Journal of Machine Learning Research 6 (2005) 1579-1619 Submitted 3/05; Published 9/05

Fast Kernel Classifiers
with Online and Active Learning

Antoine Bordes ANTOINE.BORDES@BDE.ESPCLFR
NEC Laboratories America

4 Independence Way

Princeton, NJ 08540, USA, and

Ecole Supgrieure de Physique et Chimie Industrielles

10 rue Vauquelin

75231 Paris CEDEX 05, France

Seyda Ertekin SEYDA@PSU.EDU
The Pennsylvania State University
University Park, PA 16802, USA

Jason Weston JASONW@NEC-LABS.COM
L éon Bottou LEON@BOTTOU.ORG
NEC Laboratories America

4 Independence Way

Princeton, NJ 08540, USA

Editor: Nello Cristianini

Abstract

Very high dimensional learning systems become theorétipaksible when training examples are
abundant. The computing cost then becomes the limitingfaétny efficient learning algorithm
should at least take a brief look at each example. But shduést@mples be given equal attention?

This contribution proposes an empirical answer. We firss@mé an online SVM algorithm
based on this premise. LASVM yields competitive misclasatfon rates after a single pass over
the training examples, outspeeding state-of-the-art SUlMess. Then we show how active exam-
ple selection can yield faster training, higher accuraces simpler models, using only a fraction
of the training example labels.

1. Introduction

Electronic computers have vastly enhanced our ability to compute complicatisticsthmodels.
Both theory and practice have adapted to take into account the essentocoise between the
number of examples and the model capacity (Vapnik, 1998). Cheamgdand networked com-
puters are now enhancing our ability to collect observations to an evategextent. Data sizes
outgrow computer speed. During the last decade, processors bef@niengs faster, hard disks
became 1000 times bigger.

Very high dimensional learning systems become theoretically possible whingraxamples
are abundant. The computing cost then becomes the limiting factor. Any efliegéaning algorithm
should at least pay a brief look at each example. But should all trainiagniebes be given equal
attention?

(©2005 Antoine Bordes, Seyda Ertekin, Jason Weston, &aah Bottou.

BORDES ERTEKIN, WESTON, AND BOTTOU

This contribution proposes an empirical answer:

e Section 2 presents kernel classifiers such as Support Vector Magdu#). Kernel classi-
fiers are convenient for our purposes because they clearly expegsinternal states in terms
of subsets of the training examples.

e Section 3 proposes a novel online algorititASVM, which converges to the SVM solution.
Experimental evidence on diverse data sets indicates that it reliablyasaompetitive ac-
curacies after performing a single pass over the training set. It usesiéasry and trains
significantly faster than state-of-the-art SVM solvers.

e Section 4 investigates two criteria to select informative training examples htiteaation
instead of sequentially processing all examples. Empirical evidence shatnselecting in-
formative examples without making use of the class labels can drasticallyer ¢k training
time and produce much more compact classifiers with equivalent or supecoracy.

e Section 5 discusses the above results and formulates theoretical queBtiersimplest ques-
tion involves the convergence of these algorithms and is addressed bgpbedix. Other
questions of greater importance remain open.

2. Kernel Classifiers

Early linear classifiers associate clasges+1 to patternx by first transforming the patterns into
feature vector®(x) and taking the sign of a linear discriminant function:

Y(X) = Wd(x) +b. (1)

The parametersy andb are determined by running some learning algorithm on a set of training
examples(xq,y1)--- (Xn,Yn). The feature functior® is usually hand chosen for each particular
problem (Nilsson, 1965).

Aizerman et al. (1964) transform such linear classifiers by leveraginghaorems of th&e-
producing Kernetheory (Aronszajn, 1950).

TheRepresentation Theorestates that mang-machine learning algorithms produce parame-
ter vectorsw that can be expressed as a linear combinations of the training patterns:

w= ilaitb(xi).

The linear discriminant function (1) can then be written &eel expansion

n

y(X) = ZlaiK(X7Xi) +b, 2)
1=
where thekernel function K(x,y) represents the dot productyx)'®(y) in feature space. This
expression is most useful when a large fraction of the coefficendése zero. Examples such that
a; # 0 are then calle@upport Vectors
Mercer’s Theorenprecisely states which kernel functions correspond to a dot produsbme
feature space. Kernel classifiers deal with the kernel fund€iogy) without explicitly using the

1580

FAST KERNEL CLASSIFIERS WITHONLINE AND ACTIVE LEARNING

corresponding feature functiob(x). For instance, the well knowRBF kernelK (x,y) = e~ YIx-I?
defines an implicit feature space of infinite dimension.

Kernel classifiers handle such large feature spaces with the compgratiedest computational
costs of the kernel function. On the other hand, kernel classifiersenogbl the decision funcion
complexity in order to avoid overfitting the training data in such large featuaeesp This can be
achieved by keeping the number of support vectors as low as possitilestbne and Warmuth,
1986) or by searching decision boundaries that separate the exanithléiseNargest margin (Vap-
nik and Lerner, 1963; Vapnik, 1998).

2.1 Support Vector Machines

Support Vector Machines were defined by three incremental steps. \Eimik and Lerner (1963)
propose to construct t@ptimal Hyperplangthat is, the linear classifier that separates the training
examples with the widest margin. Then, Guyon, Boser, and Vapnik (19@Bppe to construct
the Optimal Hyperplane in the feature space induced by a kernel funckorally, Cortes and
Vapnik (1995) show that noisy problems are best addressed by all@esng examples to violate
the margin condition.

Support Vector Machines minimize the following objective function in featpees:

. n . . Vi yiy(Xi)Zl—Ei
min HWHZ+C;E. with {Vi 55 0. 3

For very large values of the hyper-paramðis expression minimizegwv||2 under the constraint
that all training examples are correctly classified with a maygifx;) greater than 1. Smaller values
of C relax this constraint and produce markedly better results on noisy probGartes$ and Vapnik,
1995).

In practice this is achieved by solving the dual of this convex optimizationl@mobThe coef-
ficientsa; of the SVM kernel expansion (2) are found by defining the dual oljedtinction

W(G):ZGiYi—%ZGiGjK(Xiaxj) (4)
]]

and solving the SVMQuadratic ProgrammingQP) problem:

Yidi= 0
, A <ai <B;
maaxW(a) with A = min(0,Cy) (5)
Bi = max(0,Cy;).

The above formulation slightly deviates from the standard formulation (Cartds/apnik, 1995)
because it makes tleg coefficients positive whep = +1 and negative whey) = —1.

SVMs have been very successful and are very widely used bettaseeliably deliver state-
of-the-art classifiers with minimal tweaking.

Computational Cost of SVMs There are two intuitive lower bounds on the computational cost
of any algorithm able to solve the SVM QP problem for arbitrary matriGes= K(x;,x;).

1581

BORDES ERTEKIN, WESTON, AND BOTTOU

1. Suppose that an oracle reveals whether 0 ora; = +C for alli = 1...n. Computing the
remaining 0< |a;| < C amounts to inverting a matrix of sizR x R whereR is the number
of support vectors such that0 |aj| < C. This typically requires a number of operations
proportional toRS.

2. Simply verifying that a vecton is a solution of the SVM QP problem involves computing
the gradients 0#V(a) and checking the Karush-Kuhn-Tucker optimality conditions (Vapnik,
1998). Withn examples ané support vectors, this requires a number of operations propor-
tionaltonS

Few support vectors reach the upper boGnalhen it gets large. The cost is then dominated by
theR® ~ S. Otherwise the term Sis usually larger. The final number of support vectors therefore
is the critical component of the computational cost of the SVM QP problem.

Assume that increasingly large sets of training examples are drawn framkawown distribu-
tion P(x,y). Let B be the error rate achieved by the best decision function (1) for thaitbdistm.
WhenB > 0, Steinwart (2004) shows that the number of support vectors is asiogbipequiv-
alent to 2vB. Therefore, regardless of the exact algorithm used, the asymptoticgdutational
cost of solving the SVM QP problem grows at least likewhenC is small andn® whenC gets
large. Empirical evidence shows that modern SVM solvers (Chang an@Q@1-2004; Collobert
and Bengio, 2001) come close to these scaling laws.

Practice however is dominated by the constant factors. When the numbraroples grows,
the kernel matrix;; = K(x;,X;) becomes very large and cannot be stored in memory. Kernel values
must be computed on the fly or retrieved from a cache of often acceakesby When the cost of
computing each kernel value is relatively high, the kernel cache hit ezterbes a major component
of the cost of solving the SVM QP problem (Joachims, 1999). Largerd@nubmust be addressed
by using algorithms that access kernel values with very consistent patterns

Section 3 proposes an Online SVM algorithm that accesses kernel wanegonsistently.
Because it computes the SVM optimum, this algorithm cannot improve on?tthaver bound.
Because it is an online algorithm, early stopping strategies might give dppatexsolutions in
much shorter times. Section 4 suggests that this can be achieved by cacéfudlying which
examples are processed at each iteration.

Before introducing the new Online SVM, let us briefly describe other exjstinline kernel
methods, beginning with the kernel Perceptron.

2.2 Kernel Perceptrons

The earliest kernel classifiers (Aizerman et al., 1964) were deneedthe Perceptron algorithm (Rosen-
blatt, 1958). The decision function (2) is represented by maintaining tiafdhe indices of the
support vectors. The bias parameéiegemains zero.

Kernel Perceptron
1) S« 0, b—0.
2) Pick a random example, ;)
3) Computey(x;) = Jics i K(x,X) +b
4) If yy(%) <0 then §—SU{t}, ar—wn
5) Return to step 2.

1582

FAST KERNEL CLASSIFIERS WITHONLINE AND ACTIVE LEARNING

SuchOnline Learning Algorithmsgequire very little memory because the examples are pro-
cessed one by one and can be discarded after being examined.

Iterations such thay; y(x) < 0 are calledmistakesbecause they correspond to patterns mis-
classified by the perceptron decision boundary. The algorithm then nwtliGedecision boundary
by inserting the misclassified pattern into the kernel expansion. When a sotxigts, Novikoff’s
Theorem (Novikoff, 1962) states that the algorithm converges aftaita fiumber of mistakes, or
equivalently after inserting a finite number of support vectors. Noisysdtsare more problematic.

Large Margin Kernel Perceptrons The success of Support Vector Machines has shown that large
classification margins were desirable. On the other hand, the Kernelfene (Section 2.2) makes
no attempt to achieve large margins because it happily ignores training exaimgi@re very close
to being misclassified.

Many authors have proposed to close the gap with online kernel clasdifigaroviding larger
margins. The Averaged Perceptron (Freund and Schapire, 198@8jaerule is the majority vote of
all the decision rules obtained after each iteration of the Kernel Perceglgorithm. This choice
provides a bound comparable to those offered in support of SVMs.r@tperithms (Friel3 et al.,
1998; Gentile, 2001; Li and Long, 2002; Crammer and Singer, 200d)céely construct larger
margins. These algorithms modify the decision boundary whenever a traramgple is either
misclassified or classified with an insufficient margin. Such examples arerbkeried into the
kernel expansion with a suitable coefficient. Unfortunately, this chaiggéfisantly increases the
number of mistakes and therefore the number of support vectors. Tieagad computational cost
and the potential overfitting undermines the positive effects of the inateaaggin.

Kernel Perceptrons with Removal Step This is why Crammer et al. (2004) suggest an additional
step forremovingsupport vectors from the kernel expansion (2). The Budget pemeperforms
very nicely on relatively clean data sets.

Budget Kernel Perceptron (3,N)
1) $<0, b—0.
2) Pick a random examplex, yt)
3) Computey(x) = Tics i K(x,X)+b
4) If yy(%) < B then,
4a)5‘_5U{t}, Ot <— Wt
4b) If | S| > Nthens§ — §— {argmax.s Vi (Y(Xi) — i K(xi, %)) }
5) Return to step 2.

Online kernel classifiers usually experience considerable problems wiith data sets. Each
iteration is likely to cause a mistake because the best achievable misclassifiatifor such prob-
lems is high. The number of support vectors increases very rapidlyaadtally causes overfitting
and poor convergence. More sophisticated support vector remitesiacavoid this drawback (We-
ston et al., 2005). This modified algorithm outperforms all ottrdme kernel classifiers on noisy
data sets and matches the performance of Support Vector Machines wifufgsort vectors.

3. Online Support Vector Machines

This section proposes a novel online algorithm nam&sVVM that converges to the SVM solution.
This algorithm furthers ideas first presented by Bordes and Bottolub{200nlike this previous

1583

BORDES ERTEKIN, WESTON, AND BOTTOU

work, LASVM relies on the traditional “soft margin” SVM formulation, handles noisy dats, sed
is nicely related to the SMO algorithm. Experimental evidence on multiple data setateslthat
it reliably reaches competitive test error rates after performing a singkeqeer the training set. It
uses less memory and trains significantly faster than state-of-the-art SMdts

3.1 Quadratic Programming Solvers for SVMs

Sequential Direction Search Efficient numerical algorithms have been developed to solve the
SVM QP problem (5). The best known methods are the Conjugate Graxé&hod (Vapnik, 1982,
pages 359-362) and the Sequential Minimal Optimization (Platt, 1999). Botlodsethork by
making successive searches along well chosen directions.

Each direction search solves the restriction of the SVM problem to the hal§tarting from the
current vecto and extending along the specified directiorSuch a search yields a new feasible
vectora + A*u, where

A =argmaW(a+Au) with 0<A < @a,u). (6)
The upper boung(a,u) ensures that + Au is feasible as well:

0 if Zk Uk 75 0
@a,u) = ming (Bj—aj)/u; forallisuch that; >0 (7)
(Aj—aj)/u; forall j suchthau; <O0.

Calculus shows that the optimal value is achieved for

* : Zi gi U }
A* =min a,u), —5—— 8
{oa. 205 ®)
whereK;j; = K(x;,x;) andg = (g1 ...0n) is the gradient oW (a), and
_ OW(a) e Cu o
O = 5o~ Kk IZO(.K(X.,XK) = Yik—Y(X) +b. 9)

Sequential Minimal Optimization Platt (1999) observes that direction search computations are
much faster when the search directiomostly contains zero coefficients. At least two coefficients
are needed to ensure tigtu, = 0. TheSequential Minimal Optimizatio(6SMO) algorithm uses
search directions whose coefficients are all zero except for a sirighnd a single-1.

Practical implementations of the SMO algorithm (Chang and Lin, 2001-206Uoli&rt and
Bengio, 2001) usually rely on a small positive toleramce 0. They only select directionssuch
that@(a,u) > 0 andu'g > 1. This means that we can move along directionithout immediately
reaching a constraint and increase the valu@/¢d). Such directions are defined by the so-called
T-violating pair (i, j):

a; < B;
(i,]) is at-violating pair <— aj > A
g—-0g>T

1584

FAST KERNEL CLASSIFIERS WITHONLINE AND ACTIVE LEARNING

SMO Algorithm
1) Seta <+ 0 and compute the initial gradiegt(equation 9)

2) Choose a-violating pair(i, j). Stop if no such pair exists.
Kii + ij — 2Kij ’
i «—ai+A, aj«—a;—A
Os — 0s—AM(Kis—Kjs) Vse{l...n}
4) Return to step (2)

3))\<—min{ Bi—di,dj—Aj}

The above algorithm does not specify how exactly thaolating pairs are chosen. Modern
implementations of SMO select theviolating pair(i, j) that maximizes the directional gradieng.

This choice was described in the context of Optimal Hyperplanes in bofin{kal982, pages 362—
364) and (Vapnik et al., 1984).

Regardless of how exactly theviolating pairs are chosen, Keerthi and Gilbert (2002) assert
that the SMO algorithm stops after a finite number of steps. This assertiomésitdespite a slight
flaw in their final argument (Takahashi and Nishi, 2003).

When SMO stops, no-violating pair remain. The correspondingis called at-approximate
solution Proposition 13 in appendix A establishes that such approximate solutioicatmdhe
location of the solution(s) of the SVM QP problem when the tolerarfaecome close to zero.

3.2 OnlineLASVM

This section presents a novel online SVM algorithm nam&f8VvM. There are two ways to view
this algorithm.LASVM is an online kernel classifier sporting a support vector removal steponge
collected in the current kernel expansion can be removed during theegulicessLASVM also is
a reorganization of the SMO sequential direction searches and, gxenuhrges to the solution of
the SVM QP problem.

Compared to basic kernel perceptrons (Aizerman et al., 1964; Freuh8chapire, 1998), the
LASVM algorithm features a removal step and gracefully handles noisy data. afedno kernel
perceptrons with removal steps (Crammer et al., 2004; Weston et al.,, 2B@3)M converges to the
known SVM solution. Compared to a traditional SVM solver (Platt, 1999; @reard Lin, 2001-
2004; Collobert and Bengio, 2001)ASVM brings the computational benefits and the flexibility
of online learning algorithms. Experimental evidence indicates th&vM matches the SVM
accuracy after a single sequential pass over the training examples.

This is achieved by alternating two kinds of direction searches n&@R&CESSand REPRO-
CESS Each direction search involves a pair of examples. Direction searfhies PROCESKind
involve at least one example that is not a support vector of the cureenekexpansion. They po-
tentially can change the coefficient of this example and make it a suppdoorvBirection searches
of theREPROCES%ind involve two examples that already are support vectors in the cuteemeél
expansion. They potentially can zero the coefficient of one or bothostipectors and thus remove
them from the kernel expansion.

Building Blocks The LASVM algorithm maintains three essential pieces of information: the set
S of potential support vector indices, the coefficieatsof the current kernel expansion, and the
partial derivativeg); defined in (9). Variablea; andg; contain meaningful values where S only.

1585

BORDES ERTEKIN, WESTON, AND BOTTOU

The coefficientn; are assumed to be nulliif¢ S. On the other hand, set might contain a few
indicesi such thatij = 0.

The two basic operations of the OnlihaSVM algorithm correspond to steps 2 and 3 of the
SMO algorithm. These two operations differ from each other becausentheydifferent ways to
selectrt-violating pairs.

The first operationPROCESSattempts to insert exampleg S into the set of current support
vectors. In the online setting this can be used to process a new example &t titrferst adds
examplek ¢ S into S (step 1-2). Then it searches a second exampfetmfind thet-violating pair
with maximal gradient (steps 3-4) and performs a direction search (step 5)

LASVM PROCESS(K)
1) Bailoutifke .
2) 0k <0, Ok Yk— YscsOsKks, S SU{k}
3) If yx=+1 then
ik, < argmin_.ggs with as> Ag

else
j —k, i+<argmax.s0s with as<Bs

4) Bail out if (i, j) is not at-violating pair.

- g —9;j }

5 Ae—min{ —= 32 B _qj, aj;—A;
) { Kii +Kjj — 2Kjj ! S)
aj —ai+A, (Xj<—(1j—)\
gs‘_gs—)\(Kis—st) Vse S

The second operatiolREPROCESSremoves some elements frasn It first searches the-
violating pair of elements af with maximal gradient (steps 1-2), and performs a direction search
(step 3). Then it removes blatant non support vectors (step 4). Finallymputes two useful
quantities: the bias terimof the decision function (2) and the gradiédf the mostr-violating pair
ins.

LASVM REPROCESS
1) i —argmax_;0s with as < Bs
j < argmin_sgs with as> Ag

2) Bail outif (i,]) is not at-violating pair.

. g —Qj
A A—min{ —= 2 B_q o —A;
) { Kii +Kjj — 2Kjj ! b=) }

o < aj+A, (Xj<—(1j—)\
Os — Os—A(Kis—Kjs) VseS
4) i+ argmax.;gs With as < Bs
j < argmin_sgs with as> Ag
For allse S such thatig =0
If yy=—1andgs >gi then$=5—{s}
If ys=+1andgs <g; then$=5—{s}

5 b—(9+9j)/2, d—0 —g;

1586

FAST KERNEL CLASSIFIERS WITHONLINE AND ACTIVE LEARNING

Online LASVM After initializing the state variables (step 1), the OnlingSVM algorithm al-
ternatesPROCESSand REPROCESS predefined number of times (step 2). Then it simplifies the
kernel expansion by runnirREPROCES3$0 remove allt-violating pairs from the kernel expansion
(step 3).

LASVM
1) Initialization :
Seeds with a few examples of each class.
Seta «— 0 and compute the initial gradiegt(equation 9)

2) Online Iterations:
Repeat a predefined number of times:
- Pick an examplé
- RUNPROCES%K;).
- RUNREPROCES®nce.
3) Finishing:
RepeaREPROCESSuntil 6 < T.

LASVM can be used in the online setup where one is given a continuous streaestofdndom
examples. The online iterations process fresh training examples as theylod®wM can also be
used as a stochastic optimization algorithm in the offline setup where the complategrset is
available before hand. Each iteration randomly picks an example from thmgaet.

In practice we run th& ASVM online iterations in epochs. Each epoch sequentially visits all
the randomly shuffled training examples. After a predefined nuRlrepochs, we perform the
finishing step. A single epoch is consistent with the useA8VM in the online setup. Multiple
epochs are consistent with the use.&86VM as a stochastic optimization algorithm in the offline
setup.

Convergence of the Online Iterations Let us first ignore the finishing step (step 3) and assume
that online iterations (step 2) are repeated indefinitely. Suppose thattigeremaining-violating
pairs at iteratiorT .

a.) Ifthere ara-violating pairs(i, j) such thai € S andj € 5, one of them will be exploited by
the nextREPROCESS

b.) Otherwise, if there areviolating pairs(i, j) such thai € S or j € S, each subsequeRRO-
CESShas a chance to exploit one of them. The interveBE®ROCESSIo nothing because
they bail out at step 2.

c.) Otherwise, alt-violating pairs involve indices outsidg Subsequent calls PROCESSand
REPROCES%ail out until we reach a time> T such that =i andk;,1 = j for somert-
violating pair (i, j). The firstPROCESShen inserts into § and bails out. The following
REPROCES®ails out immediately. Finally the secoRROCESdocates paifi, j).

This case is not important in practice. There usually is a support veaas such that
As < a5 < Bs. We can then writ@; — gj = (gi — s) + (gs— gj) < 2t and conclude that we
already have reached a-2pproximate solution.

1587

BORDES ERTEKIN, WESTON, AND BOTTOU

The LASVM online iterations therefore work like the SMO algorithm. Remainingolating
pairs is sooner or later exploited by eittrfROCESSor REPROCESSAS soon as a-approximate
solution is reached, the algorithm stops updating the coefficentBheorem 18 in the appendix
gives more precise convergence results for this stochastic algorithm.

The finishing step (step 3) is only useful when one limits the number of onliragiges. Run-
ning LASVM usually consists in performing a predefined numBe@f epochs and running the fin-
ishing step. Each epoch perform®nline iterations by sequentially visiting the randomly shuffled
training examples. Empirical evidence suggests indeed thiagée epoclyields a classifier almost
as good as the SVM solution.

Computational Cost of LASVM Both PROCESSXIndREPROCESS$equire a number of operations
proportional to the numbes of support vectors in sef. PerformingP epochs of online iterations
requires a number of operations proportionaht8S. The average numbe of support vectors
scales no more than linearly withbecause each online iteration brings at most one new support
vector. The asymptotic cost therefore grows li€eat most. The finishing step is similar to running
a SMO solver on a SVM problem with onl§ training examples. We recover here theto n®
behavior of standard SVM solvers.

Online algorithms access kernel values with a very specific pattern. Mdse &ernel values
accessed bPROCESSand REPROCESSnvolve only support vectors from sgt Only PROCESS
on a new examplg, accesseSfresh kernel valuek(xy,x) fori € §.

Implementation Details Our LASVM implementation reorders the examples after eveRD-
CESSor REPROCESS0 ensure that the current support vectors come first in the reordisted
of indices. The kernel cache records truncated rows of the remtdesrnel matrix. SVMLight
(Joachims, 1999) andBSVM (Chang and Lin, 2001-2004) also perform such reorderings, dout d
so rather infrequently (Joachims, 1999). The reordering overheaateptable during the online
iterations because the computation of fresh kernel values takes much mare time

Reordering examples during the finishing step was more problematic. Wrialhgrneployed
an adaptation of thehrinkingheuristic (Joachims, 1999) for the finishing step only. Thesset
support vectors is split into an active >and an inactive se§. All support vectors are initially
active. TheREPROCES$terations are restricted to the active Sgand do not perform any reorder-
ing. About every 1000 iterations, support vectors that hit the boigglaf the box constraints are
either removed from the sgtof support vectors or moved from the active $gto the inactive set
Si- When allt-violating pairs of the active set are exhausted, the inactive set exaanglésans-
ferred back into the active set. The process continues as long as thedsetgontains-violating
pairs.

3.3 MNIST Experiments

The OnlineLASVM was first evaluated on the MNIS$Thandwritten digit data set (Bottou et al.,
1994). Computing kernel values for this data set is relatively expets&eause it involves dot
products of 784 gray level pixel values. In the experiments reportiavpall algorithms use the
same code for computing kernel values. The ten binary classification ¢asksst of separating
each digit class from the nine remaining classes. All experiments use RBEl&evithy = 0.005

1. This data set is available fatt p: / / yann. | ecun. coni exdb/ mmi st .

1588

FAST KERNEL CLASSIFIERS WITHONLINE AND ACTIVE LEARNING

[LaSVM(x1) [LaSVM(x1)
H LaSVM(x2) M LaSVM(x2)
[] LibSvm [] LibSvm

HH AvgPerc(x1) HH AvgPerc(x1)
B AvgPerc(x10) B AvgPerc(x10)

MNIST label
MNIST label
(]

53
T T T T T T T

T 1 T T
0 02 05 075 1 125 0 900 1800 2700 3600 4500 5400
Test Error (%) Training Time (cpu seconds)

Figure 1: Compared test error rates for the ten Figure 2: Compared training times for the ten
MNIST binary classifiers. MNIST binary classifiers.

and the same training paramet€rs- 1000 andr = 0.001. Unless indicated otherwise, the kernel
cache size is 256MB.

LASVM versus Sequential Minimal Optimization Baseline results were obtained by running
the state-of-the-art SMO solverBSVM (Chang and Lin, 2001-2004). The resulting classifier ac-
curately represents the SVM solution.

Two sets of results are reported fBxSVM. TheLASVM x 1 results were obtained by performing
a single epoch of online iterations: each training example was procesaetlyeance during a
single sequential sweep over the training set. TABVM x 2 results were obtained by performing
two epochs of online iterations.

Figures 1 and 2 show the resulting test errors and training tim&SVYM x 1 runs about three
times faster thamIBSVM and yields test error rates very close to thBSVM results. Standard
paired significance tests indicate that these small differences are néitaignLASVM x 2 usually
runs faster thanlBSVM and very closely tracks tHdBSVM test errors.

Neither theLASVM x 1 or LASVM x 2 experiments yield the exact SVM solution. On this data
set,LASVM reaches the exact SVM solution after about five epochs. The firstpachs represent
the bulk of the computing time. The remaining epochs run faster when thel kexctee is large

1589

BORDES ERTEKIN, WESTON, AND BOTTOU

3000

G gy | | LASVMIX) y

S V LibSvm VW

3 2000

3 1500 W Algorithm ~ Error Time
&)

- . LIBSVM 1.36% 17400s
£ 10007 V o LASVMx1 1.42% 4950s
> 500- @ LASVMx2 1.36% 12210s
£ o

© 0 T

= 0 1000 2000 3000 4000 5000

Number of Support Vectors

Figure 3: Training time as a function of the Figure 4: Multiclass errors and training times
number of support vectors. for the MNIST data set.

0 — [LaSVM(x1) 200% v
_ B LaSVM(x2)] /,/'/v
1 i [LibSvm 150% - V LibSvm |
2 —w S] / H LASVM(x1)
_ 3 —j E 100%:
] ‘ =]
D | — s
‘ v 50%
% 5 ——— €] /./.
=2 : S]
S ¢ —— o o
c 3
7 ; =] P
} @© _509
8 —1 = 50/0:
: o]
9 f T T T T -100% T T T T T : ; ‘ ‘
0 1000 2000 3000 4000 1024 512 256 128 64 32 16 8 4 2
Number of Support Vectors Kernel cache size (MB)

Figure 5: Compared numbers of support vec- Figure 6: Training time variation as a func-
tors for the ten MNIST binary clas- tion of the cache size. Relative
sifiers. changes with respect to the 1GB

LIBSVM times are averaged over all
ten MNIST classifiers.

enough to hold all the dot products involving support vectors. Yet tleeathoptimization times are
not competitive with those achieved b{BSVM.

Figure 3 shows the training time as a function of the final number of suppotoss for the
ten binary classification problems. BatlBSVM andLASVM x1 show a linear dependency. The
OnlineLASVM algorithm seems more efficient overall.

1590

FAST KERNEL CLASSIFIERS WITHONLINE AND ACTIVE LEARNING

Figure 4 shows the multiclass error rates and training times obtained by comlkligrtgn
classifiers using the well known 1-versus-rest schemed&opf and Smola, 2002)LASVM x 1
provides almost the same accuracy with much shorter training tit&SVM x 2 reproduces the
LIBSVM accuracy with slightly shorter training time.

Figure 5 shows the resulting number of support vectors. A single efdble ©nlineLASVM
algorithm gathers most of the support vectors of the SVM solution compytetBBVM. The first
iterations of the Online ASVM might indeed ignore examples that later become support vectors.
Performing a second epoch captures most of the missing support vectors

LASVM versus the Averaged Perceptron The computational advantage loASVM relies on its
apparent ability to match the SVM accuracies after a single epoch. Theiefoust be compared
with algorithms such as the Averaged Perceptron (Freund and ScHE@B®), that provably match
well known upper bounds on the SVM accuracies. AMBPERCx 1 results in Figures 1 and 2 were
obtained after running a single epoch of the Averaged Perceptron.ugiththe computing times are
very good, the corresponding test errors are not competitive with Hadgeved by eithetIBSVM

or LASVM. Freund and Schapire (1998) suggest that the Averaged Perteppmaches the actual
SVM accuracies after 10 to 30 epochs. Doing so ho longer providesdbeetiical guarantees. The
AVGPERCx 10 results in Figures 1 and 2 were obtained after ten epochs. Testra&esrindeed
approach the SVM results. The corresponding training times are no longwetitive.

Impact of the Kernel Cache Size These training times stress the importance of the kernel cache
size. Figure 2 shows how ti/GPERCx 10 runs much faster on problems 0, 1, and 6. This is hap-
pening because the cache is large enough to accomodate the dot pajdalcexamples with all
support vectors. Each repeated iteration of the Average Perceptyoines very few additional ker-
nel evaluations. This is much less likely to happen when the training set sieages. Computing
times then increase drastically because repeated kernel evaluationsebaecessary.

Figure 6 compares how théBSVM andLASVM x 1 training times change with the kernel cache
size. The vertical axis reports the relative changes with respadB&/M with one gigabyte of
kernel cache. These changes are averaged over the ten MNISifietas The plot shows how
LASVM tolerates much smaller caches. On this probleagvVMwith a 8MB cache runs slightly
faster thanLIBSVMwith a 1024MB cache.

Useful orders of magnitude can be obtained by evaluating how large thell@mche must be
to avoid the systematic recomputation of dot-products. Following the notatidsotibn 2.1, leh
be the number of exampleSbe the number of support vectors, a@Re Sthe number of support
vectors such that @ |a;| < C.

¢ In the case ofIBSVM, the cache must accommodate aboRtterms: the examples selected
for the SMO iterations are usually chosen among Rhigee support vectors. Each SMO
iteration needs distinct dot-products for each selected example.

e To perform asingleLASVM epoch, the cache must only accommodate aBd&terms: since
the examples are visited only once, the dot-products computedPBDE&ESperation can
only be reutilized by subsequeREPROCESSoperations. The examples selected Riy-
PROCESSare usually chosen amont tiefree support vectors; for each selected example,
REPROCES®ieeds one distinct dot-product per support vector irsset

1591

BORDES ERTEKIN, WESTON, AND BOTTOU

e To performmultiple LASVM epochs, the cache must accommodate ab@iterms: the
dot-products computed by processing a particular example are reusgdpsbcessing the
same example again in subsequent epochs. This also applies to multipleg®/Bexgeptron
epochs.

An efficient single epoch learning algorithm is therefore very desiralblensone expectSto be
much smaller tham. Unfortunately, this may not be the case when the data set is noisy. Section
3.4 presents results obtained in such less favorable conditions. Sectien grtiposes an active
learning method to contain the growth of the number of support vectorseaander the full benefits

of the online approach.

3.4 Multiple Data Set Experiments

Further experiments were carried out with a collection of standard dataegpgesenting diverse
noise conditions, training set sizes, and input dimensionality. Figure @émethese data sets and
the parameters used for the experiments.

Kernel computation times for these data sets are extremely fast. The dataheithiew di-
mensionality or can be represented with sparse vectors. For instanggytiog kernel values for
two Reuters documents only involves words common to both documents (exclstdim words).
The Forest experiments use a kernel implemented with hand optimized assedbl{Graf et al.,
2005).

Figure 8 compares the solutions returned BBVM x 1 andLIBSVM. The LASVM x 1 experi-
ments call the kernel function much less often, but do not always ruerfashe fast kernel com-
putation times expose the relative weakness of our kernel cache implemenfBtieLASVM x 1
accuracies are very close to thlBSVM accuracies. The number of support vectors is always
slightly smaller.

LASVM x1 essentially achieves consistent results over very diverse datafsst@eaforming
one single epoch over the training set only. In this situation L&k®&/M PROCESSfunction gets
only once chance to take a particular example into the kernel expansigrogtially make it a
support vector. The conservative strategy would be to take all exaraptesort them out during
the finishing step. The resulting training times would always be worse ltHE8VM’s because
the finishing step is itself a simplified SMO solver. TherefofASVM online iterations are able to
very quickly discard a large number of examples with a high confidends.pfbcess is not perfect
because we can see that teSVM x 1 number of support vectors are smaller théB8VM’s. Some
good support vectors are discarded erroneously.

Figure 9 reports the relative variations of the test error, number ofsstipectors, and training
time measured before and after the finishing step. The online iterations prettyselect the right
support vectors on clean data sets such as “Waveform”, “Reutet§JS#S”, and the finishing step
does very little. On the other problems the online iterations keep much more exaaspetential
support vectors. The finishing step significantly improves the accunacisy data sets such as
“Banana”, “Adult” or “USPS+N", and drastically increases the computatime on data sets with
complicated decision boundaries such as “Banana” or “Forest”.

1592

FAST KERNEL CLASSIFIERS WITHONLINE AND ACTIVE LEARNING

| | Train Size Test Size y C Cache T | Notes
Wavefornt 4000 1000| 0.05 1 40M 0.001| Artificial data, 21 dims.
Banana 4000 1300 0.5 316 40M 0.001] Artificial data, 2 dims.
Reuter$ 7700 3299 1 1 40M 0.001| Topic “moneyfx” vs. rest.
uspPs$ 7329 2000 2 1000 40M 0.001| Class “0”" vs. rest.
USPS+N 7329 2000 2 10 40M 0.001| 10% training label noise.
Adult3 32562 16282 0.005 100 40M 0.001 Asin (Platt, 1999).
Foresg (100k) 100000 50000 1 3 512M 0.001| Asin (Collobert et al., 2002)
Fores? (521k) 521012 50000 1 3 1250M 0.01| Asin (Collobert et al., 2002)

Thttp://n g.anu. edu. au/ ~r aet sch/ dat a/ i ndex. ht ni
Zhttp:// wav. davi ddl ewi s. cont resour ces/ test col | ecti ons/reut ers21578
Sftp://ftp.ics.uci.edu/ pub/ machine-| ear ni ng- dat abases

Figure 7: Data Sets discussed in Section 3.4.

LIBSVM LASVM x1

Data Set Error SV KCalc Time Error SV KCalc Time
Waveform 8.82% 1006 4.2M 3.23 8.68% 948 2.2M 2.7s
Banana 9.96% 873 6.8M 9.95 9.98% 869 6.7M 10.0s
Reuters 2.76% 1493 11.8M 24s| 2.76% 1504 9.2M 31.4s
USPS 0.41% 236 1.97M 13.5s| 0.43% 201 1.08M 15.9s
USPS+N 0.41% 2750 63M 305s| 0.53% 2572 20M 178s
Adult 14.90% 11327 1760M 10795 14.94% 11268 626M 809s
Forest (100k)| 8.03% 43251 27569M 145983 8.15% 41750 18939M 103105
Forest (521k)| 4.84% 124782 316750M 159443s 4.83% 122064 188744M 137183s

Figure 8: Comparison dfIBSVM versusLASVM x 1: Test error rates (Error), number of support
vectors (SV), number of kernel calls (KCalc), and training time (Time). Bbldracters
indicate significative differences.

Relative Variation

Data Set Error SV Time

Waveform -0% -0% +4%
Banana -79% -74% +185%
Reuters 0% -0% +3%
USPS 0% -2% +0%
USPS+N% -67% -33% +7%
Adult -13% -19% +80%
Forest (100k)| -1% -24% +248%
Forest (521k)| -2% -24% +84%

Figure 9: Relative variations of test error, number of support veendstraining time measured
before and after the finishing step.

1593

BORDES ERTEKIN, WESTON, AND BOTTOU

3.5 The Collection of Potential Support Vectors

The final step of th@REPROCES®peration computes the current value of the kernel expansion bias
b and the stopping criteriod

b— Omax =+ Gmin

. . 2 (10)
Omin = rsne[?gs with as > Ag 0 = Omax— Omin-

SSRY

The quantitie®min andgmax can be interpreted as bounds for the decision thredhalthe quantity
0 then represents an uncertainty on the decision threghold

The quantityd also controls how.ASVM collects potential support vectors. The definition of
PROCESSand the equality (9) indicate indeed trRROCES$K) adds the support vectoy to the
kernel expansion if and only if

N o
WY (X) < 1+ > —T1. (11)

Whena is optimal, the uncertainty is zero, and this condition matches the Karush-Kuhn-Tucker
condition for support vectong y(xx) < 1.

Intuitively, relation (11) describes homROCESSollects potential support vectors that are com-
patible with the current uncertainty lev@lon the threshold. Simultaneously, th@EPROCESS
operations reduc& and discard the support vectors that are no longer compatible with thisegdu
uncertainty.

The online iterations of theASVM algorithm make equal numbers BROCESSandREPRO-
CESSfor purely heuristic reasons. Nothing guarantees that this is the optimpbian. The
results reported in Figure 9 clearly suggest to investigate this arbitragechossdy.

Variations on REPROCESS Experiments were carried out with a slightly modifiedSvM al-
gorithm: instead of performing a singREPROCESSthe modified online iterations repeatedly run
REPROCESSuntil the uncertainty) becomes smaller than a predefined thresbglg.

Figure 10 reports comparative results for the “Banana” data set. Sim#laltsevere obtained
with other data sets. The three plots report test error rates, training timauanber of support
vectors as a function dinax. These measurements were performed after one epoch of online it-
erations without finishing step, and after one and two epochs followedebfirtishing step. The
corresponding IBSVM figures are indicated by large triangles on the right side of the plot.

Regardless abax the SVM test error rate can be replicated by performing two epochs fetlow
by a finishing step. However, this does not guarantee that the optimal $MNas has been
reached.

Large values obnax essentially correspond to the unmodifis®iSVM algorithm. Small values
of dmax considerably increases the computation time because each online iterati@ECRISCESS
many times in order to sufficiently redude Small values o0Bnyax also remove th€ ASVM ability
to produce a competitive result after a single epoch followed by a finishepy sThe additional
optimization effort discards support vectors more aggressively. Additiepochs are necessary to
recapture the support vectors that should have been kept.

There clearly is a sweet spot aroughx = 3 when one epoch of online iterations alone almost
match the SVM performance and also makes the finishing step very fast.\wées spot is difficult
to find in general. I®naxis a little bit too small, we must make one extra epochd.jix is a little

1594

FAST KERNEL CLASSIFIERS WITHONLINE AND ACTIVE LEARNING

@ No finishing
@ 1epoch
V 2epochs ||
<] LIBSVM

Test Error
=)

LI \H‘HH NN W

0 \ \ \ \

10 3 1 0.3 0.1 0.01
Reprocess DeltaMax
1000 3500 =
= No finishin
o £ 3000 A —
@ 1epoch S B No finishing
100 —— V¥ 2epochs g 2500 @ lepoch [
2 <] LibSVM *§ 2000 V 2epochs ||
= 1[\ S 1500 <] LibSVM
2 10 @ B
= _\v—’——"’_ﬁ/ S 1000 g
g 3 £ 5w
g
1 T T \ \ = 0 T T \ \
10 3 1 03 01 001 0 3 103 01 001
Reprocess DeltaMax Reprocess DeltaMax

Figure 10: Impact of additionaterroceEssmeasured on “Banana” data set. During thiesvM
online iterations, calls taeProcessre repeated untd < dmax.

bit too large, the algorithm behaves like the unmodifidéVvM. Short of a deeper understanding
of these effects, the unmodifiedSVM seems to be a robust compromise.

SimpleSVM The right side of each plot in Figure 10 corresponds to an algorithm gtahiaes
the coefficient of the current support vectors at each iteration. Thiksely related to the Sim-
pleSVM algorithm (Vishwanathan et al., 2003). BathSVM and the SimpleSVM update a current
kernel expansion by adding or removing one or two support vect@adi iteration. The two key
differences are the numerical objective of these updates and their tatiopal costs.

Whereas each SimpleSVM iteration seeks the optimal solution of the SVM QReprabe-
stricted to the current set of support vectors,lthA8VM online iterations merely attempt to improve
the value of the dual objective functidM(a). As a a consequenceASVM needs a finishing step
and the SimpleSVM does not. On the other hand, Figure 10 suggests thiigste optimum
at each iteration discards support vectors too aggressively to reagbetitive accuracies after a
single epoch.

Each SimpleSVM iteration updates the current kernel expansion usikglramatrix updates
(Cauwenberghs and Poggio, 2001) whose computational cost gsafve aquare of the number of

support vectorsLASVM performs these updates using SMO direction searches whose cost grow

1595

BORDES ERTEKIN, WESTON, AND BOTTOU

linearly with the number of examples. Rank 1 updates make good sense méneaaks the optimal
coefficients. On the other hand, all the kernel values involving sup@ators must be stored in
memory. Thee,ASVM direction searches are more amenable to caching strategies for kdusa. va

4. Active Selection of Training Examples

The previous section present8SVM as an Online Learning algorithm or as a Stochastic Opti-
mization algorithm. In both cases, thaSVM online iterations pick random training examples.
The current section departs from this framework and investigates miimedeavays to select an
informative example for each iteration.

This departure is justified in the offline setup because the complete training @edilable
beforehand and can be searched for informative examples. It is alsiteq in the online setup
when the continuous stream of fresh training examples is too costly to pragteer because the
computational requirements are too high, or because it is inpractical talathed potential training
examples.

In particular, we show that selecting informative examples yields considespeedups. Fur-
thermore, training example selection can be achieved without the knowléttgetmining example
labels. In fact, excessive reliance on the training example labels carvéigvdetrimental effects.

4.1 Gradient Selection

The most obvious approach consists in selecting an exakngleh that the®PROCESSoperation
results in a large increase of the dual objective function. This can brexipmated by choosing the
example which yields the-violating pair with the largest gradient. Depending on the clasthe
PROCES¥K) operation considers paik, j) or (i,k) wherei andj are the indices of the examples in
S with extreme gradients:

i = argmayxgs with ag < Bs, j = argmings with ag > As.
€S se$
The corresponding gradients age— g; for positive examples ang — gk for negative examples.
Using the expression (9) of the gradients and the value aridd computed during the previous
REPROCES$10), we can write:

whenyy=+1, gk—0j =ykgk—g' Zgj 49 291 =1+§—YKY(XK)
whenyi=—-1, g-g=209 979 v g=14 2 vy

2 2 2

This expression shows that tkeradient Selection Criteriosimply suggests to pick the most mis-
classified example

ke = argmin yi¥(X). (12)
k¢S

4.2 Active Selection

Always picking the most misclassified example is reasonable when one isordiglent of the train-
ing example labels. On noisy data sets, this strategy is simply going to pick mislabedletples
or examples that sit on the wrong side of the optimal decision boundary.

1596

FAST KERNEL CLASSIFIERS WITHONLINE AND ACTIVE LEARNING

When training example labels are unreliable, a conservative approaokeshthe exampley
that yields the strongest minimax gradient:

ka = argmin max yy(xx) = argmin |¥(x)|. (13)
kgs Y=+l keS
This Active Selection Criteriosimply chooses the example that comes closest to the current deci-
sion boundary. Such a choice yields a gradient approximatively equal &/ 2 regardless of the
true class of the example.

Criterion (13) does not depend on the labglsThe resulting learning algorithm only uses the
labels of examples that have been selected during the previous online iterafiuis is related to
the Pool Based Active Learningaradigm (Cohn et al., 1990).

Early active learning literature, also known Bsperiment DesigiiFedorov, 1972), contrasts
the passive learner, who observes examptgg), with the active learner, who constructs quenes
and observes their labgJs In this setup, the active learner cannot beat the passive learraardsec
he lacks information about the input pattern distribution (Eisenberg aresRi¥990). Pool-based
active learning algorithms observe the pattern distribution from a vastgbomllabelled examples.
Instead of constructing queries, they incrementally select unlabelled ée@m@nd obtain their
labelsyy from an oracle.

Several authors (Campbell et al., 2000; Schohn and Cohn, 2009 afmhKoller, 2000) propose
incremental active learning algorithms that clearly are related to Active t8eledhe initialization
consists of obtaining the labels for a small random subset of examples. M\iSYfained using
all the labelled examples as a training set. Then one searches the pod tordelled example
that comes closest to the SVM decision boundary, one obtains the lab&d ekémple, retrains the
SVM and reiterates the process.

4.3 Randomized Search

Both criteria (12) and (13) suggest a search through all the trainingea. This is impossible in
the online setup and potentially expensive in the offline setup.

It is however possible to locate an approximate optimum by simply examining a stnatbnt
number of randomly chosen examples. The randomized search first savhpédom training
examples and selects the best one among thkesgamples. With probability nM, the value
of the criterion for this example exceeds thejuantile of the criterion for all training examples
(Schlkopf and Smola, 2002, theorem 6.33) regardless of the size of the gaeinin practice this
means that the best among 59 random training examples has 95% chanslestpotd the best 5%
examples in the training set.

Randomized search has been used in the offline setup to accelerates vaaochine learning
algorithms (Domingo and Watanabe, 2000; Vishwanathan et al., 2003¢g Esat., 2005). In the
online setup, randomized search is the only practical way to select traxangptes. For instance,
here is a modification of the badiaSVM algorithm to select examples using the Active Selection
Criterion with Randomized Search:

1597

BORDES ERTEKIN, WESTON, AND BOTTOU

LASVM + Active Example Selection + Randomized Search
1) Initialization :
Seeds with a few examples of each class.
Seta « 0 andg < O.

2) Online lterations:
Repeat a predefined number of times:
- PickM random examples; ...Sy.
- ki «—argmin | y(xs) |
i=1..M
- RUNPROCES$k).
- RUNREPROCES®nce.
3) Finishing:
RepeaREPROCESSuntil d < T.

Each online iteration of the above algorithm is abblutimes more computationally expen-
sive that an online iteration of the ba4iaSVM algorithm. Indeed one must compute the kernel
expansion (2) foM fresh examples instead of a single one (9). This cost can be redudesibyg-
tic techniques for adaptinlyl to the current conditions. For instance, we present experimental
results where one stops collecting new examples as sod asntains five examples such that
|9(x5) | < 1+8/2.

Finally the last two paragraphs of appendix A discuss the convergéneesyM with example
selection according to the gradient selection criterion or the active seletiierion. The gradient
selection criterion always leads to a solution of the SVM problem. On the od#ret, lihe active
selection criterion only does so when one uses the sampling method. In ridcsiconvergence
occurs very slowly. The next section presents many reasons to firefetermediate kernel classi-
fiers visited by this algorithm.

4.4 Example Selection for Online SVMs

This section experimentally compares theSVM algorithm using different example selection
methods. Four different algorithms are compared:

e RANDOM example selection randomly picks the next training example among those tkat hav
not yet beerPROCES®d. This is equivalent to the plailASVM algorithm discussed in
Section 3.2.

e GRADIENT example selection consists in sampling 50 random training examples among those
that have not yet beePROCES®d. The sampled example with the smallgsi(x«) is then
selected.

e ACTIVE example selection consists in sampling 50 random training examples among those
that have not yet beePROCES®d. The sampled example with the smallg$ky)| is then
selected.

e AUTOACTIVE example selection attempts to adaptively select the sampling size. Sampling
stops as soon as 5 examples are within distane®/2 of the decision boundary. The max-
imum sample size is 100 examples. The sampled example with the sngliest is then
selected.

1598

FAST KERNEL CLASSIFIERS WITHONLINE AND ACTIVE LEARNING

ool 16.0%
9% ¢ RANDOM ¢ RANDOM
16.7% > GRADIENT 1 Vv ACTIVE
o Vv ACTIVE o, A AUTOACTIVE
16.5% \k A AUTOACTIVE 158%] v LIBSYM
16.3% \ \ w LIBSVM
. 16.1% k < 156/’
o 67
E 15.9% g {
W \ L
3 15.7% 3]
— 15.5% 2 15.4%
15.3% 31— |
15.1% |
15.2%
14.9%]
14.7%]
14.5% 1 15.0% ‘ ‘ ‘
0 10000 20000 30000 40000 0.0 1000.0 2000.0 3000.0
Iterations Computing Time (cpu seconds)

Figure 11: Comparing example selection criteria on the Adult data set. Maasuats were per-
formed on 65 runs using randomly selected training sets. The graphstsbasvror
measured on the remaining testing examples as a function of the number of ikgratio
and the computing time. The dashed line representsIB®&VM test error under the
same conditions.

Adult Data Set We first report experiments performed on the “Adult” data set. This ddta se
provides a good indication of the relative performance of the GradiehAative selection criteria
under noisy conditions.

Reliable results were obtained by averaging experimental results me&sudddandom splits
of the full data set into training and test sets. Paired tests indicate thatrtediéerences of 0.25%
on a single run are statistically significant at the 95% level. We conserlyatistimate that average
error differences of @5% are meaningful.

Figure 11 reports the average error rate measured on the test satragianf of the number
of online iterations (left plot) and of the average computing time (right plot)gaR#less of the
training example selection method, all reported results were measuredeaftanging theLASVM
finishing step. More specifically, we run a predefined number of onlinatiters, save theASVM
state, perform the finishing step, measure error rates and numbermafrsugctors, and restore the
savedLASVM state before proceeding with more online iterations. Computing time includes the
duration of the online iterations and the duration of the finishing step.

The GRADIENT example selection criterion performs very poorly on this noisy data set. A
detailed analysis shows that most of the selected examples become s@gpans with coefficient
reaching the upper bour@@ The ACTIVE andAUTOACTIVE criteria both reach smaller test error
rates than those achieved by the SVM solution computed®&$VM. The error rates then seem to
increase towards the error rate of the SVM solution (left plot). We belietedd that continued
iterations of the algorithm eventually yield the SVM solution.

Figure 12 relates error rates and numbers of support vectorsRAKBOM LASVM algorithm
performs as expected: a single pass over all training examples replicasctiracy and the num-

1599

BORDES ERTEKIN, WESTON, AND BOTTOU

16.0%
1 *\ © RANDOM
15.8% ¥ ACTIVE
1 A AUTOACTIVE
1 [JLIBSYM
15.6% K\\‘
15.4%

o N

15-00/0 T T T T T T T T T 1
0 2500 5000 7500 10000 12500

Test Error

Number of Support Vectors

Figure 12: Comparing example selection criteria on the Adult data set. Testagra function of
the number of support vectors.

ber of support vectors of thedBSVM solution. Both theACTIVE andAUTOACTIVE criteria yield
kernel classifiers with the same accuracy and much less support vdatoisstance, thaUTOAC-
TIVE LASVM algorithm reaches the accuracy of thBSVM solution using 2500 support vectors
instead of 11278. Figure 11 (right plot) shows that this result is achiafted 150 seconds only.
This is about one fifteenth of the time needed to perform aRANDOM LASVM epoch?

Both theACTIVE LASVM andAUTOACTIVE LASVM algorithms exceed thaBSVM accuracy
after a few iterations only. This is surprising because these algorithms salthe training labels
of the few selected examples. They both outperformUiBSvM solution by using only a small
subset of the available training labels.

MNIST Data Set The comparatively clean MNIST data set provides a good opportunityrify ve
the behavior of the various example selection criteria on a problem with a maeh éoror rate.

Figure 13 compares the performance of RENDOM, GRADIENT andACTIVE criteria on the
classification of digit “8” versus all other digits. The curves are avedamn 5 runs using different
random seeds. All runs use the standard MNIST training and test setS.tie2 GRADIENT and
ACTIVE criteria perform similarly on this relatively clean data set. They require ta@sumuch
computing time aRANDOM example selection to achieve a similar test error.

Adding ten percent label noise on the MNIST training data provides addltinsight regarding
the relation between noisy data and example selection criteria. Label naiseoivapplied to the
testing set because the resulting measurement can be readily compareacdtootesachieved by
training SVMs without label noise. The expected test errors under simbat feise conditions
can be derived from the test errors measured without label noisereFlgushows the test errors
achieved when 10% label noise is added to the training examplesGRABIENT selection cri-

2. The timing results reported in Figure 8 were measured on a fastetutemp

1600

FAST KERNEL CLASSIFIERS WITHONLINE AND ACTIVE LEARNING

3 K 3
2.5 251
g \ [Fandom | 1
S] <]
S 27 » ’é 2 Gradient
5 g 1 » Gradient
-] [T}] Iteration 1250
éi.s . 15 Active Active :
] = N Vs 9 Iteration 1450
1 57 - 1
0.5 1 0.5+ Random
4 4 Iteration 15000
0- ; ‘ ; ; ; ‘ o+
0 2500 5000 7500 10000 12500 15000 0 100 200 300 400 500
Number of Iterations Computing Time (cpu seconds)

Figure 13: Comparing example selection criteria on the MNIST data set, mizaog digit “8”
against all other classes. Gradient selection and Active selectionrpesimilarly on
this relatively noiseless task.

N 00 ®
uon
!

Il
=
L
——

Gradient I— 2.5

70 A -~
-
>

Random
Iteration 10000

151

Test Error (%)
w
o

Test Error (%)

20 Random 1
15 -

10 l Active | | |

i UV i] Iteration 1450
S !
0

0 2000 4000 6000 8000 10000 0 100 200 300 400 500
Number of Iterations Computing Time (cpu seconds)

i
J

—

=

Figure 14: Comparing example selection criteria on the MNIST data set withldl8bnoise on
the training examples.

1601

BORDES ERTEKIN, WESTON, AND BOTTOU

MNIST+10% noise

Test Error (%)

2
=

T T 1
100 1000 10000 100000

Number of Support Vectors (log scale)

Figure 15: Comparing example selection criteria on the MNIST data set. Aotarmple selection
is insensitive to the artificial label noise.

terion causes a very chaotic convergence because it keeps selectageitad training examples.
TheACTIVE selection criterion is obviously undisturbed by the label noise.

Figure 15 summarizes error rates and number of support vectors farisdl conditions. In the
presence of label noise on the training dat8SVM yields a slightly higher test error rate, and a
much larger number of support vectors. TReNDOM LASVM algorithm replicates thelBSVM
results after one epoch. Regardless of the noise condition8CIhi&E LASVM algorithm reaches
the accuracy and the number of support vectors of BB8VM solution obtained with clean training
data. Although we have not been able to observe it on this data set, wa thqte after a very long
time, the ACTIVE curve for the noisy training set converges to the accuracy and the mwhbe
support vectors achieved of theBSVM solution obtained for the noisy training data.

4.5 Online SVMs for Active Learning

The ACTIVE LASVM algorithm implements two dramatic speedups with respect to existing active
learning algorithms such as (Campbell et al., 2000; Schohn and Col, k¥y and Koller, 2000).
First it chooses a query by sampling a small number of random exampleadraitscanning all
unlabelled examples. Second, it uses a singisVM iteration after each query instead of fully
retraining the SVM.

Figure 16 reports experiments performed on the Reuters and USPS wgteesented in table
7. TheRETRAIN ACTIVE 50 andRETRAIN ACTIVE ALL select a query from 50 or all unlabeled
examples respectively, and then retrain the SVM. The SVM solver was ingtigdiath the solution
from the previous iteration. TheASVM ACTIVE 50 andLASVM ACTIVE ALL do not retrain the
SVM, but instead make a singl&SVM iteration for each new labeled example.

1602

FAST KERNEL CLASSIFIERS WITHONLINE AND ACTIVE LEARNING

USPS zero-vs-rest Reuters money—fx
4 . :
—¢ LASVM ACTIVE 50 >2 —¢ LASVM ACTIVE 50
350 — LASVM ACTIVE ALL sl — LASVM ACTIVE ALL
—k- RETRAIN ACTIVE 50 —k- RETRAIN ACTIVE 50
3t RETRAIN ACTIVE ALL || RETRAIN ACTIVE ALL
RANDOM 4.5 RANDOM I
2.5¢ 1

Test Error
N
Test Error

o [
[6)] [(6,
%.
¢/<
%
%
/|
[
"
‘\
I
%
w
;?r“%
vid
(— X
_ér\.)
¥
ki
i
r
3k
1
%
%
*
*
%

2.5f

(=]
N

200 300 400 0 500 1000 1500
Number of labels Number of labels

0 160
Figure 16: Comparing active learning methods on the USPS and ReutersetiataResults are
averaged on 10 random choices of training and test sets. UAB\gM iterations instead
of retrairing causes no loss of accuracy. Samplihg- 50 examples instead of searching
all examples only causes a minor loss of accuracy when the number oidaxaleples
is very small.

All the active learning methods performed approximately the same, and weeeiar to ran-
dom selection. UsingASVM iterations instead of retraining causes no loss of accuracy. Sampling
M = 50 examples instead of searching all examples only causes a minor lossitd@cwhen the
number of labeled examples is very small. Yet the speedups are very signifior 500 queried
labels on the Reuters data set, BREETRAIN ACTIVE ALL , LASVM ACTIVE ALL , andLASVM AC-

TIVE 50 algorithms took 917 seconds, 99 seconds, and 9.6 seconds redpective

5. Discussion

This work started because we observed that the data set sizes aflg quitgkowing the computing

power of our calculators. One possible avenue consists of harnassngomputing power of

multiple computers (Graf et al., 2005). Instead we propose learning algritiet remain closely
related to SVMs but require less computational resources. This sectoussés their practical and
theoretical implications.

5.1 Practical Significance

When we have access to an abundant source of training examples, the wiaypto reduce the
complexity of a learning algorithm consists of picking a random subset mirigpexamples and
running a regular training algorithm on this subset. Unfortunately this agproenounces the
more accurate models that the large training set could afford. This is wisawey reference to
statistical efficiency, that asfficientlearning algorithm should at least pay a brief look at every
training example.
The onlineLASVM algorithm is very attractive because it matches the performance of a SVM

trained on all the examples. More importantly, it achives this performaree afsingle epoch,

1603

BORDES ERTEKIN, WESTON, AND BOTTOU

faster than a SVM (figure 2) and using much less memory than a SVM (figuiehé is very im-
portant in practice because modern data storage devices are masteffden the data is accessed
sequentially.

Active Selection of theeASVM training examples brings two additional benefits for practical
applications. It achieves equivalent performances with significantlydegport vectors, further
reducing the required time and memory. It also offers an obvious oppiyrtionparallelize the
search for informative examples.

5.2 Informative Examples and Support Vectors

By suggesting that all examples should not be given equal attention, skstfite that all training
examples are not equally informative. This question has been askeshswwdrad in various con-
texts (Fedorov, 1972; Cohn et al., 1990; MacKay, 1992). We alsavhskher these differences can
be exploited to reduce the computational requirements of learning algorithorswd@k answers
this question by proposing algorithms that exploit these differences dnelvacvery competitive
performances.

Kernel classifiers in general distinguish the few training examples nanpgebgwectors. Ker-
nel classifier algorithms usually maintain an active set of potential suppotors and work by
iterations. Their computing requirements are readily associated with the traxamgples that be-
long to the active set. Adding a training example to the active set increasesrtiputing time
associated with each subsequent iteration because they will require additonel computations
involving this new support vector. Removing a training example from the exstit reduces the
cost of each subsequent iteration. However it is unclear how sucigebaffect the number of
subsequent iterations needed to reach a satisfactory performanice leve

Online kernel algorithms, such as the kernel perceptrons usually pratifierent classifiers
when given different sequences of training examples. Section 3 ges@m online kernel algorithm
that converges to the SVM solution after many epochs. The final setpgiosuvectors is intrin-
sically defined by the SVM QP problem, regardless of the path followed byliee learning
process. Intrinsic support vectors provide a benchmark to evaluatapiaet of changes in the ac-
tive set of current support vectors. Augmenting the active set witlxample that is not an intrinsic
support vector moderately increases the cost of each iteration withemtaaefits. Discarding an
example that is an intrinsic support vector incurs a much higher cost. Addifi@nations will be
necessary to recapture the missing support vector. Empirical evidepasented in Section 3.5.

Nothing guarantees however that the most informative examples are tharsupctors of the
SVM solution. Bakir et al. (2005) interpret Steinwart's theorem (Steihv2®04) as an indication
that the number of SVM support vectors is asymptotically driven by the elenipcated on the
wrong side of the optimal decision boundary. Although such outliers migkitepleseful role in the
construction of a decision boundary, it seems unwise to give them the btlle @vailable com-
puting time. Section 4 adds explicit example selection criterigA®VM. The Gradient Selection
Criterion selects the example most likely to cause a large increase of the S)ébtivod function.
Experiments show that it prefers outliers over honest examples. Thee/Alection Criterion by-
passes the problem by choosing examples without regard to their labglsrifBgnts show that it
leads to competitive test error rates after a shorter time, with less supptots;eand using only
the labels of a small fraction of the examples.

1604

FAST KERNEL CLASSIFIERS WITHONLINE AND ACTIVE LEARNING

5.3 Theoretical Questions

The appendix provides a comprehensive analysis of the convergétieealgorithms discussed in
this contribution. Such convergence results are useful but limited in sddype section underlines
some aspects of this work that would vastly benefit from a deeper thednatiderstanding.

e Empirical evidence suggests that a single epoch of #&/M algorithm yields misclassifi-
cation rates comparable with a SVM. We also know th&$VM exactly reaches the SVM
solution after a sufficient number of epochs. Can we theoretically estimaexpleeted dif-
ference between the first epoch test error and the many epoch te8t 8trch results exist for
well designed online learning algorithms based on stochastic gradierdrdédturata and
Amari, 1999; Bottou and LeCun, 2005). Unfortunately these results tidirextly apply to
kernel classifiers. A better understanding would certainly suggest iregralgorithms.

e Test error rates are sometimes improved by active example selection.t thifaeffect has
already been observed in the active learning setups (Schohn and Zif0). This small
improvement is difficult to exploit in practice because it requires veryisemgarly stopping
criteria. Yet it demands an explanation because it seems that one getsrpbédtianance
by using less information. There are three potential explanationactfjve selection works
well on unbalanced data sets because it tends to pick equal numbengflesaf each class
(Schohn and Cohn, 2000)j)(active selection improves the SVM loss function because it
discards distant outliersjii() active selection leads to more sparse kernel expansions with
better generalization abilities (Cesa-Bianchi et al., 2005). These thpd&nations may be
related.

e We know that the number of SVM support vectors scales linearly with the auailexamples
(Steinwart, 2004). Empirical evidence suggests that active exampl¢igelgields transitory
kernel classifiers that achieve low error rates with much less suppcidrge What is the
scaling law for this new number of support vectors?

e What is the minimal computational cost for learninghdependent examples and achieving
“optimal” test error rates? The answer depends of course of how fieedese “optimal”
test error rates. This cost intuitively scales at least linearly wilecause one must pay a
look at each example to fully exploit them. The present work suggest tisatalst might
be smaller tham times the reduced number of support vectors achievable with the active
learning technique. This range is consistent with previous work showatgtbchastic gra-
dient algorithms can train a fixed capacity model in linear time (Bottou and LeZ00%).
Learning seems to be much easier than computing the optimum of the empirical loss.

5.4 Future Directions

Progress can also be achieved along less arduous directions.

e Section 3.5 suggests that better convergence speed could be attairiedebly enodulating
the number of calls tREPROCESSIuring the online iterations. Simple heuristics might go a
long way.

1605

BORDES ERTEKIN, WESTON, AND BOTTOU

e Section 4.3 suggests a heuristic to adapt the sampling size for the randoeézek sf in-
formative training examples. ThIUTOACTIVE heuristic performs very well and deserves
further investigation.

e Sometimes one can generate a very large number of training examples bifiregioown
invariances. Active example selection can drive the generation of examplés idea was
suggested in (Loosli et al., 2004) for the SimpleSVM.

6. Conclusion

This work explores various ways to speedup kernel classifiers bggaskich examples deserve
more computing time. We have proposed a novel online algorithm that cosvertee SVM solu-
tion. LASVM reliably reaches competitive accuracies after performing a single pasthewraining
examples, outspeeding state-of-the-art SVM solvers. We have them $towv active example se-
lection can yield faster training, higher accuracies and simpler models using éraction of the
training examples labels.

Acknowledgments

Part of this work was funded by NSF grant CCR-0325463. We alsktBan Cosatto, Hans-Peter
Graf, C. Lee Giles and Vladimir Vapnik for their advice and support, Radalfobert and Chih-
Jen Lin for thoroughly checking the mathematical appendix, and SathiydhKé& pointing out
reference (Takahashi and Nishi, 2003).

Appendix A. Convex Programming with Witness Families

This appendix presents theoretical elements about convex programmaorghaits that rely on
successive direction searches. Results are presented for thelersedivections are selected from
a well chosen finite pool, like SMO (Platt, 1999), and for the stochasticitgas, like the online
and active SVM discussed in the body of this contribution.

Consider a compact convex subgebf R" and a concave functiohdefined on¥. We assume
that f is twice differentiable with continuous derivatives. This appendix dissidse maximization
of function f over set-:

r)pEaL?x f(X). (14)

This discussion starts with some results about feasible directions. Themduogs the notion
of witness family of directions which leads to a more compact characterizatitre aptimum.
Finally it presents maximization algorithms and establishes their convergengprtixanate solu-
tions

A.1 Feasible Directions

Notations Given a poinix € ¥ and a directioru € R = R", let
o(x,u) = maxA>0|x+Aue F}
f*(x,u) = max{f(x+Au),x+Aue F}.

1606

FAST KERNEL CLASSIFIERS WITHONLINE AND ACTIVE LEARNING

In particular we writep(x,0) = c and f*(x,0) = f(x).
Definition 1 The cone of feasible directions irex¥ is the set
Dx = {ue R"|@(x,u) > 0}.

All the pointsx+Au, 0 < A < @(x,u) belong toF becausef is convex. Intuitively, a direction
u+# 0 is feasible ik when we can start fromand make a little movement along directiowithout
leaving the convex sef .

Proposition 2 Given xe # and ue R",

f*(x,u) > f(x) <= {3/2X?>0

Proof Assumef*(x,u) > f(x). Directionu# 0 is feasible because the maximdit{x, u) is reached
for some O< A* < @(x,u). Letv € [0,1]. Since setf is convex, X+ VA*u € F. Since functionf
is concave, f (X+VA*u)) > (1—v)f(x) +vf*(x,u). Writing a first order expansion when— 0
yields*u'Of (x) > f*(x,u) — f(x) > 0. Conversely, assuméJf(x) > 0 andu # O is a feasible
direction. Recallf (x+Au) = f(x) + Au'Of(x) +0(A). Therefore we can choose<OA\g < @(x,u)
such thatf (x4 Agu) > f(x) +Aou' 0 f(x)/2. Thereforef*(x,u) > f(x+Aou) > f(X). [|

Theorem 3 (Zoutendijk (1960) page 22)The following assertions are equivalent:
i) xis a solution of problem (14).
i) Yue R" f*(x,u) < f(x).
i)y Yue Dx UOf(x) <O.

Proof The equivalence between assertidingand (iii) results from proposition 2. Assume asser-
tion (i) is true. Assertiorii) is necessarily true becau$g&u,x) < maxs f = f(x). Conversely, as-
sume assertiofi) is false. Then there ige F such thatf (y) > f(x). Thereforef*(x,y—x) > f(x)
and assertiofii) is false. [|

A.2 Witness Families
We now seek to improve this theorem. Instead of considering all feasibletidine inR", we wish
to only consider the feasible directions from a smaller@et

Proposition 4 Let xe F and v ...V € Dx be feasible directions. Every positive linear combina-
tion of v ... (i.e. a linear combination with positive coefficients) is a feasible direction.

Proof Letu be a positive linear combination of the Since they; are feasible directions there are
y; =X+ Av; € F, andu can be written a§; vi(y; —X) with y; > 0. Directionu is feasible because

the convexf contains(y viy,) / (3 i) = x+ (1/ 3 vi) u. u

1607

BORDES ERTEKIN, WESTON, AND BOTTOU

Definition 5 A set of directionsti ¢ R" is a “witness family for#” when, for any point xc 7,
any feasible direction & Dx can be expressed as a positive linear combination of a finite number
of feasible directions jve UN 7.

This definition directly leads to an improved characterization of the optima.

Theorem 6 Let U be a witness family for convex sgt
The following assertions are equivalent:
i) xis a solution of problem (14).
i) Yue 4 f*(x,u) < f(x).
iy Yue undx JvOf(x) <O0.

Proof The equivalence between assertidiny and (iii) results from proposition 2. Assume as-
sertion(i) is true. Theorem 3 implies that assertigr) is true as well. Conversely, assume asser-
tion (i) is false. Theorem 3 implies that there is a feasible direai@nR" on pointx such that
u'0Of(x) > 0. Since is a witness family, there are positive coefficiepts. . yx and feasible direc-
tionsvy,...,w € UNDx such that = 3 yivi. We have thery ij} Of(x) > 0. Since all coefficients

y; are positive, there is at least one tejgrsuch thats; [1f (x) > 0. Assertion(iii) is therefore false.

|

The following proposition provides an example of witness family for the coml@main 7s that
appears in the SVM QP problem (5).

Proposition 7 Let (e;...€,) be the canonical basis ®&". Sets = {g —e;,i # j} is a witness
family for convex sefs defined by the constraints

Vi A <x <B;

Xefs <— {ZiXiZO-

Proof Letu < R" be a feasible direction iR € %s. Sinceu is a feasible direction, there }> 0
such thaty = x+ Au € . Consider the subs& C ¥ defined by the constraints

Vi, A <min(x, Vi) <z < maxx,Yi) <B;

Z€EB <&
{ 5iz =0.

Let us recursively define a sequence of poirits € B. We start withz(0) = x € B. For each
t > 0, we define two sets of coordinate indidgs= {i|z(t) <yi} andli = {j|zj(t) >y;}. The
recursion stops if either set is empty. Otherwise, we choesg™ andj € I; and definez(t+1) =
zZ(t)+ y(t) v(t) € B with v(t) = & —ej € Us andy(t) = min(y; —z(t),z;(t) —y;) > 0. Intuitively, we
move towardy along directionv(t) until we hit the boundaries of sét.

Each iteration removes at least one of the indicasj from setsl;" andl;". Eventually one of
these sets gets empty and the recursion stops after a finite nkrobéerations. The other set is
also empty because

> Ni—zl= 3 lyi—zakl = _Zlyi—a(k> = _;yi—_;mk) =0

(= L=
i€l i€l

1608

FAST KERNEL CLASSIFIERS WITHONLINE AND ACTIVE LEARNING

Thereforez(k) = y andAu =y —x = 3, Y(t) v(t). Moreover thev(t) are feasible directions anbe-
causev(t) =g —ejwithi el Clg andj el Clg. [|

Assertion(iii) in Theorem 6 then yields the following necessary and sufficient optimalityricrite
for the SVM QP problem (5):

of of
I 2 : . . . _ <
V(i,j)e{l...n} X < Bj andxj > A; = aXi(x) 3%, (x) <0.

Different constraint sets call for different choices of witness familgr iRstance, it is sometimes
useful to disregard the equality constraint in the SVM polyt@peAlong the lines of proposition 7,

it is quite easy to prove thdt-g, i = 1...n} is a witness family. Theorem 6 then yields an adequate
optimality criterion.

A.3 Finite Witness Families

This section deals witfinite withess families Theorem 9 shows thaf is necessarily a convex
polytope, that is a bounded set defined by a finite number of linear of legtpality and inequality
constraints (Schrijver, 1986).

Proposition 8 Let (x = {x+u,uc Dx} forxc F. ThenF =y Cx-

Proof We first show thatF C Ny Cx. Indeed¥ C (Cx for all x because every poiatc F defines
a feasible directioz— x € Dy.

Conversely, Let € (Nxc+ Cx and assume thatdoes not belong t& . Let Z be the projection
of zon #. We know thatz € (; because € (x5 Cx. Thereforez—Zis a feasible direction in
2. Choose x A < @(2,z—2). We know thatA < 1 because does not belong t¢F. But then
2+ MN(z—2) € ¥ is closer taz thanZ This contradicts the definition of the projectian * |

Theorem 9 Let F be a bounded convex set.
If there is a finite witness family foF , then# is a convex polytopg.

Proof Consider a poink € F and let{v;...w} = UN Dx. Proposition 4 and definition 5 imply
that Dy is the polyhedral coné¢z= S vivi, yi > 0} and can be represented (Schrijver, 1986) by a
finite number of linear equality and inequality constraints of the fomx O where the directions

are unit vectors. Le&x be the set of these unit vectors. Equality constraints arise when thigset
contains bottm and—n. Each setkx depends only on the subsgt; ... v} = UN Dx of feasible
witness directions irx. Since the finite set/ contains only a finite number of potential subsets,
there is only a finite number of distinct sekk.

Each setx is therefore represented by the constrairzs. nxfor n € %Xx. The intersectiorff =
NxeF Cx is then defined by all the constraints associated @ilior anyx € . These constraints
involve only a finite number of unit vectorsbecause there is only a finite number of distinct sets
Kx.

Inequalities defined by the same unit veataran be summarized by considering only the most
restrictive right hand side. Therefofe is described by a finite number of equality and inequality

1609

BORDES ERTEKIN, WESTON, AND BOTTOU

constraints. Sincg is bounded, it is a polytope. |

A convex polytope comes with useful continuity properties.

Proposition 10 Let ¥ be a polytope, and let @ R" be fixed.
Functions x— @(x,u) and x— f*(x,u) are uniformly continous orf .

Proof The polytope¥ is defined by a finite set of constraimix < b. Let X be the set of pairs
(n,b) representing these constraints. Function @(x,u) is a continuous orff because we can
write:

Q(x,u) = min{%(for all (n,b) € Kx such thanu> 0 })

Functionx — @(x, u) is uniformly continuous because it is continuous on the comgpact

Chooses > 0 and letx,y € F. Let the maximumf*(x,u) be reached ix+ A*u with 0 < A* <
@(x,u). Sincef is uniformly continous on compadt, there isn > 0 such that f (x+A*u) — f(y+
Nu)| < e whenevel|x—y+ (A* =N)u|| <n(1+|lul]). In particular, it is sufficient to havix—y|| <
n and|A* —A’| < n. Since@is uniformly continuous, there is> 0 such that@(y, u) — @(x,u)| <n
whenevel|x—y|| < T. We can then select@ N’ < ¢(y,u) such thatA* —\’| < n. Therefore, when
[x=y|| <min(n,T), f*(x,u) = f(x+A*u) < f(y+ANu)+€< f*(y,u) +&.

By reversing the roles ofandy in the above argument, we can similary establish fhég, u) <
f*(x,u) +€when|x—y|| <min(n,t). Functionx — f*(x,u) is therefore uniformly continuous on
F. |

A.4 Stochastic Witness Direction Search

Each iteration of the following algorithm randomly chooses a feasible witniesstion and per-
forms an optimization along this direction. The successive search directi@e randomly se-
lected (step 2a) according to some distributfodefined onti. DistributionP; possibly depends on
values observed before tine

Stochastic Witness Direction Search (WDS)
1) Find an initial feasible pointg € .
2) Foreach =1,2,...,
2a) Draw a directioni € U from a distributionP;
2b) If ue Dy _, and yOf(x-_1) >0,
X < argmaxf(x) underx € {X_1+Au € F,A >0}
otherwise
X X—1-

Clearly the Stochastic WDS algorithm does not work if the distributfrdways give probabil-
ity zero to important directions. On the other hand, convergence is eatilylisbed if all feasible
directions can be drawn with non zero minimal probability at any time.

3. We believe that the converse of Theorem 9 is also true.

1610

FAST KERNEL CLASSIFIERS WITHONLINE AND ACTIVE LEARNING

Theorem 11 Let f be a concave function defined on a compact convef seifferentiable with
continuous derivatives. Assuriigis a finite withess set for s¢t, and let the sequence bxe defined
by the Stochastic WDS algorithm above. Further assume there-i® such that Ru) > mtfor all
ue Un Dy ,. All accumulation points of the sequengeare then solutions of problem (14) with
probability 1.

Proof We want to evaluate the probability of evéptomprising all sequences of selected directions
(uz,up,...) leading to a situation wheng has an accumulation poirt that is not a solution of
problem (14).

For each sequence of directiong, uy,...), the sequencé(x) is increasing and bounded. It
converges td* = sup f(x). We havef (x*) = f* becausd is continuous. By Theorem 6, there is
a directionu € U such thatf*(x*,u) > f* and@(x*,u) > 0. Letx,, be a subsequence converging to
X*. Thanks to the continuity af, f* andf, there is &y such thatf *(x,u) > f* and@(x,u) >0
for all k; > to.

Chooses > 0 and letQy C Q contain only sequences of directions such that T. For any
ke > T, we know thatp(x ,u) > 0 which meansi € UN Dy, . We also know thaty, # u because
we would otherwise obtain a contradictidix 1) = f*(X,u) > f*. The probability of selecting
such auy, is therefore smaller thafll —). The probability that this happens simultaneously for
N distinctk, > T is smaller thar(1 —)N for anyN. We getP(Qr) < &£/T2 by choosing\ large
enough.

Then we hav®(Q) = Y1 P(Qr) < &£ (¥11/T?) = Ke. HenceP(Q) = 0 because we can choose
€ as small as we want, We can therefore assert with probability 1 that alimadation points of
sequence; are solutions. [|

This condition on the distributiong is unfortunately too restrictive. THRROCESSand RE-
PROCESSterations of the OnlineASVM algorithm (Section 3.2) only exploit directions from very
specific subsets.

On the other hand, the Onlin&SVM algorithm only ensures that any remaining feasible direc-
tion at timeT will eventually be selected with probability 1. Yet it is challenging to mathematically
express that there is no coupling between the subset of time poimisesponding to a subsequence
converging to a particular accumulation point, and the subset of time gantsesponding to the
iterations where specific feasible directions are selected.

This problem also occurs in the deterministic Generalized SMO algorithm (8€2tl9. An
asymptotic convergence proof (Lin, 2001) only exist for the importase cdithe SVM QP problem
using a specific direction selection strategy. Following Keerthi and GilBe@AZ), we bypass this
technical difficulty by defining a notion of approximate optimum and provingzeayence in finite
time. It is then easy to discuss the properties of the limit point.

A.5 Approximate Witness Direction Search

Definition 12 Given a finite witness family/ and the toleranceg > 0 andt > 0O, we say that x is
a Kt-approximate solution of problem (14) when the following condition is verified

Yue U, @(xu) <k or UOf(x)<T.

A vector ue Ry, such thatp(x,u) > k and U0 f(x) > 1 is called akt-violating direction in point x.

1611

BORDES ERTEKIN, WESTON, AND BOTTOU

This definition is inspired by assertioiii [in Theorem 6. The definition demandsimite witness
family because this leads to proposition 13 establishingkiratpproximate solutions indicate the
location of actual solutions whenandt tend to zero.

Proposition 13 Let U be a finite witness family for bounded convex getConsider a sequence
X € F of kiT¢-approximate solutions of problem (14) with— 0 andk; — 0. The accumulation
points of this sequence are solutions of problem (14).

Proof Consider an accumulation poixitand a subsequengg converging to<*. Define function
(X,T,K) — WYX T,K,Uu)= (UOf(x)—1) max{0,@(x,u) — K}

such thatiis akt-violating direction if and only ifp(x, K, T,u) > 0. Functiony is continuous thanks
to Theorem 9, proposition 10 and to the continuity_df. Therefore, we have(xy, K, Tk, U) <0
for all u € U. Taking the limit wherk; — oo givesy(x*,0,0,u) < 0 for allu € 1. Theorem 6 then
states thax* is a solution. |

The following algorithm introduces the two tolerance paramater® andk > 0 into the Stochastic
Witness Direction Search algorithm.

Approximate Stochastic Witness Direction Search
1) Find an initial feasible pointy € 7.
2) Foreach =1,2,...,
2a) Draw a direction; € U from a probability distributior
2b) If u is akt-violating direction,
X < argmaxf(x) underx € {X_1+Au € F,A >0}
otherwise
X X—1.

The successive search directiapsre drawn from some unspecified distributiéhslefined ont.
Proposition 16 establishes that this algorithm always converges toxsamg after a finite number
of steps, regardless of the selected directi@ns The proof relies on the two intermediate results
that generalize a lemma proposed by Keerthi and Gilbert (2002) in theotgsadratic functions.

Proposition 14 If u; is akt-violating direction in x_1,

O(%;, U) y OF (%) = 0.

Proof Letthe maximunt (x) = f*(%_1,U) be attained i = X%_1+A"u with O < A* < @(%—1, U).
We know that* # 0 becausey is kt-violating and proposition 2 implie$*(X—1,u) > f(x_1).
If A* reaches its upper boundyx,u;) = 0. Otherwisex is an unconstrained maximum and
uOf(x)=0. [|

Proposition 15 There is a constant K 0 such that

vt f(0) - fx1) = Kixe—x-all

1612

FAST KERNEL CLASSIFIERS WITHONLINE AND ACTIVE LEARNING

Proof The relation is obvious whew is not akt-violating direction inx_1. Otherwise let the
maximumf () = f*(x_1, W) be attained in¢ = %1+ A" .
Let A = vA* with 0 < v < 1. Sincex is a maximum,

Fx) = f(x-1) = FO1+ A7) — F(x-1) = Fx—1+Au) — F(xe-1).

Let H be the maximum ove¥ of the norm of the Hessian df.
A Taylor expansion with the Cauchy remainder gives

, 1
| 01+ M) — f(6-2) = AGDf (x-1) | < SA2|u?H

or, more specifically,

1
FO1 M) — F(6-1) = AgOf(6-1) > — SA%u*H.

Combining these inequalities yields

1
F(x) = F(x-1) 2 F (M) = f(x-1) 2 MO (x-1) = 53 lue | H.

Recallingu{Of (x—1) > T, andA||w|| = V|| — X%_1||, we obtain

T 1
(%) — £ 04-1) > [P — %1 (VU_VZEDH>

whereU = mnguH andD is the diameter of the compact convéx

Choosingv = min (1) then gives the desired result. |

T
"UDH

Proposition 16 Assume is a finite witness set for sef. The Approximate Stochastic WDS
algorithm converges to somé & ¥ after a finite number of steps.

Proof Sequencef(x) converges because it is increasing and bounded. Therefore itesatisfi
Cauchy’s convergence criterion:

Ve >0, dt, Vi > t1 > to,
f(%,) — f(x,) = f(x)—f(x-1) <t

1 <t<ty

Using proposition 15, we can write

Ve >0, dt, Vi > t1 > to,
f(x) —f(x-1) ¢
L e I v
1 <t<ty 1 <t<ts
Therefore sequence satisfies Cauchy’s condition and converges to sgime 7 .
Assume this convergence does not occur in a finite time. Sinde finite, the algorithm ex-
ploits at least one directiome U an infinite number of times. Therefore there is a strictly increas-

ing sequence of positive indicés such thatu,, = u is Kt-violating in pointxy_1. We have then

1613

BORDES ERTEKIN, WESTON, AND BOTTOU

@(X—1,U) > K andu'Of (x_1) > T. By continuity we havep(x*,u) > k andu'0Of(x*) > 1. On the
other hand, proposition 14 states thpéty, , u) U0 f (x,) = 0. By continuity whert — 0, we obtain
the contradictionp(x*, u) /'O (x*) = 0. [|

In general, proposition 16 only holds fler> 0 andt > 0. Keerthi and Gilbert (2002) assert a similar
property fork = 0 andt > 0 in the case of SVMs only. Despite a mild flaw in the final argument of
the initial proof, this assertion is correct (Takahashi and Nishi, 2003).

Proposition 16 does not prove that the limitis related to the solution of the optimization
problem (14). Additional assumptions on the direction selection step aneedqTheorem 17 ad-
dresses the deterministic case by considering trivial distribuBotieat always selectr-violating
direction if such directions exist. Theorem 18 addresses the stochastiteder mild conditions
on the distributiorP;.

Theorem 17 Let the concave function f defined on the compact convef du¢ twice differen-
tiable with continuous second derivatives. Assuthes a finite witness set for seff, and let the
sequence xbe defined by the Approximate Stochastic WDS algorithm above. Assutsteiha
(2a) always selects mt-violating direction in x_; if such directions exist. Then gonverges to a
KT-approximate solution of problem (14) after a finite number of steps.

Proof Proposition 16 establishes that therdgisuch that = x* for all t > tg. Assume there is

a Kt-violating direction inx*. For anyt > tp, step (2a) always selects such a direction, and step
(2b) makes different fromx;,_; = x*. This contradicts the definition ¢f. Therefore there are no
Kt-violating direction inx* andx* is akt-approximate solution. |

Example (SMO) The SMO algorithm (Section 3.1)%san Approximate Stochastic WDS that
always selects at-violating direction when one exists. Therefore Theorem 17 applies.

Theorem 18 Let the concave function f defined on the compact convex d& twice differen-
tiable with continuous second derivatives. Assuthes a finite witness set for se¢f, and let the
sequencepbe defined by the Approximate Stochastic WDS algorithm above.; betthe condi-
tional probability that 4 is kt-violating in %_1 given that contains such directions. Assume that
limsupp; > 0. Then x converges with probability one toka-approximate solution of problem (14)
after a finite number of steps.

Proof Proposition 16 establishes that for each sequence of selected diragtidnare is a time
to and a pointx* € ¥ such thatg, = x* for all t > tg. Bothty andx* depend on the sequence of
directions(ug, Uy, ...).

We want to evaluate the probability of evéptomprising all sequences of directians, uy, ...)
leading to a situation where there age-violating directions in poink*. Choosee > 0 and let
Qr C Q contain only sequences of decisidug, Uy, ...) such thato =T.

Since limsugy > 0, there is a subsequenigesuch thatp, > 11> 0. For anyk; > T, we know
that U containskt-violating directions irx,_1 = X*. Directionuy, is not one of them because this

4. Strictly speaking we should introduce the tolerarce 0 into the SMO algorithm. We can also claim that (Keerthi
and Gilbert, 2002; Takahashi and Nishi, 2003) have established $itiopol6 withk = 0 andt > 0 for the specific
case of SVMs. Therefore Theorems 17 and 18 remain valid.

1614

FAST KERNEL CLASSIFIERS WITHONLINE AND ACTIVE LEARNING

would makex,, different fromxy,_1 = x*. This occurs with probability + p, <1—-m< 1. The
probability that this happens simultaneously fodistinctk; > T is smaller thar(1 —)N for any
N. We getP(Qr) < £/T2 by choosing\ large enough.

Then we hav®(Q) = 31 P(Qr) <& (31 1/T?) =Ke. HenceP(Q) = 0 because we can choose
€ as small as we want. We can therefore assert with probability 1tthaintains nxt-violating
directions in poinix*. |

Example (LASVM) The LASVM algorithm (Section 3.2) tsan Approximate Stochastic WDS
that alternates two strategies for selecting search directRiROCESSESNdREPROCESSTheorem
18 applies because limspp> O.
Proof Consider a arbitrary iteratioh corresponding to REPROCESS
Let us define the following assertions:

A — There arg-violating pairs(i, j) with bothi € S andj € §.

B —Ais false, but there areviolating pairs(i, j) with eitheri € Sor j € §.

C —AandB are false, but there areviolating pairs(i, j).

Q: — Directionu is T-violating inx;_1.
A reasoning similar to the convergence discussion in Section 3.2 giveslihwifg lower bounds
(wheren is the total number of examples).

P(Qr|A) =1
P(Qr(B)=0 P(Qr[B)>n*
P(QrlC)=0 P(Qr|C)=0 P(Qr:2/C)=0 P(Qry3/C)>n"2

Therefore
P(QrUQr11UQT2UQT2|A) > n—2
P(QruUQr+1UQr2UQr42|B)>n2
P(QruUQri1UQri2UQri2|C)>n"2

Sincep: = P(Q; | AUBUC) and since the evenss B, andC are disjoint, we have
PT + Pr+1+ Pr42+ Pria > P(QrUQr1UQT12UQT42 [AUBUC) > n2

Therefore limsuy > n—2. [

Example (LASVM + Gradient Selection) TheLASVM algorithm with Gradient Example Selec-
tion remains an Approximate WDS algorithm. Whenever Random Example Seléesoa non
zero probability to pick a-violating pair, Gradient Example Selection picks theolating pair
with maximal gradient with probability one. Reasoning as above yields limpskpl. Therefore
Theorem 18 applies and the algorithm converges to a solution of the SVMd@iem.

Example (LASVM + Active Selection + Randomized Search) The LASVM algorithm with Ac-
tive Example Selection remains an Approximate WDS algorithm. However it dutasecessarily
verify the conditions of Theorem 18. There might indeedwlating pairs that do not involve the
example closest to the decision boundary.

However, convergence occurs when one uses the Randomizedh $eettwod to select an ex-
ample near the decision boundary. There is indeed a probability greatet/tith to draw a sample

5. See footnote 4 discussing the tolerarde the case of SVMs.

1615

BORDES ERTEKIN, WESTON, AND BOTTOU

containingM copies of the same example. Reasonning as above yields lipp guﬁ) n—M. There-
fore, Theorem 18 applies and the algorithm eventually converges to osobf the SVM QP
problem.

In practice this convergence occurs very slowly because it involrgsaee events. On the other
hand, there are good reasons to prefer the intermediate kernel ctasgsiged by this algorithm
(see Section 4).

References

M. A. Aizerman, E. M. Braverman, and L. |. Rozoga Theoretical foundations of the potential
function method in pattern recognition learninutomation and Remote Conty@5:821-837,
1964.

N. Aronszajn. Theory of reproducing kernelgansactions of the American Mathematical Sogiety
68:337-404, 1950.

G. Bakir, L. Bottou, and J. Weston. Breaking SVM complexity with crosiiing. In Lawrence
Saul, Bernhard Sdikopf, and Leon Bottou, editorshdvances in Neural Information Processing
Systemsvolume 17, pages 81-88. MIT Press, 2005.

A. Bordes and L. Bottou. The Huller: a simple and efficient online SVM. Plnceedings of
the 16th European Conference on Machine Learning (ECML200&jture Notes in Artificial
Intelligence, to appear. Springer, 2005.

L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, L.D. &icK. LeCun, U. A. Muller,
E. Sackinger, P. Simard, and V. Vapnik. Comparison of classifier meth@asse study in
handwritten digit recognition. IfProceedings of the 12th IAPR International Conference on
Pattern Recognition, Conference B: Computer Vision & Image Processiolgme 2, pages 77—
82, Jerusalem, October 1994. |IEEE.

L. Bottou and Y. LeCun. On-line learning for very large datasétpplied Stochastic Models in
Business and Industr21(2):137-151, 2005.

C. Campbell, N. Cristianini, and A. J. Smola. Query learning with large margssifiers. In
Proceedings of ICML'200Q000.

G. Cauwenberghs and T. Poggio. Incremental and decrementalrsuppimr machine learning. In
Advances in Neural Processing Systegti01.

N. Cesa-Bianchi, C. Gentile, and L. Zaniboni. Worst-case analysidextse sampling for linear-
threshold algorithms. In L. K. Saul, Y. Weiss, and L. Bottou, edit&dvances in Neural Infor-
mation Processing Systems, pages 241-248. MIT Press, Cambridge, MA, 2005.

C.-C. Chang and C.-J. Lin. LIBSVM : a library for support vector maekin Technical re-
port, Computer Science and Information Engineering, National Taiwawmelsity, 2001-2004.
http://www.csie.ntu.edu.tw/cjlin/libsvm.

D. Cohn, L. Atlas, and R. Ladner. Training connectionist networks withrigs and selective
sampling. In D. Touretzky, editoAdvances in Neural Information Processing SystemSah
Mateo, CA, 1990. Morgan Kaufmann.

1616

FAST KERNEL CLASSIFIERS WITHONLINE AND ACTIVE LEARNING

R. Collobert and S. Bengio. SVMTorch: Support vector machines fgelacale regression prob-
lems. Journal of Machine Learning Researchi143—-160, 2001.

R. Collobert, S. Bengio, and Y. Bengio. A parallel mixture of SVMs fonmMarge scale problems.
In T. G. Dietterich, S. Becker, and Z. Ghahramani, editdrdyances in Neural Information
Processing Systems ,J@ambridge, MA, 2002. MIT Press.

C. Cortes and V. Vapnik. Support vector network#achine Learning20:273-297, 1995.

K. Crammer, J. Kandola, and Y. Singer. Online classification on a budgeSebastian Thrun,
Lawrence Saul, and Bernhard Stkopf, editors,Advances in Neural Information Processing
Systems 16MIT Press, Cambridge, MA, 2004.

K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclesisi@gms. Journal
of Machine Learning ResearcB:951-991, 2003.

N. Cristianini and J. Shawe-TayloAn Introduction to Support Vector Machines and other kernel-
based learning methodS€ambridge University Press, Cambridge, UK, 2000.

C. Domingo and O. Watanabe. MadaBoost: a modification of AdaBooBtradeceedings of the 13th
Annual Conference on Computational Learning Theory, COLTpa@es 180-189, 2000.

B. Eisenberg and R. Rivest. On the sample complexity of PAC learning usimpm and chosen
examples. In M. Fulk and J. Case, editdPspceedings of the Third Annual ACM Workshop on
Computational Learning Theorpages 154-162, San Mateo, CA, 1990. Kaufmann.

V. V. Fedorov. Theory of Optimal Experiment&cademic Press, New York, 1972.

Y. Freund and R. E. Schapire. Large margin classification using themgeoa algorithm. In
J. Shavlik, editorMachine Learning: Proceedings of the Fifteenth International Confexeban
Francisco, CA, 1998. Morgan Kaufmann.

T.-T. Frie3, N. Cristianini, and C. Campbell. The kernel Adatron algorithnfiasd and simple
learning procedure for support vector machines. In J. Shavlik, edifoh International Conf.
Machine Learningpages 188-196. Morgan Kaufmann Publishers, 1998. See (Cristianuin
Shawe-Taylor, 2000, section 7.2) for an updated presentation.

C. Gentile. A new approximate maximal margin classification algorithiournal of Machine
Learning ResearciR:213-242, 2001.

H.-P. Graf, E. Cosatto, L. Bottou, I. Dourdanovic, and V. Vapnik.afal support vector machines:
The Cascade SVM. In Lawrence Saul, Bernharddaipf, and leon Bottou, editorsjdvances
in Neural Information Processing Systenaslume 17. MIT Press, 2005.

I. Guyon, B. Boser, and V. Vapnik. Automatic capacity tuning of verydawvf_-dimension classi-
fiers. In S. J. Hanson, J. D. Cowan, and C. Lee Giles, edifaigances in Neural Information
Processing Systemeolume 5, pages 147-155. Morgan Kaufmann, San Mateo, CA, 1993.

T. Joachims. Making large—scale SVM learning practical. In B.08apf, C. J. C. Burges, and
A. J. Smola, editorsAdvances in Kernel Methods — Support Vector Learnpages 169-184,
Cambridge, MA, 1999. MIT Press.

1617

BORDES ERTEKIN, WESTON, AND BOTTOU

S. S. Keerthi and E. G. Gilbert. Convergence of a generalized SMQitaligofor SVM classifier
design.Machine Learning46:351-360, 2002.

Y. Liand P. Long. The relaxed online maximum margin algoritiviachine Learning46:361-387,
2002.

C.-J. Lin. On the convergence of the decomposition method for suppaiirmmachines.|EEE
Transactions on Neural Networks2(6):1288-1298, 2001.

N. Littlestone and M. Warmuth. Relating data compression and learnability. nitatireport,
University of California Santa Cruz, 1986.

G. Loosli, S. Canu, S.V.N. Vishwanathan, A. J. Smola, and M. ChattoggdHyne bdte a outils
rapide et simple pour les SVM. In Michel Ligeie and Marc Sebban, editoilSAp 2004 -
Confrence d’Apprentissag@ages 113-128. Presses Universitaires de Grenoble, 2004. ISBN
9-782706-112249.

D. J. C. MacKay. Information based objective functions for active dakaction.Neural Computa-
tion, 4(4):589-603, 1992.

N. Murata and S.-l. Amari. Statistical analysis of learning dynamisignal Processing74(1):
3-28, 1999.

N. J. NilssonLearning machines: Foundations of Trainable Pattern Classifying SystdioGraw—
Hill, 1965.

A. B. J. Novikoff. On convergence proofs on perceptronsPioceedings of the Symposium on the
Mathematical Theory of Automateolume 12, pages 615-622. Polytechnic Institute of Brooklyn,
1962.

J. Platt. Fast training of support vector machines using sequential mininiatizgtion. In
B. Sclolkopf, C. J. C. Burges, and A. J. Smola, editokslvances in Kernel Methods — Sup-
port Vector Learningpages 185-208, Cambridge, MA, 1999. MIT Press.

F. Rosenblatt. The perceptron: A probabilistic model for information stoeagl organization in
the brain.Psychological Reviews5(6):386—-408, 1958.

G. Schohn and D. Cohn. Less is more: Active learning with support vectehines. In Pat
Langley, editorProceedings of the Seventeenth International Conference on Mackaraihg
(ICML 2000) pages 839-846. Morgan Kaufmann, June 2000.

B. Scrolkopf and A. J. SmolalLearning with KernelsMIT Press, Cambridge, MA, 2002.
A. Schrijver. Theory of Linear and Integer Programmingohn Wiley and Sons, New York, 1986.

I. Steinwart. Sparseness of support vector machines—some asymptatitalfy bounds. In Se-
bastian Thrun, Lawrence Saul, and Bernharddabpf, editors Advances in Neural Information
Processing Systems.1@IT Press, Cambridge, MA, 2004.

1618

FAST KERNEL CLASSIFIERS WITHONLINE AND ACTIVE LEARNING

N. Takahashi and T. Nishi. On termination of the SMO algorithm for suppector machines.
In Proceedings of International Symposium on Information Science arutriel Engineering
2003 (ISEE 2003)pages 187-190, November 2003.

S. Tong and D. Koller. Support vector machine active learning with applitatio text classi-
fication. In P. Langley, editoiProceedings of the 17th International Conference on Machine
Learning San Francisco, California, 2000. Morgan Kaufmann.

I. W. Tsang, J. T. Kwok, and P.-M. Cheung. Very large SVM traininmpgsore vector machines.
In Proceedings of the Tenth International Workshop on Artificial Intelligesied Statistics (AIS-
TAT’05). Society for Artificial Intelligence and Statistics, 2005.

V. Vapnik. Estimation of Dependences Based on Empirical D&pringer-Verlag, Berlin, 1982.

V. Vapnik and A. Lerner. Pattern recognition using generalized portrathod. Automation and
Remote Contrgl24:774—-780, 1963.

V. N. Vapnik. Statistical Learning TheoryJohn Wiley & Sons, 1998.

V. N. Vapnik, T. G. Glaskova, V. A. Koscheey, A. I. Mikhailski, and ¥A.ChervonenkisAlgorihms
and Programs for Dependency Estimatidtauka, 1984. In Russian.

S. V. N. Vishwanathan, A. J. Smola, and M. Narasimha Murty. SimpleSVMProteedings of
ICML 2003 pages 760-767, 2003.

J. Weston, A. Bordes, and L. Bottou. Online (and offline) on an even tiduidget. In Robert G.
Cowell and Zoubin Ghahramani, editoRroceedings of the Tenth International Workshop on
Artificial Intelligence and Statistics, Jan 6-8, 2005, Savannah Hotel, &b pages 413—-420.
Society for Artificial Intelligence and Statistics, 2005.

G. Zoutendijk.Methods of Feasible Direction&lsevier, 1960.

1619

