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string s; cin >> s;

substr (0, 4);
string s2 substr (4, 8);

cout << s1 << ? 7 << 82 << endl;

string sl = s.
= s.
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string s; cin >> s;
s.insert (4, " ");
cout << s << endl;
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string s; cin >> s;
for (int i = 0; i < 12; i++) {
cout << s[il;
if (i == 3) cout << ’ 7;
}

cout << endl;
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We will introduce several possible approaches along with sample C++ codes:

Cut out two substrings from s, then concatenate them with a space

string s; cin >> s;

string s1 = s.substr (0, 4);
string s2 = s.substr(4, 8);

cout << s1 << ? 7 << 82 << endl;

Directly insert a space into s using standard libraries

string s; cin >> s;
s.insert (4, " ");
cout << s << endl;

Print one letter of s at a time, and print a space just after the fourth letter

string s; cin >> s;
for (int i = 0; i < 12; i++) {
cout << s[il;
if (i == 3) cout << ’ ’;
}

cout << endl;

B : Friendly Rabbits

The first approach that comes to mind would be to enumerate all possible pairs of 1 < i <

Jj < N, then count the ones that satisfy a; = j and a; = 7. However, the time complexity of




this approach is O(N?), which will exceed the time limit when N = 103. A faster approach is
required.

Actually, it is not necessary to enumerate all possible pairs of 1 < ¢ < j < N. The only
rabbit that can form a friendly pair with rabbit ¢, is rabbit a;. Therefore, it is enough to just
enumerate all 1 <4 < N, then count the ones that satisfy a,, = ¢. Note that in this approach
each friendly pair is counted twice, thus we have to divide the count by 2 to obtain the final
answer. The time complexity of this approach is O(NN), which will be within the time limit

even when N = 10°.

C : Next Alphabet

When the problem asks for the lexicographically smallest sequence, the following greedy
strategy typically works: focus on one element at a time in order from the beginning of the
sequence, and each time make the current element as small as possible. This problem is no
exception.

Suppose that we are focusing on a letter ¢ in the string. Consider making this letter as
small as possible. Assume that in order to change ¢ into a the operation has to be performed
at least ¢ times. Compare t with the remaining number of operations, K. If K > t, then ¢
should be changed into a by performing the operation ¢ times. Otherwise (K < t), ¢ should
be left as it is. Repeat this procedure from the beginning of s to the end.

After the procedure is executed on all letters in s, the remaining number of operations,
K, must be consumed. We can simply perform the operation K times on the last letter in
the string. Note that programs that naively performs the operation K times will time out
when K = 10°. A simple solution would be to replace K with K modulo 26 before naively
performing the operation.

When implementing the solution in C++, the following techniques could be useful:

o A letter ¢ is the (¢ - ‘a’)-th letter of the alphabet (0-indexed).
e The k-th letter of the alphabet (0-indexed) is (char) (‘a’ + k).

D : Grid and Integers

The problem asks to determine whether there exists an integer matrix (b; ;) (1 < i < R,
1 < j < C) that satisfies:

e Condition 1 : for each 1 <k < N, by, ¢, = G-

e Condition 2 : b; ; is non-negative.



e Condition 3 : foreach 1 <i<R-1,1<j5<C -1, b@j + bi+17]‘+1 = bi7j+1 + bi+1,j-

First, let us examine Condition 3. The formula can be transformed into: b; j4+1 — b;; =
bi+1,j+1 — bix1,;. This can be interpreted as follows: in row ¢ and row i + 1, the relationships
(differences) between the elements at column j and column j + 1 are the same. This holds
onall 1 <j < C —1, thus, in row ¢ and row ¢ + 1, the relationships among the elements at
all columns are the same. Furthurmore, this holds on all 1 < i < R — 1, thus, in all rows,
the relationships among the elements at all columns are the same. Therefore, Condition 3 is

equivalent to the following:

e Condition 3’ : There exists two integer sequences (z1, x2, ..., xg) and (y1, Y2, - - ., Yc)

such that b; ; = z; + y;.

For now, let us determine the existence of (b; ;) that satisfies Condition 1 and 3’. This

problem can be rephrased as follows:

Does there exist two integer sequences (z1, x2, ..., xg) and (y1, Y2, ..., Yc), such that

foreach 1 <k < N, z,, + Yy, = ar?

Consider the following graph. The graph has R+ C vertices, R on the upper side and C on the
lower side. For each 1 < k < N, the ri-th vertex on the upper side and the ci-th vertex on the
lower side is connected by an edge with weight ax. The objective is to assign an integer weight
to each vertex, so that for each edge the sum of the weight of the two incident vertices is equal
to the weight of the edge. For each connected component, choose one vertice and assign an
arbitrary weight (for example, 0), and the weights of the remaining vertices can be determined
accordingly. After all vertices in the component are assigned a weight, check if there is no
inconsistency on any edge. This can be done with the time complexity of O(R+ C + N) using
methods such as Depth First Search.

We will now examine Condition 2. Actually, it is equivalent to the following;:

e Condition 2’ : There exists two integer sequences (x1, xa, ..., xg) and (y1, Y2, - .., Yc)

such that all elements are non-negative.

It is obvious that Condition 2 — Condition 2. We will show that Condition 2 — Condition
2. Suppose that all (b; ;) are non-negative, and they are represented as b; ; = z; + y; by
some integer sequence (z;) and (y;). Then, at most one of (x;) and (y;) contains negative
elements. Assume that (x;) contains negative elements. We can modify (z;) and (y;) without
affecting b; ; by performing the following operation: add 1 to all (z;), and subtract 1 from
all (y;). Suppose that we repeatedly performed this operation until (z;) does not contain a

negative element. Then, the minimum element in (x;) is 0, thus the minimum element in (y;)



is non-negative. Therefore, it is shown that Condition 2 — Condition 2’.

Let us consider this problem: when there exists (b; ;) that satisfies Condition 1 and 3’, de-
termine the existence of (b; ;) that satisfies Condition 2’ in addition. Recall the aformentioned
graph. For a connected component C in this graph, let x¢ be the minimum weight of the
vertices on the upper side, and yc be the minimum weight of the vertices on the lower side.
Then, if z¢ + yo > 0, we can eliminate the negative weights of the vertices of the component
by repeatedly performing an operation similar to the one used in the proof of Condition 2’ —
Condition 2. Otherwise (z¢ + yo < 0), we cannot completely eliminate the negative weights
of the vertices of the component. Therefore, the final answer will be Yes if x¢c + yo > 0 for

any connected component C. Otherwise, the answer will be No.

E : LRU Puzzle

First, observe the case where N = 1. Let fy/(a) denote the array obtained by applying
a sequence of operations a to the array (1,2,...,M). For example, when M = 6 and a =
(6,3,1,3,6,3), fa(a) = (3,6,1,2,4,5). fu(a) can be found as follows. First, let b be an
empty array. Then, we will examine each element of @ in reverse order from the end of a and
perform the following procedure. If the current element a; is not contained in b, then append
a; to the end of b. After this procedure is executed on all elements of a, the integers from 1
to M that is not yet contained in b, are appended to the end of b in ascending order. The
obtained array b is equal to fas(a).

The problem is rephrased as follows:

Is it possible to separate the sequence of operations a into N subsequences a1, as, ...,

an, such that fa(a1), far(az), ..., far(an) are all equal?

If far(aq), far(az), ..., far(an) are all equal, then the first element of fj/(a;) must be equal to
the first element of fas(a). Similarly, the second element of fj;(a;) must be equal to the second
element of fys(a). Repeating this argument, it can be shown that all of fas(a1), far(a2), ...,

fa(an) must be equal to fys(a), thus we can rephrase the problem again as follows:

Is it possible to separate the sequence of operations a into N subsequences a1, as, ...,

an, such that fas(a1), far(az2), ..., fa(an) are all equal to far(a)?

Let us consider the case where N =2, M =6 and a = (6,3,1,3,6,3). Here, the objective is
to satisty far(ar) = far(a2) = fum(a) = (3,6,1,2,4,5). This can be achieved by, for example,
separating a = (6,3, 1, 3,6,3) into a; = (6,3,3) and as = (1,6, 3).

For now, let us focus on the case where N = 2. First, find fjs(a) using the method explained



at the beginning. Our objective is to separate a into a; and as so that fyr(a1) = fa(az) =
fa(a). Let by and by be the arrays that are used to evaluate fys(a;) and fys(az) using the
method, respectively. We will sequentially update b; and by while separating a into a; and as.
Considering that we want to extend b; and by as much as possible under the condition that by
and bo must always be prefixes of fy(a), we can adopt the following greedy strategy. Examine

each element of a in reverse order from the end of a, and execute the following procedure:

e When the current element a; is contained in neither b; nor by, append a; to the end of
b1.

e When a; is contained in by, but not in by, if appending a; to the end of by does not
violate the prefix condition, append a; to the end of bs.

e When a; is contained in both b; and by, do nothing.

After this procedure is executed on all element of a, extend each of b; and by to length M as
in the method of finding fys(a), and check if by = by = fas(a).

The general case where N > 2 can be solved similarly. First, find fas(a) and let by, bo, ...,
by be empty arrays. Examine each element of a in reverse order from the end of a, and execute
the following procedure: choose an array b; which does not contain the current element aj,
such that appending a; to the end of b; does not violate the prefix condition, and append a; to
the end of b;. After this procedure is executed on all element of a, extend each of by, ba, ...,
by to length M as in the method of finding fs(a), and check if by = by = --- = by = fu(a).
The remaining problem is to implement this solution within the time limit.

One possible implementation is as follows. Let the arrays freqo, freqi, ..., freqyu be

defined as follows:

freqi = (the number of the arrays of length exactly k& among by, ba, ..., by)

At first, freqo = N, freqi = freqga =--- = freqy = 0, since all of by, bo, ..., by are empty.
Suppose that we are executing the procedure on a;. The arrays b; that we should append a;
to, are the ones with the length exactly k. Thus, if freqy > 1, subtract 1 from freq, and
add 1 to freqpy1. Otherwise, do nothing. By repeating this operation, we can find the final
destribution of the lengths of by, ba, ..., by, especially the length of the smallest b;. So far,
we extended each of by, by, ..., by to length M and checked if by = by = - = by = far(a),
but actually it is enough to check for only the smallest b;. The time complexity of this
implementation is O(N + M + @), which will be within the time limit.
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