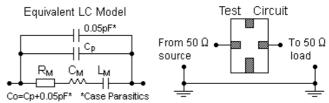

The FTR4003 is a true one-port, surface-acoustic-wave (**SAW**) resonator in a surface-mount ceramic **QCC4A** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **433.920** MHz.

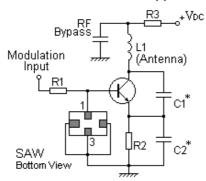
1.Package Dimension (QCC4A)

Pin	Configuration		
1	Input / Output		
3	Output / Input		
2/4	Case Ground		

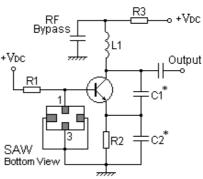

Sign	Data (unit: mm)	Sign	Data (unit: mm)		
Α	1.2	D	1.4		
В	0.8	Е	5.0		
С	0.5	F	3.5		

2.Marking

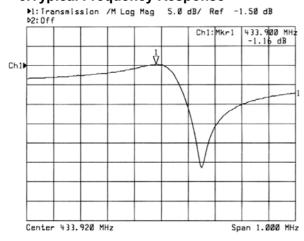
FTR4003

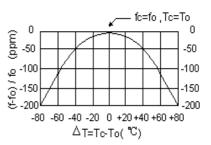

Laser Marking

3. Equivalent LC Model and Test Circuit



4.Typical Application Circuits


1) Low-Power Transmitter Application


2) Local Oscillator Application

5. Typical Frequency Response

6.Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7.Performance

7-1.Maximum Ratings

Rating	Value	Units	
CW RF Power Dissipation	0	dBm	
DC Voltage Between Terminals	±30V	VDC	
Case Temperature	-40 to +85	$^{\circ}$	
Soldering Temperature	+250	$^{\circ}$	

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Units
Center Frequency (+25℃)	Absolute Frequency	f _C	433.845		433.995	MHz
	Tolerance from 433.920 MHz	Δf_{C}		±75		kHz
Insertion Loss		IL		1.5	2.0	dB
Quality Factor	Unloaded Q	Q _U		9,000		
	50 Ω Loaded Q	Q_L		1,500		
Temperature Stability	Turnover Temperature	T ₀	25		55	°C
	Turnover Frequency	f_0		f _C		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C²
Frequency Aging Absolute Value during the First Year		fA		≤10		ppm/yr
DC Insulation Resistance Between Any Two Terminals			1.0			ΜΩ
RF Equivalent RLC Model	Motional Resistance	R _M		19	26	Ω
	Motional Inductance	L _M		65.5042		μН
	Motional Capacitance	C _M		2.0559		fF
	Shunt Static Capacitance	C ₀	1.9	2.2	2.5	pF

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

© NEDI 2003. All Rights Reserved.

- 1. The center frequency, f_C is measured at the minimum IL point with the resonator in the 50 Ω test system.
- 2. Unless noted otherwise, case temperature T_C = +25°C±2°C.
- 3. Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_0 , may be calculated from: $f = f_0 [1 FTC (T_0 T_0)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between the two terminals. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C₀.
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery please contact our sales offices or e-mail