figure 8 were measured on a faster computer.
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Figure 13: Comparing example selection criteria on the MNIST data set, recognizing digit “8”
against all other classes. Gradient selection and Active selection perform similarly on
this relatively noiseless task.

Figure 14: Comparing example selection criteria on the MNIST data set with 10%label noise on
the training examples.
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Figure 15: Comparing example selection criteria on the MNIST data set. Activeexample selection
is insensitive to the artificial label noise.

terion causes a very chaotic convergence because it keeps selecting mislabelled training examples.
TheACTIVE selection criterion is obviously undisturbed by the label noise.

Figure 15 summarizes error rates and number of support vectors for allnoise conditions. In the
presence of label noise on the training data,LIBSVM yields a slightly higher test error rate, and a
much larger number of support vectors. TheRANDOM LASVM algorithm replicates theLIBSVM
results after one epoch. Regardless of the noise conditions, theACTIVE LASVM algorithm reaches
the accuracy and the number of support vectors of theLIBSVM solution obtained with clean training
data. Although we have not been able to observe it on this data set, we expect that, after a very long
time, theACTIVE curve for the noisy training set converges to the accuracy and the number of
support vectors achieved of theLIBSVM solution obtained for the noisy training data.

4.5 Online SVMs for Active Learning

TheACTIVE LASVM algorithm implements two dramatic speedups with respect to existing active
learning algorithms such as (Campbell et al., 2000; Schohn and Cohn, 2000; Tong and Koller, 2000).
First it chooses a query by sampling a small number of random examples instead of scanning all
unlabelled examples. Second, it uses a singleLASVM iteration after each query instead of fully
retraining the SVM.

Figure 16 reports experiments performed on the Reuters and USPS data sets presented in table
7. TheRETRAIN ACTIVE 50 andRETRAIN ACTIVE ALL select a query from 50 or all unlabeled
examples respectively, and then retrain the SVM. The SVM solver was initialized with the solution
from the previous iteration. TheLASVM ACTIVE 50 andLASVM ACTIVE ALL do not retrain the
SVM, but instead make a singleLASVM iteration for each new labeled example.
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Figure 16: Comparing active learning methods on the USPS and Reuters datasets. Results are
averaged on 10 random choices of training and test sets. UsingLASVM iterations instead
of retraining causes no loss of accuracy. SamplingM = 50 examples instead of searching
all examples only causes a minor loss of accuracy when the number of labeled examples
is very small.

All the active learning methods performed approximately the same, and were superior to ran-
dom selection. UsingLASVM iterations instead of retraining causes no loss of accuracy. Sampling
M = 50 examples instead of searching all examples only causes a minor loss of accuracy when the
number of labeled examples is very small. Yet the speedups are very significant: for 500 queried
labels on the Reuters data set, theRETRAIN ACTIVE ALL , LASVM ACTIVE ALL , andLASVM AC-
TIVE 50 algorithms took 917 seconds, 99 seconds, and 9.6 seconds respectively.

5. Discussion

This work started because we observed that the data set sizes are quickly outgrowing the computing
power of our calculators. One possible avenue consists of harnessingthe computing power of
multiple computers (Graf et al., 2005). Instead we propose learning algorithms that remain closely
related to SVMs but require less computational resources. This section discusses their practical and
theoretical implications.

5.1 Practical Significance

When we have access to an abundant source of training examples, the simple way to reduce the
complexity of a learning algorithm consists of picking a random subset of training examples and
running a regular training algorithm on this subset. Unfortunately this approach renounces the
more accurate models that the large training set could afford. This is why wesay, by reference to
statistical efficiency, that anefficient learning algorithm should at least pay a brief look at every
training example.

The onlineLASVM algorithm is very attractive because it matches the performance of a SVM
trained on all the examples. More importantly, it achives this performance after a single epoch,
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faster than a SVM (figure 2) and using much less memory than a SVM (figure 6). This is very im-
portant in practice because modern data storage devices are most effective when the data is accessed
sequentially.

Active Selection of theLASVM training examples brings two additional benefits for practical
applications. It achieves equivalent performances with significantly lesssupport vectors, further
reducing the required time and memory. It also offers an obvious opportunity to parallelize the
search for informative examples.

5.2 Informative Examples and Support Vectors

By suggesting that all examples should not be given equal attention, we first state that all training
examples are not equally informative. This question has been asked and answered in various con-
texts (Fedorov, 1972; Cohn et al., 1990; MacKay, 1992). We also askwhether these differences can
be exploited to reduce the computational requirements of learning algorithms. Our work answers
this question by proposing algorithms that exploit these differences and achieve very competitive
performances.

Kernel classifiers in general distinguish the few training examples named support vectors. Ker-
nel classifier algorithms usually maintain an active set of potential support vectors and work by
iterations. Their computing requirements are readily associated with the trainingexamples that be-
long to the active set. Adding a training example to the active set increases thecomputing time
associated with each subsequent iteration because they will require additional kernel computations
involving this new support vector. Removing a training example from the active set reduces the
cost of each subsequent iteration. However it is unclear how such changes affect the number of
subsequent iterations needed to reach a satisfactory performance level.

Online kernel algorithms, such as the kernel perceptrons usually produce different classifiers
when given different sequences of training examples. Section 3 proposes an online kernel algorithm
that converges to the SVM solution after many epochs. The final set of support vectors is intrin-
sically defined by the SVM QP problem, regardless of the path followed by theonline learning
process. Intrinsic support vectors provide a benchmark to evaluate theimpact of changes in the ac-
tive set of current support vectors. Augmenting the active set with an example that is not an intrinsic
support vector moderately increases the cost of each iteration without clear benefits. Discarding an
example that is an intrinsic support vector incurs a much higher cost. Additional iterations will be
necessary to recapture the missing support vector. Empirical evidence ispresented in Section 3.5.

Nothing guarantees however that the most informative examples are the support vectors of the
SVM solution. Bakır et al. (2005) interpret Steinwart’s theorem (Steinwart, 2004) as an indication
that the number of SVM support vectors is asymptotically driven by the examples located on the
wrong side of the optimal decision boundary. Although such outliers might play a useful role in the
construction of a decision boundary, it seems unwise to give them the bulk of the available com-
puting time. Section 4 adds explicit example selection criteria toLASVM . The Gradient Selection
Criterion selects the example most likely to cause a large increase of the SVM objective function.
Experiments show that it prefers outliers over honest examples. The Active Selection Criterion by-
passes the problem by choosing examples without regard to their labels. Experiments show that it
leads to competitive test error rates after a shorter time, with less support vectors, and using only
the labels of a small fraction of the examples.
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5.3 Theoretical Questions

The appendix provides a comprehensive analysis of the convergenceof the algorithms discussed in
this contribution. Such convergence results are useful but limited in scope. This section underlines
some aspects of this work that would vastly benefit from a deeper theoretical understanding.

• Empirical evidence suggests that a single epoch of theLASVM algorithm yields misclassifi-
cation rates comparable with a SVM. We also know thatLASVM exactly reaches the SVM
solution after a sufficient number of epochs. Can we theoretically estimate theexpected dif-
ference between the first epoch test error and the many epoch test error? Such results exist for
well designed online learning algorithms based on stochastic gradient descent (Murata and
Amari, 1999; Bottou and LeCun, 2005). Unfortunately these results do not directly apply to
kernel classifiers. A better understanding would certainly suggest improved algorithms.

• Test error rates are sometimes improved by active example selection. In fact this effect has
already been observed in the active learning setups (Schohn and Cohn, 2000). This small
improvement is difficult to exploit in practice because it requires very sensitive early stopping
criteria. Yet it demands an explanation because it seems that one gets a better performance
by using less information. There are three potential explanations: (i) active selection works
well on unbalanced data sets because it tends to pick equal number of examples of each class
(Schohn and Cohn, 2000), (ii ) active selection improves the SVM loss function because it
discards distant outliers, (iii ) active selection leads to more sparse kernel expansions with
better generalization abilities (Cesa-Bianchi et al., 2005). These three explanations may be
related.

• We know that the number of SVM support vectors scales linearly with the number of examples
(Steinwart, 2004). Empirical evidence suggests that active example selection yields transitory
kernel classifiers that achieve low error rates with much less support vectors. What is the
scaling law for this new number of support vectors?

• What is the minimal computational cost for learningn independent examples and achieving
“optimal” test error rates? The answer depends of course of how we define these “optimal”
test error rates. This cost intuitively scales at least linearly withn because one must pay a
look at each example to fully exploit them. The present work suggest that this cost might
be smaller thann times the reduced number of support vectors achievable with the active
learning technique. This range is consistent with previous work showing that stochastic gra-
dient algorithms can train a fixed capacity model in linear time (Bottou and LeCun,2005).
Learning seems to be much easier than computing the optimum of the empirical loss.

5.4 Future Directions

Progress can also be achieved along less arduous directions.

• Section 3.5 suggests that better convergence speed could be attained by cleverly modulating
the number of calls toREPROCESSduring the online iterations. Simple heuristics might go a
long way.
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• Section 4.3 suggests a heuristic to adapt the sampling size for the randomized search of in-
formative training examples. ThisAUTOACTIVE heuristic performs very well and deserves
further investigation.

• Sometimes one can generate a very large number of training examples by exploiting known
invariances. Active example selection can drive the generation of examples. This idea was
suggested in (Loosli et al., 2004) for the SimpleSVM.

6. Conclusion

This work explores various ways to speedup kernel classifiers by asking which examples deserve
more computing time. We have proposed a novel online algorithm that converges to the SVM solu-
tion. LASVM reliably reaches competitive accuracies after performing a single pass over the training
examples, outspeeding state-of-the-art SVM solvers. We have then shown how active example se-
lection can yield faster training, higher accuracies and simpler models using only a fraction of the
training examples labels.
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Appendix A. Convex Programming with Witness Families

This appendix presents theoretical elements about convex programming algorithms that rely on
successive direction searches. Results are presented for the case where directions are selected from
a well chosen finite pool, like SMO (Platt, 1999), and for the stochastic algorithms, like the online
and active SVM discussed in the body of this contribution.

Consider a compact convex subsetF of R
n and a concave functionf defined onF . We assume

that f is twice differentiable with continuous derivatives. This appendix discusses the maximization
of function f over setF :

max
x∈F

f (x). (14)

This discussion starts with some results about feasible directions. Then it introduces the notion
of witness family of directions which leads to a more compact characterization of the optimum.
Finally it presents maximization algorithms and establishes their convergence to approximate solu-
tions

A.1 Feasible Directions

Notations Given a pointx∈ F and a directionu∈ R
n
∗ = R

n, let

φ(x,u) = max{λ≥ 0|x+λu∈ F }

f ∗(x,u) = max{ f (x+λu), x+λu∈ F }.
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In particular we writeφ(x,0) = ∞ and f ∗(x,0) = f (x).

Definition 1 The cone of feasible directions in x∈ F is the set

Dx = {u∈ R
n |φ(x,u) > 0}.

All the pointsx+ λu, 0≤ λ ≤ φ(x,u) belong toF becauseF is convex. Intuitively, a direction
u 6= 0 is feasible inx when we can start fromx and make a little movement along directionu without
leaving the convex setF .

Proposition 2 Given x∈ F and u∈ R
n,

f ∗(x,u) > f (x) ⇐⇒

{

u′∇ f (x) > 0
u∈Dx.

Proof Assumef ∗(x,u) > f (x). Directionu 6= 0 is feasible because the maximumf ∗(x,u) is reached
for some 0< λ∗ ≤ φ(x,u). Let ν ∈ [0,1]. Since setF is convex, x+ νλ∗u∈ F . Since functionf
is concave, f (x+ νλ∗u)) ≥ (1− ν) f (x)+ ν f ∗(x,u). Writing a first order expansion whenν→ 0
yields λ∗u′∇ f (x) ≥ f ∗(x,u)− f (x) > 0. Conversely, assumeu′∇ f (x) > 0 andu 6= 0 is a feasible
direction. Recallf (x+ λu) = f (x)+ λu′∇ f (x)+ o(λ). Therefore we can choose 0< λ0 ≤ φ(x,u)
such thatf (x+λ0u) > f (x)+λ0u′∇ f (x)/2. Thereforef ∗(x,u)≥ f (x+λ0u) > f (x).

Theorem 3 (Zoutendijk (1960) page 22)The following assertions are equivalent:
i) x is a solution of problem (14).

ii) ∀u∈ R
n f ∗(x,u)≤ f (x).

iii) ∀u∈Dx u′∇ f (x)≤ 0.

Proof The equivalence between assertions(ii) and(iii ) results from proposition 2. Assume asser-
tion (i) is true. Assertion(ii) is necessarily true becausef ∗(u,x)≤maxF f = f (x). Conversely, as-
sume assertion(i) is false. Then there isy∈ F such thatf (y) > f (x). Thereforef ∗(x,y−x) > f (x)
and assertion(ii) is false.

A.2 Witness Families

We now seek to improve this theorem. Instead of considering all feasible directions inR
n, we wish

to only consider the feasible directions from a smaller setU.

Proposition 4 Let x∈ F and v1 . . .vk ∈ Dx be feasible directions. Every positive linear combina-
tion of v1 . . .vk (i.e. a linear combination with positive coefficients) is a feasible direction.

Proof Let u be a positive linear combination of thevi . Since thevi are feasible directions there are
yi = x+ λivi ∈ F , andu can be written as∑i γi(yi −x) with γi ≥ 0. Directionu is feasible because
the convexF contains(∑γiyi)/(∑γi) = x+(1/∑γi)u.
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Definition 5 A set of directionsU ⊂ R
n
∗ is a “witness family forF ” when, for any point x∈ F ,

any feasible direction u∈Dx can be expressed as a positive linear combination of a finite number
of feasible directions vj ∈U∩Dx.

This definition directly leads to an improved characterization of the optima.

Theorem 6 Let U be a witness family for convex setF .
The following assertions are equivalent:

i) x is a solution of problem (14).
ii) ∀u∈U f ∗(x,u)≤ f (x).

iii) ∀u∈U∩Dx u′∇ f (x)≤ 0.

Proof The equivalence between assertions(ii) and (iii ) results from proposition 2. Assume as-
sertion(i) is true. Theorem 3 implies that assertion(ii) is true as well. Conversely, assume asser-
tion (i) is false. Theorem 3 implies that there is a feasible directionu ∈ R

n on pointx such that
u′∇ f (x) > 0. SinceU is a witness family, there are positive coefficientsγ1 . . .γk and feasible direc-
tionsv1, . . . ,vk ∈U∩Dx such thatu = ∑γivi . We have then∑γ jv′j∇ f (x) > 0. Since all coefficients
γ j are positive, there is at least one termj0 such thatv′j0∇ f (x) > 0. Assertion(iii ) is therefore false.

The following proposition provides an example of witness family for the convex domainFs that
appears in the SVM QP problem (5).

Proposition 7 Let (e1 . . .en) be the canonical basis ofRn. SetUs = {ei − ej , i 6= j} is a witness
family for convex setFs defined by the constraints

x∈ Fs ⇐⇒

{

∀ i Ai ≤ xi ≤ Bi

∑i xi = 0.

Proof Let u∈ R
n
∗ be a feasible direction inx∈ Fs. Sinceu is a feasible direction, there isλ > 0

such thaty = x+λu∈ Fs. Consider the subsetB ⊂ Fs defined by the constraints

z∈ B ⇔

{

∀ i, Ai ≤min(xi ,yi)≤ zi ≤max(xi ,yi)≤ Bi

∑i zi = 0.

Let us recursively define a sequence of pointsz( j) ∈ B. We start withz(0) = x ∈ B. For each
t ≥ 0, we define two sets of coordinate indicesI+

t = {i |zi(t) < yi} and I−t = { j |zj(t) > y j}. The
recursion stops if either set is empty. Otherwise, we choosei ∈ I+

t and j ∈ I−t and definez(t+1) =
z(t)+ γ(t)v(t) ∈ B with v(t) = ei−ej ∈Us andγ(t) = min(yi−zi(t),zj(t)−y j) > 0. Intuitively, we
move towardsy along directionv(t) until we hit the boundaries of setB.

Each iteration removes at least one of the indicesi or j from setsI+
t andI−t . Eventually one of

these sets gets empty and the recursion stops after a finite numberk of iterations. The other set is
also empty because

∑
i∈I+

k

|yi−zi(k)|− ∑
i∈I−k

|yi−zi(k)| =
n

∑
i=1

yi−zi(k) =
n

∑
i=1

yi−
n

∑
i=1

zi(k) = 0.
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Thereforez(k) = y andλu = y− x = ∑t γ(t) v(t). Moreover thev(t) are feasible directions onx be-
causev(t) = ei−ej with i ∈ I+

t ⊂ I+
0 and j ∈ I−t ⊂ I−0 .

Assertion(iii ) in Theorem 6 then yields the following necessary and sufficient optimality criterion
for the SVM QP problem (5):

∀(i, j) ∈ {1. . .n}2 xi < Bi andx j > A j ⇒
∂ f
∂xi

(x)−
∂ f
∂x j

(x)≤ 0.

Different constraint sets call for different choices of witness family. For instance, it is sometimes
useful to disregard the equality constraint in the SVM polytopeFs. Along the lines of proposition 7,
it is quite easy to prove that{±ei , i = 1. . .n} is a witness family. Theorem 6 then yields an adequate
optimality criterion.

A.3 Finite Witness Families

This section deals withfinite witness families. Theorem 9 shows thatF is necessarily a convex
polytope, that is a bounded set defined by a finite number of linear of linearequality and inequality
constraints (Schrijver, 1986).

Proposition 8 Let Cx = {x+u, u∈Dx} for x∈ F . ThenF =
T

x∈F Cx.

Proof We first show thatF ⊂
T

x∈F Cx. IndeedF ⊂ Cx for all x because every pointz∈ F defines
a feasible directionz−x∈Dx.

Conversely, Letz∈
T

x∈F Cx and assume thatz does not belong toF . Let ẑ be the projection
of z on F . We know thatz∈ Cẑ becausez∈

T

x∈F Cx. Thereforez− ẑ is a feasible direction in
ẑ. Choose 0< λ < φ(ẑ,z− ẑ). We know thatλ < 1 becausez does not belong toF . But then
ẑ+λ(z− ẑ) ∈ F is closer toz thanẑ. This contradicts the definition of the projection ˆz.

Theorem 9 Let F be a bounded convex set.
If there is a finite witness family forF , thenF is a convex polytope.3

Proof Consider a pointx∈ F and let{v1 . . .vk} = U ∩Dx. Proposition 4 and definition 5 imply
that Dx is the polyhedral cone{z = ∑γivi , γi ≥ 0} and can be represented (Schrijver, 1986) by a
finite number of linear equality and inequality constraints of the formnz≤ 0 where the directionsn
are unit vectors. LetKx be the set of these unit vectors. Equality constraints arise when the setKx
contains bothn and−n. Each setKx depends only on the subset{v1 . . .vk} = U ∩Dx of feasible
witness directions inx. Since the finite setU contains only a finite number of potential subsets,
there is only a finite number of distinct setsKx.

Each setCx is therefore represented by the constraintsnz≤ nx for n∈Kx. The intersectionF =
T

x∈F Cx is then defined by all the constraints associated withCx for anyx∈ F . These constraints
involve only a finite number of unit vectorsn because there is only a finite number of distinct sets
Kx.

Inequalities defined by the same unit vectorn can be summarized by considering only the most
restrictive right hand side. ThereforeF is described by a finite number of equality and inequality
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constraints. SinceF is bounded, it is a polytope.

A convex polytope comes with useful continuity properties.

Proposition 10 Let F be a polytope, and let u∈ R
n be fixed.

Functions x7→ φ(x,u) and x 7→ f ∗(x,u) are uniformly continous onF .

Proof The polytopeF is defined by a finite set of constraintsn x≤ b. Let KF be the set of pairs
(n,b) representing these constraints. Functionx 7→ φ(x,u) is a continuous onF because we can
write:

φ(x,u) = min

{

b−nx
n u

for all (n,b) ∈KF such thatnu> 0

}

.

Functionx 7→ φ(x,u) is uniformly continuous because it is continuous on the compactF .
Chooseε > 0 and letx,y∈ F . Let the maximumf ∗(x,u) be reached inx+ λ∗u with 0≤ λ∗ ≤

φ(x,u). Since f is uniformly continous on compactF , there isη > 0 such that| f (x+λ∗u)− f (y+
λ′u)|< ε whenever‖x−y+(λ∗−λ′)u‖< η(1+‖u‖). In particular, it is sufficient to have‖x−y‖<
η and|λ∗−λ′|< η. Sinceφ is uniformly continuous, there isτ > 0 such that|φ(y,u)−φ(x,u)|< η
whenever‖x−y‖< τ. We can then select 0≤ λ′ ≤ φ(y,u) such that|λ∗−λ′|< η. Therefore, when
‖x−y‖< min(η,τ), f ∗(x,u) = f (x+λ∗u)≤ f (y+λ′u)+ ε≤ f ∗(y,u)+ ε.

By reversing the roles ofx andy in the above argument, we can similary establish thatf ∗(y,u)≤
f ∗(x,u)+ ε when‖x−y‖ ≤min(η,τ). Functionx 7→ f ∗(x,u) is therefore uniformly continuous on
F .

A.4 Stochastic Witness Direction Search

Each iteration of the following algorithm randomly chooses a feasible witness direction and per-
forms an optimization along this direction. The successive search directionsut are randomly se-
lected (step 2a) according to some distributionPt defined onU. DistributionPt possibly depends on
values observed before timet.

Stochastic Witness Direction Search (WDS)
1) Find an initial feasible pointx0 ∈ F .

2) For eacht = 1,2, . . . ,
2a) Draw a directionut ∈U from a distributionPt

2b) If u∈Dxt−1 and u′t∇ f (xt−1) > 0 ,
xt ← argmaxf (x) underx∈ {xt−1 +λut ∈ F , λ≥ 0}

otherwise
xt ← xt−1.

Clearly the Stochastic WDS algorithm does not work if the distributionsPt always give probabil-
ity zero to important directions. On the other hand, convergence is easily established if all feasible
directions can be drawn with non zero minimal probability at any time.

3. We believe that the converse of Theorem 9 is also true.
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Theorem 11 Let f be a concave function defined on a compact convex setF , differentiable with
continuous derivatives. AssumeU is a finite witness set for setF , and let the sequence xt be defined
by the Stochastic WDS algorithm above. Further assume there isπ > 0 such that Pt(u) > π for all
u∈U ∩Dxt−1. All accumulation points of the sequence xt are then solutions of problem (14) with
probability1.

Proof We want to evaluate the probability of eventQcomprising all sequences of selected directions
(u1,u2, . . .) leading to a situation wherext has an accumulation pointx∗ that is not a solution of
problem (14).

For each sequence of directions(u1,u2, . . .), the sequencef (xt) is increasing and bounded. It
converges tof ∗ = supt f (xt). We havef (x∗) = f ∗ becausef is continuous. By Theorem 6, there is
a directionu∈U such thatf ∗(x∗,u) > f ∗ andφ(x∗,u) > 0. Letxkt be a subsequence converging to
x∗. Thanks to the continuity ofφ, f ∗ and∇ f , there is at0 such thatf ∗(xkt ,u) > f ∗ andφ(xkt ,u) > 0
for all kt > t0.

Chooseε > 0 and letQT ⊂ Q contain only sequences of directions such thatt0 = T. For any
kt > T, we know thatφ(xkt ,u) > 0 which meansu∈U ∩Dxkt

. We also know thatukt 6= u because
we would otherwise obtain a contradictionf (xkt+1) = f ∗(xkt ,u) > f ∗. The probability of selecting
such aukt is therefore smaller than(1− π). The probability that this happens simultaneously for
N distinctkt ≥ T is smaller than(1−π)N for anyN. We getP(QT) ≤ ε/T2 by choosingN large
enough.

Then we haveP(Q) = ∑T P(QT)≤ ε
(

∑T 1/T2
)

= Kε. HenceP(Q) = 0 because we can choose
ε as small as we want, We can therefore assert with probability 1 that all accumulation points of
sequencext are solutions.

This condition on the distributionsPt is unfortunately too restrictive. ThePROCESSandRE-
PROCESSiterations of the OnlineLASVM algorithm (Section 3.2) only exploit directions from very
specific subsets.

On the other hand, the OnlineLASVM algorithm only ensures that any remaining feasible direc-
tion at timeT will eventually be selected with probability 1. Yet it is challenging to mathematically
express that there is no coupling between the subset of time pointst corresponding to a subsequence
converging to a particular accumulation point, and the subset of time pointst corresponding to the
iterations where specific feasible directions are selected.

This problem also occurs in the deterministic Generalized SMO algorithm (Section 3.1). An
asymptotic convergence proof (Lin, 2001) only exist for the important case of the SVM QP problem
using a specific direction selection strategy. Following Keerthi and Gilbert (2002), we bypass this
technical difficulty by defining a notion of approximate optimum and proving convergence in finite
time. It is then easy to discuss the properties of the limit point.

A.5 Approximate Witness Direction Search

Definition 12 Given a finite witness familyU and the tolerancesκ > 0 andτ > 0, we say that x is
a κτ-approximate solution of problem (14) when the following condition is verified:

∀u∈U, φ(x,u)≤ κ or u′∇ f (x)≤ τ.

A vector u∈ Rn such thatφ(x,u) > κ and u′∇ f (x) > τ is called aκτ-violating direction in point x.
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This definition is inspired by assertion (iii ) in Theorem 6. The definition demands afinite witness
family because this leads to proposition 13 establishing thatκτ-approximate solutions indicate the
location of actual solutions whenκ andτ tend to zero.

Proposition 13 Let U be a finite witness family for bounded convex setF . Consider a sequence
xt ∈ F of κtτt-approximate solutions of problem (14) withτt → 0 and κt → 0. The accumulation
points of this sequence are solutions of problem (14).

Proof Consider an accumulation pointx∗ and a subsequencexkt converging tox∗. Define function

(x,τ,κ) 7→ ψ(x,τ,κ,u) =
(

u′∇ f (x)− τ
)

max{0,φ(x,u)−κ}

such thatu is aκτ-violating direction if and only ifψ(x,κ,τ,u) > 0. Functionψ is continuous thanks
to Theorem 9, proposition 10 and to the continuity of∇ f . Therefore, we haveψ(xkt ,κkt ,τkt ,u)≤ 0
for all u∈U. Taking the limit whenkt → ∞ givesψ(x∗,0,0,u)≤ 0 for all u∈U. Theorem 6 then
states thatx∗ is a solution.

The following algorithm introduces the two tolerance parametersτ > 0 andκ > 0 into the Stochastic
Witness Direction Search algorithm.

Approximate Stochastic Witness Direction Search
1) Find an initial feasible pointx0 ∈ F .
2) For eacht = 1,2, . . . ,

2a) Draw a directionut ∈U from a probability distributionPt

2b) If ut is aκτ-violating direction,
xt ← argmaxf (x) underx∈ {xt−1 +λut ∈ F , λ≥ 0}

otherwise
xt ← xt−1.

The successive search directionsut are drawn from some unspecified distributionsPt defined onU.
Proposition 16 establishes that this algorithm always converges to somex∗ ∈F after a finite number
of steps, regardless of the selected directions(ut). The proof relies on the two intermediate results
that generalize a lemma proposed by Keerthi and Gilbert (2002) in the caseof quadratic functions.

Proposition 14 If ut is a κτ-violating direction in xt−1,

φ(xt ,ut)u′t∇ f (xt) = 0.

Proof Let the maximumf (xt)= f ∗(xt−1,ut) be attained inxt = xt−1+λ∗ut with 0≤ λ∗ ≤ φ(xt−1,ut).
We know thatλ∗ 6= 0 becauseut is κτ-violating and proposition 2 impliesf ∗(xt−1,ut) > f (xt−1).
If λ∗ reaches its upper bound,φ(xt ,ut) = 0. Otherwisext is an unconstrained maximum and
u′t∇ f (xt) = 0.

Proposition 15 There is a constant K> 0 such that

∀t , f (xt)− f (xt−1) ≥ K ‖xt −xt−1‖.
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Proof The relation is obvious whenut is not aκτ-violating direction inxt−1. Otherwise let the
maximum f (xt) = f ∗(xt−1,ut) be attained inxt = xt−1 +λ∗ut .
Let λ = νλ∗ with 0 < ν≤ 1. Sincext is a maximum,

f (xt)− f (xt−1) = f (xt−1 +λ∗ut)− f (xt−1)≥ f (xt−1 +λut)− f (xt−1).

Let H be the maximum overF of the norm of the Hessian off .
A Taylor expansion with the Cauchy remainder gives

∣

∣ f (xt−1 +λut)− f (xt−1)−λu′t∇ f (xt−1)
∣

∣≤
1
2

λ2‖ut‖
2H

or, more specifically,

f (xt−1 +λut)− f (xt−1)−λu′t∇ f (xt−1) ≥ −
1
2

λ2‖ut‖
2H.

Combining these inequalities yields

f (xt)− f (xt−1)≥ f (xt−1 +λut)− f (xt−1)≥ λu′t∇ f (xt−1)−
1
2

λ2‖ut‖
2H.

Recallingu′t∇ f (xt−1) > τ, andλ‖ut‖= ν‖xt −xt−1‖, we obtain

f (xt)− f (xt−1)≥ ‖xt −xt−1‖

(

ν
τ
U
−ν21

2
DH

)

whereU =max
U
‖u‖ andD is the diameter of the compact convexF .

Choosingν = min
(

1,
τ

UDH

)

then gives the desired result.

Proposition 16 AssumeU is a finite witness set for setF . The Approximate Stochastic WDS
algorithm converges to some x∗ ∈ F after a finite number of steps.

Proof Sequencef (xt) converges because it is increasing and bounded. Therefore it satisfies
Cauchy’s convergence criterion:

∀ ε > 0, ∃ t0, ∀ t2 > t1 > t0,
f (xt2)− f (xt1) = ∑

t1<t≤t2

f (xt)− f (xt−1) < ε.

Using proposition 15, we can write

∀ ε > 0, ∃ t0, ∀ t2 > t1 > t0,

‖xt2−xt1‖ ≤ ∑
t1<t≤t2

‖xt −xt−1‖ ≤ ∑
t1<t≤t2

f (xt)− f (xt−1)

K
<

ε
K

.

Therefore sequencext satisfies Cauchy’s condition and converges to somex∗ ∈ F .
Assume this convergence does not occur in a finite time. SinceU is finite, the algorithm ex-

ploits at least one directionu∈U an infinite number of times. Therefore there is a strictly increas-
ing sequence of positive indiceskt such thatukt = u is κτ-violating in pointxkt−1. We have then
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φ(xkt−1,u) > κ andu′∇ f (xkt−1) > τ. By continuity we haveφ(x∗,u)≥ κ andu′∇ f (x∗)≥ τ. On the
other hand, proposition 14 states thatφ(xkt ,u)u′∇ f (xkt ) = 0. By continuity whent→ 0, we obtain
the contradictionφ(x∗,u)u′∇ f (x∗) = 0.

In general, proposition 16 only holds forκ > 0 andτ > 0. Keerthi and Gilbert (2002) assert a similar
property forκ = 0 andτ > 0 in the case of SVMs only. Despite a mild flaw in the final argument of
the initial proof, this assertion is correct (Takahashi and Nishi, 2003).

Proposition 16 does not prove that the limitx∗ is related to the solution of the optimization
problem (14). Additional assumptions on the direction selection step are required. Theorem 17 ad-
dresses the deterministic case by considering trivial distributionsPt that always select aκτ-violating
direction if such directions exist. Theorem 18 addresses the stochastic case under mild conditions
on the distributionPt .

Theorem 17 Let the concave function f defined on the compact convex setF be twice differen-
tiable with continuous second derivatives. AssumeU is a finite witness set for setF , and let the
sequence xt be defined by the Approximate Stochastic WDS algorithm above. Assume that step
(2a) always selects aκτ-violating direction in xt−1 if such directions exist. Then xt converges to a
κτ-approximate solution of problem (14) after a finite number of steps.

Proof Proposition 16 establishes that there ist0 such thatxt = x∗ for all t ≥ t0. Assume there is
a κτ-violating direction inx∗. For anyt > t0, step (2a) always selects such a direction, and step
(2b) makesxt different fromxt−1 = x∗. This contradicts the definition oft0. Therefore there are no
κτ-violating direction inx∗ andx∗ is aκτ-approximate solution.

Example (SMO) The SMO algorithm (Section 3.1) is4 an Approximate Stochastic WDS that
always selects aκτ-violating direction when one exists. Therefore Theorem 17 applies.

Theorem 18 Let the concave function f defined on the compact convex setF be twice differen-
tiable with continuous second derivatives. AssumeU is a finite witness set for setF , and let the
sequence xt be defined by the Approximate Stochastic WDS algorithm above. Let pt be the condi-
tional probability that ut is κτ-violating in xt−1 given thatU contains such directions. Assume that
limsuppt > 0. Then xt converges with probability one to aκτ-approximate solution of problem (14)
after a finite number of steps.

Proof Proposition 16 establishes that for each sequence of selected directionsut , there is a time
t0 and a pointx∗ ∈ F such thatxt = x∗ for all t ≥ t0. Both t0 andx∗ depend on the sequence of
directions(u1,u2, . . .).

We want to evaluate the probability of eventQcomprising all sequences of directions(u1,u2, . . .)
leading to a situation where there areκτ-violating directions in pointx∗. Chooseε > 0 and let
QT ⊂Q contain only sequences of decisions(u1,u2, . . .) such thatt0 = T.

Since limsuppt > 0, there is a subsequencekt such thatpkt ≥ π > 0. For anykt > T, we know
thatU containsκτ-violating directions inxkt−1 = x∗. Directionukt is not one of them because this

4. Strictly speaking we should introduce the toleranceκ > 0 into the SMO algorithm. We can also claim that (Keerthi
and Gilbert, 2002; Takahashi and Nishi, 2003) have established proposition 16 withκ = 0 andτ > 0 for the specific
case of SVMs. Therefore Theorems 17 and 18 remain valid.
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would makexkt different fromxkt−1 = x∗. This occurs with probability 1− pkt ≤ 1−π < 1. The
probability that this happens simultaneously forN distinctkt > T is smaller than(1−π)N for any
N. We getP(QT)≤ ε/T2 by choosingN large enough.

Then we haveP(Q) = ∑T P(QT)≤ ε
(

∑T 1/T2
)

= Kε. HenceP(Q) = 0 because we can choose
ε as small as we want. We can therefore assert with probability 1 thatU contains noκτ-violating
directions in pointx∗.

Example (LASVM ) The LASVM algorithm (Section 3.2) is5 an Approximate Stochastic WDS
that alternates two strategies for selecting search directions:PROCESSandREPROCESS. Theorem
18 applies because limsuppt > 0.
Proof Consider a arbitrary iterationT corresponding to aREPROCESS.
Let us define the following assertions:

A – There areτ-violating pairs(i, j) with both i ∈ S and j ∈ S .
B – A is false, but there areτ-violating pairs(i, j) with eitheri ∈ S or j ∈ S .
C – A andB are false, but there areτ-violating pairs(i, j).
Qt – Directionut is τ-violating inxt−1.

A reasoning similar to the convergence discussion in Section 3.2 gives the following lower bounds
(wheren is the total number of examples).

P(QT |A) = 1
P(QT |B) = 0 P(QT+1|B)≥ n−1

P(QT |C) = 0 P(QT+1|C) = 0 P(QT+2|C) = 0 P(QT+3|C)≥ n−2.

Therefore
P( QT ∪QT+1∪QT+2∪QT+2 | A )≥ n−2

P( QT ∪QT+1∪QT+2∪QT+2 | B )≥ n−2

P( QT ∪QT+1∪QT+2∪QT+2 |C )≥ n−2.

Sincept = P(Qt | A∪B∪C) and since the eventsA, B, andC are disjoint, we have

pT + pT+1 + pT+2 + pT+4≥ P( QT ∪QT+1∪QT+2∪QT+2 | A∪B∪C )≥ n−2.

Therefore limsuppt ≥
1
4 n−2.

Example (LASVM + Gradient Selection) TheLASVM algorithm with Gradient Example Selec-
tion remains an Approximate WDS algorithm. Whenever Random Example Selectionhas a non
zero probability to pick aτ-violating pair, Gradient Example Selection picks the aτ-violating pair
with maximal gradient with probability one. Reasoning as above yields limsuppt ≥ 1. Therefore
Theorem 18 applies and the algorithm converges to a solution of the SVM QP problem.

Example (LASVM + Active Selection + Randomized Search) TheLASVM algorithm with Ac-
tive Example Selection remains an Approximate WDS algorithm. However it does not necessarily
verify the conditions of Theorem 18. There might indeed beτ-violating pairs that do not involve the
example closest to the decision boundary.

However, convergence occurs when one uses the Randomized Search method to select an ex-
ample near the decision boundary. There is indeed a probability greater than 1/nM to draw a sample

5. See footnote 4 discussing the toleranceκ in the case of SVMs.
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containingM copies of the same example. Reasonning as above yields limsuppt ≥
1
4 n−2M. There-

fore, Theorem 18 applies and the algorithm eventually converges to a solution of the SVM QP
problem.

In practice this convergence occurs very slowly because it involves very rare events. On the other
hand, there are good reasons to prefer the intermediate kernel classifiers visited by this algorithm
(see Section 4).
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rapide et simple pour les SVM. In Michel Liquière and Marc Sebban, editors,CAp 2004 -
Confrence d’Apprentissage, pages 113–128. Presses Universitaires de Grenoble, 2004. ISBN
9-782706-112249.

D. J. C. MacKay. Information based objective functions for active dataselection.Neural Computa-
tion, 4(4):589–603, 1992.

N. Murata and S.-I. Amari. Statistical analysis of learning dynamics.Signal Processing, 74(1):
3–28, 1999.

N. J. Nilsson.Learning machines: Foundations of Trainable Pattern Classifying Systems. McGraw–
Hill, 1965.

A. B. J. Novikoff. On convergence proofs on perceptrons. InProceedings of the Symposium on the
Mathematical Theory of Automata, volume 12, pages 615–622. Polytechnic Institute of Brooklyn,
1962.

J. Platt. Fast training of support vector machines using sequential minimal optimization. In
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