Reasoning About Frame Properties in Object-Oriented Programs

Yuyan Bao

CS-TR-17-05

Revised December 14, 2017

Keywords: Frame axiom, modifies clause, separation logic, dynamic frames, region logic, finegrained region logic, formal methods, Dafny language.

2013 CR Categories: D.2.4 [*Software Engineering*] Software/Program Verification — Formal methods, programming by contract; F.3.1 [*Logics and Meanings of Programs*] Specifying and Verifying and Reasoning about Programs — Assertions, logics of programs, pre- and post-conditions, specification techniques;

Ph.D. dissertation.

Computer Science 4000 Central Florida Blvd. University of Central Florida Orlando, Florida 32816, USA

REASONING ABOUT FRAME PROPERTIES IN OBJECT-ORIENTED PROGRAMS

by

YUYAN BAO

M.S. Software Engineering, Beihang University, 2007B.S. Computer Science, Beijing University of Technology, 2003

A dissertation submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science in the College of Engieering & Computer Science at the University of Central Florida Orlando, Florida

Fall Term

2017

Major Professor: Gary T. Leavens

ABSTRACT

Framing is important for specification and verification of object-oriented programs. This dissertation develops the local reasoning approach for framing in the presence of data structures with unrestricted sharing and subtyping. It can verify shared data structures specified in a concise way by unifying fine-grained region logic and separation logic. Then the fine-grained region logic is extended to reason about subtyping.

First, fine-grained region logic is adapted from region logic to express regions at the granularity of individual fields. Conditional region expressions are introduced; not only does this allow one to specify more precise frame conditions, it also has the ability to express footprints of separation logic assertions.

Second, fine-grained region logic is generalized to a new logic called unified fine-grained region logic by allowing the logic to restrict the heap in which a program runs. This feature allows one to express specifications in separation logic.

Third, both fine-grained region logic and separation logic can be encoded to unified fine-grained region logic. This result allows the proof system to reason about programs specified in both styles.

Finally, fine-grained region logic is extended to reason about a programming language that is similar to Java. To reason about inheritance locally, a frame condition for behavioral subtyping is defined and proved sound.

ACKNOWLEDGMENTS

Firstly, I would like to thank my adviser, Gary T. Leavens, for his patient guidance and encouragement for the past 7 years. He introduced me to this research area and inspired me with the spirit of adventures in research. His valuable suggestions had a great impact on my work. I am also grateful for him sending me to various summer schools, where I met various other scholars and researchers; all such chances enhanced my background and broadened my view.

Secondly, I thank Gidon Ernst for introducing me the KIV theorem prover and for discussing the semantics of separation logic and its encoding in the KIV. Also, I thank David A. Naumann for discussion about region logic and for providing feedback on the FTfJP'15 paper and on an early draft of this work. His work has great influence on this work as well. I thank Rustan Leino for teaching me Dafny and answering related questions. I also thank the anonymous referees for the feedback of this work.

Thirdly, I would like to thank my colleagues in the formal method lab for providing a friendly environment to work in.

Last, but not least, I would like to thank my parents and sister for their constant love. Also, I think my friends for their friendship. My special thanks go to my boyfriend, Xin Li, for his understanding, ongoing support and encouragement.

TABLE OF CONTENTS

LIST OF FIGURES
LIST OF TABLES
CHAPTER 1: INTRODUCTION
1.1 Background
1.1.1 Separation Logic
1.1.2 Region Logic
1.1.3 Supertype Abstraction
1.2 Problems
1.3 Contributions
1.4 Overview
1.5 Related Work
1.5.1 Non-local Reasoning Approaches to Framing
Ownership-based Model:
Linear Logic:
Linear Type:

	1.5.2	Dynamic Frames Approaches	0
		Region Logic:	1
		Dafny:	2
		The work of Smans et al.:	3
		The KeY Tool:	4
	1.5.3	Related work on Separation Logic	4
		Implicit Dynamic Frames	4
	1.5.4	Related Work on Behavioral Subtyping 1	5
CHAP	TER 2:	PROGRAMMING LANGUAGE	7
2.1	Syntax		7
2.2	Seman	tics	0
CHAP	TER 3:	ASSERTION LANGUAGES AND FRAMING	4
3.1	Syntax	and Semantics of Assertions	4
3.2	Effects		5
3.3	Framir	ng	9
3.4	Separa	tor and Immune	1

СНАР	TER 4:	FINE-GRAINED REGION LOGIC	38
4.1	Axion	as and Inference Rules	39
	4.1.1	The Sequence Rules	12
	4.1.2	The Loop Rule	1 6
4.2	Sound	ness	19
CHAP'	TER 5:	UNIFIED FINE-GRAINED REGION LOGIC	50
5.1	Axion	as and Inference Rules	52
	5.1.1	The Sequence Rules	55
5.2	Sound	ness	57
CHAP'	TER 6:	INTEROPERABILITY	59
6.1	FRL -	An Instance of UFRL	59
6.2	Encod	ing Separation Logic \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots ϵ	52
	6.2.1	Separation Logic Review	52
	6.2.2	Supported Separation Logic	55
	6.2.3	Encoding SSL Assertions	59
	6.2.4	SSL Proofs Review and Approach	12
	6.2.5	Translating SSL Proofs into UFRL	76

6.3	Extending the UFRL (FRL) Proof System with Separating Conjunction 7	9
	6.3.1 Extending the Syntax and the Semantics	0
	6.3.2 Proof Rules	2
	6.3.3 Encoding SSL specifications:	6
	6.3.4 Summary	6
CHAP	FER 7: RECURSIVE PREDICATES 8	7
7.1	Recursive Predicated in UFRL (FRL)	7
7.2	Inductive Definition in SSL	9
7.3	Encoding	1
CHAP	FER 8: REASONING ABOUT SUBTYPING	94
8.1	Programming Language Extended with Inheritance	94
8.2	Semantics	18
8.3	Effects)1
	8.3.1 The read effect of a class	12
8.4	Supertype Abstraction and Local Reasoning	12
	8.4.1 Problem	13
	8.4.2 Encapsulation)5

8.5	The Proof System	109
	8.5.1 Correctness Judgment	111
8.6	Examples	118
CHAP	TER 9: APPLICATIONS	
9.1	A Footprint Function	
9.2	Intraoperation of FRL and SSL	123
9.3	Hypothetical Reasoning and Interoperation between Modules	124
9.4	The DAG Example	128
9.5	An Integrated Example	136
9.6	Examples on Behavioral Subtyping	148
CHAP	TER 10: CONCLUSION AND FUTURE WORK	154
10.1	Future Work	154
	10.1.1 Formalization	154
	10.1.2 Encoding or incorporating other methodologies	154
	10.1.3 Implementation	155
APPEN	NDIX A: TYPING RULES	156

APPENDIX B:	PROOF OF THEOREM 1
APPENDIX C:	PROOF OF THEOREM 3
APPENDIX D:	PROOF OF THEOREM 5
APPENDIX E:	PROOF OF THEOREM 7
APPENDIX F:	PROOF OF LEMMA 13
APPENDIX G:	PROOF OF THEOREM 8
APPENDIX H:	PROOF OF THEOREM 9
APPENDIX I:	PROOF OF LEMMA 23
LIST OF REFE	RENCES

LIST OF FIGURES

1.1	Taxonomy of methodologies for framing	8
2.1	The syntax of the programming language	18
2.2	The definition of the function MV	18
2.3	The semantics of expressions	22
2.4	The semantics of statements	23
3.1	The syntax of assertions	24
3.2	The semantics of assertions	25
3.3	The grammar of effects	26
3.4	The sub-effect rules	27
3.5	The read effects of expressions, region expressions and atomic assertions	29
3.6	The inference rules for the framing judgment	30
3.7	The definition of separator	32
4.1	The correctness axioms and proof rules for statements in FRL	40
4.2	The structural rules in FRL (1)	41
4.3	The structural rules in FRL (2)	42

5.1	The correctness axioms and proof rules for statements in UFRL
5.2	The structural rules in UFRL (1)
5.3	The structural rules in UFRL (2)
6.1	A summary of results on encoding assertions
6.2	The axioms and proof rules for statements in SSL [76]
6.3	A linked-list example written in UFRL with separating conjunction 84
7.1	Translation of inductive definition in SSL to recursive predicates in UFRL 92
7.2	The encoding of the predicate Eq. (7.3)
8.1	The extended syntax with OO features
8.2	An example of framing invariant
8.3	Classes Cell, ReCell and FCell
8.4	Encapsulation example
8.5	The specification of the class ECell
8.6	Argument exposure example
8.7	The specification of class Cell
8.8	The revised specification of class ECell

9.1	The class NumberS specified in the style of SSL
9.2	The class NumberR specified in the style of FRL
9.3	Translating method specifications in the class <i>NumberS</i> and <i>NumberR</i> 127
9.4	The specification of marking a DAG
9.5	A client code of a coffee shop
9.6	The specification of a generic linked-list written in a mixed style
9.7	The class ListIterator specified in the style of FRL
9.8	The specification of a generic dictionary written in the style of SSL 141
9.9	The class Order
9.10	The specification of an application program written in a mixed style (part 1) . 143
9.11	The specification of an application program written in a mixed style (part 2) . 144
9.12	The specification of the class DCell
9.13	The specification of the class ReCell
9.14	The specification of the class TCell
9.15	The specification of the class <i>OCell</i>
A.1	The typing rules for pure expressions and region expressions
A.2	The typing rules for statements

A.3	The typing rules for assertions
H.1	The derivation of rule $TR_R[[ALLOC_s]]$
H.2	The derivation of rule $TR_R[[ACC_s]]$
H.3	The derivation of rule $TR_R[[UPD_s]]$

LIST OF TABLES

2.1	Features of the programming language that are not formalized in this disser-	
	tation	
8.1	Auxiliary functions used in the semantics	
9.1	Selected specifications for the class Node <t></t>	
9.2	The predicates that are used by clients	

CHAPTER 1: INTRODUCTION¹

As software are widely used in our daily life, its quality is drawing concern. Although software testing can improve software quality by reducing defects, it cannot guarantee the absence of defects. On the contrary, software verification can prove that the software has no defects and behaves exactly as the specifications describe.

In software engineering, modularization allows large projects to be decomposed into smaller components. Each component performs distinguished functionality, and can be developed independently. Thus, specifications that document functionality and verification that checks implementations' functionality against their specifications should be carried out modularly as well. This modularity poses challenges for local reasoning about object-oriented programs. In particular, local reasoning about mutable data structures with unrestricted sharing is complex and requires onerous annotations. And reasoning about subtypes lacks a modular treatment of framing.

In software specification and verification, the frame property is used to achieve local reasoning [21]. Local reasoning means that specifications only mentions what matters to the program under verification. The classical Hoare logic [38, 40] with an added frame property provides proof axioms and rules that are used to reason about imperative programs containing, for example, assignment, sequence statements, conditional statements and loop statements. The logic uses formulas of the form $\{P\}S\{Q\}[X]$, for partial correctness, where P and Q are assertions, S is a program statement, and X is a set of variables that specifies the frame property of S, which allows S to only modify variables in the set X. The state of a program is the program's information characterized by predicates, such as P and Q, at a given time. The validity of a Hoare-formula $\{P\}S\{Q\}[X]$ means that if a program, S, executes from an initial state satisfying P, if S does not cause an error

¹Part of the content in this chapter was presented at *FTfJP* '15 [8] and is submitted to *Formal Aspects of Computing*.

and terminates, then the final state satisfies Q, and S can only modify the variables in X. As defined, such a formula deals with *partial correctness*; total correctness additionally means that the statement will terminate.

In object-oriented (OO) programs, frame properties are difficult to specify because of their use of complex data structures and abstractions. These data structures may consist of recursively structured and shared objects, such as directed acyclic graphs. Moreover, OO features, such as aliasing, encapsulation and dynamic dispatch, raise additional challenges to modularly specifying and verifying frame properties. For example, specifying the frame conditions of the methods who may be overridden in subclasses, and the overriding method may modify additional states introduced in the subclasses [52].

1.1 Background

A summary of the relevant background is provided in this section. However, knowledge about OO programming [27, 63], first-order logic and Hoare logic [38, 40] is assumed. Firstly, two approaches to local reasoning, separation logic and region logic, are discussed. Then dynamic dispatch and an approach to reason about it, i.e., *supertype abstraction* are discussed.

1.1.1 Separation Logic

In separation logic (SL) [42, 78], the introduction of separating conjunction leads to its frame rule:

$$(FRM_s) \xrightarrow{\vdash_s^{\Gamma} \{a\} S \{a'\}}_{\vdash_s^{\Gamma} \{a * c\} S \{a' * c\}} \text{ where } MV(S) \cap FV(c) = \emptyset$$

where FV(c) returns the set of free variables in c and MV(S) returns the set of variables that may be modified by S.is Local reasoning is achieved by this frame rule, since the specification in the hypothesis (above the horizontal line) can solely describe the partial state that program S uses. Assertions, such as c, depending on other disjoint parts of the states that are untouched, can be preserved by applying the frame rule. The side-condition is needed since separating conjunction does not describe separation in the store, but only in the heap.

However, the frame rule in SL cannot be directly used when verifying data structures with unrestricted sharing [41] because of the use of regular (i.e., non-separating) conjunctions, e.g., the following definition of the predicate *dag*:

$$dag(d) \stackrel{\text{def}}{=} d \neq null \Rightarrow \exists i, j, k. (d. mark \mapsto i * d. l \mapsto j * d. r \mapsto k * (dag(j) \land dag(k)))$$

where the assertions of the form $x.f \mapsto e$ mean that the location x.f stores the value of e. The use of the conjunction (instead of separating conjunction) indicates that sub-Dags may share some locations. Thus, changes in the left descendants may affect the value of the right descendants, and hence the validity of assertions that describe the values of the right descendants.

1.1.2 Region Logic

Region logic [2, 5] (RL) supports local reasoning by the means of effects. The effects may be variables in stores or locations in heaps; locations are expressed in terms of sets of objects and their fields [5]. RL's frame rule uses effects to distinguish what is preserved, shown as follows:

$$(FRM_{rl}) \xrightarrow{\vdash_{rl}^{\Gamma} \{P\} S \{P'\}[\varepsilon]}{\vdash_{rl}^{\Gamma} \{P \&\& Q\} S \{P' \&\& Q\}[\varepsilon]} where P \&\& Q \Rightarrow \delta'/\varepsilon$$

The formula ε is a *write effect* that denotes the set of variables and locations that may be modified by *S*. The formula δ is a *read effect* that denotes the set of variables and locations that the assertion Q relies on. The formula δ / ε denotes the disjointness of the two sets of variables and locations. The frame rule says that to preserve the validity of the assertion Q after executing the statement S, one has to prove that the variables and locations in S's write effects are disjoint with those that Q depends on. In the conclusion of the frame rule, P is connected with Q by the conjunction. Thus, this rule allows one to use the frame rule directly when reasoning about data structures with sharing.

1.1.3 Supertype Abstraction

OO programs allow a *subclass*, S, to inherit from a *superclass*, T, by either adding or modifying fields or methods of its superclass. In this case, the type S is a *subtype* of T, and the type T is the type S's *supertype*. A variable may have two types: a static type and a dynamic type. The *static* type is the declared one, and the dynamic type is the most specific type of the object that the variable denotes at runtime. Moreover, any instance of a subtype can be used in place of its supertype. A method call x.m() runs code that is determined by the dynamic type of the receiver x, not x's static type. This is known as *dynamic dispatch*.

A standard form of modular static verification uses the method's specification of its receiver's static type, as its exact dynamic type may be unknown. In other words, verification may use a supertype's specification to reason about an overriding method call that may dynamically dispatch to its subtypes. This kind of reasoning is known as *supertype abstraction* [50]. Then, one can use its supertype's specification to soundly describe the method's behavior and the method's receiver may be its subtype. Validity of supertype abstraction is ensured by *behavioral subtyping* [1, 48, 62], in which each overridden method obeys the specifications declared in its supertypes.

Leavens and Naumann [49] have shown that behavioral subtyping is necessary and sufficient for the validity of supertype abstraction. They define specification refinement in terms of preconditions

and postconditions. However, to apply their result to the framework of local reasoning, frame conditions are needed.

1.2 Problems

The overall problems of this dissertation are to unify methodologies for reasoning about frame properties, i.e., separation logic and region logic, and to modularly reason about frame properties in object-oriented programs. That is the second problem is to find a sound frame condition for reasoning about dynamic dispatch.

1.3 Contributions

My work has two major contributions. One is that it combines two successful logics for framing: a commonly used subset of SL and a fine-grained variant of region logic, FRL. The combined logic, unified fine-grained region logic (UFRL), is enriched by features of both SL and FRL: separating conjunction can be expressed along with explicit write and read effects specified by region expressions. Specifications written in these two styles thus can interoperate with each other as they can both be encoded into UFRL. Therefore, specifying and verifying one module can use other modules' specifications written in different styles. The FRL and SL assertion languages have been formalized in the KIV theorem prover [32]. Lemmas and theorems that are not formally proved in the dissertation have been proved in KIV. These machine-checked proofs have been exported and are available online [6, 7].

Another contribution is that my work defines a frame condition for behavioral subtyping, which is proved sound for supertype abstraction. Framing for subtyping handles extended state in subtype objects through a novel notion of encapsulation.

1.4 Overview

Chapter 2 defines an object-based programming language, formalizes its type system and its denotational semantics. Chapter 3 introduces effects, separator and framing that serve as foundations for FRL and UFRL. Chapter 4 defines the notion of validity for FRL Hoare-formula and introduces the proof axioms and rules for FRL. Chapter 5 extends FRL to UFRL. It defines the validity for UFRL Hoare-formula and introduces the proof axioms and rules for UFRL. Chapter 6 presents the formal connections between FRL and UFRL and between SL and UFRL. Chapter 7 extends these results with SSL inductive predicates. Chapter 8 extends FRL to reason about Object-Oriented programs. Chapter 9 presents potential applications of UFRL. For example, it introduces a scheme that interprets different styles of specifications in a single mechanism. It also shows more examples of behavioral subtyping. Section 10 concludes the dissertation and discusses future work.

1.5 Related Work

There are several approaches to framing that have been described in the formal methods literature. Historically specification languages, such as VDM [44] and interface specification languages in the Larch family [36], specify frames for procedures by writing a clause in the specification that names the variables and locations that are allowed to be changed during the procedure's execution; all other locations must be unchanged. However, such an approach does not easily generalize to layered structures of mutable objects. For example, it is difficult to specify dynamically-allocated objects where locations are generated through underlying data structures at run time.

Fig. 1.1 lists related methodologies for framing with a view towards classifying different methodologies as a guide for this section. One could imagine different classifications depending on the problems one is concerned about. Fig. 1.1 categorizes each methodology as either supporting local reasoning or not. In general, local reasoning approaches use "small axioms" [71] that focus on the part of a program state that is being written (or read) by the statement in question [5], and use frame rules to derive the property of global states by means of explicit locations that the program may write or read. Non-local reasoning approaches do not focus only on such local state, and commonly combine an aliasing control mechanism with the technique of object invariant. For example, updating an object's field cannot unnoticeably violate other objects invariant. Section 1.5.1 summarizes those works that use non-local reasoning. Section 1.5.2 and Section 1.5.3 discuss local reasoning approaches in detail, as the approaches presented in this dissertation belong to this category. Section 1.5.4 discusses the related work on behavioral subtyping.

Non-local reasoning approaches and the work in this dissertation are orthogonal. None of the local reasoning approaches relates and encodes other approaches, except the work of Parkinson and Summers [77] which connects one variant of SL with another.

1.5.1 Non-local Reasoning Approaches to Framing

Ownership-based Model:

The ownership-based model [70] is one approach that works with object structures. It only allows a designated owner object to mutate the objects that make up part of a complex object structure. Consider the data structure of a linked list. Its representation is a list of nodes, where each node contains its value and a reference to the next node in the list. In an ownership model, the list is the owner of all the nodes that it contains. Modifying any node in the list has to go through the methods of the list object. However, in the approaches that support local reasoning, the precondition for an update statement (i.e., n.val := e;) is just $n \neq null$ in region logic, or $\exists x.n.val \mapsto x$ in separation logic, no matter whether n is a node in a list or not.

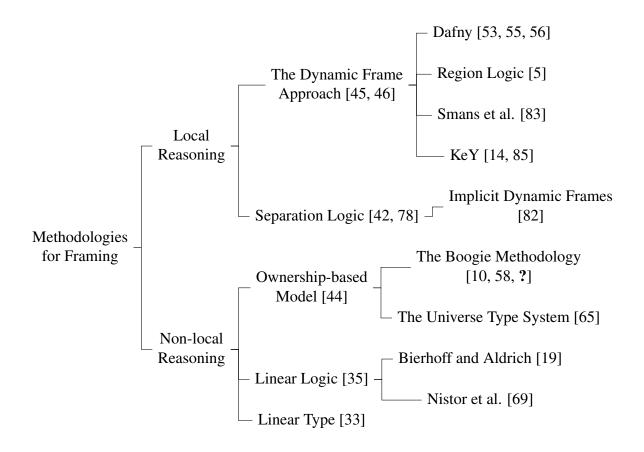


Figure 1.1: Taxonomy of methodologies for framing

The universe type system [65] combines type checking and some dynamic checks to enforce the ownership property; the universe type system also gives a semantics to specifications of frames in a way that allows modular verification of frame conditions and invariants [68]. However, the universe type system and other approaches based on ownership have difficulties in specifying and verifying some shared data structures, for example, the subject-observer design pattern has sharing that is not compatible with ownership. However, SL and RL do not have difficulty in reasoning about this pattern [5, **?**].

The Boogie methodology [10] and its variants [12, 58] encode the ownership model by specificationonly fields. The Boogie methodology [10] introduces a field modifier **rep** that identifies an object's representation; a **rep** field means that the field is owned by the enclosing object of its declaring class. An object may have different owners. Although the Boogie methodology eases the problem of dealing with shared mutable data structures, it introduces a fair amount of overhead and complexity in writing specifications. For example, each object is instrumented by specification-only fields inv and committed that denote the states of an object and are specified in method specifications. And their values can only be modified through the use of the two specification statements: **pack** and **upapck**, which can be used in a method body.

Leino and Müller [58] improve the Boogie methodology by allowing dynamic contexts and ownership transfer. Their work introduces another field **owner** storing the owning object. Its value can be changed through the statement **pack** and **unpack** as well.

Barnett and Naumann [?] introduce an explicit friend declaration, e.g., **friends** T **reads** f, which denotes the declaring class grants the type T a read access to its field f. A flexible protocol, called "friendship", is established between the two types, where invariant can be expressed over their shared data structures, e.g., the subject-observer design pattern.

Linear Logic:

Bierhoff and Aldrich's work [19] combines linear logic [35] with access permissions. Specifications of a statement S are defined by linear implication: $P \multimap Q$, where P is a precondition and Q is a postcondition. It means that S consumes P and yields Q; that has some similarities to the meaning of specifications in SL. Sharing in Bierhoff and Aldrich's work can be expressed by permission predicates. However, it does not make footprints explicit, i.e., locations that an object's invariant depends on. Therefore, it lacks a way to tell whether updating an object's field may influence other objects. It uses the **pack** and **unpack** statements to transfer from a state when the invariant holds to a state where it may not hold. Nistor et al. [69]'s approach also builds on top of linear logic. Similar to Bierhoff and Aldrich's work, sharing is expressed by means of permissions. An assignment to a field of an object t needs to know the state of the current **this**.

Linear Type:

Linear type systems restrict aliasing. An object with linear type is not aliased; an object with nonlinear type may be aliased. To safely allow a nonlinear type to have linear components, Fähndrich and Deline [33] introduces two operations: *adoption* and *focus*. Adoption, **adopt** e_1 **by** e_2 , allows the object that e_2 denotes to reference the object that e_1 denotes. Thus, it allows a linear type to transfer to a non-linear one where aliasing is allowed. Focus allows a non-linear type to be treated as a linear one when all aliases become invalid. To do so, the type system needs to track aliases' lifetimes. It is not local as updating a field of an object needs to be aware of all references to the field. The dynamic frames approach does not prevent aliasing, but prevents harmful updating by various proof obligations (which can be decided by set-theoretic judgment, e.g., the location where a change may happen to be disjoint with the locations that intended invariant depends on).

1.5.2 Dynamic Frames Approaches

The dynamic frames approach [45, 46] dynamically tracks sets of locations (regions) stored in specification variables (or computed by functions); these regions are used in the specification of frames. The resulting flexibility allows the specification of shared data structures, but reasoning about dynamic frame uses second-order logic, which makes automation difficult.

Region Logic:

Our work is partly based on the work of Banerjee et al. on region logic (RL) [5]. However, there are several key differences between FRL (and UFRL) and this work on RL:

- In RL, regions are sets of references, possibly containing null [5]. For example, {x} is a region containing a singleton object x. In RL, image expressions (like x⁶f) denote a region only if the field referenced (f) has type **rgn** or Object. By contrast, in FRL regions are sets of locations, which makes it convenient to form unions of sets of locations, something that is more difficult to express in RL. This difference also makes it more convenient in FRL to express footprints of SL assertions, which are used in the encoding. Using sets of locations also matches specification languages in which frames are specified using such sets, like JML [24].
- 2. In RL, the footprints of region expressions are larger than the corresponding footprints in FRL. For example, in RL the footprint of the region expression {x}⁶ f is rd {x}⁶ f, x, meaning that the value of this region expression depends on {x}⁶ f itself, since f may not be a field declared in x's class. In FRL the region expression, region{x.f}, only depends on the variable, x, as FRL's type system makes sure that f is a declared field name.
- 3. Finally, RL does not have conditional region expressions, which makes FRL more convenient for specifying the frames of SL assertions that involve implication.

However, FRL (UFRL) and RL also share lots of similarities, due to FRL and UFRL being adapted from RL..

1. Both use ghost fields with type regions to express frame conditions, i.e., read effects, write effects and fresh effects. The effects are stateful, which follows the work of dynamic frames.

- RL's read effects have the same granularity as FRL (and UFRL). The formula rdG⁶f allows one to read the field of objects in G [5, p.22]; e.g., the RL read effect rd x⁶f is equivalent to the FRL read effect reads region{x.f}.
- 3. The read effects of the points-to predicate are consistent in RL and FRL (and UFRL). In RL, the read effects of the points-to predicate, which are called "footprints" in their work [5], are defined by fptp(x.f = E) = rd x, x.f, ftpt(E), where rd is the keyword for read effects (this work uses reads instead). The form rd x.f abbreviates the form rd {x}⁶f [5, p.23]. Although x⁶f may not be the same as the region expression region{x.f} as explained previously, rd x⁶f is semantically equivalent to as reads region{x.f} in FRL and UFRL.
- 4. RL and FRL (and UFRL) have similar definitions of agreement, frame validity, separator, immunity, and Hoare-formula. Therefore, their proof rules are quite similar as well. In particular, the frame conditions for the proof axioms are semantically equivalent.

Rosenberg's work [79] implements a semi-decision procedure for RL as a plugin inside the satisfiability modulo theories (SMT) solver Z3. Similarly, FRL and UFRL expressions could also be encoded into SMT, but such an encoding is beyond the scope of this dissertation.

Dafny:

Leino's Dafny language [53, 55, 56] is based on dynamic frames, in which frames are specified using sets of objects stored in ghost fields. Our work has adopted several programming and specification language features from Dafny, i.e., the style of programming and specification languages. However, unlike FRL, Dafny does not make it easy to specify frames at the level of locations, so instead one must strengthen postconditions by using **old** expressions to specify which fields of

threatened objects must not change. Consider the following example adapted from Leino's work [56].

```
class C {
  var x : int; var y : int;
  method Update()
    modifies {this};
    ensures x = old(x) + 1;
    ensures y = old(y);
    {        x := x + 1; }
}
```

The **modifies** clause indicates the objects that may be modified by a method. In the above code, all the fields of the object **this** are allowed to be modified by the method Update. Although the implementation only updates the field x and leaves the field y unchanged, the second postcondition y = old(y) is needed, otherwise, the caller would lose the value about the field y.

The work of Smans et al.:

The dynamic frames approach used by Smans et al. [83], however, does use sets of locations. These sets can be computed by pure functions. This use of pure functions supports data abstraction and information hiding. Data abstraction and information hiding are considered to be orthogonal to the problems discussed in this dissertation, as standard solutions can be applied [2, 3, 52, 60]. While their language has much of the power of FRL, they do not formally connect SL with their language, and they do not address the problem of allowing specifications in both SL and RL to interoperate.

The KeY Tool:

The KeY tool [14, 85] extends JML with dynamic frames. It introduces a type \locset that stands for sets of memory locations. Recently, Mostowski and Ulbrich [64] replace ghost fields with model methods that allow method contracts to dynamically dispatch through abstract predicates. However, neither KeY nor JML addresses the problem of connecting SL to RL and mixing specification styles.

1.5.3 Related work on Separation Logic

This dissertation also draws on work in separation logic (SL) [42, 78]. It supports local reasoning and its frame conditions are implicit from preconditions where a program's read and write locations are requested. The introduction of separating conjunction and the frame rule allows a program to be verified on partial heaps, which has been explained in Section 1.1.1. There has been much work on automating SL using first-order tools [15, **?**, 17, 20, 26, 31, 77]. Our results show another way of encoding SL into first order logic, via UFRL. However, these work do not show connection with dynamic frames approaches.

Implicit Dynamic Frames

Implicit dynamic frames [82] is a variant of separation logic [81]. It introduces a predicate **acc** that specifies locations that are requested and returned by preconditions and postconditions. The upper bound of the requested locations by a method's precondition are considered as the method's implicit frame conditions. Similar to SL, it does not separate the locations that may be written from those that may be read.

An inspiration for this dissertation was the work of Parkinson and Summers [77], who showed a relationship between SL and the methodology of Chalice [59] that combines the core of implicit dynamic frames [82] with fractional permissions and concurrency. They encode a separation logic fragment (similar to the subset of separation logic that are encoded in this dissertation) into the language of implicit dynamic frames by defining a total heap semantics of SL, which agrees with the weakest precondition semantics of the implicit dynamic frames language. While their work did not connect SL and RL, the results in this dissertation go further than the analogous results in their paper. In this thesis, a translation of axioms and proof rules for a SL Hoare logic is formalized and proved to be sound.

1.5.4 Related Work on Behavioral Subtyping

Behavioral subtyping [1, 48, 62] constrains the behavior of each method that overrides the one in its supertype, such that one can use the supertype's specifications to reason about the clients that may invoke the subtype's methods at run time. This is known as supertype abstraction [50]. Leavens and Naumann [48] have shown that behavioral subtyping is necessary and sufficient for the soundness of supertype abstraction. They define specification refinement in terms of preconditions and postconditions, but give no explicit treatment of frame conditions. Thus, their results are difficult to apply to the framework of local reasoning.

Müller's work [65] achieves behavioral subtyping by specification inheritance [30] in the Universe Type System, which is an ownership model for flexible alias control. His approach provides explicit frame conditions and the extended state are allowed to be modified in subtypes, as the encapsulation is proved by universes [65]. However, the approach in this dissertation does not have the concept of universes. Instead of controlling the aliasing, my work uses regions to frame an assertion, and uses the frame rule to derive assertions whose values are preserved, i.e., the assertions

who depends on disjoint regions from a program's write effects. Thus, an unsound conclusion due to aliasing is prevented. Therefore, this dissertation defines a new definition of encapsulation in the terms of region expressions.

Barnett et al.'s Spec^{\ddagger} specification language [11] encodes an ownership-based model with ghost variables. In Spec^{\ddagger}, an overriding method can enhance supertype's postconditions, and has to preserve supertype's precondition. The extended states are allowed to be modified by subtype's methods given that each component is owned by a unique owner at a time. Such mechanism provides encapsulations. However, the work in this dissertation is not based on any ownership models. A new mechanism of encapsulation is needed, which is one of the problems that is solved here.

DeLine and Fähndrich's work [29] handles aliasing by a linear type system. Their work follows the notion of behavioral subtyping of Liskov and Wing [62]. Their uses abstract predicates in pre- and postconditions. The extended states of a subclass are specified by either enhancing typestates that are defined in its superclass or by adding new typestates. However, specifications in their work are transitions of typestates together with aliasing information. There are no explicit frame conditions. Thus, their work does not help solve the problem of specifying frame conditions for subtypes.

Parkinson and Bierman [75] handle different types of inheritance by introducing an abstract predicate family based on the formalism of second-order separation logic. Each method has a static specification and a dynamic specification. Dynamic specifications follow the behavioral subtyping criteria defined in Leavens and Naumann's work [48]. Encapsulation is implicit in SL in the sense that $\alpha * c$ implies that all the predicates belong to the predicate family α separate-conjuncts from the assertion *c*. However, the work in this dissertation needs methodology to express encapsulation.

CHAPTER 2: PROGRAMMING LANGUAGE¹

This chapter presents the programming language for which the programming logic is formalized.

2.1 Syntax

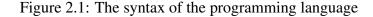
Fig. 2.1 on the following page defines the syntax of sequential object-based programs. Overlines indicate possible empty sequences. Square brackets mean optional elements. There are distinguished variable names. The variable **this** is the receiver object; the variable **ret** stores the return value of a method if the method has one; the variable **alloc** stores the domain of the heap. In the syntax, the notation n is a numeral, x is a variable name (or a pseudo-variable, such as **alloc**), and f is a field name.

A class consists of fields and methods. A field is declared with type integer, a user-defined datatype, or **region**. A method is declared in a class. A constructor is the method whose name is the same as the class name. Each class must define its constructor that must be invoked after an object of the class is allocated. In a method implementation, there are local variable declarations, update statements, condition statements, and loop statements. The statement for garbage collection or deallocation are excluded in our statements. Fig. 2.2 on the next page shows the definition of the function MV that returns a set of variables that may be modified by a given statement.

The syntactic category E describes expressions, RE describes region expressions, and S describes statements. Expressions and region expressions are pure, so cannot cause errors. There is a type **region**, which is a set of locations. The region expression **region**{} denotes the empty region.

¹Subsets of the presented language in this chapter was presented at *FTfJP* '15 [8] and is submitted to *Formal* Aspects of Computing.

```
Prog ::= \overline{Class} S
         ::= class C { Field Method }
  Class
  Field ::= var f:T;
Method
         ::= method m(x:T) [:T'] \{ S \}
          ::= int | bool | region | C | C < \overline{T} >
      Т
         ::= n \mid x \mid null \mid E_1 \oplus E_2
     E
    RE
          ::= x \mid \operatorname{region}\{\} \mid \operatorname{region}\{x.f\} \mid \operatorname{region}\{x.*\} \mid E ? RE_1 :
                                                                                        RE_2
           | filter{RE, T, f} | filter{RE, T} | RE_1 \otimes RE_2
         ::= E \mid RE
     G
         ::= skip; | var x:T; | x:=G; | x_1:=x_2.f; | x.f:=G;
      S
          | x:=new T; | if E then \{S_1\} else \{S_2\} | while E \{S\} | S_1S_2
     \bigoplus ::= = | + | - | * | \leq \dots
     \otimes ::= + | - | *
```



 $\begin{array}{ll} \mathsf{MV}(\texttt{skip};) = \varnothing & \mathsf{MV}(\texttt{var}\,x:T;) = \varnothing & \mathsf{MV}(x:=\texttt{new}\,T;) = \{x\} \\ \mathsf{MV}(x:=G;) = \{x\} & \mathsf{MV}(x.f:=G;) = \varnothing & \mathsf{MV}(x:=x'.f;) = \{x\} \\ \mathsf{MV}(\texttt{if}\,E\,\texttt{then}\,\{S_1\}\texttt{else}\,\{S_2\}) = \mathsf{MV}(S_1) \cup \mathsf{MV}(S_2) \\ \mathsf{MV}(\texttt{while}\,E\,\{S\}) = \mathsf{MV}(S) \\ \mathsf{MV}(S_1S_2) = \mathsf{MV}(S_1) \cup \mathsf{MV}(S_2) \end{array}$

Figure 2.2: The definition of the function MV.

The region expression of the form **region** $\{x.f\}$ denotes a singleton set that stores the location of field f in the object that is the value of x. The region expression of the form **region** $\{x.*\}$ denotes a set that contains the abstract locations represented by the reference x and all its fields.² The conditional region expression, E? RE_1 : RE_2 , is stateful; it denotes that if E is true, then the region is RE_1 , otherwise the region is RE_2 . A region expression of the form **filter** $\{RE, T, f\}$ denotes the set of locations of form (o, f) in RE, where each object reference, o, has the type T. A

²Since FRL does not have subclassing or subtyping, the fields in **region** $\{x.*\}$ are based on the static type of the reference denoted by x, which will also be its dynamic type.

Table 2.1: Features of the programming language that are not formalized in this dissertation.

seq <t></t>	sequence type
	the length of the sequence s
s[i]	the element at index <i>i</i> of the sequence <i>s</i> if $0 \le i$ and $i < s $
s[i]	generate a new sequence that has the same elements in the
	same order as s, but the first one, if $0 \leq i$ and $i < s $
s[ij]	generate a new sequence that has $j - i$ elements, and
	elements in the same order as s but starting with
	the element $s[i]$, if $0 \leq i$ and $i < s $
$s_1 + s_2$	sequence concatenation
map <k,v></k,v>	map type
m[k]	the value of a given key k in a map m , if k is in the domain
	of m
k in m	test whether the key k is in the domian of the map m
k ! in m	test whether the key k is not in the domian of the map m
m[k := v]	generate a new map that adds k to the domain of the map
	m, and associates the key k with the value v , if k is not in
	the domain of m , otherwise it is overridden in the new map
$map \ i \mid i \ in \ map \ k \ i \neq k \ :: \ m[i]$	generate a new map that is the same as the map m
	excluding the key k.

region expression of the form filter{RE, T} denotes the subset of RE with references of type T. For example, let $RE = \{o_1.f_1, o_1.f_2, o_2.f\}$, where only o_1 has type T, then filter{RE, T} = $\{o_1.f_1, o_1.f_2\}$. The operators +, -, and * denote union, difference and intersection respectively.

In addition to the language that has been formalized, Table. 2.1 shows notations for a generic mathematical type **seq** adopted from Dafny [53, 55]. It is used in examples, and is not formalized here for simplicity.

For simplicity, functions and pure methods are not formalized, but rely on the formalization in Banerjee et al.'s work [3]. Functions are just pure methods. In examples, a predicate declaration

```
predicate p(\overline{z:T}) reads r \{ P \}
```

is syntax sugar for the declaration

method $p(\overline{z:T})$ reads r { ret := P; }

Predicates are used for the purpose of specification, and cannot be invoked by programs.

There is a type environment, Γ , which maps variables to types:

$$\Gamma \in TypeEnv = var \rightarrow T.$$

A type environment, Γ , is *well-formed* if it is a partial function, i.e., for all $x \in dom(\Gamma)$, $\Gamma(x)$ is unique. Typing rules for expressions, region expressions and statements are not surprising, thus, are defined in Appendix A.

2.2 Semantics

In order to define the semantics of the programming language, the definition of some common semantic functions are given. A program state is a pair of a store and a heap. A store, σ , is a partial function that maps a variable to its value. A heap, h or H, is a finite partial map from *Loc* to values. The set *Loc* represents locations in a heap. A location is denoted by a pair of an allocated reference, o, and its field name, f. We call a set of locations a *region*, written R. Heaps and regions are manipulated using the following operations.

Definition 1 (Heap and Region Operations). Lookup in a heap, written H[o, f], is defined when $(o, f) \in dom(H)$. H[o, f] is the value that H associates to (o, f).

 H_1 is extended by H_2 , written $H_1 \subseteq H_2$, means: $\forall (o, f) \in dom(H_1) :: (o, f) \in dom(H_2) \land$ $H_1[o, f] = H_2[o, f].$

 H_1 is disjoint from H_2 , written $H_1 \perp H_2$, means $dom(H_1) \cap dom(H_2) = \emptyset$.

The combination of two heaps written $H_1 \cdot H_2$, is defined when $H_1 \perp H_2$ holds, and is the partial heap such that: $dom(H_1 \cdot H_2) = dom(H_1) \cup dom(H_2)$, and for all $(o, f) \in dom(H_1 \cdot H_2)$:

$$(H_1 \cdot H_2)[o, f] = \begin{cases} H_1[o, f], & \text{if } (o, f) \in dom(H_1), \\ H_2[o, f], & \text{if } (o, f) \in dom(H_2). \end{cases}$$

Let H be a heap and R be a region. The restriction of H to R, written $H \upharpoonright R$ is defined by: $dom(H \upharpoonright R) = dom(H) \cap R$ and $\forall (o, f) \in (H \upharpoonright R) :: (H \upharpoonright R)[o, f] = H[o, f]$. We use err to denote an error region or an error heap; the restriction of a heap H to an error region is defined by: $H \upharpoonright err = err$.

Notations: Let f and g be two partial functions. Then $f \leq g$ means that $dom(f) \leq dom(g)$ and $\forall x \in dom(f) :: f(x) = g(x)$. And f * g means that $dom(f) \cap dom(g) = \emptyset$. The notation $f \cdot g$ means disjoint union, i.e., $dom(f \cdot g) = dom(f) \cup dom(g)$, $\forall x \in dom(f) :: f(x) = (f \cdot g)(x)$ and $\forall x \in dom(g) :: g(x) = (f \cdot g)(x)$. Let $f : X \mapsto Y$ and $g : Y \mapsto Z$. Then $g \circ f : X \mapsto Z$, i.e., $\forall x \in X :: (g \circ f)(x) = g(f(x))$.

Fig. 2.3 on the next page shows the semantics of properly typed programming language, where \mathcal{N} is the standard meaning function for numeric literals. The function MO gives the semantics of operators. A *Value* is either a Boolean, an object reference (which may be *null*), an integer or a set of locations: *Value* = *Boolean* + *Object* + *Int* + *PowerSet(Loc)*. The auxiliary function *fields*(T) takes a reference type T and returns a list of its declared field names and their types. The function *type(o)* takes a reference *o* and returns its type. Pure expressions evaluate to *Values*; thus the semantics of $E_1 = E_2$ and $E_1 \neq E_2$ have no need to check for errors. Region expressions evaluate to regions, i.e., sets of locations, and also cannot produce errors. For example, the region expression **region**{x.f} is evaluated to an empty set when x = null. The pair (**null**, *f*) is not allowed in the regions of our language's semantics.

 \mathcal{E} : Expression Typing Judgment \rightarrow Store \rightarrow Value $\mathcal{E}\llbracket\Gamma \vdash \mathsf{null}: T\rrbracket(\sigma) = null \qquad \mathcal{E}\llbracket\Gamma \vdash n: \mathsf{int}\rrbracket(\sigma) = \mathcal{N}\llbracketn\rrbracket$ $\mathcal{E}\llbracket\Gamma \vdash x : T\rrbracket(\sigma) = \sigma(x)$ $\mathcal{E}\llbracket\Gamma \vdash E_1 \oplus E_2 : T \rrbracket(\sigma) = \mathcal{E}\llbracket\Gamma \vdash E_1 : T_1 \rrbracket(\sigma) \mathcal{MO}\llbracket \oplus \rrbracket \mathcal{E}\llbracket\Gamma \vdash E_2 : T_2 \rrbracket(\sigma)$ $\mathcal{E}[\Gamma \vdash \operatorname{region}\{\} : \operatorname{region}](\sigma) = \emptyset$ $\mathcal{E}[\Gamma \vdash \operatorname{region}\{x.f\} : \operatorname{region}](\sigma) = \operatorname{if} \sigma(x) = \operatorname{null} \operatorname{then} \emptyset \operatorname{else} \{(\sigma(x), f)\}$ $\mathcal{E}[\Gamma \vdash \operatorname{region}\{x.*\} : \operatorname{region}](\sigma) =$ if $\sigma(x) = null$ then \emptyset else $\{(o, f) \mid o = \sigma(x) \text{ and } T = type(o) \text{ and } (f : T') \in fields(T)\}$ $\mathcal{E}[\Gamma \vdash E ? RE_1 ? RE_2 : region](\sigma) =$ if $\mathcal{E}[\Gamma \vdash E : \texttt{bool}](\sigma)$ then $\mathcal{E}[\Gamma \vdash RE_1 : \texttt{region}](\sigma)$ else $\mathcal{E}[\Gamma \vdash RE_2 : \texttt{region}](\sigma)$ $\mathcal{E}[\Gamma \vdash \texttt{filter}\{RE, T\} : \texttt{region}](\sigma) =$ $\{(o, f) | (o, f) \in \mathcal{E}[[\Gamma \vdash RE : region]](\sigma) \land type(o) = T\}$ $\mathcal{E}\llbracket\Gamma \vdash \texttt{filter}\{RE, T, f\} : \texttt{region}\rrbracket(\sigma) =$ $\{(o, f') | (o, f') \in \mathcal{E}[[\Gamma \vdash RE : region]](\sigma) \land f' = f \land type(o) = T\}$ $\mathcal{E}\llbracket\Gamma \vdash RE_1 \otimes RE_2 : \texttt{region}\rrbracket(\sigma) =$ $\mathcal{E}\llbracket\Gamma \vdash RE : \texttt{region} \rrbracket(\sigma) \ \mathcal{MO}\llbracket \otimes \rrbracket \mathcal{E}\llbracket\Gamma \vdash RE : \texttt{region} \rrbracket(\sigma)$

Figure 2.3: The semantics of expressions

We consider the form skip; S to be identical to S. In examples, if E then $\{S\}$ is syntax sugar for if E then $\{S\}$ else $\{skip;\}$.

A semantic function, \mathcal{MS} : Statement Typing Judgment \rightarrow (State \rightarrow State_{\perp}), maps an input state to an output state, an error state, err, or \perp (in case of infinite loops). The function, default, takes a type and returns its default value. The allocate function takes the heap and the class name as parameters, and returns a location and a new heap. An error happens, for example, when statements attempt to access a location not in the domain of the heap. The semantics does not have garbage collection and there is no explicit deallocation. The underlined lambda ($\underline{\lambda}$) denotes a strict function that cannot recover from a nonterminating computation [80]. The semantics of statements are standard, and are defined in Fig. 2.4 on the following page.

The following lemma states that extending a type environment does not change the computation.

 \mathcal{MS} : Statement Typing Judgment \rightarrow State \rightarrow State $\mathcal{MS}\llbracket\Gamma \vdash \mathsf{skip}; : ok(\Gamma) \rrbracket(\sigma, H) = (\sigma, H)$ $\mathcal{MS}\llbracket\Gamma \vdash \mathbf{var} \ x: T; : ok(\Gamma, x:T) \rrbracket(\sigma, H) = (\sigma[x \mapsto default(T)], H)$ $\mathcal{MS}\llbracket\Gamma \vdash x := G; :ok(\Gamma) \rrbracket(\sigma, H) = (\sigma [x \mapsto \mathcal{E}\llbracket\Gamma \vdash G : T]](\sigma)], H)$ $\mathcal{MS}\llbracket\Gamma \vdash x.f := G; : ok(\Gamma) \rrbracket(\sigma, H) =$ if $\sigma(x) \neq null$ then $(\sigma, H[(\sigma(x), f) \mapsto \mathcal{E}[[\Gamma \vdash G : T]](\sigma)])$ else err $\mathcal{MS}\llbracket\Gamma \vdash x_1 := x_2.f; :ok(\Gamma) \rrbracket(\sigma, H) =$ if $\sigma(x_2) \neq null$ then $(\sigma[x_1 \mapsto H[(\sigma(x_2), f)]], H)$ else err $\mathcal{MS}[\Gamma \vdash x := \operatorname{new} T; : ok(\Gamma)](\sigma, H) = \operatorname{let}(l, H') = \operatorname{allocate}(T, H)$ in let $(f_1, \ldots, f_n) = fields(T)$ in let $\sigma' = \sigma[x \mapsto l]$ in $(\sigma', H'[(\sigma'(x), f_1) \mapsto default(T_1), \dots, (\sigma'(x), f_n) \mapsto default(T_n)])$ $\mathcal{MS}\llbracket\Gamma \vdash \texttt{if} E \texttt{then}\{S_1\}\texttt{else}\{S_2\} : ok(\Gamma) \rrbracket(\sigma, H) =$ if $\mathcal{E}[\Gamma \vdash E : \texttt{bool}](\sigma)$ then $\mathcal{MS}[\Gamma \vdash S_1 : ok(\Gamma_1)](\sigma, H)$ else $\mathcal{MS}[\Gamma \vdash S_2 : ok(\Gamma_2)](\sigma, H)$ $\mathcal{MS}[\Gamma \vdash \mathsf{while} E\{S\}; : ok(\Gamma)]](\sigma, H) =$ $fix(\lambda g \cdot \lambda s \cdot \mathbf{let} v = \mathcal{E}[[\Gamma \vdash E : \mathbf{bool}]](\sigma)$ in if $v \neq 0$ then let $s' = \mathcal{MS}[\Gamma \vdash S : ok(\Gamma')](s)$ in $g \circ s'$ else if v = 0 then s else $err(\sigma, H)$ $\mathcal{MS}\llbracket\Gamma \vdash S_1S_2 : ok(\Gamma') \rrbracket(\sigma, H) = \mathbf{let} \ s' \ = \ \mathcal{MS}\llbracket\Gamma \vdash S_1 : ok(\Gamma'') \rrbracket(\sigma, H) \ \mathbf{in}$ if $s' \neq err$ then $\mathcal{MS}[\Gamma'' \vdash S_2 : ok(\Gamma')](s')$ else err

Figure 2.4: The semantics of statements

The proof can be done by induction on the structure of the statement, and is easy. Thus, it is omitted. This lemma is used in proving Lemma 26 in Chapter 8.

Lemma 1. Let Γ and Γ' be two well-formed type environments. Let S be a statement, such that $\Gamma \vdash S : ok(\Gamma')$. Let Γ'' be a well-formed type environment, such that $dom(\Gamma) \cap dom(\Gamma'') = \emptyset$ and $dom(\Gamma') \cap dom(\Gamma'') = \emptyset$. Then

1. if
$$\mathcal{MS}[\Gamma \vdash S : ok(\Gamma')](\sigma, h) \neq err$$
, then $\mathcal{MS}[\Gamma, \Gamma'' \vdash S : ok(\Gamma', \Gamma'')](\sigma, h) \neq err$.

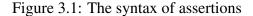
2. if
$$\mathcal{MS}[\Gamma \vdash S : ok(\Gamma')](\sigma, h) = (\sigma', h')$$
, then $\mathcal{MS}[\Gamma, \Gamma'' \vdash S : ok(\Gamma', \Gamma'')](\sigma, h) = (\sigma', h')$.

CHAPTER 3: ASSERTION LANGUAGES AND FRAMING¹

This chapter formalizes the assertion language and effects using region expressions. And a framing judgment is defined in term of effects.

3.1 Syntax and Semantics of Assertions

The syntax of assertions is defined in Fig. 3.1. The first three are called *atomic assertions*. Quantification is restricted in the syntax. Quantified variables may denote an **int**, or a location drawn from a region.



The typing rules for assertions are in Fig. A.3. The semantics of assertions is shown in Fig. 3.2 on the following page. The assertion $RE_1 \leq RE_2$ checks that RE_1 is a subregion of RE_2 . The assertion $RE_1 \ ! \ RE_2$ checks that RE_1 and RE_2 are disjoint. The semantics of assertions identifies errors (*err*) with false, and is two-valued. For example, $x \cdot f = 5$ is false if $x \cdot f$ is *err*. This design follows the works of Banerjee et al. [5].

The following lemma states that the value of a well-typed assertion in a given state is preserved

¹The content in this chapter was partially presented at *FTfJP* '15 [8]. And part of the content is submitted to *Formal* Aspects of Computing.

$$\begin{split} \sigma, H &\models^{\Gamma} E_{1} = E_{2} \text{ iff } \mathcal{E}[\![\Gamma \vdash E_{1}:T_{1}]\!](\sigma) = \mathcal{E}[\![\Gamma \vdash E_{2}:T_{2}]\!](\sigma) \\ \sigma, H &\models^{\Gamma} E_{1} \neq E_{2} \text{ iff } \mathcal{E}[\![\Gamma \vdash E_{1}:T_{1}]\!](\sigma) \neq \mathcal{E}[\![\Gamma \vdash E_{2}:T_{2}]\!](\sigma) \\ \sigma, H &\models^{\Gamma} x.f = E \text{ iff } (\sigma(x), f) \in dom(H) \text{ and } H[\sigma(x), f] = \mathcal{E}[\![\Gamma \vdash E:T]\!](\sigma) \\ \sigma, H &\models^{\Gamma} RE_{1} \leq RE_{2} \text{ iff } \mathcal{E}[\![\Gamma \vdash RE_{1}: \operatorname{region}]\!](\sigma) \subseteq \mathcal{E}[\![\Gamma \vdash RE_{2}: \operatorname{region}]\!](\sigma) \\ \sigma, H &\models^{\Gamma} RE_{1} ! ! RE_{2} \text{ iff } \mathcal{E}[\![\Gamma \vdash RE_{1}: \operatorname{region}]\!](\sigma) \cap \mathcal{E}[\![\Gamma \vdash RE_{2}: \operatorname{region}]\!](\sigma) = \emptyset \\ \sigma, H &\models^{\Gamma} P_{1} \&\& P_{2} \text{ iff } \sigma, H &\models^{\Gamma} P_{1} \text{ and } \sigma, H &\models^{\Gamma} P_{2} \\ \sigma, H &\models^{\Gamma} P_{1} \Downarrow P_{2} \text{ iff } \sigma, H &\models^{\Gamma} P_{1} \text{ or } \sigma, H &\models^{\Gamma} P_{2} \\ \sigma, H &\models^{\Gamma} \neg P \text{ iff } \sigma, H &\notin P \\ \sigma, H &\models^{\Gamma} \forall x: \operatorname{int} :: P \text{ iff for all } v:: \sigma[x \mapsto v], H &\models^{\Gamma, x:\operatorname{int} P \\ \sigma, H &\models^{\Gamma} \forall x: T: \operatorname{region}\{x.f\} \leq RE: P \text{ iff for all } o: (o, f) \in \mathcal{E}[\![\Gamma \vdash RE: \operatorname{region}]\!](\sigma) \text{ and} \\ type(o) = T: \sigma[x \mapsto o], H &\models^{\Gamma, x:T} P \\ \sigma, H &\models^{\Gamma} \exists x: \operatorname{int} :: P \text{ iff exists } v:: \sigma[x \mapsto v], H &\models^{\Gamma, x:\operatorname{int} P} \\ \sigma, H &\models^{\Gamma} \exists x: \operatorname{int} :: P \text{ iff exists } v:: \sigma[x \mapsto v], H &\models^{\Gamma, x:\operatorname{int} P \\ \sigma, H &\models^{\Gamma} \exists x: \operatorname{int} :: P \text{ iff exists } v:: \sigma[x \mapsto v], H &\models^{\Gamma, x:\operatorname{int} P \\ \sigma, H &\models^{\Gamma} \exists x: \operatorname{int} :: P \text{ iff exists } v:: \sigma[x \mapsto v], H &\models^{\Gamma, x:\operatorname{int} P \\ \sigma, H &\models^{\Gamma} \exists x: \operatorname{int} :: P \text{ iff exists } v:: \sigma[x \mapsto v], H &\models^{\Gamma, x:\operatorname{int} P \\ \sigma, H &\models^{\Gamma} \exists x: \operatorname{int} :: P \text{ iff exists } v:: \sigma[x \mapsto v], H &\models^{\Gamma, x:\operatorname{int} P \\ \sigma, H &\models^{\Gamma} \exists x: \operatorname{int} :: P \text{ iff exists } v:: \sigma[x \mapsto v], H &\models^{\Gamma, x:\operatorname{int} P \\ \sigma, H &\models^{\Gamma} \exists x: T: \operatorname{region}\{x.f\} \leq RE: P \text{ iff exists } o: (o, f) \in \mathcal{E}[\![\Gamma \vdash RE: \operatorname{region}]](\sigma) \text{ and} \\ type(o) &= T: (\sigma[x \mapsto o], H) &\models^{\Gamma, x:T} P \\ \end{array}$$

under type extension. This lemma is used in proving Lemma 26 in Chapter 8. The proof is done by induction on the assertion's structure, and is omitted as it is intuitive.

Lemma 2. Let Γ and Γ' be two well-formed type environments. Let (σ, H) be a Γ -state. Then $\sigma, H \models^{\Gamma} P$ implies $(\sigma, H) \models^{\Gamma, \Gamma'} P$.

3.2 Effects

FRL uses effects to specify frame conditions and to frame formulas. The grammar for effects is given in Fig. 3.3 on the next page. The latter five forms are called atomic effects. The keyword **modifies** specifies write effects and **reads** specifies read effects. The keyword, **modifies** or **reads**, is omitted when the context is obvious, or when listing the same type effects, e.g., (**modifies** x, **region** $\{y.f\}$) is short for (**modifies** x, **modifies region** $\{y.f\}$). The effect **fresh**(*RE*) means all the locations in *RE* did not exist (were not allocated) in the pre-state. To $\begin{array}{l} \varepsilon, \delta ::= \varnothing \mid \varepsilon_1, \varepsilon_2 \mid E ? \varepsilon_1 : \varepsilon_2 \mid \texttt{reads } RE \mid \texttt{reads } x \mid \texttt{modifies } RE \\ \mid \texttt{modifies } x \mid \texttt{fresh}(RE) \end{array}$

Figure 3.3: The grammar of effects

avoid ambiguity, the notation **reads** $x \downarrow$ means that reading the locations that are in x, where x has type **region**; the notation **reads** x means that reading the variable x. The write effects are similar.

Effects must be well-formed (wf) for the well-formed type environment Γ ; for example, **reads** x is meaningless if x in not in the domain of Γ .

Definition 2 (Well-formed Effects). Let Γ be a well-formed type environment, and δ be an effect. The effect δ is well-formed in Γ if,

- 1. for all $(M x) \in \delta :: x \in dom(\Gamma)$,
- 2. for all $(M \operatorname{region} \{x, f\}) \in \delta :: x \in dom(\Gamma)$, and
- 3. for all $(M \operatorname{region} \{x, *\}) \in \delta :: x \in dom(\Gamma)$,

where M is either reads, modifies, or fresh.

A correct method must have an actual write effect that is a sub-effect of its specified effect.² A set of subeffect rules is defined in Fig. 3.4 on the following page to reason about such cases; it encodes the standard properties of sets.

To streamline explanations, the following functions on effects are defined.

²The sub-effect rules are also applicable for read effects.

$$\begin{split} \vdash^{\Gamma} \varepsilon \leqslant \varepsilon & \vdash^{\Gamma} \varepsilon, \varepsilon' \leqslant \varepsilon', \varepsilon & \frac{\varepsilon' \text{ is a write or read effect}}{\vdash^{\Gamma} \varepsilon \leqslant \varepsilon, \varepsilon'} & \vdash^{\Gamma} \text{ fresh } RE, \varepsilon \leqslant \varepsilon \\ false \vdash^{\Gamma} \varepsilon \leqslant \varepsilon' & \frac{P \vdash^{\Gamma} \varepsilon_{1} \leqslant \varepsilon_{2}}{P \vdash^{\Gamma} \varepsilon_{1} \leqslant \varepsilon_{3}} & \frac{P' \Rightarrow P}{P' \vdash^{\Gamma} \varepsilon_{1} \leqslant \varepsilon_{2}} \\ \frac{P \vdash^{\Gamma} \varepsilon_{1} \leqslant \varepsilon_{2}}{P \vdash^{\Gamma} \varepsilon_{1}, \varepsilon \leqslant \varepsilon_{2}, \varepsilon} & \vdash^{\Gamma} \text{ modifies } RE_{1}, RE_{2} & \leq \text{ modifies } RE_{1} + RE_{2} \\ \vdash^{\Gamma} \text{ reads } RE_{1}, RE_{2} & \leq \text{ reads } RE_{1} + RE_{2} \\ \vdash^{\Gamma} \text{ modifies filter} \{RE, T, f\} \leqslant \text{ modifies } RE \\ RE_{1} \leqslant RE_{2} \vdash^{\Gamma} \text{ modifies } RE_{1} \leqslant \text{ modifies } RE_{2} \\ RE_{1} \leqslant RE_{2} \vdash^{\Gamma} \text{ reads } RE_{1} \leqslant \text{ reads } RE_{2} & \vdash^{\Gamma} E_{2} \leqslant \varepsilon_{3} \\ \frac{P \& \& E_{1} \& \& E_{2} \vdash^{\Gamma} \varepsilon_{1} \leqslant \varepsilon_{3} & P \& \& -E_{1} \& \& E_{2} \vdash^{\Gamma} \varepsilon_{2} \leqslant \varepsilon_{3} \\ \frac{P \& \& E_{1} \& \& -E_{2} \vdash^{\Gamma} \varepsilon_{1} \leqslant \varepsilon_{4} & P \& \& -E_{1} \& \& E_{2} \vdash^{\Gamma} \varepsilon_{2} \leqslant \varepsilon_{4} \\ P \vdash^{\Gamma} E_{1} \varepsilon_{1} : \varepsilon_{2} \leqslant E_{2} \varepsilon_{3} : \varepsilon_{4} \end{split}$$

Figure 3.4: The sub-effect rules

- writeR discards all but region expressions in write effects; for example, writeR(reads x, modifies y, modifies region{x.f}) is equal to region{x.f}.
- readR discards all but region expressions in read effects; e.g., readR(reads x, reads region{x.f}) = region{x.f}.
- freshR discards all but region expressions in fresh effects; e.g., freshR(reads x, modifies region{x.f}, fresh region{y.*}) = region{y.*}.
- *readVar* discards all but variables in read effects; for example, *readVar*(**reads** x, **reads**

 $region{x.f}) = x.$

regRW unions together all the region expressions in both read and write effects; for example,
 regRW(reads x, modifies region{x.f}, reads region{y.f}) = region{x.f} +
 region{y.f}.

Write effects and fresh effects make sense for two consecutive states, written $(\sigma, h) \hookrightarrow (\sigma', h')$. The following defines the semantics of write effects and fresh effects. It allows changes for variables and in the heaps of the pre-state. However, fresh effects are evaluated in the post-state. Regions specified in a fresh effect do not exist in the pre-state.

Definition 3 (Changes allowed by write and fresh effects). Let Γ be a well-formed type environment. Let ε be well-formed effects in Γ , and (σ, h) and (σ', h') be Γ -states. The effect ε allows change from (σ, h) to (σ', h') , written $(\sigma, h) \rightarrow (\sigma', h') \models^{\Gamma} \varepsilon$ if and only if $(\sigma, h) \rightarrow (\sigma', h')$ and the following holds:

- 1. for all $x \in dom(\Gamma)$, either $\sigma(x) = \sigma'(x)$ or modifies x is in ε ;
- 2. for all $(o, f) \in \sigma(\texttt{alloc})$, either h[o, f] = h'[o, f] or there is RE such that modifies RE is in ε , such that $(o, f) \in \mathcal{E}[[\Gamma \vdash RE : \texttt{region}]](\sigma)$;
- 3. for all RE such that fresh(RE) is in ε , it must be true that $\mathcal{E}[[\Gamma \vdash RE : region]](\sigma') \subseteq (\sigma'(alloc) \sigma(alloc)).$

Def. 4 says that if two states agree on a read effect, δ , then the values that depend on δ are identical. As the programming language defined so far does not have subclassing or subtyping, a variable's static type is also its dynamic type. There is no need to state that types are congruent in the two states. This definition is generalized in Chapter 8, where the language is extended with inheritance. **Definition 4** (Agreement on Read Effects). Let Γ be a well-formed type environment. Let δ be a well-formed effect in Γ . Let $\Gamma' \ge \Gamma$ and $\Gamma'' \ge \Gamma$. Let (σ', h') and (σ'', h'') be a Γ' -state and a Γ'' -state respectively. Then it is said that (σ', h') and (σ'', h'') agree on δ , written $(\sigma', h') \stackrel{\delta}{=} (\sigma'', h'')$, when the following holds:

1. for all reads $x \in \delta :: \sigma'(x) = \sigma''(x)$

2. for all reads
$$RE \in \delta$$
: $(o, f) \in \mathcal{E}[[\Gamma' \vdash RE : region]](\sigma') : h'[o, f] = h''[o, f].$

3.3 Framing

Let R be the region that the frame condition of a method, m, specifies in a given state; these locations may be modified by m. The locations that are preserved are the complement of R, written \overline{R} . Let R' be locations that may be used in evaluating an assertion, P, written **reads** R' frm P. If $R' \leq \overline{R}$, i.e., $R' \parallel R$, then P's validity is preserved after m is called. The function efs(-) shown in Fig. 3.5 inductively defines R' for expressions, region expressions, and atomic assertions. For example, efs(x.f = y) =**reads** x, **region** $\{x.f\}$, y.

$$\begin{array}{ll} efs(x) = \texttt{reads } x & efs(n) = \varnothing & efs(null) = \varnothing \\ efs(E_1 \oplus E_2) = efs(E_1), efs(E_2) & efs(\texttt{region}\{\}) = \varnothing \\ efs(\texttt{region}\{x.f\}) = \texttt{reads } x & efs(\texttt{region}\{x.*\}) = \texttt{reads } x \\ efs(E ? RE_1 : RE_2) = efs(E), E ? efs(RE_1) : efs(RE_2) \\ efs(\texttt{filter}\{RE, f\}) = efs(RE) & efs(\texttt{filter}\{RE, T, f\}) = efs(RE) \\ efs(RE_1 \otimes RE_2) = efs(RE_1), efs(RE_2) & efs(E_1 = E_2) = efs(E_1), efs(E_2) \\ efs(RE_1 \neq E_2) = efs(E_1), efs(E_2) & efs(x.f = E) = \texttt{reads } x, \texttt{region}\{x.f\}, efs(E) \\ efs(RE_1 \leqslant RE_2) = efs(RE_1), efs(RE_2) & efs(RE_1 ! ! RE_2) = efs(RE_1), efs(RE_2) \\ \end{array}$$

Figure 3.5: The read effects of expressions, region expressions and atomic assertions

The framing judgment, $P \vdash^{\Gamma} \delta$ frm Q, means that read effects, δ , contains the variables and locations that are needed to evaluate Q in a Γ -state that satisfies P. Fig. 3.6 shows the judgment for assertions.

$$\begin{array}{cccc} (FrmFtpt) & (FrmNeg) \\ true \vdash^{\Gamma} efs(P) frm P & true \vdash^{\Gamma} efs(P) frm \neg P & \frac{(FrmSub)}{P \vdash^{\Gamma} \delta_1 frm Q} & Q \vdash^{\Gamma} \delta_1 \leq \delta_2 \\ \hline P \vdash^{\Gamma} \delta_1 frm Q & Q \vdash^{\Gamma} \delta_1 \leq \delta_2 \\ \hline P \vdash^{\Gamma} \delta_2 frm Q & where P \Rightarrow R \\ \end{array}$$

$$\begin{array}{cccc} (FrmConj) & (FrmOnj) \\ P \vdash^{\Gamma} \delta frm Q_1 & P \&\& Q_1 \vdash^{\Gamma} \delta frm Q_2 \\ \hline P \vdash^{\Gamma} \delta frm Q_1 & Q \vdash^{\Gamma} \delta frm Q_2 \\ \hline P \vdash^{\Gamma} \delta frm Q_1 & Q \vdash^{\Gamma} \delta frm Q \\ \hline P \vdash^{\Gamma} \delta frm Q_2 & (FrmProjCtx) \\ P \vdash^{\Gamma} \delta frm Q_2 & P \vdash^{\Gamma} \delta frm Q \\ \hline P \vdash^{\Gamma} \delta frm Q_2 & Q_2 \end{array}$$

$$\begin{array}{cccc} (Frm \forall q) \\ P \vdash^{\Gamma} \delta frm Q_1 & Q \vdash^{\Gamma} \delta frm Q \\ \hline P \vdash^{\Gamma} \delta frm Q_2 & Q_2 \end{array}$$

$$\begin{array}{cccc} (Frm \forall q) \\ P \vdash^{\Gamma} \delta frm Q_1 & Q \vdash^{\Gamma} \delta frm Q \\ P \vdash^{\Gamma} \delta frm \forall x : \mathbf{int} :: Q \end{array}$$

$$\begin{array}{cccc} (Frm \forall q) \\ P \vdash^{\Gamma} \delta frm \forall x : \mathbf{int} :: Q \\ \hline P \vdash^{\Gamma} \delta frm \forall x : \mathbf{int} :: Q \end{array}$$

$$\begin{array}{ccccc} (Frm \forall q) \\ P \vdash^{\Gamma} \delta frm \forall x : \mathbf{int} :: Q \\ \hline P \vdash^{\Gamma} \delta frm \forall x : \mathbf{int} :: Q \end{array}$$

Figure 3.6: The inference rules for the framing judgment

The following defines the meaning of a framing judgment.

Definition 5 (Frame Validity). Let Γ be a well-formed type environment. Let P and Q be asser-

tions, and δ be a read effect. The framing judgment $P \vdash^{\Gamma} \delta$ frm Q is valid, written $P \models^{\Gamma} \delta$ frm Q, if and only if for all Γ -states (σ, h) and (σ', h') , if $(\sigma, h) \stackrel{\delta}{=} (\sigma', h')$ and $\sigma, h \models^{\Gamma} P \&\& Q$, then $\sigma', h' \models^{\Gamma} Q$.

The framing judgment is stateful. For example, the judgment $x = y \vdash^{\Gamma} (\texttt{reads} y, \texttt{region}\{x.f\})$ frm (x.f = 5) is valid, but $\vdash^{\Gamma} (\texttt{reads} y, \texttt{region}\{x.f\})$ frm (x.f = 5) may not.

Lemma 3 (Framing Soundness for Expressions). Let Γ be a well-formed type environment. Let (σ, h) and (σ', h') be two Γ -states. Let G be an expression. If $(\sigma, h) \stackrel{efs(G)}{\equiv} (\sigma', h')$, then it must be true that $\mathcal{E}[\![\Gamma \vdash G : T]\!](\sigma) = \mathcal{E}[\![\Gamma \vdash G : T]\!](\sigma')$.

Proof. The proof is straightforward by structural induction on expressions, thus is omitted. \Box

Lemma 4 (Framing Soundness for Assertions). Every derivable framing judgment is valid.

Proof. By induction on a derivation of a framing judgment $P \vdash^{\Gamma} \delta$ frm Q.

3.4 Separator and Immune

The notation, $\forall \cdot$, is used to define the disjointness on effects in Fig. 3.7 on the following page, where δ is a read effect and ε is a write effect. $\delta \forall \varepsilon$ means that the read effects in δ are disjoint with the write effects in ε . The effect, **reads** δ , where δ is not a conditional effect, is treated as **reads if** true **then** δ **else** \emptyset . For example, let *RE* be **if** x.f=0 **then region** $\{y.f\}$ **else region** $\{\}$. Suppose $x \neq y$ and $x.f \neq 0$. The separation of **reads region** $\{y.f\}$ and **modifies** *RE* can be derived to **reads region** $\{y.f\}$ \forall **modifies region** $\{\}$ by the rule ConMask introduced in the next section.

$$\begin{array}{rcl} \delta \not \cdot & \varnothing & = & true \\ & \varnothing \not \cdot & \varepsilon & = & true \\ & \texttt{reads } y \not \cdot \texttt{modifies } x & = & y \not \equiv x \\ \texttt{reads } RE_1 \not \cdot \texttt{modifies } RE & = & true \\ \texttt{reads } RE_1 \not \cdot \texttt{modifies } RE_2 & = & RE_1 ! ! RE_2 \\ & \delta \not \cdot & (\varepsilon, \varepsilon') & = & (\delta \not \cdot \varepsilon) \land (\delta \not \cdot \varepsilon') \\ & (\delta, \delta') \not \cdot & \varepsilon & = & (\delta \not \cdot \varepsilon) \land (\delta' \not \cdot \varepsilon) \\ & \delta \not \cdot & (E ? \varepsilon_1 : \varepsilon_2) & = & \begin{cases} \delta \not \cdot & \varepsilon_1 & \text{if } E \\ \delta \not \cdot & \varepsilon_2 & \text{if } -E \\ & \delta_1 \not \cdot & \varepsilon & \text{if } E \end{cases} \\ & \delta_2 \not \cdot & \varepsilon & \text{if } -E \end{cases}$$

Figure 3.7: The definition of separator

The following lemma says if read effects, δ , and write effects, ε are separate, then the values on δ are preserved.

Lemma 5 (Separator Agreement). Let Γ be a well-formed type environment. Let ε and δ be effects in Γ . Let (σ, h) and (σ', h') be two Γ -states. If $(\sigma, h) \rightarrow (\sigma', h') \models^{\Gamma} \varepsilon$ and $(\sigma, h) \models^{\Gamma} \delta \not/ \varepsilon$, then $(\sigma, h) \stackrel{\delta}{=} (\sigma', h')$.

Proof. According to the definition of agreement on read effects (Def. 4), there are two cases.

- Let reads x in δ be arbitrary. Since (σ, H) ⊨^Γ δ / ε, modifies x ∉ ε. By the assumption (σ, h)→(σ', h') ⊨^Γ ε and the definition of changes allowed by write and fresh effects (Def. 3), it must be true that σ(x) = σ'(x).
- 2. Let **reads** *RE* in δ be arbitrary. It is to show that for all $(o, f) \in \mathcal{E}[[\Gamma \vdash RE : \text{region}]](\sigma)$, h[o, f] = h'[o, f]. By the definition of separator (Fig. 3.7), for any modifies *RE'* in ε , it must be true that $\sigma, h \models^{\Gamma} RE ! ! RE'$. By the assumption that $\sigma, h \models^{\Gamma} \delta / \varepsilon$, it must be

true that $(o, f) \notin \mathcal{E}[[\Gamma \vdash RE' : region]](\sigma, h)$. So by the definition of changes allowed by write and fresh effects (Def. 3), it must be true that h[o, f] = h'[o, f].

To prevent interference of the effects of two sequential statements, immunity of two effects under certain condition is introduced. Consider the statement: x := y; x.f := 5. The write effect of the first statement is **modifies** x, and that of the second statement is **region** $\{x, f\}$. The effect of their composition is not necessarily **modifies** $(x, region \{x, f\})$, as **region** $\{x.f\}$ may denote different locations after x is assigned to the value of variable y. To reason about this example, a rule of state-dependent effect subsumption is used, ascribing to x.f := 5 the effect **modifies region** $\{y.f\}$ which is sound owing to the postcondition of x := y, which is x = y. The effect **modifies region** $\{y.f\}$ is immune from updating x. Immunity is used in the proof of Theorem 1 on page 49.

Definition 6 (Immune). Let RE be a region expression, P be an assertion, and ε and δ be two effects. Then RE is immune from ε under P, written RE is P/ε -immune, if and only if P implies $efs(RE)^{\cdot}/\varepsilon$.

Effect δ is immune from ε under P, if and only if for all **modifies** RE in δ :: RE is P/ε -immune.

This notion is used to prevent naive accumulation of write effects. To explain this, let ε_1 and ε_2 be the two write effects of two sequential statements. Intuitively, if the variables and regions that ε_1 contains overlap with the variables and regions that ε_2 depends on, then ε_2 is not ε_1 -immune.

Consider the example x.f := x; x.f := x;. Assume the precondition of the first update statement is $x \neq null$. The write effects of both update statements, ε_1 and ε_2 , are **modifies region** $\{x.f\}$.

The proof obligation is to show that ε_2 is $x \neq null/\varepsilon_1$ -immune. Informally, the write effect ε_2 relies on the variable x. But, the write effect ε_1 does not contain **modifies** x. Therefore, **modifies region** $\{x.f\}$ is $x \neq null/modifies region<math>\{x.f\}$ -immune. A proof of this is calculated as follows.

modifies region $\{x.f\}$ is $x \neq null/modifies$ region $\{x.f\}$ -immune

iff \langle by the definition of Immune (Def. 6) \rangle

for all modifies RE in modifies region $\{x.f\}$:: RE is

 $x \neq null/modifies region{x.f}-immune$

iff $\langle by RE is region{x.f} \rangle$

region $\{x.f\}$ is $x \neq null/modifies$ region $\{x.f\}$ -immune

- *iff* \langle by the definition of Immune (Def. 6) \rangle $x \neq null implies efs(region{x.f}):/modifies region{x.f}$ *iff* $<math>\langle$ by the definition of read effects (Fig. 3.5) \rangle
- $x \neq null implies reads x/modifies region{x.f}$
- *iff* \langle by the definition of separator (Fig. 3.7) \rangle

true

However, note that if the first statement were x := y, then the effect modifies region $\{x.f\}$ would not be $x \neq null/modifies x$ -immune.

To make a comparison, consider another example x.f.g := x; x.f := x;. (This is not syntactically correct, but one can desugar it to z := x.f; z.g := x; x.f := x, where z is fresh.) Assume the precondition of the first update statement is $x \neq null$ && $x.f \neq null$. In this case, ε_1 is modifies region $\{x.f.g\}$, and ε_2 is modifies region $\{x.f\}$. The following shows that modifies region $\{x.f.g\}$ is $x \neq null/modifies$ region $\{x.f\}$ -immune is false.

modifies region $\{x. f. g\}$ is $x \neq null/modifies$ region $\{x. f\}$ -immune

iff \langle by the definition of Immune (Def. 6) \rangle for all modifies $RE \in \text{modifies region}\{x.f.g\} :: RE$ is $x \neq null/\text{modifies region}\{x.f\}$ -immune

iff $\langle by RE is region{x.f.g} \rangle$

region $\{x.f.g\}$ is $x \neq null/modifies$ region $\{x.f\}$ -immune

iff \langle by the definition of Immune (Def. 6) \rangle

 $x \neq null implies efs(region{x.f.g}) / modifies region{x.f}$

iff \langle by the definition of read effects (Fig. 3.5 on page 29) \rangle

 $x \neq null implies (reads x, region \{x, f\}) / modifies region \{x, f\}$

iff \langle by the definition of separator (Fig. 3.7 on page 32) \rangle

Lemma 6. Let Γ be a well-formed type environment. Let ε an effect, RE be a region expression, and P be an assertion, such that RE is P/ε -immune. Then for all Γ -states, (σ, h) and (σ', h') , such that $(\sigma, h) \rightarrow (\sigma', h') \models^{\Gamma} \varepsilon$, if $\sigma, h \models^{\Gamma} P$, then $\mathcal{E}[[\Gamma \vdash RE : region]](\sigma) = \mathcal{E}[[\Gamma \vdash RE : region]](\sigma')$.

Proof. By the assumption that RE is P/ε -immune, and by the definition of immunity (Def. 6), it must be true that $\sigma, h \models^{\Gamma} P \Rightarrow efs(RE) : / \varepsilon$. By the assumption that $(\sigma, h) \rightarrow (\sigma', h') \models^{\Gamma} \varepsilon$ and by the separator agreement (Lemma 5), it must be true that $(\sigma, h) \stackrel{efs(RE)}{\equiv} (\sigma', h')$. Then by the

false

soundness of framing for expressions (Lemma 3), it must be true that $\mathcal{E}[[\Gamma \vdash RE : \texttt{region}]](\sigma) = \mathcal{E}[[\Gamma \vdash RE : \texttt{region}]](\sigma')$.

The effects of a sequence statement S_1S_2 are gained from the effects of the two constituent statements, S_1 and S_2 , where the write effect of S_2 may contain regions that are allocated by S_1 . Then such write effect can be dropped by the effect of S_1S_2 . This idea is described in the following lemma, which is used in proving the soundness theorem (Theorem 1).

Lemma 7 (Effect Transfer). Let Γ_0 , Γ_1 and Γ_2 be well-formed type environments. Let (σ_0, h_0) , (σ_1, h_1) , (σ_2, h_2) be Γ_0 , Γ_1 and Γ_2 -states respectively. Let ε_1 and ε_2 be two effects, and P and P' be two assertions. If the following hold:

- *1.* $\sigma_0, h_0 \models^{\Gamma_0} P$ and $\sigma_1, h_1 \models^{\Gamma_1} P'$;
- 2. $(\sigma_0, h_0) \rightarrow (\sigma_1, h_1) \models^{\Gamma_0} \varepsilon_1;$
- 3. $(\sigma_1, h_1) \rightarrow (\sigma_2, h_2) \models^{\Gamma_1} \varepsilon_2$, modifies RE;
- 4. ε_2 is P/ε_1 -immune;
- 5. for all fresh(RE') $\in \varepsilon_1 :: RE'$ is $P/(\varepsilon_2, \text{modifies } RE)$ -immune;
- 6. $\mathcal{E}\llbracket\Gamma_1 \vdash RE : \operatorname{region} \rrbracket(\sigma_1, h_1) \cap \sigma_0(\operatorname{alloc}) = \emptyset$.

Then $(\sigma_0, h_0) \rightarrow (\sigma_2, h_2) \models^{\Gamma_0} \varepsilon_1, \varepsilon_2$.

Proof. To prove the conclusion, it needs to show that all the conditions defined in Def. 3 hold.

For condition (1) in Def. 3, let x be a variable, such that $\sigma_0(x) \neq \sigma_2(x)$. It is the case that either $\sigma_0(x) \neq \sigma_1(x)$ or $\sigma_1(x) \neq \sigma_2(x)$ or both. By the assumption 2 and 3, modifies x is either in ε_1 or in ε_2 or both.

For condition (2) in Def. 3, let $(o, f) \in \sigma_0(\texttt{alloc})$, such that $h_0[o, f] \neq h_2[o, f]$. There are two cases:

- 1. $h_0[o, f] \neq h_1[o, f]$: By assumption 2, there is a region expression RE_0 , such that **modifies** RE_0 in ε_1 and $(o, f) \in \mathcal{E}[[\Gamma_0 \vdash RE_0 : region]](\sigma_0, h_0)$. Thus, **modifies** RE_0 in $(\varepsilon_1, \varepsilon_2)$.
- 2. $h_1[o, f] \neq h_2[o, f]$: By assumption 2, there are two cases.
 - there is a region expression RE' in ε₂ and (o, f) ∈ E[[Γ₁ ⊢ RE']](σ₁, h₁). By assumption
 (4) and Lemma 6, it is true that E[[Γ₀ ⊢ RE']](σ₀, h₀) = E[[Γ₁ ⊢ RE']](σ₁, h₁). Thus, modifies RE' in (ε₁, ε₂).
 - $(o, f) \in \mathcal{E}[[\Gamma_1 \vdash RE]](\sigma_1, h_1)$. By assumption (6), $\mathcal{E}[[\Gamma_1 \vdash RE]](\sigma_1, h_1) \cap \sigma_0(\texttt{alloc}) = \emptyset$. That implies $(o, f) \notin \sigma_0(\texttt{alloc})$, which contradicts the assumption that $(o, f) \in \sigma_0(\texttt{alloc})$.

For condition (3) in Definition 3, let $r_1 = \mathcal{E}[\Gamma_1 \vdash RE](\sigma_1, h_1)$ and $r_2 = \mathcal{E}[\Gamma_2 \vdash RE](\sigma_2, h_2)$. There are two cases:

- 1. Suppose $\mathbf{fresh}(RE) \in \varepsilon_1$. By assumption 2, it is true that $r_1 \subseteq (\sigma_1(\mathbf{alloc}) \sigma_0(\mathbf{alloc}))$ and $(\sigma_1(\mathbf{alloc}) \subseteq \sigma_2(\mathbf{alloc}))$. By assumption 3, $r_1 = r_2$. Thus, it is true that $r_2 \subseteq (r_2 - \sigma_0(\mathbf{alloc}))$. So $(\sigma_0, h_0) \rightarrow (\sigma_1, h_1) \models^{\Gamma_0} \varepsilon_1, \varepsilon_2$.
- 2. Suppose $fresh(RE) \in \varepsilon_2$. By assumption 2, it is true that $r_2 \subseteq (\sigma_2(\texttt{alloc}) \sigma_1(\texttt{alloc}))$, and $\sigma_1(\texttt{alloc}) \subseteq \sigma_0(\texttt{alloc})$. Thus, it is true that $r_2 \subseteq (r_2 - \sigma_0(\texttt{alloc}))$. So $(\sigma_0, h_0) \rightarrow (\sigma_2, h_2) \models^{\Gamma_0} \varepsilon_1, \varepsilon_2$.

CHAPTER 4: FINE-GRAINED REGION LOGIC¹

This chapter defines the correctness judgment in FRL, and presents the proof axioms and rules for statements and structural rules.

The correctness judgment of FRL, a Hoare-formula of form $\{P_1\}S\{P_2\}[\varepsilon]$, means that *S* is partially correct, its write effects are contained in ε , and the locations specified to be fresh in ε are newly allocated. Following the work on RL [2, 5] a statement *S* is partially correct if it cannot encounter an error when started in a pre-state satisfying the specified precondition, however *S* may still loop forever.

Definition 7 (Valid FRL Hoare-Formula). Let Γ be a well-formed type environment. Let S be a statement, let P_1 and P_2 be assertions, let ε be effects, and let (σ, H) be a Γ -state. Then $\{P_1\} S \{P_2\} [\varepsilon]$ is valid in (σ, H) , written $\sigma, H \models_r^{\Gamma} \{P_1\} S \{P_2\} [\varepsilon]$, if and only if whenever $\sigma, H \models_r^{\Gamma} P_1$, then

- 1. $\mathcal{MS}[\Gamma \vdash S : ok(\Gamma')](\sigma, H) \neq err;$
- 2. if $(\sigma', H') = \mathcal{MS}[[\Gamma \vdash S : ok(\Gamma')]](\sigma, H)$, then
 - $\sigma', H' \models^{\Gamma'} P_2$
 - for all $x \in dom(\sigma) : \sigma'(x) \neq \sigma(x) : modifies x \in \varepsilon$
 - for all $(o, f) \in dom(H) : H'[o, f] \neq H[o, f] :$ $(o, f) \in \mathcal{E}[\Gamma \vdash writeR(\varepsilon) : region](\sigma), and$
 - for all $(o, f) \in \mathcal{E}[\![\Gamma' \vdash \mathit{freshR}(\varepsilon) : \mathit{region}]\!](\sigma') :: (o, f) \in (\mathit{dom}(H') \mathit{dom}(H)).$

¹The content in this chapter is submitted to *Formal Aspects of Computing*.

A Hoare-formula $\{P_1\} S \{P_2\}[\varepsilon]$ is valid, written $\models_r^{\Gamma} \{P_1\} S \{P_2\}[\varepsilon]$, if and only if for all Γ -states $(\sigma, H) :: \sigma, H \models_r^{\Gamma} \{P_1\} S \{P_2\}[\varepsilon]$.

Note that the region expressions in the write effects are evaluated in the pre-state, since frame conditions only specify changes to pre-existing locations, not changes to freshly allocated ones. On the other hand, the region expressions in the fresh effects are evaluated in the post-state. Note that write effects are permissions to change locations, as write effects may leave the values in locations unchanged, but specified fresh effects are indeed obligations.

Write effects in FRL can specify both variables (in stores) and heap regions. Write effects do not restrict a statement's access to the heap, since in FRL statements can implicitly access all of the program's heap, whose domain is written **alloc**.

4.1 Axioms and Inference Rules

Fig. 4.1 on the following page shows the axioms and inference rules for statements. The predicate *true* is syntactic sugar for 1 = 1. The axioms for variable assignment, field access, field update and allocation are "small" [71] in the sense that the union of write effects and read effects describe the least upper bound of variables and locations that *S* accesses, and the write effects describe the least upper bound of the variables and locations that *S* may modify. The fresh effects in the rule of the new statement accounts to a newly allocated object. Fig. 4.2 and Fig. 4.3 show the structural rules. In the rules, the notation, new(T, x), means that $x.f_1 = default(T_1)$ && ... && $x.f_n = default(T_n)$, where the $f_i: T_i$ are defined by $(f_1: T_1, \ldots, f_n: T_n) = fields(T)$.

$$\begin{aligned} (\mathsf{SKP}_r) & \mapsto_r^{\Gamma} \{true\} \mathbf{skip}; \{true\} [\emptyset] \\ \\ (\mathsf{VAR}_r) & \mapsto_r^{\Gamma} \{true\} \mathbf{var} x : T; \{x = default(T)\} [\emptyset] \\ \\ (\mathsf{ALLOC}_r) & \mapsto_r^{\Gamma} \{true\} x := \mathsf{new} T; \{new(T, x)\} \\ & \vdash_r^{\Gamma} \{true\} x := \mathsf{new} T; \{new(T, x)\} \\ & \vdash_r^{\Gamma} \{true\} x := \mathsf{new} T; \{new(T, x)\} \\ & \vdash_r^{\Gamma} \{true\} x := \mathsf{new} T; \{new(T, x)\} \\ & \vdash_r^{\Gamma} \{true\} x := \mathsf{new} T; \{new(T, x)\} \\ & \vdash_r^{\Gamma} \{true\} x := \mathsf{new} T; \{new(T, x)\} \\ & \vdash_r^{\Gamma} \{true\} x := \mathsf{new} T; \{new(T, x)\} \\ & \vdash_r^{\Gamma} \{true\} x := \mathsf{new} T; \{new(T, x)\} \\ & \vdash_r^{\Gamma} \{true\} x := \mathsf{new} T; \{new(T, x)\} \\ & \vdash_r^{\Gamma} \{true\} x := \mathsf{new} T; \{x = d\} [\mathsf{modifies} x] \mathsf{ where} x \notin \mathsf{FV}(G) \\ \\ & (\mathsf{ACC}_r) \\ & \vdash_r^{\Gamma} \{true\} x := \mathsf{G}; \{x = G\} [\mathsf{modifies} x] \mathsf{ where} x \notin x' \\ \\ & (UPD_r) \\ & \vdash_r^{\Gamma} \{x \neq nul\} x.f := \mathsf{G}; \{x.f = G\} [\mathsf{modifies} \mathsf{region} \{x.f\}] \\ \\ & (\mathsf{SEQI}_r) \\ & \vdash_r^{\Gamma} \{\mathsf{P}\} S_1 \{\mathsf{P}_1\} [\varepsilon_1, \mathsf{fresh}(\mathsf{RE})] \\ & \vdash_r^{\Gamma} \{\mathsf{P}\} S_1 \{\mathsf{P}\} [\varepsilon_1, \mathsf{fresh}(\mathsf{RE})] \\ & \vdash_r^{\Gamma} \{\mathsf{P}\} \mathsf{var} x : T; \mathsf{S} \{\mathsf{Q}\} [\mathsf{modifies} x, \varepsilon] \\ & \vdash_r^{\Gamma} \{\mathsf{P} \& x = \mathsf{default}(T)\} S \{Q] [\mathsf{modifies} x, \varepsilon] \\ & \vdash_r^{\Gamma} \{\mathsf{P} \& x \in \mathsf{S} S_1 \{\mathsf{P}'\} [\varepsilon] \\ & \vdash_r^{\Gamma} \{\mathsf{P} \& x \in \mathsf{S} S_1 \{\mathsf{P}'\} [\varepsilon] \\ & \vdash_r^{\Gamma} \{\mathsf{P} \& x \in \mathsf{S} S_1 \{\mathsf{P}'\} [\varepsilon] \\ & \vdash_r^{\Gamma} \{\mathsf{P} \& x \in \mathsf{F} S_1 \{\mathsf{P}\} [\varepsilon] \\ & \vdash_r^{\Gamma} \{\mathsf{P} \& x \in \mathsf{F} S_1 \{\mathsf{P}\} [\varepsilon] \\ & \vdash_r^{\Gamma} \{\mathsf{P} \& x \in \mathsf{F} S_1 \{\mathsf{P}\} [\varepsilon] \\ & \vdash_r^{\Gamma} \{\mathsf{P} \& x \in \mathsf{F} S_1 \{\mathsf{P}\} [\varepsilon] \\ & \vdash_r^{\Gamma} \{\mathsf{P} \& x \in \mathsf{F} S_1 \{\mathsf{P}\} [\varepsilon] \\ & \vdash_r^{\Gamma} \{\mathsf{P} \& x \in \mathsf{F} S_1 \{\mathsf{P}\} [\varepsilon] \\ & \vdash_r^{\Gamma} \{\mathsf{P} \& x \in \mathsf{F} S_1 \{\mathsf{P}\} [\varepsilon] \\ & \vdash_r^{\Gamma} \{\mathsf{P} \& x \in \mathsf{F} S_1 \{\mathsf{P}\} [\varepsilon] \\ & \vdash_r^{\Gamma} \{\mathsf{P} \& x \in \mathsf{F} S_1 \{\mathsf{P}\} [\varepsilon] \\ & \vdash_r^{\Gamma} \{\mathsf{P} \& x \in \mathsf{F} S_1 \{\mathsf{P}\} [\varepsilon] \\ & \vdash_r^{\Gamma} \{\mathsf{P} \& x \in \mathsf{F} S_1 \{\mathsf{P}\} [\varepsilon] \\ & \vdash_r^{\Gamma} \{\mathsf{P} \& x \in \mathsf{F} S_1 \{\mathsf{P}\} [\varepsilon] \\ & \vdash_r^{\Gamma} \{\mathsf{P} \& x \in \mathsf{F} S_1 \{\mathsf{P}\} [\varepsilon] \\ & \vdash_r^{\Gamma} \{\mathsf{P} \& x \in \mathsf{F} S_1 \{\mathsf{P}\} [\varepsilon] \\ & \vdash_r^{\Gamma} \{\mathsf{$$

Figure 4.1: The correctness axioms and proof rules for statements in FRL

 (FRM_r) $\frac{\vdash_{r}^{\Gamma} \{P\} S \{P'\}[\varepsilon] \qquad P \vdash_{r}^{\Gamma} \delta frm Q}{\vdash_{r}^{\Gamma} \{P \&\& Q\} S \{P' \&\& Q\}[\varepsilon]}$ where $P \&\& Q \Rightarrow \delta'/\varepsilon$ $(SUBEFF_r)$ $\frac{\left| \left| \left| \left\{ P \right\} S \left\{ P' \right\} \left[\varepsilon \right] \right| \right| P \left| \left| \left\{ \varepsilon \right\} S \left\{ P' \right\} \left[\varepsilon \right] \right| \right|}{\left| \left| \left| \left\{ P \right\} S \left\{ P' \right\} \left[\varepsilon' \right] \right| \right|} \right|$ $(CONSEQ_r)$ $\vdash_r^{\Gamma} \{P_1\} S \{P_1'\}[\varepsilon]$ $\overline{\vdash_r^{\Gamma} \{P_2\} S\{P_2'\}[\varepsilon]}$ where $P_2 \Rightarrow P_1$ and $P_1' \Rightarrow P_2'$ $(ConEff_r)$ $\frac{\vdash_r^{\Gamma} \{P \&\& E\} S \{P'\}[\varepsilon_1]}{\vdash_r^{\Gamma} \{P \&\& \neg E\} S \{P'\}[\varepsilon_2]} \xrightarrow{}_{\vdash_r^{\Gamma} \{P\} S \{P'\}[E ? \varepsilon_1 : \varepsilon_2]}$ $(ConMaskl_r)$ $\frac{\vdash_{r}^{\Gamma} \{P\} S \{P'\}[\varepsilon, \texttt{modifies} (E ? \varepsilon_{1} : \varepsilon_{2})]}{\vdash_{r}^{\Gamma} \{P\} S \{P'\}[\varepsilon, \varepsilon_{1}]}$ where $P \Rightarrow E$ and modifies $b \notin (\varepsilon, \varepsilon_{1}, \varepsilon_{2})$ $(ConMask2_r)$ $\frac{\vdash_r^{\Gamma} \{P\} S \{P'\}[\varepsilon, \texttt{modifies} (E ? \varepsilon_1 : \varepsilon_2)]}{\vdash_r^{\Gamma} \{P\} S \{P'\}[\varepsilon, \varepsilon_2]}$ where $P \Rightarrow \neg E$ and modifies $b \notin (\varepsilon, \varepsilon_1, \varepsilon_2)$ $(PostToFr_r)$ $\frac{ \left[\begin{array}{c} \displaystyle \vdash_r^{\Gamma} \{P\} \ S \ \{P'\}[\varepsilon] \\ \hline \displaystyle \vdash_r^{\Gamma} \{P\} \ S \ \{P'\}[\varepsilon, E \ ? \ \texttt{fresh}(RE_1) \ : \ \texttt{fresh}(RE_2)] \end{array} \right]}{ \left[\begin{array}{c} \displaystyle \\ \end{array} \right]}$ where $P \Rightarrow r = \texttt{alloc}, P \Rightarrow (E \&\& RE_1 !! r), P \Rightarrow (\neg E \&\& RE_2 !! r)$ and modifies $r \notin \varepsilon$

Figure 4.2: The structural rules in FRL (1)

$$\begin{aligned} (FrDPost_r) \\ & \vdash_r^{\Gamma} \{P\} S \{P'\} [\varepsilon, E ? \mathbf{fresh}(RE_1) : \mathbf{fresh}(RE_2)] \\ & \vdash_r^{\Gamma} \{P\} S \{P' \&\& (b \Rightarrow RE_1 ! ! r) \&\& (\neg b \Rightarrow RE_2 ! ! r)\} \\ & \vdash_r^{\Gamma} \{P\} S \{P' \&\& (b \Rightarrow RE_1) : \mathbf{fresh}(RE_2)] \\ & \mathbf{where} \ P \Rightarrow b = E, P \Rightarrow b, P \Rightarrow r = \mathbf{alloc}, \mathbf{modifies} \ b \notin \varepsilon \ \text{and modifies} \ r \notin \varepsilon \\ (VarMaskI_r) \\ & \vdash_r^{\Gamma} \{P\} S \{P'\} [E ? \mathbf{modifies} \ x, \varepsilon_1 : \varepsilon_2] \\ & \vdash_r^{\Gamma} \{P\} S \{P'\} [E ? \varepsilon_1 : \varepsilon_2] \\ & \mathbf{where} \ P \Rightarrow E, P \mid\mid P' \Rightarrow x = y \ \text{and} \ P \&\& E \Rightarrow \mathbf{reads} \ y/(x, \varepsilon) \end{aligned}$$

$$(VarMask2_r) \\ & \vdash_r^{\Gamma} \{P\} S \{P'\} [E ? \varepsilon_1 : (\mathbf{modifies} \ x, \varepsilon_2)] \\ & \vdash_r^{\Gamma} \{P\} S \{P'\} [E ? \varepsilon_1 : (\mathbf{modifies} \ x, \varepsilon_2)] \\ & \vdash_r^{\Gamma} \{P\} S \{P'\} [\mathbf{if} \ \mathbf{then} \ \varepsilon_1 \ \mathbf{else} \ \varepsilon_2] \\ & \mathbf{where} \ P \Rightarrow -E, P \mid\mid P' \Rightarrow x = y \ \text{and} \ P \&\& \neg E \Rightarrow \mathbf{reads} \ y/(x, \varepsilon) \end{aligned}$$

$$(FieldMaskI_r) \\ & \vdash_r^{\Gamma} \{P\} S \{P'\} [\varepsilon, E ? (\mathbf{modifies} \ \mathbf{region} \{x.f\}, \varepsilon_1) : \varepsilon_2] \\ & \vdash_r^{\Gamma} \{P\} S \{P'\} [\varepsilon, E ? \ \mathbf{modifies} \ \varepsilon_2] \\ & \mathbf{where} \ P \Rightarrow E, P \mid\mid P' \Rightarrow x.f = y, P' \&\& E \Rightarrow \mathbf{reads} \ x/\cdot \mathbf{modifies} \ \varepsilon_2, P' \&\& E \Rightarrow \mathbf{reads} \ y/\mathbf{modifies} \ \varepsilon_2, P' \&\& E \Rightarrow \mathbf{reads} \ y/\mathbf{modifies} \ \varepsilon_2, P' \&\& E \Rightarrow \mathbf{reads} \ y/\mathbf{modifies} \ \varepsilon_2 \\ & \mathbf{FieldMask2_r) \\ & \vdash_r^{\Gamma} \{P\} S \{P'\} [\varepsilon, E ? \varepsilon_1 : \mathbf{modifies} \ \mathbf{region} \{x.f\}, \varepsilon_2] \end{aligned}$$

 $\label{eq:product} \hline \begin{array}{c} \vdash^{\Gamma}_{r} \{P\} \ S \ \{P'\}[\varepsilon, E ? \ \varepsilon_{1} \ : \ \varepsilon_{2}] \\ \text{where } P \Rightarrow \neg E, P \mid\mid P' \Rightarrow x.f = y, P' \ \&\& \ \neg E \Rightarrow \texttt{reads} \ x'/ \texttt{modifies} \ \varepsilon \\ \text{and } P' \ \&\& \ \neg E \Rightarrow \texttt{reads} \ y'/\texttt{modifies} \ \varepsilon \end{array}$

Figure 4.3: The structural rules in FRL (2)

4.1.1 The Sequence Rules

This subsection explains the use of the two sequence rules with examples. The rule SEQ_r may look complicated. However, the complication arises from the side conditions that handle how the effects of S_1S_2 are collected from those of S_1 and S_2 . To understand $SEQI_r$, it may be helpful to consider two cases:

1. S_1 allocates some new objects, which are updated by S_2 . This is the case where the freshly allocated region *RE* is not empty. Then the write effects of S_1S_2 can drop *RE* from the write effects of S_2 . For example, consider the sequence: x := new T; x.f := 5;. Assume f is the only field of the reference type T for simplicity. Using the axioms $ALLOC_r$ and UPD_r , Eq. (4.1) must be true, which is

$$\vdash_{r}^{\Gamma} \frac{\{true\}_{\mathbb{X}} := \text{new } \mathbb{T}; \{new(T, x)\}}{[\text{modifies } x, \text{modifies alloc}, \text{fresh}(\text{region}\{x.*\})]}$$
(4.1)

$$\vdash_r^{\Gamma} \{x \neq null\} x.f := 5; \{x.f = 5\} [\text{modifies region} \{x.f\}]$$

$$(4.2)$$

Then, the SubEff $_r$ rule is used to loosen the write effect of Eq. (4.2), and get

$$\vdash_r^{\Gamma} \{x \neq null\} x.f := 5; \{x.f = 5\} [\text{modifies region} \{x.*\}]$$

$$(4.3)$$

Then, using the $CONSEQ_r$ rule on Eq. (4.1), the following is derived

$$\vdash_{r}^{\Gamma} \begin{cases} true \} \mathbf{x} := \text{new } \mathbb{T}; \{ x \neq null \} \\ [\text{modifies } x, \text{modifies alloc}, \text{fresh}(\text{region}\{x.*\})] \end{cases}$$
(4.4)

In order to use the rule $SEQ1_r$ on Eq. (4.4) and Eq. (4.3), the rule $SEQ1_r$ is instantiated with $RE := region\{x.*\}, RE_1 := region\{x.*\}, \varepsilon_1 := modifies x, modifies alloc and <math>\varepsilon_2 := \emptyset$. Then, the immune side conditions has to be true, which are:

modifies
$$x$$
 is $true/modifies x$, modifies alloc-immune (4.5)

and

$$\emptyset$$
 is *true*/modifies *x*, modifies alloc-immune (4.6)

Eq. (4.6) is obviously true. By the definition of immune (Def. 6 on page 33), to prove Eq. (4.5) is to show

for all modifies
$$RE \in (\text{modifies } x) :: RE$$
 is

$$true/modifies x, modifies alloc-immune$$
 (4.7)

Eq. (4.7) is vacuously true, since no region expression RE can be a variable x. Now, using the rule $SEQI_r$, the following is derived

$$\vdash_r^{\Gamma} \begin{array}{l} \{true\}x := \texttt{new} \ T; x.f := 5; \{x.f = 5\} \\ \\ \begin{bmatrix} \texttt{modifies} \ x, \texttt{modifies} \ \texttt{alloc}, \texttt{fresh}(\texttt{region}\{x.*\}) \end{bmatrix} \end{array}$$

In this case, the write effect of the second statement, **modifies region** $\{x.*\}$, is dropped in that of the sequence statement, as the fresh effect of the first statement become the fresh effect of the sequence.

2. S_1 does not allocate any new objects. Then the sequence rule can be simplified as:

$$\frac{\vdash_{r}^{\Gamma} \{P\} S_{1} \{P_{1}\}[\varepsilon_{1}]}{\vdash_{r}^{\Gamma} \{P\} S_{1} S_{2} \{P'\}[\varepsilon_{1}]}$$

where ε_1 is fresh-free and ε_2 is P/ε_1 -immune

The two side conditions on immunity are to prevent interference of the effects of two sequential statements. For the write effect, variables and regions that ε_1 contains have to be disjoint with those that ε_2 depends on. Examples have been given in Section 3.4 in Chapter 3. Similarly, for the read effect, variables and regions that ε_1 contains have to be disjoint with those that δ_2 depends on. Consider the statements: y := z; x := y.f;. The read and write effects of the first statement are **reads** z and **modifies** y respectively, and the read effect of the second statement is **reads** y, **reads region** $\{y.f\}$. The read effects of their composition may not be (**reads** z, **reads** y, **reads region** $\{y.f\}$), as **region** $\{y.f\}$ may denote a different location

after y is assigned to the value of z. To reason about this example, a rule of state-dependent effect subsumption is used, ascribing to $x := y \cdot f$; the read effect **reads region** $\{z \cdot f\}$, which is immune from updating y.

Consider again the example in Section 3.4, x.f := x; x.f := x;. There, it has been proved that ε_2 is P/ε_1 -immune, where ε_1 and ε_2 are both **modifies region** $\{x.f\}$, and P is $x \neq null$. Here shows that δ_2 is P/ε_1 -immune as follows, where δ_2 is **reads** x.

reads x is $x \neq null/modifies region{<math>x.f$ }-immune

iff \langle by the definition of Immune (Def. 6) \rangle *for all* **reads** $RE \in$ **reads** x :: RE is $x \neq null/modifies$ **region** $\{x, f\}$ -immune *iff* \langle by there does not exist such $RE \rangle$ *true*

The following example shows the use of the rule $SEQ2_r$. Consider the program **var** y : **int**; y := 5;. After using the axiom VAR_r , the following is derived

$$\vdash_r^{\Gamma} \{true\} \texttt{var} \ y : \texttt{int}; \{y = 0\}[\emptyset]$$

$$(4.8)$$

After using the axiom $ASGN_r$, the following is derived

$$\vdash_r^{\Gamma} \{true\} \ y := 5; \ \{y = 5\} \ [\texttt{modifies} \ y]$$

$$(4.9)$$

By the rule $CONSEQ_r$ on Eq. (4.9), the following is derived

$$\vdash_{r}^{\Gamma} \{y = 0\} y := 5; \ \{y = 5\} \left[\text{ modifies } y \right]$$
(4.10)

Using the rule $SEQ2_r$ on Eq. (4.8) and Eq. (4.10), the following is derived $\vdash_r^{\Gamma} \{true\}$ **var** y: **int**; y := 5; $\{y = 5\} [\emptyset]$

4.1.2 The Loop Rule

For the rule $WHILE_r$, P is the loop invariant and r stores the locations in the pre-state of the loop. The side condition $P \Rightarrow RE ! ! r$ indicates that RE specifies the locations that may be allocated by the loop body. An example shows how to instantiate r in the rule $WHILE_r$. Consider the following program in program context $\Gamma = \texttt{alloc} : \texttt{region}, f : \texttt{region}, y : \texttt{int}, x : C$:

$$B \stackrel{\text{def}}{=} x := \text{new } T; \ f := f + \text{region}\{x.*\}; \ y := y - 1;$$

 $S \stackrel{\text{def}}{=} f := \text{region}\{\}; \ y := 5; \text{ while } y \{B\}$

The proof obligation is to show that

$$\vdash_{r}^{\Gamma} \frac{\{true\} S \{y = 0\}}{[\text{modifies } f, \text{modifies alloc}, \text{modifies } x, \text{modifies } y, \text{fresh}(f)]}$$
(4.11)

After using the axiom $ASGN_r$, once for each of the following, the following is derived

$$\vdash_{r}^{\Gamma} \{true\} f := \operatorname{region}\{\}; \{f = \operatorname{region}\{\}\} [\operatorname{modifies} f]$$
(4.12)

$$\vdash_r^{\Gamma} \{true\} \ y := 5; \{y = 5\} [\text{modifies } y]$$

$$(4.13)$$

After using the rule FRM_r on Eq. (4.13), the following is derived

$$\vdash_{r}^{\Gamma} \{f = \texttt{region}\{\}\} \ y := 5; \{f = \texttt{region}\{\} \ \&\& \ y = 5\}[\texttt{modifies} \ y]$$
(4.14)

From Eq. (4.12) and Eq. (4.14), the rule $SEQI_r$ is instantiated with $RE := region\{\}$. As the immunity conditions are vacuously true, the following is derived

$$\vdash_r^{\Gamma} \{true\} f := \operatorname{region}\{\}; \ y := 5; \{f = \operatorname{region}\{\} \&\& y = 5\}[\operatorname{modifies} f, \operatorname{modifies} y]$$

$$(4.15)$$

Now, consider the loop. Let variable g be fresh; g is used to snapshot the initial value of **alloc**. For the loop body B, the proof obligation is to derive

$$\vdash_r^{\Gamma} \{g ! ! f\}B\{g ! ! f\}[\text{modifies}f, \text{modifies}x, \text{modifies}y, \text{modifiesalloc}]$$
(4.16)

From Eq. (4.16), the rule $WHILE_r$ is instantiated with r := g and $RE = region\{\}$. Because the immunity conditions are vacuously true, the following is derived.

$$\begin{aligned} & +_{r}^{\Gamma} \quad \{g \ ! \ ! \ f \ \& \& \ g = \texttt{alloc} \} \ \texttt{while} \ y \ \{B\} \ \{g \ ! \ ! \ f \ \& \& \ y = 0 \} \\ & \\ & [\texttt{modifies} \ x, \texttt{modifies} \ y, \texttt{modifies} \ f, \texttt{modifies} \ \texttt{alloc}] \end{aligned}$$
(4.17)

The rule $PostToFr_r$ is instantiated with r := g and RE := f. The following is derived.

$$\vdash_{r}^{\Gamma} \begin{cases} g ! ! f \&\& g = \texttt{alloc} \} \texttt{ while } y \{B\} \{g ! ! f \&\& y = 0\} \\ [\texttt{modifies } x, \texttt{modifies } y, \texttt{modifies } f, \texttt{modifies alloc}, \texttt{fresh}(f)] \end{cases}$$
(4.18)

After using the rule $CONSEQ_r$ from the above, the following is derived.

$$\vdash_{r}^{\Gamma} \begin{cases} g !! f \&\& g = \texttt{alloc} \} \texttt{ while } y \{B\} \{y = 0\} \\ [\texttt{modifies } x, \texttt{modifies } y, \texttt{modifies } f, \texttt{modifies alloc}, \texttt{fresh}(f)] \end{cases}$$
(4.19)

The postcondition of Eq. (4.15) implies the precondition of Eq. (4.19). After using the rule *CON*- SEQ_r on Eq. (4.15), the following is derived.

$$\vdash_{r}^{\Gamma} \{true\} f := \operatorname{region}\{\}; \ y := 5; \ \{g \ ! \ ! \ f \&\& g = \operatorname{alloc}\}$$

$$[\operatorname{modifies} f, \operatorname{modifies} y]$$

$$(4.20)$$

From Eq. (4.20) and Eq. (4.19), the rule $SEQI_r$ is instantiated with $RE = region\{\}$. As the immunity conditions are vacuously true, Eq. (4.11) is derived.

Here shows the proof of Eq. (4.16). After using the axiom $ALLOC_r$, the following is derived.

$$\vdash_{r}^{\Gamma} \{true\} x := \operatorname{new} T; \{new(T, x)\}$$

$$[\operatorname{modifies} x, \operatorname{modifies} \operatorname{alloc}, \operatorname{fresh}(\operatorname{region}\{x.*\})]$$

$$(4.21)$$

Then by the rule FRM_r from the above, the following is derived.

$$\vdash_{r}^{\Gamma} \begin{cases} g ! ! f \} x := \operatorname{new} T; \{ new(T, x) \&\& g ! ! f \} \\ [\operatorname{modifies} x, \operatorname{modifies} alloc, \operatorname{fresh}(\operatorname{region}\{x.*\})] \end{cases}$$
(4.22)

The rule $FrToPost_r$ is instantiated with r := g and $RE = region\{x.*\}$. And reads $g \not /$ (modifies x, modifies alloc) is true. After applying the rule, the following is derived.

$$\vdash_{r}^{\Gamma} \begin{cases} g ! ! f \} x := \operatorname{new} T; \{ new(T, x) \&\& g ! ! f \&\& g ! ! \operatorname{region}\{x.*\} \} \\ [\operatorname{modifies} x, \operatorname{modifies} \operatorname{alloc}, \operatorname{fresh}(\operatorname{region}\{x.*\})] \end{cases}$$
(4.23)

Let f' be a fresh variable and is used to snapshot the initial value of f. Then the assignment statement is written as $f := f' + \operatorname{region}\{x.*\}$; After using the rule $ASGN_r$, the following is derived.

$$\vdash_r^{\Gamma} \{true\} f := f' + \operatorname{region}\{x.*\}; \{f = f' + \operatorname{region}\{x.*\}\} [\operatorname{modifies} f]$$
(4.24)

After using the rule FRM_r , the following is derived.

$$\{new(T, x) \&\& g ! ! f \&\& g ! ! region\{x.*\}\}$$

$$\vdash_{r}^{\Gamma} \begin{cases} f := f' + region\{x.*\}; \\ \{f = f' + region\{x.*\} \&\& new(T, x) \&\& g ! ! f \&\& g ! ! region\{x.*\}\} \end{cases}$$
[modifies f]
$$(4.25)$$

From Eq. (4.23) and Eq. (4.25), the rule $SEQ1_r$ is instantiated with $RE = region\{\}$. As the immunity conditions are vacuously true, the following is derived.

$$\{g ! ! f\}$$

$$\vdash_{r}^{\Gamma} x := \operatorname{new} T; f := f' + \operatorname{region}\{x.*\}; \qquad (4.26)$$

$$\{f = f' + \operatorname{region}\{x.*\} \&\& new(T, x) \&\& g ! ! f \&\& g ! ! \operatorname{region}\{x.*\}\}$$

$$[\operatorname{modifies} f, \operatorname{modifies} x, \operatorname{modifies} \operatorname{alloc}, \operatorname{fresh}(\operatorname{region}\{x.*\})]$$

Then by the rules $CONSEQ_r$ and $SubEff_r$, the following is derived.

$$\vdash_{r}^{\Gamma} \begin{cases} g ! ! f \} x := \operatorname{new} T; f := f' + \operatorname{region}\{x.*\}; \{g ! ! f\} \\ [\operatorname{modifies} f, \operatorname{modifies} x, \operatorname{modifies} alloc] \end{cases}$$
(4.27)

Let y' be a fresh variable and is used to snapshot the initial value of y. Then the assignment is written as y := y' - 1; Then, using the axiom $ASGN_r$, the following is derived. $\vdash_r^{\Gamma} \{true\} y := y' - 1; \{y = y' - 1\} [$ **modifies** f] Then, by the rules FRM_r , $SEQI_r$ and $CONSEQ_r$, Eq. (4.16) is derived.

4.2 Soundness

Theorem 1. The judgment $\vdash_r^{\Gamma} \{P\}S\{Q\}[\varepsilon]$ that is derivable by the axioms and inference rules in Fig. 4.1 and the structural rules in Fig. 4.2 and Fig. 4.3, is valid.

The proof is done by induction on the derivation and by cases on the last rule used. In each axiom, it is shown that the judgment is valid according to the statement's semantics. In each inference rule, it is shown that the proof rule derives valid conclusions from valid premises when its side conditions is satisfied. The proof can be found in Appendix B.

CHAPTER 5: UNIFIED FINE-GRAINED REGION LOGIC¹

This chapter generalizes FRL to UFRL. It defines the correctness judgment in UFRL, and presents the proof axioms and rules for statements and structural rules.

Unified Fine-Grained Region Logic (UFRL) was created to enable using FRL and SL together. UFRL has explicit read and write effects. It is a generalization of FRL; thus UFRL's assertion and programming languages (Chapter 2 and Chapter 3) are the same as those in FRL.

However, Hoare-formulas in UFRL are different. The correctness judgment in UFRL has the form $[\delta]{P_1}S{P_2}[\varepsilon]$, where δ are read effects (on the heap) and ε are write effects; thus (ε, δ) contains all the heap locations that *S* may access. Note that δ and ε may have locations in common.

Validity of UFRL Hoare-formulas uses the same notion of partial correctness as in FRL: statements must not encounter an error when started in a pre-state satisfying the specified precondition, but may still loop forever.

Definition 8 (Validity of UFRL Hoare-formula). Let Γ be a well-formed type environment. Let S be a statement. Let P_1 and P_2 be assertions. Let ε be effects and δ be read effects, let (σ, H) be a Γ -state. Then $[\delta]{P_1}S{P_2}[\varepsilon]$ is valid in (σ, H) , written $\sigma, H \models_u^{\Gamma} [\delta]{P_1}S{P_2}[\varepsilon]$, if and only if whenever $\sigma, H \models_{\Gamma} P_1$, then:

1. $\mathcal{MS}[\Gamma \vdash S : ok(\Gamma')](\sigma, H \upharpoonright \mathcal{E}[\Gamma \vdash regRW(\varepsilon, \delta) : region](\sigma)) \neq err, and$

- 2. if $(\sigma', H') = \mathcal{MS}\llbracket\Gamma \vdash S : ok(\Gamma') \rrbracket(\sigma, H \upharpoonright \mathcal{E}\llbracket\Gamma \vdash regRW(\varepsilon, \delta) : region \rrbracket(\sigma))$, then the following all hold:
 - $\sigma', H' \models^{\Gamma'} P_2$,

¹The content in this chapter is submitted to *Formal Aspects of Computing*.

- for all $x \in dom(\sigma) : \sigma'(x) \neq \sigma(x) : modifies x \in \varepsilon$,
- for all $(o, f) \in dom(H) : H'[o, f] \neq H[o, f] :$ $(o, f) \in \mathcal{E}\llbracket\Gamma \vdash writeR(\varepsilon) : region \rrbracket(\sigma), and$
- for all $(o, f) \in \mathcal{E}[\![\Gamma' \vdash \mathit{freshR}(\varepsilon) : \mathit{region}]\!](\sigma') :: (o, f) \in (\mathit{dom}(H') \mathit{dom}(H)).$

A UFRL Hoare-formula $[\delta]\{P_1\}S\{P_2\}[\varepsilon]$ is valid, written $\models_u^{\Gamma} [\delta]\{P_1\}S\{P_2\}[\varepsilon]$, if and only if for all states $(\sigma, H) :: \sigma, H \models_u^{\Gamma} [\delta]\{P_1\}S\{P_2\}[\varepsilon]$.

The above definition limits the heap that a statement can access. Consider the following formula

$$[reads region{x.f}]{x \neq null}y := x.f; {y = x.f}[modifies y].$$
(5.1)

Eq. (5.1) is a valid UFRL Hoare-formula, because $regRW(reads region\{x.f\}, modifies y) = region\{x.f\}$. The region $region\{x.f\}$ is the least set of locations that the statement needs to make sure that its execution does not cause an error. On the contrary, the formula $[\emptyset]\{x \neq null\}y := x.f; \{y = x.f\} [modifies y]$ is not a valid UFRL Hoare-formula, as $regRW(reads \emptyset, modifies y) = region\{\}$. As another example, consider the following formula:

$$[\emptyset]\{x \neq null\}x.f := y; \{x.f = y\}[\texttt{modifies region}\{x.f\}].$$
(5.2)

Eq. (5.2) is a valid UFRL Hoare-formula, because $regRW(\emptyset, modifies region\{x.f\}) = region\{x.f\}$.

For the purpose of framing, which is the focus of this work, there is no need to track read effects, although the above definition does limit to the heap which the statement can access to. However, read effects (on the heap) are needed for future work; e.g., for framing of specifications with pure method calls [3].

5.1 Axioms and Inference Rules

This section shows the axioms and proof rules for proving statements correct in UFRL. Fig. 5.1 shows the axioms and proof rules. Fig. 5.2 and Fig. 5.3 show the structural rules. These are based on FRL, but with read effects (δ and η) specified.

The axioms for variable declaration, variable assignment, field access, field update and allocation are "small" [71] in the sense that the union of write effects and read effects describe the least upper bound of variables and locations that *S* accesses, and the write effects describe the least upper bound of the set of variables and locations that *S* may modify. The proof system does not split the store, as variables are discarded by regRW (Def. 8).

The structural rules are shown in Fig. 5.2 and Fig. 5.3. The rule FRM_u follows the FRM_r rule. The rule $SubEff_u$ allows approximations of effects; it can be used to match up the effects for the rule IF_u , where different branches may have different effects. The rule $SubEff_u$ also allows a correctness proof to switch from a smaller to a larger heap. The rule $CONSEQ_u$ is the standard consequence rule. The rule $FrToPost_u$ and $PostToFr_u$ are dual; the first allows one to add fresh effects and the second allows one to eliminate fresh effects. To make the $PostToFr_u$ rule clear, the following from the rule $FrToPost_u$ is derived.

$$\frac{\vdash_{u}^{\Gamma} [\delta]\{P\} S \{P'\}[\varepsilon, \texttt{fresh}(RE)]}{\vdash_{u}^{\Gamma} [\delta]\{P\} S \{P' \&\& r ! ! RE\}[\varepsilon]} \text{ where } P \Rightarrow r = \texttt{alloc}$$

This uses the subeffect rule, because $regRW(\delta, fresh(RE), \varepsilon) \leq regRW(\delta, \varepsilon)$, and regRW ignores fresh effects.

$$\begin{aligned} &(SKP_u) \\ &+ _u^{\Gamma} [\varnothing] \{true\} \mathbf{skip}; \{true\} [\varnothing] \\ &(VAR_u) \\ &+ _u^{\Gamma} [\varnothing] \{true\} \mathbf{var} x: T; \{x = default(T)\} [\varnothing] \\ &(ALLOC_u) \\ &[\varnothing] \\ &[modifies x.modifies alloc, fresh(region\{x.*\})] \\ &(ASGN_u) \\ &+ _u^{\Gamma} [\eta] \{true\} x:= G; \{x = G\} [modifies x] \text{ where } x \notin FV(G) \text{ and } \eta = efs(G) \\ &(UPD_u) \\ &+ _u^{\Gamma} [x, \eta] \{x \neq null\} x.f := G; \{x.f = G\} [modifies region\{x.f\}] \text{ where } \eta = efs(G) \\ &(ACC_u) \\ &+ _u^{\Gamma} [\eta] \{x' \neq null\} x:= x'.f; \{x = x'.f\} [modifies x], \text{ where } x \neq x' \text{ and } \eta = efs(x'.f) \\ &(HCC_u) \\ &+ _u^{\Gamma} [\eta] \{x' \neq null\} x:= x'.f; \{x = x'.f\} [modifies x], \text{ where } x \neq x' \text{ and } \eta = efs(x'.f) \\ &(HF_u) \\ &+ _u^{\Gamma} [\delta] \{P \& \& E\} S_1 \{Q\} [\varepsilon] \\ &+ _u^{\Gamma} [\delta] \{P \& \& E\} S_1 \{Q\} [\varepsilon] \\ &+ _u^{\Gamma} [\delta] \{P \& \& E\} S_1 \{Q\} [\varepsilon] \\ &+ _u^{\Gamma} [\delta] \{P \& \& E\} S_1 \{Q\} [\varepsilon] \\ &+ _u^{\Gamma} [\delta] \{P \& \& E\} S_1 \{Q\} [\varepsilon] \\ &+ _u^{\Gamma} [\delta] \{P \& \& E\} S_1 \{Q\} [\varepsilon] \\ &+ _u^{\Gamma} [\delta] \{P \& \& E\} S_1 \{Q\} [\varepsilon] \\ &+ _u^{\Gamma} [\delta] \{P \& \& E\} S_1 \{Q\} [\varepsilon] \\ &+ _u^{\Gamma} [\delta] \{P \& \& E\} S_1 \{Q\} [\varepsilon] \\ &+ _u^{\Gamma} [\delta] \{P \& \& E\} S_1 \{Q\} [\varepsilon] \\ &+ _u^{\Gamma} [\delta] \{P \& \& E\} S_1 \{Q\} [\varepsilon] \\ &+ _u^{\Gamma} [\delta] \{P \& \& E\} S_1 \{Q\} [\varepsilon] \\ &+ _u^{\Gamma} [\delta] \{P \& \& E\} S_1 \{Q\} [\varepsilon] \\ &+ _u^{\Gamma} [\delta] \{P \& \& E\} S_1 \{Q\} [\varepsilon] \\ &+ _u^{\Gamma} [\delta] \{P \& \& x = default(T)\} S \{Q\} [modifies x, \varepsilon] \\ &+ _u^{\Gamma} [\delta] \{P \& \& x = default(T)\} S \{Q\} [modifies x, \varepsilon] \\ &+ _u^{\Gamma} [\delta] \{P \& \& E\} S_1 \{P\} [\varepsilon, modifies RE] \\ &+ _u^{\Gamma} [\delta] \{P \& \& E\} S_1 \{P\} [\varepsilon, modifies RE] \\ &+ _u^{\Gamma} [\delta] \{P \& \& E\} S_1 \{P\} [\varepsilon, modifies RE] \\ &+ _u^{\Gamma} [\delta] \{P \& \& E\} S_1 \{P\} [\varepsilon, modifies RE] \\ &+ _u^{\Gamma} [\delta] \{P \& \& E\} S_1 \{P\} [\varepsilon, modifies RE] \\ &+ _u^{\Gamma} [\delta] \{P \& \& E\} S_1 \{P\} [\varepsilon, modifies RE] \\ &+ _u^{\Gamma} [\delta] \{P \& \& E\} S_1 \{P\} [\varepsilon, modifies RE] \\ &+ _u^{\Gamma} [\delta] \{P \& \& E\} S_1 \{P\} [\varepsilon, modifies RE] \\ &+ _u^{\Gamma} [\delta] \{P \& \& E\} S_1 \{P\} [\varepsilon, modifies RE] \\ &+ _u^{\Gamma} [\delta] \{P \& \& E\} S_1 \{P\} [\varepsilon, modifies RE] \\ &+ _u^{\Gamma} [\delta] \{P \& \& E\} S_1 \{P\} [\varepsilon, modifies RE] \\ &+ _u^{\Gamma} [\delta] \{P \& \& E\} S_1 \{P\} [\varepsilon, modifies RE] \\ &+ _u^{\Gamma} [\delta] \{P \& \& E\} S_1 \{P\} [\varepsilon, modifies RE] \\ &+ _u^{\Gamma} [\delta] \{P \& \& E\} S_1 \{P\} [\varepsilon, modifies RE] \\ &+ _u^{\Gamma} [\delta] \{P \& \& E\} S_1 \{P\}$$

Figure 5.1: The correctness axioms and proof rules for statements in UFRL 53

$\frac{(FRM_u)}{\vdash_u^{\Gamma}[\delta]\{P\} S\{P'\}[\varepsilon] \qquad P \vdash_{\Gamma}^{\Gamma} \eta frm Q}{\vdash_u^{\Gamma}[\delta]\{P \&\& Q\} S\{P' \&\& Q\}[\varepsilon]} \text{where } P \&\& Q \Rightarrow \eta'/\varepsilon$
$\frac{(SubEff_{u})}{\vdash_{u}^{\Gamma}[\delta]\{P_{1}\}S\{P_{2}\}[\varepsilon] \qquad \vdash_{P_{1}} \varepsilon \leqslant \varepsilon'}{\vdash_{u}^{\Gamma}[\delta']\{P_{1}\}S\{P_{2}\}[\varepsilon']} \qquad \text{where } P_{1} \Rightarrow regRW(\varepsilon, \delta) \leqslant regRW(\varepsilon', \delta')$
$\frac{(CONSEQ_u)}{\vdash_u^{\Gamma} [\delta]\{P_1\} S \{P_1'\}[\varepsilon]} \\ \xrightarrow{\Gamma_u} [\delta]\{P_2\} S\{P_2'\}[\varepsilon]} \text{where } P_2 \Rightarrow P_1 \text{ and } P_1' \Rightarrow P_2'$
$\frac{(ConEff_u)}{\vdash_u^{\Gamma} [\delta] \{P \&\& E\} S \{P'\}[\varepsilon_1] \qquad \vdash_u^{\Gamma} [\delta] \{P \&\& \neg E\} S \{P'\}[\varepsilon_2]}{\vdash_u^{\Gamma} [\delta] \{P\} S \{P'\}[E ? \varepsilon_1 : \varepsilon_2]}$
$\frac{(ConMaskI_u)}{\vdash_u^{\Gamma} [\delta]\{P\} S \{P'\}[\varepsilon, E ? \varepsilon_1 : \varepsilon_2]}}{\vdash_u^{\Gamma} [\delta]\{P\} S \{P'\}[\varepsilon, \varepsilon_1]} \text{where } P \Rightarrow E$
$\frac{(ConMask2_u)}{\vdash_u^{\Gamma} [\delta]\{P\} S \{P'\}[\varepsilon, E ? \varepsilon_1 : \varepsilon_2]}}{\vdash_u^{\Gamma} [\delta]\{P\} S \{P'\}[\varepsilon, \varepsilon_2]} \text{where } P \Rightarrow \neg E$
$(PostToFr_u) \\ \frac{\vdash_u^{\Gamma} [\delta]\{P\} S \{P'\}[\varepsilon]}{\vdash_u^{\Gamma} [\delta]\{P\} S \{P'\}[\varepsilon, E ? \mathbf{fresh}(RE_1) : \mathbf{fresh}(RE_2)]}$ where $P \Rightarrow (E \&\& RE_1 !! \mathbf{alloc})$ and $P \Rightarrow (\neg E \land RE_2 !! \mathbf{alloc})$
$\begin{array}{l} (\textit{FrToPost}_u) \\ & \frac{\vdash_u^{\Gamma} [\delta] \{P\} \ S \ \{P'\} [\varepsilon, E \ ? \ \texttt{fresh}(RE_1) \ : \ \texttt{fresh}(RE_2)]}{[\delta]} \\ & \frac{\lceil \delta \rceil}{\vdash_u^{\Gamma} \ \{P\} \ S \ \{P' \ \& \& \ (b \Rightarrow RE_1 \ ! \ ! \ r) \ \& \& \ (\neg b \Rightarrow RE_2 \ ! \ ! \ r)\}}{[\varepsilon, E \ ? \ \texttt{fresh}(RE_1) \ : \ \texttt{fresh}(RE_2)]} \\ & \texttt{where} \ P \Rightarrow b = E, P \Rightarrow r = \texttt{alloc}, P \Rightarrow E, \texttt{modifies} \ b \notin \varepsilon \text{ and modifies} \ r \notin \varepsilon \end{array}$

Figure 5.2: The structural rules in UFRL (1)

$$\begin{split} & (VarMask1_u) \\ & \frac{\vdash_u^{\Gamma} [\delta] \{P\} S \{P'\} [E? (\texttt{modifies} x, \varepsilon_1) : \varepsilon_2]}{\vdash_u^{\Gamma} [\delta] \{P\} S \{P'\} [E? \varepsilon_1 : \varepsilon_2]} \\ & \texttt{where} \ P \Rightarrow E, P \mid\mid P' \Rightarrow x = y \ \text{and} \ P \&\& E \Rightarrow \texttt{reads} \ y/(x, \varepsilon), \\ & (VarMask2_u) \\ & \frac{\vdash_u^{\Gamma} [\delta] \{P\} S \{P'\} [E? \varepsilon_1 : (\texttt{modifies} x, \varepsilon_2)]}{\vdash_u^{\Gamma} [\delta] \{P\} S \{P'\} [E? \varepsilon_1 : \varepsilon_2]} \\ & \texttt{where} \ P \Rightarrow \neg E, P \mid\mid P' \Rightarrow x = y \ \text{and} \ P \&\& \neg E \Rightarrow \texttt{reads} \ y/(x, \varepsilon) \\ & (FieldMask1_u) \\ & \frac{\vdash_u^{\Gamma} [\delta] \{P\} S \{P'\} [\varepsilon, E? (\texttt{modifies} \texttt{region} \{x.f\}, \varepsilon_1) : \varepsilon_2]}{\vdash_u^{\Gamma} [\delta] \{P\} S \{P'\} [\varepsilon, E? \varepsilon_1 : \varepsilon_2]} \\ & \texttt{where} \ P \Rightarrow E, P \mid\mid P' \Rightarrow x.f = y, P' \&\& E \Rightarrow \texttt{reads} \ x/\texttt{modifies} \varepsilon \\ & \texttt{and} \ P' \&\& E \Rightarrow \texttt{reads} \ y/\texttt{modifies} \varepsilon \\ & (FieldMask2_u) \\ & \frac{\vdash_u^{\Gamma} [\delta] \{P\} S \{P'\} [\varepsilon, E? \varepsilon_1 : (\texttt{modifies} \texttt{region} \{x.f\}, \varepsilon_2)]}{\vdash_u^{\Gamma} [\delta] \{P\} S \{P'\} [\varepsilon, E? \varepsilon_1 : \varepsilon_2]} \\ & \texttt{where} \ P \Rightarrow -E, P \mid\mid P' \Rightarrow x.f = y, P' \&\& E \Rightarrow \texttt{reads} \ x/\texttt{modifies} \varepsilon \\ & \texttt{and} \ P' \&\& E \Rightarrow \texttt{reads} \ y/\texttt{modifies} \varepsilon \\ & \texttt{ind} \ P \Leftrightarrow F \Rightarrow -E, P \mid\mid P' \Rightarrow x.f = y, P' \&\& E \Rightarrow \texttt{reads} \ x/\texttt{modifies} \varepsilon \\ & \texttt{ind} \ P \Leftrightarrow F \Rightarrow -E, P \mid\mid P' \Rightarrow x.f = y, P' \&\& E \Rightarrow \texttt{reads} \ x/\texttt{modifies} \varepsilon \\ & \texttt{ind} \ P \Leftrightarrow F \Rightarrow -E, P \mid\mid P' \Rightarrow x.f = y, P' \&\& E \Rightarrow \texttt{reads} \ x/\texttt{modifies} \varepsilon \\ & \texttt{ind} \ P \Leftrightarrow F \Rightarrow -E, P \mid\mid P' \Rightarrow x.f = y, P' \&\& E \Rightarrow \texttt{reads} \ x/\texttt{modifies} \varepsilon \\ & \texttt{and} \ P' \&\& \neg E \Rightarrow \texttt{reads} \ y/\texttt{modifies} \varepsilon \end{aligned}$$

Figure 5.3: The structural rules in UFRL (2)

5.1.1 The Sequence Rules

The complication arising from read effects is discussed. Consider the case where S_1 allocates some new objects, which are read by S_2 . This is the case where the freshly allocated region *RE* is not empty. Then the read effects of S_1S_2 can drop *RE* from the read effects of S_2 . For example, consider the sequence: x := new T; y := x.f, where $x \neq y$. Assume that f is the only field of reference type T for simplicity. Using the rules $ALLOC_u$ and ACC_u , the following must be true:

$$\begin{bmatrix} \varnothing \end{bmatrix} \\ \vdash_{u}^{\Gamma} \{ true \} x := \texttt{new} T; \{ new(T, x) \}$$

$$\begin{bmatrix} \texttt{modifies} x, \texttt{modifies} \texttt{ alloc}, \texttt{fresh}(\texttt{region}\{x.*\}) \end{bmatrix}$$

$$(5.3)$$

$$\vdash_{u}^{\Gamma} [\texttt{reads} x, \texttt{region}\{x.f\}] \{x \neq null\}y := x.f; \{y = x.f\}[\texttt{modifies} y]$$
(5.4)

Then, after using the $SubEff_u$ rule to loosen the read effect of Eq. (5.4), the following is derived:

$$\vdash_{u}^{\Gamma} [\texttt{reads} x, \texttt{region}\{x.*\}] \{x \neq null\} y := x.f; \{y = x.f\} [\texttt{modifies} y]$$
(5.5)

Then, after using the $CONSEQ_u$ rule on Eq. (5.3), the following is derived:

$$\begin{bmatrix} \varnothing \end{bmatrix} \vdash_{u}^{\Gamma} \{true\}x := \operatorname{new} T; \{x \neq null\}$$

$$\begin{bmatrix} \operatorname{modifies} x, \operatorname{modifies} \operatorname{alloc}, \operatorname{fresh}(\operatorname{region}\{x.*\}) \end{bmatrix}$$

$$(5.6)$$

In order to use the $SEQI_u$ rule on Eq. (5.6) and Eq. (5.5), it is instantiated with $RE := region\{x.*\}$, $RE_1 := region\{x.*\}$, $RE_2 := region\{\}$, $\varepsilon_1 := modifies x$, modifies alloc and $\varepsilon_2 :=$ modifies y. Then, the proof obligation is to check the immune side conditions, which are:

reads
$$x$$
 is $true/(modifies x, modifies alloc)$ -immune (5.7)

and

modifies
$$y$$
 is $true/(modifies x, modifies alloc)-immune$ (5.8)

By the definition of immune (Def. 6 on page 33), to prove Eq. (5.7) and Eq. (5.8) is to show

for all reads $RE \in (reads x) :: RE$ is

$$true/(modifies x, modifies alloc)$$
-immune (5.9)

and

for all modifies
$$RE \in (modifies y) :: RE$$
 is

$$true/(modifies x, modifies alloc)$$
-immune (5.10)

Eq. (5.9) and Eq. (5.10) are vacuously true. Now, using the rule $SEQ1_u$, the following is derived

[reads x]

$$\vdash_{u}^{\Gamma} \{true\} \times := \text{new } T; \quad y := x.f; \{y = x.f\}$$
[modifies x, modifies alloc, modifies y, fresh(region{x.*})]

In this case, the **region** $\{x.*\}$ of the read effect in the second statement is dropped in that of the sequence statement, as the fresh effects of the first statement become the fresh effect of the sequence.

5.2 Soundness

Theorem 2. The judgment $\vdash_{u}^{\Gamma} [\delta] \{P\} S\{Q\} [\varepsilon]$ that is derivable by the axioms and inference rules in Fig. 5.1, and the structural rules in Fig. 5.2 and Fig. 5.3 is valid.

Proof. Using the result of Theorem 1 on page 49, the proof only needs to check the read effects. Let S be a statement and (σ, h) be Γ -state. Assume $\vdash_r^{\Gamma} \{P\} S \{Q\}[\varepsilon]$ and $\sigma, h \models^{\Gamma} P$. Then it needs to be true that $\mathcal{MS}[\Gamma \vdash S : ok(\Gamma')](\sigma, h \upharpoonright \mathcal{E}[\Gamma \vdash regRW(\varepsilon, \delta) : region]](\sigma)) \neq err.$

(SKIP_u) In this case, S is skip;, P is true, and δ and ε are both Ø. As it is known that
 h↾E[[Γ ⊢ regRW(ε,δ) : region]](σ) = Ø, by the program semantics Fig. 2.4, it must be
 true that MS[[Γ ⊢ skip;: ok(Γ)]](σ, Ø) ≠ err.

- 2. (VAR_u) In this case, S is **var** x : T;, P is true, and δ and ε are both \emptyset . As it is known that $h \upharpoonright \mathcal{E}[[\Gamma \vdash regRW(\varepsilon, \delta) : region]](\sigma) = \emptyset$, by the program semantics Fig. 2.4, it must be true that $\mathcal{MS}[[\Gamma \vdash var x : T; : ok(\Gamma, x : T)]](\sigma, \emptyset) \neq err$.
- (ALLOC_u) In this case, S is x := new T;, P is true and ε and δ are both Ø. As it is known that h↾E[[Γ ⊢ regRW(ε,δ) : region]](σ) = Ø, by the program semantics Fig. 2.4, it must be true that MS[[Γ ⊢ x := new T; : ok(Γ)]](σ, Ø) ≠ err.
- 4. (ASSGN_u) In this case, S is x := G;, P is x = x' and δ is efs(G) and ε is **modifies** x, where $x \notin FV(G)$. Since it is known that $h \upharpoonright \mathcal{E}[[\Gamma \vdash regRW(\varepsilon, \delta) : region]](\sigma) = \emptyset$, by the program semantics Fig. 2.4 on page 23, it must be true that $\mathcal{MS}[[\Gamma \vdash x := G; : ok(\Gamma)]](\sigma, \emptyset) \neq err$.
- 5. (UPD_u) In this case, S is x.f := G; P is $x \neq null$, δ is (reads x, efs(G)) and ε is modifies region{x.f}. By the precondition, it is known that $\sigma(x) \neq null$. Since it is known that $\mathcal{E}[[\Gamma \vdash regRW(\varepsilon, \delta) : region]](\sigma) = \{(\sigma(x), f)\}$, by the program semantics Fig. 2.4, it must be true that $\mathcal{MS}[[\Gamma \vdash x.f := G; : ok(\Gamma)]](\sigma, h | \{(\sigma(x), f)\}) \neq err$.
- 6. (ACC_u) In this case, S is x := x'.f; P is $x' \neq null$, δ is (reads x', region $\{x'.f\}$) and ε is modifies x, where $x \neq x'$. The precondition implies that $\sigma(x') \neq null$. As $\mathcal{E}[\![\Gamma \vdash regRW(\varepsilon, \delta) : region]\!](\sigma) = \{(\sigma(x'), f)\}, \text{ by the program semantics shown in}$ Fig. 2.4, it must be true that $\mathcal{MS}[\![\Gamma \vdash x := x'.f; : ok(\Gamma)]\!](\sigma, h \upharpoonright \{(\sigma(x'), f)\}) \neq err.$

Other inductive cases follow inductive hypotheses.

CHAPTER 6: Interoperability¹

This chapter shows the connections of UFRL, FRL and SL. Section 6.1 shows that FRL is just an instance of UFRL. Section 6.2 shows how to encode SL to UFRL. Section 6.3 presents another way to allow SL style assertions to appear in UFRL (or FRL itself) without using the somewhat verbose encoding of separating conjunction.

6.1 FRL - An Instance of UFRL

The section shows that FRL Hoare formulas can be translated into UFRL by using the read effect **reads alloc**.

Lemma 8. Let Γ be a well-formed type environment. Let *S* be a statement, and let P_1 and P_2 be assertions. Let ε be effects, and let (σ, H) be a Γ -state. Then

 $\sigma, H \vDash_{r}^{\Gamma} \{P_{1}\}S\{P_{2}\}[\varepsilon] \textit{ iff } \sigma, H \vDash_{u}^{\Gamma} [\textit{reads alloc}]\{P_{1}\}S\{P_{2}\}[\varepsilon].$

Proof. The lemma is proved as follows, starting from the left side.

 $\sigma, H \vDash_{r}^{\Gamma} \{P_{1}\} S \{P_{2}\}[\varepsilon]$

iff \langle by the definition of FRL valid Hoare-formula (Def. 7). \rangle

¹The content in this chapter is submitted to *Formal Aspect of Computing*.

$$\begin{split} \sigma, H \coloneqq^{\Gamma} P_{1} \text{ implies } \mathcal{MS}[\![\Gamma \vdash S : ok(\Gamma')]\!](\sigma, H) \neq err \text{ and} \\ \text{if } (\sigma', H') &= \mathcal{MS}[\![\Gamma \vdash S : ok(\Gamma')]\!](\sigma, H), \text{ then } \sigma', H' \vDash^{\Gamma'} P_{2} \text{ and} \\ (for all $x \in dom(\sigma) :: \sigma'(x) \neq \sigma(x) \text{ implies modifies } x \in \varepsilon) \text{ and} \\ (for all $(o, f) \in dom(H) :: (H'[o, f] \neq H[o, f] \text{ implies} \\ (o, f) \in \mathcal{E}[\![\Gamma \vdash writeR(\varepsilon) : \operatorname{region}]\!](\sigma)) \text{ and} \\ (for all $(o, f) \in \mathcal{E}[\![\Gamma' \vdash freshR(\varepsilon) : \operatorname{region}]\!](\sigma') :: (o, f) \in (dom(H') - dom(H)))) \\ \text{iff} \qquad \langle \text{by } H = H \upharpoonright dom(H), dom(H) = \mathcal{E}[\![\Gamma \vdash regRW(\varepsilon, \operatorname{allocl}) : \operatorname{region}]\!](\sigma) \rangle \\ \sigma, H \vDash^{\Gamma} P_{1} \text{ implies } \mathcal{MS}[\![\Gamma \vdash S : ok(\Gamma')]\!](\sigma, H) \neq err \text{ and if} \\ (\sigma', H') &= \mathcal{MS}[\![\Gamma \vdash S : ok(\Gamma')]\!](\sigma, H \upharpoonright \mathcal{E}[\![\Gamma \vdash regRW(\varepsilon, \operatorname{allocl}) : \operatorname{region}]\!](\sigma)), \\ \text{then } (\sigma', H' \vDash^{\Gamma'} P_{2}) \text{ and } (for all $x \in dom(\sigma) :: \sigma'(x) \neq \sigma(x) \text{ implies modifies } x \in \varepsilon) \text{ and} \\ (for all $(o, f) \in dom(H) :: (H'[o, f] \neq H[o, f] \text{ implies} \\ (o, f) \in \mathcal{E}[\![\Gamma \vdash writeR(\varepsilon) : \operatorname{region}]\!](\sigma))) \text{ and} \\ (for all $(o, f) \in \mathcal{E}[\![\Gamma' \vdash freshR(\varepsilon) : \operatorname{region}]\!](\sigma') :: (o, f) \in (dom(H') - dom(H)))) \end{split}$$$$$$$$

iff \langle by the definition of UFRL valid Hoare-formula (Def. 8) \rangle $\sigma, H \models_{u}^{\Gamma} \{P_1\} S \{P_2\} [\varepsilon] [reads alloc \downarrow]$

Corollary 1. Let Γ be a well-formed type environment. Let S be a statement, and let P_1 and P_2 be assertions. Let ε be effects, and η be read effects. Then

$$\sigma, H \models_{u}^{\Gamma} [\eta] \{P_1\} S\{P_2\} [\varepsilon] \text{ implies } \sigma, H \models_{r}^{\Gamma} \{P_1\} S\{P_2\} [\varepsilon].$$

Def. 9 shows a syntactic mapping from the axioms and rules of FRL to those of UFRL. Recall that the assertions in FRL and URL have the same syntax.

Definition 9 (Syntactic Mapping from FRL to UFRL). Let Γ be a well-formed type environment. Let P_1 and P_2 be assertions in FRL. Let ε be effects. A syntactic mapping $TR_R[[-]]$ from FRL rules to those of UFRL is defined below:

For the FRL axioms: $TR_R[\![\vdash_r^{\Gamma} \{P_1\} S \{P_2\}[\varepsilon]]\!] = \vdash_u^{\Gamma} [reads alloc \downarrow] \{P_1\} S \{P_2\} [\varepsilon]].$

For the FRL rules, let h_1, \ldots, h_n be hypotheses and c be a conclusion; then the syntactic mapping from a FRL rule to a UFRL rule is defined as follows:

$$TR_{R}\left[\left[\frac{\vdash_{r}^{\Gamma}h_{1}\ldots \vdash_{r}^{\Gamma}h_{n}}{\vdash_{r}^{\Gamma}c}\right]\right] = \frac{TR_{R}\left[\left[\vdash_{r}^{\Gamma}h_{1}\right]\right]\ldots TR_{R}\left[\left[\vdash_{r}^{\Gamma}h_{n}\right]\right]}{TR_{R}\left[\left[\vdash_{r}^{\Gamma}c\right]\right]}$$

Theorem 3. Let Γ be a well-formed type environment. Let *S* be a statement. Let P_1 and P_2 be assertions. Let ε be effects. Then

$$\vdash_{r}^{\Gamma} \{P_{1}\}S\{P_{2}\}[\varepsilon] \text{ iff } \vdash_{u}^{\Gamma} [\text{reads } r \downarrow]\{P_{1}\}S\{P_{2}\}[\varepsilon]$$

where $P_{1} \Rightarrow r = \text{alloc and modifies } r \notin \varepsilon$

The proof is found in Appendix C.

Corollary 2. The meaning of a FRL judgment is preserved by the syntactic mapping.

Corollary 3. Let Γ be a well-formed type environment. Let S be a statement. Let P_1 and P_2 be assertions. Let ε be effects and η be read effects. Then

$$\vdash_{u}^{\Gamma} [\eta] \{P_1\} S\{P_2\} [\varepsilon] \text{ implies } \vdash_{r}^{\Gamma} \{P_1\} S\{P_2\} [\varepsilon].$$

The proof uses the subeffect rule to convert η into **reads** r, where $P_1 \Rightarrow r =$ **alloc**, and then applies Theorem 3.

6.2 Encoding Separation Logic

6.2.1 Separation Logic Review

To understand the relationship between SL and UFRL, their semantics are connected by defining the semantics of SL in terms of a heap and a region. This section is inspired by Parkinson and Summers' work [77]. They connect the semantics of separation logic and implicit dynamic frames [82] by a "total heap semantics" [77]. However, our heap is a partial function.

Separation logic introduces *separating conjunction* and *magic wand* (separating implication). The separating conjunction, $a_1 * a_2$, denotes that assertions a_1 and a_2 hold in separate parts of the current heap. The separating implication, $a_1 - a_2$, denotes that if assertion a_1 holds in an extra part of the heap, then a_2 will hold in a heap that is a combination of the extra heap and the current heap.

Definition 10 (Separation Logic Assertions (SL)). Let x be variables and f be field names. The syntax of assertions in separation logic is as follows:

$$e ::= x \mid \text{null} \mid n$$
$$a ::= e = e \mid x.f \mapsto e \mid a \star a \mid a \twoheadrightarrow a \mid a \wedge a \mid a \lor a \mid a \Rightarrow a \mid \exists x.a$$

The semantics given below assumes that expressions and assertions are properly typed. Expressions are pure, meaning that they are independent of the heap. Intuitionistic separation logic [42, 76] is considered in this dissertation. Recall that its semantics [42, 76] is as follows.

Definition 11 (Separation Logic Semantics). Assuming that N is the standard meaning function

for numeric literals and (σ, h) is a state, then the semantics of expressions in separation logic is:

$$\mathcal{E}_{s}: Typing \ Judgment \to e \to State \to Value$$
$$\mathcal{E}_{s}\llbracket\Gamma \vdash x:T\rrbracket(\sigma,h) = \sigma(x) \qquad \mathcal{E}_{s}\llbracket\Gamma \vdash n: \ int\rrbracket(\sigma,h) = \mathcal{N}\llbracketn\rrbracket$$
$$\mathcal{E}_{s}\llbracket\Gamma \vdash null:T\rrbracket(\sigma,h) = null$$

And the validity of assertions in separation logic is defined by:

$$\sigma, h \models_{s}^{\Gamma} e = e' \iff \mathcal{E}_{s}\llbracket\Gamma \vdash e : T\rrbracket(\sigma) = \mathcal{E}_{s}\llbracket\Gamma \vdash e' : T\rrbracket(\sigma)$$

$$\sigma, h \models_{s}^{\Gamma} x.f \mapsto e \iff (\sigma(x), f) \in dom(h) and h[(\sigma(x), f)] = \mathcal{E}_{s}\llbracket\Gamma \vdash e : T\rrbracket(\sigma)$$

$$\sigma, h \models_{s}^{\Gamma} a_{1} * a_{2} \iff exists h_{1}, h_{2}.(h_{1} \bot h_{2} and h = h_{1} \cdot h_{2} and \sigma, h_{1} \models_{s}^{\Gamma} a_{1} and$$

$$\sigma, h_{2} \models_{s}^{\Gamma} a_{2})$$

$$\begin{split} \sigma, h \vDash_{s}^{\Gamma} a_{1} \xrightarrow{} a_{2} & \iff \quad \text{for all } h'.(h' \bot h \text{ and } \sigma, h' \vDash_{s}^{\Gamma} a_{1} \text{ implies } \sigma, h \cdot h' \vDash_{s}^{\Gamma} a_{2}) \\ \sigma, h \vDash_{s}^{\Gamma} a_{1} \land a_{2} & \iff \quad \sigma, h \vDash_{s}^{\Gamma} a_{1} \text{ and } \sigma, h \vDash_{s}^{\Gamma} a_{2} \\ \sigma, h \vDash_{s}^{\Gamma} a_{1} \lor a_{2} & \iff \quad \sigma, h \vDash_{s}^{\Gamma} a_{1} \text{ or } \sigma, h \vDash_{s}^{\Gamma} a_{2} \\ \sigma, h \vDash_{s}^{\Gamma} a_{1} \Rightarrow a_{2} & \iff \quad \text{for all } h'.(\sigma, h \cdot h' \vDash_{s}^{\Gamma} a_{1} \text{ implies } \sigma, h \cdot h' \vDash_{s}^{\Gamma} a_{2}) \\ \sigma, h \vDash_{s}^{\Gamma} \exists x.a & \iff \quad exists v.(\sigma[x \mapsto v], h \vDash_{s}^{\Gamma} a) \end{split}$$

The points-to assertion specifies the least segment of the current heap that makes it true. Magic wand and logical implication both involve all possible extensions of the current heap.

Given a fixed program state, assertions in UFRL are all evaluated by the same heap. However, in SL nested sub-assertions of an assertion may be evaluated by a subheap, and the heap can be split and recombined during the evaluation process. This splitting and recombining of heaps can be modeled in the semantics using a heap H, various regions, and region operators along with the heap restriction operator (\uparrow) from Def. 1. Indeed the definitions of the semantics of separation logic and validity of assertions can be given using this idea. That is, when $r \subseteq dom(H)$, define $\sigma, H \upharpoonright r \models_{sl}^{\Gamma} a$ if and only if $\sigma, (H \upharpoonright r) \models_{s}^{\Gamma} a$, however, for clarity, the following definitions of validity for separating conjunction and implication are used.

Let r be a region such that $r \subseteq dom(H)$. The semantics for the separating conjunction expresses the required splitting of partial heaps by restricting the heap to the split regions.

$$\sigma, H \upharpoonright r \models_{sl}^{\Gamma} a_1 * a_2 \text{ iff exists } r_1, r_2 :: (r_1 \cap r_2 = \emptyset \text{ and } r = r_1 \cup r_2 \text{ and } \sigma, H \upharpoonright r_1 \models_{sl}^{\Gamma} a_1 \text{ and} \sigma, H \upharpoonright r_2 \models_{sl}^{\Gamma} a_2)$$

The semantics for the magic wand and logical implication consider all possible extensions of the partial heap $H \upharpoonright r$. The extensions are not necessarily disjoint with the heap H, but must be disjoint with the subheap $H \upharpoonright r$, so that the extended heap h' satisfies $dom(h') \cap r = \emptyset$.

$$\begin{split} \sigma, H \upharpoonright r \vDash_{sl}^{\Gamma} a_1 & \twoheadrightarrow a_2 \text{ iff for all } h', r' :: \quad (dom(h') \cap r = \varnothing \text{ and } \sigma, h' \upharpoonright r' \vDash_{sl}^{\Gamma} a_1 \text{ implies} \\ & \sigma, (H \cup h') \upharpoonright (r \cup r') \vDash_{sl}^{\Gamma} a_2) \\ \sigma, H \upharpoonright r \vDash_{sl}^{\Gamma} a_1 \Rightarrow a_2 \text{ iff for all } h', r' :: \quad (dom(h') \cap r = \varnothing \text{ and } \sigma, (H \cup h) \upharpoonright (r \cup r') \vDash_{sl}^{\Gamma} a_1 \\ & \text{ implies } \sigma, (H \cup h') \upharpoonright (r \cup r') \vDash_{sl}^{\Gamma} a_2) \end{split}$$

The following theorem is used to justify a semantic of SL in terms of a heap and a region.

Theorem 4. Let Γ be a well-formed type environment. Let σ be a store, h and H be heaps, and r be a region, such that $r \subseteq dom(H)$ and $h = H \upharpoonright r$, then $\sigma, h \models_s^{\Gamma} a$ iff $\sigma, H \upharpoonright r \models_{sl}^{\Gamma} a$.

The above theorem chooses dom(h) to be r, but this requires the user of the theorem to know exactly the heap that a SL assertion talks about in order to encode it. However, the intuitionistic semantics of SL do not precisely prescribe a unique solution to h, thus it is difficult to use Theorem 4. Therefore, in the next section, another candidate for r, which is more constructive, is found.

6.2.2 Supported Separation Logic

This section shows that the semantic footprint is another candidate for the region r needed in Theorem 4. Moreover, this section establishes the relationship between semantic footprints and supported separation logic (SSL), which is a fragment of SL where all assertions are supported [73].

The semantics of the points-to assertion, $x.f \mapsto e$ in a state (σ, h) indicates that there is a collection of heaps that make it true and those are all supersets of the heap with the singleton cell $\{(\sigma(x), f) \mapsto \mathcal{E}_s \llbracket \Gamma \vdash e : T \rrbracket (\sigma)\}$. Since intuitionistic SL is used, this heap is the greatest lower bound (glb) of the heaps in which the assertion holds. The semantic footprint for SL assertions is defined, which capture this glb. Validities are congruent on the heaps ranging from the glb to h. It is said that validity is *closed under heap extension* as are the semantics of the semantic footprint, as any extension to the glb will preserve validity. But some assertions in SL do not have a semantic footprint, because the glb does not exist.

The semantic footprint of a SL assertion a is the glb of (heap) locations on which a depends. The notion of the glb is formalized by the intersection of the regions of the given heap on which the given assertion a is true:

$$\operatorname{MinReg}(a,\sigma,h) = \bigcap \{r \mid r \subseteq \operatorname{dom}(h) \text{ and } (\sigma,h \vDash_s^{\Gamma} a \text{ implies } \sigma,(h \upharpoonright r) \vDash_s^{\Gamma} a) \},$$

where (σ, h) is a state. However, σ , $(h \upharpoonright \text{MinReg}(a, \sigma, h)) \models_s^{\Gamma} a$ is not always true. For example, consider $(x.f \mapsto 5) \lor (y.g \mapsto 6)$ in a state where both disjuncts are true; note that the intersection of regions whose domains are $\{(\sigma(x), f)\}$ and $\{(\sigma(y), g)\}$ is an empty set. But $\sigma, (h \upharpoonright \emptyset) \models_s^{\Gamma}$ $(x.f \mapsto 5) \lor (y.g \mapsto 6)$ is false. So, some assertions containing disjunction do not have a semantic footprint. Semantic footprints are defined as follows.

Definition 12 (Semantic Footprint). Let Γ be a well-formed type environment. Let a be an assertion

in SL, and (σ, h) be a Γ -state. Then $MinReg(a, \sigma, h)$ is the semantic footprint of a if and only if $\sigma, (h \upharpoonright MinReg(a, \sigma, h)) \models_s^{\Gamma} a$. In this case, it is said a has a semantic footprint.

In general, formulas that use disjunction do not have a semantic footprint, neither do formulas that use negation, due to DeMorgan's law for conjunctions. Similarly, general existential assertions do not always have a semantic footprint. Eliminating these types of assertions leaves a fragment of separation logic, which includes just the *supported* assertions in the work of O'Hearn et al. [73]. This fragment is called supported separation logic (SSL). This is the biggest subset of the syntax in Def. 10, where all assertions are necessarily supported. This syntax is the core fragment of separation logic that contains or corresponds with the SL syntax used by automated reasoning or analysis work [15, **?**, 17, 20, 26, 31, 77].² To avoid introducing new notations, the syntax of separation logic (Def. 10) is reused. From now on, those notations mean supported separation logic.

Definition 13 (Supported Separation Logic). *The syntax of supported separation logic has expressions (e), Boolean expressions (b) and assertions (a) defined as follows:*

$$e ::= x | null | n$$

$$b ::= e_1 = e_2 | e_1 \neq e_2$$

$$a ::= b | x.f \mapsto e | a_1 * a_2 | a_1 \land a_2 | b \Rightarrow a | \exists x. (y.f \mapsto x * a)$$

The first semantic lemma below states that the truth of assertions is closed under heap extension. That means if an assertion a is true in a heap h, then it is also true in an extension of h. The proof of encoding separating conjunction, $a_1 * a_2$, needs this property. Given the truth of $a_1 * a_2$ on heap h, where a_1 and a_2 hold on partitions of h, h_1 and h_2 respectively, the evaluation of the encoded expression is on each partition's extension to h. However, the witnesses for h_1 and h_2 , regions r_1

²For the work with classical separation logic, the *emp* predicate is needed.

and r_2 , must satisfy $r_1 \cup r_2 = dom(h)$, which is required by its semantics. Picking $h \upharpoonright r_1$ as the witness for h_1 pushes the proof to take $h \upharpoonright (dom(h) - r_1)$ as the witness for h_2 . Lemma 9 below can be applied in this scenario as $h \upharpoonright r_2 \subseteq h \upharpoonright (dom(h) - r_1)$, as $r_1 \subseteq dom(h)$ and $r_2 \subseteq dom(h)$.

Lemma 9. Let Γ be a well-formed type environment. Let a be an SSL assertion, and (σ, h) be a Γ -state. Let h' be a heap, such that $h \subseteq h'$. Then $\sigma, h \models_s^{\Gamma} a \Rightarrow \sigma, h' \models_s^{\Gamma} a$.

The semantic footprints for assertions in SSL are derived in Lemma 10 based on the SL semantics in terms of a heap and a region.

Lemma 10. Let Γ be a well-formed type environment. Let (σ, h) be a state, and let e, b and a be an SSL expression, a Boolean expression, and an assertion. Then:

MinReg(b, σ, h) = Ø.
 if σ, h ⊨^Γ_s x.f ↦ e, then MinReg(x.f ↦ e, σ, h) = {(σ(x), f)}.
 if σ, h ⊨^Γ_s a₁ * a₂, then MinReg(a₁ * a₂, σ, h) = MinReg(a₁, σ, h) ∪ MinReg(a₂, σ, h).
 if σ, h ⊨^Γ_s a₁ ∧ a₂, then MinReg(a₁ ∧ a₂, σ, h) = MinReg(a₁, σ, h) ∪ MinReg(a₂, σ, h).
 if σ, h ⊨^Γ_s b ⇒ a and σ, h ⊨^Γ_s b, then MinReg(b ⇒ a, σ, h) = MinReg(a, σ, h).
 if σ, h ⊨^Γ_s b ⇒ a and σ, h ⊭^Γ_s b, then MinReg(b ⇒ a, σ, h) = MinReg(a, σ, h).
 if σ, h ⊨^Γ_s b ⇒ a and σ, h ⊭^Γ_s b, then MinReg(b ⇒ a, σ, h) = MinReg(a, σ, h).
 if σ, h ⊨^Γ_s b ⇒ a and σ, h ⊭^Γ_s b, then MinReg(b ⇒ a, σ, h) = Ø.

 $x * a, \sigma[x \mapsto h[\mathcal{E}_{s}[[\Gamma \vdash y : T]](\sigma), f]], h);$

 $\textit{Moreover, } \sigma, h \vDash_s^{\Gamma} a \textit{ iff } \sigma, (h \restriction \textit{MinReg}(a, \sigma, h)) \vDash_s^{\Gamma} a.$

The proof from the left to the right of the above equivalences can be proved by cases on the structure of a, which is the seven cases in Lemma 10 on the previous page, and the converse can be proved using Lemma 9 on the preceding page.

O'Hearn et al. [73] note that for the soundness of proofs under hypothesis, assertions used in preconditions and resource invariants need to be *supported* (Theorem 26 [73, p. 11:44]). Thus to reason about programs using specifications of other modules specified by SL, only supported assertions should be considered. This section establishes the connection between supported assertions and assertions in SSL.

The following recalls the definition of supported and intuitionistic assertions in the work of O'Hearn et al. [73].

Definition 14 (Supported). Let Γ be a well-formed type environment. An assertion a is supported if and only if for all Γ -states (σ, h) , when h has a subheap $h_0 \subseteq h$ such that $\sigma, h_0 \models_s^{\Gamma} a$, then there is at least subheap $h_a \subseteq h$ with $\sigma, h_a \models_s^{\Gamma} a$ such that for all subheaps $h' \subseteq h$, if $\sigma, h' \models_s^{\Gamma} a$, then $h_a \subseteq h'$.

The definition means that, given a state (σ, h) and an assertion a, for any pair of h's sub heaps, h_1 and h_2 , such that $\sigma, h_1 \models_s^{\Gamma} a$ and $\sigma, h_2 \models_s^{\Gamma} a$, if $h_a = h_1 \cap h_2$ and $\sigma, h_a \models_s^{\Gamma} a$, then a is supported. In other words, a has a greatest lower bound heap that makes it a true, then a is supported.

The definition of semantic footprint can be interpreted in a similar way. Consider a given state (σ, h) , and any pair of regions r_1 and r_2 where $r_1 \subseteq dom(h)$ and $r_2 \subseteq dom(h)$, and a separation logic assertion a, such that σ , $(h \upharpoonright r_1) \models_s^{\Gamma} a$ and σ , $(h \upharpoonright r_2) \models_s^{\Gamma} a$. Let r be the glb of r_1 and r_2 , such that such that $r \subseteq r_1 \cap r_2$. If σ , $(h \upharpoonright r) \models_s^{\Gamma} a$, then a has a semantic footprint. The following theorem summaries this. The proof is found in Appendix D.

Theorem 5. An assertion in SL is supported if and only if it has semantic footprint.

SSL assertions are supported by Theorem 5. This property provides the soundness of the hypothetical frame rule for Hoare triple judgment under certain hypothesis [72, 73].

6.2.3 Encoding SSL Assertions

This section constructs region expressions that can syntactically denote semantic footprints for SSL assertions, and shows the translation from SSL to UFRL (or FRL). The footprint of an implication $b \Rightarrow a$ technically should include the footprint of b. However, since b's footprint is **region**{}, the definition ignores it.

Definition 15 (Semantic Footprint Function for SSL). Let *e*, *b* and *a* be an SSL expression, a Boolean expression, and an assertion. Then the semantic footprint function for each SSL assertion is defined as follows.

$$\begin{aligned} fpt_s(b) &= region\{\} \\ fpt_s(x.f \mapsto e) &= region\{x.f\} \\ fpt_s(b \Rightarrow a) &= b?fpt_s(a): region\{\} \\ fpt_s(a_1 * a_2) &= fpt_s(a_1) + fpt_s(a_2) \\ fpt_s(a_1 \wedge a_2) &= fpt_s(a_1) + fpt_s(a_2) \\ fpt_s(\exists x.(y.f = x * a)) &= region\{y.f\} + fpt_s(a)[y.f/x] \end{aligned}$$

However, the defining clause for implication is technically suspect, because the SSL Boolean expression b is technically not an UFRL expression. However, it is obvious that the identity map is a semantics-preserving translation of pure Boolean expressions as shown below.

Definition 16 (Mapping from SSL to UFRL (or FRL) assertions). A function, TR, syntactically

maps from SSL to UFRL as follows:

 $TR[[x]] = x \qquad TR[[n]] = n \qquad TR[[null]] = null$ $TR[[e_1 = e_2]] \qquad = \qquad TR[[e_1]] = TR[[e_2]]$ $TR[[e_1 \neq e_2]] \qquad = \qquad TR[[e_1]] \neq TR[[e_2]]$ $TR[[x.f \mapsto e]] \qquad = \qquad TR[[x]].f = TR[[e]]$ $TR[[a_1 * a_2]] \qquad = \qquad TR[[a_1]] \&\& \ TR[[a_2]] \&\& \ (fpt_s(a_1) \ ! \ ! \ fpt_s(a_2))$ $TR[[a_1 \land a_2]] \qquad = \qquad TR[[a_1]] \&\& \ TR[[a_2]]$ $TR[[b \Rightarrow a]] \qquad = \qquad TR[[b]] \Rightarrow TR[[a]]$ $TR[[\exists x.(y.f \mapsto x * a)]] = \qquad \exists x.(TR[[y.f \mapsto x]] \&\& \ TR[[a]] \&\& \ (region\{y.f\} \ ! \ ! \ fpt_s(a)))$

Lemma 11 and Lemma 12 state that the meaning of pure expressions and pure Boolean assertions are preserved in this translation, and are preserved under heap extension. Hence, e and TR[[e]], as well as b and TR[[b]] can be used interchangeably.

Lemma 11. Let Γ be a well-formed type environment. Let σ be a store. Let e be an expression in SSL. Then $\mathcal{E}_s[\![\Gamma \vdash e : T]\!](\sigma) = \mathcal{E}[\![\Gamma \vdash TR[\![e]\!] : T]\!](\sigma).$

Lemma 12. Let Γ be a well-formed type environment. Let (σ, h) be a Γ -state, and H be a heap such that $h \subseteq H$. Let b be a pure assertion in SSL. Then $\sigma, h \models_s^{\Gamma} b$ iff $\sigma, h \models_s^{\Gamma} TR[[b]]$ iff $\sigma, H \models_s^{\Gamma} TR[[b]]$.

The following theorem shows that the semantics of the semantic footprint function, $fpt_s(a)$, is its semantic footprint in a given state, where a is true. Its proof can be done by induction on the structure of assertions. With this theorem, henceforth, a semantic footprint is just called the "footprint".

Theorem 6. Let Γ be a well-formed type environment. Let a be an assertion in SSL, and let (σ, h) be a Γ -state. If $\sigma, h \models_s^{\Gamma} a$, then a has a semantic footprint in (σ, h) , and this semantic footprint is $MinReg(a, \sigma, h) = \mathcal{E}[\![\Gamma \vdash fpt_s(a) : region]\!](\sigma).$ The following corollary show that given a state where a is true, a's semantic footprint is a subset of the domain of the heap. This property is essential for the proof of the encoding for separating conjunction in Theorem 7.

Corollary 4. Let Γ be a well-formed type environment. Let a be an assertion in SSL. Let (σ, h) be $a \Gamma$ -state. If $\sigma, h \models_s^{\Gamma} a$, then $\mathcal{E}[[\Gamma \vdash fpt_s(a) : region]](\sigma) \subseteq dom(h)$.

The following corollary shows that $\mathcal{E}[[\Gamma \vdash fpt_s(a) : \mathbf{region}]](\sigma)$ is another candidate for the region r needed in Theorem 4. As $fpt_s(a)$ gives the semantic footprint for each a, the corollary can be proved by Lemma 10 and Theorem 6.

Corollary 5. Let Γ be a well-formed type environment. Let a be an assertion in SSL. Let (σ, h) be $a \Gamma$ -state. Then $\sigma, h \models_s^{\Gamma} a$ iff $\sigma, h \upharpoonright (\mathcal{E}\llbracket \Gamma \vdash fpt_s(a) : region \rrbracket(\sigma)) \models_s^{\Gamma} a$.

The following theorem shows that TR is an isomorphism of SSL assertions into UFRL in the sense that the translation preserves validity. The proof about separating conjunction is the most interesting one as it partitions heaps. The translated expression consists of two conjunctions. The first one checks the value of the two assertions. The second one says that their footprints are disjoint. The proof for this separating conjunction case is found in appendix E. The proof for the existential case needs the substitution laws for assertions that are not surprising and are found in the KIV formal proof [7], and thus are omitted.

Theorem 7. Let Γ be a well-formed type environment. Let (σ, h) be a Γ -state. Let a be an assertion in SSL. Then $\sigma, h \models_s^{\Gamma} a$ iff $\sigma, h \models_s^{\Gamma} TR[\![a]\!]$.

Fig. 6.1 summarizes the previous results, where $h = H \upharpoonright (\mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \operatorname{region}\rrbracket(\sigma))$. The r is found for the SL's semantics for Theorem 4, which is $\mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \operatorname{region}\rrbracket(\sigma)$; since it has been proved that $\sigma, h \models_s^{\Gamma} a$ if and only if $\sigma, H \upharpoonright (\mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \operatorname{region}\rrbracket(\sigma)) \models_s^{\Gamma} a$, it must be that $h = H \upharpoonright (\mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \mathbf{region} \rrbracket(\sigma))$. In addition, by Corollary 5, it must be true that $\sigma, h \models_s^{\Gamma} a \ iff \sigma, h \upharpoonright (\mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \mathbf{region} \rrbracket(\sigma)) \models_s^{\Gamma} a$. Furthermore, by Theorem 7 on the preceding page twice, it must be true that $\sigma, h \upharpoonright (\mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \mathbf{region} \rrbracket(\sigma)) \models_s^{\Gamma} a \ iff \models_{\Gamma}^{\Gamma} \sigma, h \upharpoonright (\mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \mathbf{region} \rrbracket(\sigma)) \mathsf{TR}\llbracketa \rrbracket$, and $\sigma, h \models_s^{\Gamma} a \ iff \sigma, h \models_{\Gamma}^{\Gamma} \mathsf{TR}\llbracketa \rrbracket$. Therefore, by transitivity, it must be true that $\sigma, h \models_{\Gamma}^{\Gamma} \mathsf{TR}\llbracketa \rrbracket \ iff \sigma, H \upharpoonright (\mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \mathbf{region} \rrbracket(\sigma)) \models_{\Gamma}^{\Gamma} \mathsf{TR}\llbracketa \rrbracket$ $iff \sigma, H \upharpoonright (\mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \mathbf{region} \rrbracket(\sigma)) \models_{sl}^{\Gamma} a.$

$$\sigma, h \models_{s}^{\Gamma} a \xleftarrow{\text{Corollary 5}} \sigma, h \upharpoonright (\mathcal{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \models_{s}^{\Gamma} a \xleftarrow{\text{Theorem 4}} \sigma, H \upharpoonright (\mathcal{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \models_{sl}^{\Gamma} a \xleftarrow{\text{Theorem 4}} \sigma, H \upharpoonright (\mathcal{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \models_{sl}^{\Gamma} a \xleftarrow{\text{Theorem 4}} \sigma, H \upharpoonright (\mathcal{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \models_{sl}^{\Gamma} a \xleftarrow{\text{Theorem 4}} \sigma, H \upharpoonright (\mathcal{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \models_{sl}^{\Gamma} a \xleftarrow{\text{Theorem 4}} \sigma, H \upharpoonright (\mathcal{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \models_{sl}^{\Gamma} a \xleftarrow{\text{Theorem 4}} \sigma, H \upharpoonright (\mathcal{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \models_{sl}^{\Gamma} a \xleftarrow{\text{Theorem 4}} \sigma, H \upharpoonright (\mathcal{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \models_{sl}^{\Gamma} a \xleftarrow{\text{Theorem 4}} \sigma, H \upharpoonright (\mathcal{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \models_{sl}^{\Gamma} a \xleftarrow{\text{Theorem 4}} \sigma, H \upharpoonright (\mathcal{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \models_{sl}^{\Gamma} a \xleftarrow{\text{Theorem 4}} \sigma, H \upharpoonright (\mathcal{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \models_{sl}^{\Gamma} a \xleftarrow{\text{Theorem 4}} \sigma, H \upharpoonright (\mathcal{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \models_{sl}^{\Gamma} a \xleftarrow{\text{Theorem 4}} \sigma, H \upharpoonright (\mathcal{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \models_{sl}^{\Gamma} a \xleftarrow{\text{Theorem 4}} \sigma, H \upharpoonright (\mathcal{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \models_{sl}^{\Gamma} a \xleftarrow{\text{Theorem 4}} \sigma, H \upharpoonright (\mathcal{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \models_{sl}^{\Gamma} a \xleftarrow{\text{Theorem 4}} \sigma, H \upharpoonright (\mathcal{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \models_{sl}^{\Gamma} a \xleftarrow{\text{Theorem 4}} \sigma, H \upharpoonright (\mathcal{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \models_{sl}^{\Gamma} a \xleftarrow{\text{Theorem 4}} \sigma, H \upharpoonright (\mathcal{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \models_{sl}^{\Gamma} a \xleftarrow{\text{Theorem 4}} \sigma, H \upharpoonright (\mathcal{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \models_{sl}^{\Gamma} a \xleftarrow{\text{Theorem 4}} \sigma, H \upharpoonright (\mathcal{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \models_{sl}^{\Gamma} a \xleftarrow{\text{Theorem 4}} \sigma, H \upharpoonright (\mathcal{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \models_{sl}^{\Gamma} a \xleftarrow{\text{Theorem 4}} \sigma, H \upharpoonright (\mathcal{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \models_{sl}^{\Gamma} a \xleftarrow{\text{Theorem 4}} \sigma, H \upharpoonright (\mathcal{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \models_{sl}^{\Gamma} a \xleftarrow{\text{Theorem 4}} \sigma, H \restriction (\mathcal{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \models_{sl}^{\Gamma} a \xleftarrow{\text{Theorem 4}} \sigma, H \restriction (\mathcal{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \models_{sl}^{\Gamma} a \xleftarrow{\text{Theorem 4}} \sigma, H \restriction (\mathcal{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \models_{sl}^{\Gamma} a \xleftarrow{\text{Theorem 4}} \sigma, H \restriction (\mathcal{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{r$$

6.2.4 SSL Proofs Review and Approach

This section encodes SSL's axioms and rules into those in UFRL, and shows that encoded SSL axioms are derivable and that the encoding translates proofs in SSL into proofs in UFRL. The correctness judgment of SSL, a Hoare-formula $\{a\} S \{a'\}$, means that *S* is partially correct, and *S* can only access the regions that are guaranteed by *a*. Consider the region guaranteed by *a* as its implicit frame. Thus, the proof obligation is to show that the following encoding into UFRL is valid (in Section 6.2.5):

$$\vdash_{s}^{\Gamma} \{a\}S\{a'\} iff \vdash_{u}^{\Gamma} [\texttt{reads} fpt_{s}(a)] \{ \texttt{TR}[\![a]\!]\} S \{\texttt{TR}[\![a']\!]\} [\texttt{modifies} (\texttt{MV}(S), fpt_{s}(a)), \texttt{fresh}(fpt_{s}(a') - r)]$$
where r is a region variable, such that $\texttt{TR}[\![a]\!] \Rightarrow r = fpt_{s}(a)$ and $r \notin \texttt{MV}(S)$ (6.1)

where MV(S) is the set of variables that S may modify, and r snapshots the set of locations of $fpt_s(a)$ in the pre-state. This translation is not the only way to establish the equivalence, e.g., the

read effects can be anything from \emptyset to $fpt_s(a)$. This encoding corresponds to the definition of validity for Hoare-formula in SSL, which is presented next.

The definition of validity for SL Hoare-formulas uses the notion of partial correctness that are used for FRL and UFRL: statements are not permitted to encounter errors in states that satisfy the precondition, but may still loop forever.

Definition 17 (Validity of SSL Hoare-formula). Let Γ be a well-formed type environment. Let S be a statement. Let a and a' be assertions in SSL. Let (σ, H) be a Γ -state. Then $\{a\}S\{a'\}$ is valid in (σ, H) , written $\sigma, H \models_s^{\Gamma} \{a\}S\{a'\}$, if and only if whenever $\sigma, H \models_s^{\Gamma} a$, then $\mathcal{MS}[\Gamma \vdash S : ok(\Gamma')](\sigma, H) \neq err$ and if $(\sigma', H') = \mathcal{MS}[\Gamma \vdash S : ok(\Gamma')](\sigma, H)$, then $\sigma', H' \models_s^{\Gamma'} a'$.

A SSL Hoare-formula $\{a\}S\{a'\}$ is valid, written $\models_s^{\Gamma} \{a\}S\{a'\}$, if and only if for all states $(\sigma, H) :: \sigma, H \models_s^{\Gamma} \{a\}S\{a'\}$.

The locality properties [73, 86] of SSL Hoare-formula are:

- 1. Safety Monotonicity: for all states (σ, H) and heaps H', such that $H \perp H'$, if $\mathcal{MS}[[\Gamma \vdash S : ok(\Gamma')]](\sigma, H) \neq err$, then $\mathcal{MS}[[\Gamma \vdash S : ok(\Gamma')]](\sigma, H \cdot H') \neq err$.
- *Termination Monotonicity:* for all states (σ, H) and heaps H', such that H⊥H', if *MS*[[Γ ⊢ S : ok(Γ')]](σ, H) terminates normally, then *MS*[[Γ ⊢ S : ok(Γ')]](σ, H · H') terminates normally.
- 3. Frame Property: for all states (σ, H_0) and heaps H_1 , such that $H_0 \perp H_1$, if $\mathcal{MS}[[\Gamma \vdash S : ok(\Gamma')]](\sigma, H_0) \neq err$ and $\mathcal{MS}[[\Gamma \vdash S : ok(\Gamma')]](\sigma, H_0 \cdot H_1) = (\sigma', H')$, then there is a subheap $H'_0 \subseteq H'$ such that $H'_0 \perp H_1$, $H'_0 \cdot H_1 = H'$, and $\mathcal{MS}[[\Gamma \vdash S : ok(\Gamma')]](\sigma, H_0) = (\sigma', H'_0)$.

Hoare-style proof rules for SSL are found in Fig. 6.2, following Parkinson's work [76]. In the figure, the shorthand $new_s(T, x)$ means $x.f_1 \mapsto default(T_1) * \cdots * x.f_n \mapsto default(T_n)$, where

the $f_i : T_i$ are defined by $(f_1 : T_1, \dots, f_n : T_n) = fields(T)$. SSL expressions (e) are used in the syntax of the statements, instead of FRL expressions (E), although the statements of SSL are those of FRL, the expressions have the same syntax and meaning, by Lemma 11.

The following lemma states the frame property of SL Hoare-formulas semantically. It is used in the proof of Lemma 8 later. The proof is found in Appendix F.

Lemma 13. Let Γ be a well-formed type environment. Let a and a' be assertions and S be a statement, such that $\models_s^{\Gamma} \{a\}S\{a'\}$. Let (σ, H) be a Γ -state. If $\sigma, H \models_s^{\Gamma} a$ and $\mathcal{MS}[\Gamma \vdash S : ok(\Gamma')](\sigma, H) = (\sigma', H')$, then:

1. for all $x \in dom(\sigma)$, if $\sigma'(x) \neq \sigma(x)$, then $x \in MV(S)$.

2. for all
$$(o, f) \in dom(H)$$
, if $H'[o, f] \neq H[o, f]$, then $(o, f) \in \mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : region \rrbracket(\sigma)$.

3. for all
$$(o, f) \in (\mathcal{E}\llbracket\Gamma' \vdash fpt_s(a') : \mathbf{region} \rrbracket(\sigma') - \mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \mathbf{region} \rrbracket(\sigma))$$
, it is that $(o, f) \in (dom(H') - dom(H))$.

There are several lemmas connecting FRL and UFRL separation operator (\cdot) to SL's separating conjunction operator (*). These lemmas are used to prove the frame rule case of the Theorem that the translation between SSL and UFRL preserves provability (Theorem 9 in Section 6.2.5). The following lemma says that the footprints of assertions in a separating conjunction are also separated in the sense of FRL's separation operator.

Lemma 14. Let Γ be a well-formed type environment. Let (σ, h) be a Γ -state. Let a_1 and a_2 be assertions in SSL. Then

$$\sigma, h \models_s^{\Gamma} a_1 * a_2 \text{ implies } \sigma, h \models_u^{\Gamma} efs(TR[[a_2]]) / modifies fpt_s(a_1)$$

Informally, the proof goes as follows. By the semantics of separating conjunction, it is known that a_1 and a_2 hold on disjoint heaps, say h_1 and h_2 , respectively. By Corollary 4, it must be true that

 $(SKIP_s) \vdash_s^{\Gamma} {true}$ skip; ${true}$

$$(VAR_s) \vdash_s^{\Gamma} \{true\} \texttt{var} x : T; \{x = default(T)\}$$

$$(ALLOC_s) \vdash_s^{\Gamma} \{a\} x := \operatorname{new} T; \{a * new_s(T, x)\}, \text{ where } x \notin \operatorname{FV}(a)$$

$$(ASGN_s) \vdash_s^{\Gamma} \{true\} \ x := e; \ \{x = e\}, \text{ where } x \notin FV(e)$$

$$(UPD_s) \vdash_s^{\Gamma} \{x.f \mapsto _\} x.f := e; \{x.f \mapsto e\}$$

 $(ACC_s) \ \vdash_s^{\Gamma} \{x'.f \mapsto z\}x := x'.f; \{x = z * x'.f \mapsto z\}, \text{ where } x \neq x', x' \neq z \text{ and } x \neq z$

$$(IF_s) \xrightarrow{\vdash_s^{\Gamma} \{a \land e\}} S_1 \{a'\}, \qquad \vdash_s^{\Gamma} \{a \land \neg e\}} S_2 \{a'\}}{\vdash_s^{\Gamma} \{a\} \texttt{if} e \{S_1\}\texttt{else}\{S_2\} \{a'\}}$$

$$(WHILE_s) \xrightarrow{\vdash_s^{\Gamma} \{I \land e\} S \{I\}}{\vdash_s^{\Gamma} \{I\} \text{ while } e \{S\} \{I \land \neg e\}}$$

$$(SEQ_s) \xrightarrow{\vdash_s^{\Gamma} \{a\} S_1 \{b\}, \quad \vdash_s^{\Gamma'} \{b\} S_2 \{a'\}}{\vdash_s^{\Gamma} \{a\} S_1 S_2 \{a'\}}$$

$$\begin{array}{ll} \operatorname{FV}(x) = \{x\} & \operatorname{FV}(\operatorname{\textbf{null}}) = \varnothing & \operatorname{FV}(n) = \varnothing \\ \operatorname{FV}(e_1 = e_2) = \operatorname{FV}(e_1) \cup \operatorname{FV}(e_2) & \operatorname{FV}(e_1 \neq e_2) = \operatorname{FV}(e_1) \cup \operatorname{FV}(e_2) \\ \operatorname{FV}(x.f \mapsto e) = \{x\} \cup \operatorname{FV}(e) & \operatorname{FV}(a_1 \ast a_2) = \operatorname{FV}(a_1) \cup \operatorname{FV}(a_2) \\ \operatorname{FV}(a_1 \land a_2) = \operatorname{FV}(a_1) \cup \operatorname{FV}(a_2) & \operatorname{FV}(b \Rightarrow a) = \operatorname{FV}(b) \cup \operatorname{FV}(a) \\ \operatorname{FV}(\exists x.y.f = x \ast a) = (\{y\} \cup \operatorname{FV}(a)) - \{x\} \end{array}$$

Figure 6.2: The axioms and proof rules for statements in SSL [76]

 $\mathcal{E}[\Gamma \vdash fpt_s(a_1) : region]](\sigma) \subseteq dom(h_1)$. So the following holds.

for all reads
$$RE \leq efs(\operatorname{TR}[[a_2]]) :: RE !! fpt_s(a_1).$$
 (6.2)

In addition, by definition of separator (Fig. 3.7), the following must be true

for all reads
$$X \leq efs(\operatorname{TR}\llbracket a_2 \rrbracket) ::$$
 reads $X / \operatorname{modifies} fpt_s(a_1).$ (6.3)

Using Eq. (6.3) together with Eq. (6.2) and the definition of separator (Fig. 3.7), proves that $efs(TR[[a_2]]) / modifies fpt_s(a_1)$.

The above lemma handles locations on the heap, but the frame rule also concerns variables, which are the subject of the following two lemmas.

The following lemma states that free variables are preserved by the encoding. It can be proved by induction on the structure of SSL assertions.

Lemma 15. Let a be an assertion in SSL. Then FV(a) = FV(TR[[a]]).

The following lemma shows that the set of variables in a framed assertion (c in the frame rule of SSL) are such that readVar(efs(TR[[c]])) is a subset of FV(TR[[c]]). The lemma is proved by induction on the structure of SSL assertions.

Lemma 16. Let c be an assertion in SSL, then readVar($efs(TR[[c]])) \subseteq FV(TR[[c]])$.

6.2.5 Translating SSL Proofs into UFRL

The following theorem shows that SSL Hoare formulas of the form $\{a\} S\{a'\}$ can be translated into UFRL, by using read effect $fpt_s(a)$, write effect $(fpt_s(a), MV(S))$ and fresh effect $(fpt_s(a') - r)$, where r snapshots the set of locations of $fpt_s(a)$ in the pre-state, and that the translation preserves validity. As can be seen in the lemma, a kind of converse holds, as some forms of UFRL Hoare formula translate back into SSL. The proof is found in Appendix G. **Theorem 8.** Let Γ be a well-formed type environment. Let S be a statement, and let a and a' be assertions in SSL, such that $\models_s^{\Gamma} \{a\}S\{a'\}$. Let r be a region variable. Let (σ, H) be Γ -state. If $\sigma, H \models^{\Gamma} TR[\![a]\!] \Rightarrow r = fpt_s(a)$ and $r \notin MV(S)$, then

$$\begin{split} \sigma, H &\models_s^{\Gamma} \{a\} S\{a'\} i\!f\!f \\ & [\textit{reads } \textit{fpt}_s(a)] \\ \sigma, H &\models_u^{\Gamma} \{\textit{TR}[\![a]\!]\} S\{\textit{TR}[\![a']\!]\} \\ & [\textit{modifies} (\textit{fpt}_s(a), \textit{MV}(S)), \textit{fresh} (\textit{fpt}_s(a') - r)] \end{split}$$

Def. 18 shows a syntactic mapping from the axioms and rules of SSL to those of UFRL. This mapping translates SSL axioms and rules into those of UFRL, however, the encoded *ALLOC* rule is an exception. UFRL has a special variable, **alloc**, that keeps track of the set of allocated locations globally; i.e. **alloc** is the domain of the heap. It is updated when executing the **new** statement. However, SSL does not have such a variable. Thus, the write effect of the encoded *ALLOC*_s adds "modifies alloc" to the frame condition.

Definition 18 (Syntactic Mapping from SSL to UFRL). Let Γ be a wellformed type environment. Let a and a' be assertions in SSL. A syntactic mapping, $TR_s[[-]]$, from SSL axioms and rules to those of UFRL is defined below:

$$TR_{s}\llbracket \vdash_{s}^{\Gamma} \{a\} \times := new T; \{a * new_{s}(T, x)\rrbracket = [reads fpt_{s}(a)] \\ \vdash_{u}^{\Gamma} \{TR\llbracket a \rrbracket\} \times := new T; \{TR\llbracket a * new_{s}(T, x)\rrbracket\} \\ [modifies x, modifies alloc, fresh(fpt_{s}(new_{s}(T, x)))] \\ TR_{s}\llbracket \vdash_{s}^{\Gamma} \{a\} S\{a'\}\rrbracket = \\ \vdash_{u}^{\Gamma} [reads fpt_{s}(a)] \{TR\llbracket a \rrbracket\} S\{TR\llbracket a'\rrbracket\} [modifies (fpt_{s}(a), MV(S)), fresh(fpt_{s}(a') - r)], \\ where r is a region variable such that $r \notin MV(S), TR\llbracket a \rrbracket \Rightarrow r = fpt_{s}(a)$ and$$

 $S \neq x := \operatorname{new} T;$.

For the SSL rules, let h_1, \ldots, h_n be hypotheses and c be conclusion; then the syntactic mapping from a SSL rule to a UFRL rule is defined as below:

$$TR_{s}\left[\left[\frac{\vdash_{s}^{\Gamma} h_{1}, \ldots, \vdash_{s}^{\Gamma} h_{n}}{\vdash_{s}^{\Gamma} c}\right]\right] = \frac{TR_{s}\left[\left[\vdash_{s}^{\Gamma} h_{1}\right]\right], \ldots, TR_{s}\left[\left[\vdash_{s}^{\Gamma} h_{n}\right]\right]}{TR_{s}\left[\left[\vdash_{s}^{\Gamma} c\right]\right]}$$

Theorem 9. Each translated SSL axiom is derivable, and each translated rule is admissible in the UFRL proof system.

The proof is by induction on the derivation and by cases in the last rule used, and can be found in Appendix H. The sequential case is not intuitive. An example is to show that how to use $SEQ1_u$ to prove that the encoded sequence rule is admissible in UFRL. Particularly, the proof strategy of proving the side conditions on immunity is explained. Consider the example x := y; x.f :=5; x.f := 6; Assume $y.f \mapsto 3$ before executing the first statement. In the proof, the following derivation can be achieved in SSL.

$$\vdash_{s}^{\Gamma} \{y.f \mapsto 3\}x := y; x.f := 5; \{x = y * x.f \mapsto 5\}$$
$$\vdash_{s}^{\Gamma} \{x = y * x.f \mapsto 5\}x.f := 6; \{x = y * x.f \mapsto 6\}$$
$$\vdash_{s}^{\Gamma} \{y.f \mapsto 3\}x := y; x.f := 5; x.f := 6; \{x = y * x.f \mapsto 6\}$$
(SEQ_s)

By Def. 18, the two premises are encoded to

$$\begin{bmatrix} \text{reads region}\{y.f\} \end{bmatrix}$$

$$\vdash_{u}^{\Gamma} \{y.f = 3\} \ x := y; x.f := 5; \ \{x = y \&\& x.f = 5\}$$

$$\begin{bmatrix} \text{modifies } x, \text{modifies region}\{y.f\} \end{bmatrix}$$
(6.4)

$$\begin{bmatrix} \text{reads region}\{x.f\} \end{bmatrix}$$

$$\vdash_{u}^{\Gamma} \{x = y \&\& x.f = 5\} x.f := 6; \{x = y \&\& x.f = 6\}$$

$$\begin{bmatrix} \text{modifies region}\{x.f\} \end{bmatrix}$$
(6.5)

And the proof obligation is to show that from Eq. (6.4) and Eq. (6.5), the translated conclusion below can be derived.

$$[reads region\{y.f\}] \\ \vdash_{u}^{\Gamma} \{y.f = 3\} \ x := y; x.f := 5; x.f := 6; \ \{x = y \&\& x.f = 6\}$$
(6.6)
[modifies x, modifies region{y.f}]

The immune side conditions are not satisfied. However, according to the postcondition of Eq. (6.4), it is known that y = x and y is not modified by the statement in Eq. (6.4). Hence, the variable y is substituted for x in the effects of Eq. (6.5), using the consequence rule, and get:

$$[reads region\{y.f\}] \\ \vdash_{u}^{\Gamma} \{x = y \&\& x.f = 5\}x.f := 6; \{x = y \&\& x.f = 6\}$$
(6.7)
$$[modifies region\{y.f\}]$$

Now the side conditions about immunity are true. Eq. (6.6) is derived by using the rule $SEQ1_u$. The proof strategy generalizes the approach used in the example. Let S_1S_2 be a sequential statement. The effects of S_2 is re-written by replacing all the variables in $MV(S_1)$, i.e., \overline{x} , with the variables \overline{z} , such that $a' \Rightarrow \overline{z} = \overline{x}$ and $\overline{z} \cap MV(S_1) = \emptyset$, where a' is the postcondition for S_1 . The detailed proof is shown in Appendix H.

Corollary 6. The meaning of a SSL judgment is preserved by the syntactic mapping.

6.3 Extending the UFRL (FRL) Proof System with Separating Conjunction

This section presents another way to allow SL and UFRL (or FRL) to interoperate. SL style assertions can appear in UFRL (or FRL itself), without using the somewhat verbose encoding of separating conjunction discussed previously. Thus, this section adds separating conjunction to the syntax of the assertions. The semantics of separating conjunction in UFRL (or FRL) is defined, and is proved equivalent to the one in SSL. Then the read effects of separating conjunction is defined. And the framing judgment is proved sound.

6.3.1 Extending the Syntax and the Semantics

To have the ability to write SL style specifications in UFRL (or FRL), there is no need to add the points-to assertion to the syntax, because the points-to assertion, $x.f \mapsto e$, has the same semantics as the equality assertion x.f = e. Thus, the syntax of assertions shown in Fig. 3.2 is extended as follows:

$$P ::= \ldots | P_1 * P_2$$

In the syntax, dots "..." denotes the material defined previously. Given a SSL assertion a, TR[[a]], which replaces each occurence of \mapsto in a with =, is a valid assertion in the extended UFRL (or FRL). To ease the notational burden, sometimes, the points-to assertion and the equality assertion are used interchangeably in examples when the context is clear.

The separating conjunction is a supported UFRL (or FRL) assertion in the following sense.

Definition 19 (Supported UFRL (or FRL) Assertions). Let P be an assertion in UFRL (or FRL). P is supported if there exists an SSL assertion, a, such that P = TR[[a]].

Defining the semantics of separating conjunction, $P_1 * P_2$, in UFRL (or FRL) requires a definition of its footprint, $fpt(P_1 * P_2)$. The semantics of fpt is defined by using the inverse of the translation function, TR^{-1} . This inverse exists because, by definition, TR is injective, as can be shown by induction on the structure of SSL assertions (see Def. 16). So, for each supported UFRL (or FRL) assertion, P, by definition there is some SSL assertion a such that TR(a) = P; thus for each supported UFRL (or FRL) assertion P, $TR^{-1}[[P]]$ is defined to be the SSL assertion a such that TR(a) = P.

Using TR^{-1} , here defines the semantic footprint function for supported UFRL (or FRL) assertions, P, by $fpt(P) = fpt_s(TR^{-1}[P])$.

Finally, the semantics of separating conjunction is defined as follows for supported UFRL (or FRL)

assertions P_1 and P_2 :

$$\sigma, H \models^{\Gamma} P_1 * P_2 \text{ iff } \sigma, H \models^{\Gamma} P_1 \text{ and } \sigma, H \models^{\Gamma} P_2 \text{ and } \sigma, H \models^{\Gamma} fpt(P_1) !! fpt(P_2)$$
(6.8)

The following lemma shows that Eq. (6.8) is a correct semantics.

Lemma 17. Let Γ be a well-formed type environment. Let (σ, H) be a Γ -state. Let P_1 and P_2 be supported assertions in extended UFRL (or FRL). Then

$$\sigma, H \models^{\Gamma} P_1 * P_2 \operatorname{iff} \sigma, H \models^{\Gamma}_s \operatorname{TR}^{-1}\llbracket P_1 \rrbracket * \operatorname{TR}^{-1}\llbracket P_2 \rrbracket.$$

Proof. We assume $\sigma, H \models^{\Gamma} P_1 * P_2$ and calculate it as follows.

$$\begin{split} \sigma, H &\models^{\Gamma} P_{1} * P_{2} \\ iff \qquad \langle \text{by Eq. (6.8)} \rangle \\ \sigma, H &\models^{\Gamma} P_{1} \text{ and } \sigma, H \models^{\Gamma} P_{2} \text{ and } \sigma, H \models^{\Gamma} fpt(P_{1}) ! ! fpt(P_{2}) \\ iff \qquad \langle \text{by definition } fpt(P) = fpt_{s}(\text{TR}^{-1}\llbracket P \rrbracket) \rangle \\ \sigma, H &\models^{\Gamma} P_{1} \text{ and } \sigma, H \models^{\Gamma} P_{2} \text{ and } \sigma, H \models^{\Gamma} fpt_{s}(\text{TR}^{-1}\llbracket P_{1} \rrbracket) ! ! fpt_{s}(\text{TR}^{-1}\llbracket P_{2} \rrbracket) \\ iff \qquad \langle \text{by semantics of assertions in Fig. 3.2} \rangle \\ \sigma, H &\models^{\Gamma} P_{1} \&\& P_{2} \&\& fpt_{s}(\text{TR}^{-1}\llbracket P_{1} \rrbracket) ! ! fpt_{s}(\text{TR}^{-1}\llbracket P_{2} \rrbracket) \\ iff \qquad \langle \text{by definition of the syntactical mapping from SSL to UFRL (Def. 16), as } P_{1} \text{ and} \\ \rho_{2} \text{ are supported} \\ \sigma, H &\models^{\Gamma} \text{TR}\llbracket \text{TR}^{-1}\llbracket P_{1} \rrbracket * \text{TR}^{-1}\llbracket P_{2} \rrbracket \end{bmatrix} \\ iff \qquad \langle \text{by Theorem 7} \rangle \\ \sigma, H &\models^{\Gamma} \text{TR}^{-1}\llbracket P_{1} \rrbracket * \text{TR}^{-1}\llbracket P_{2} \rrbracket \end{split}$$

Effects, Framing and Separator for SSL Formulas Recall that UFRL supports local reasoning by proving that the write effects of a statement are disjoint with the read effects of the predicates that describe the property of the program state. We define the read effects for $P_1 * P_2$ as follows:

$$efs(P_1 * P_2) = efs(P_1), efs(P_2)$$
(6.9)

Lemma 18 shows that the soundness of the frame validity (Def. 5), i.e., $true \vdash^{\Gamma} efs(P_1 * P_2) frm (P_1 * P_2)$ is valid. The proof is by induction on the structure of assertions.

Lemma 18 (Frame Soundness of Extended Assertions). Let Γ be a well-formed type environment. Let (σ, h) and (σ', h') be two Γ -states. Let P be a supported assertion in extended UFRL. If $(\sigma, h) \stackrel{efs(P)}{\equiv} (\sigma', h')$, then $\mathcal{E}[\![\Gamma \vdash fpt(P) : region]\!](\sigma) = \mathcal{E}[\![\Gamma \vdash fpt(P) : region]\!](\sigma')$, and $\sigma, h \models^{\Gamma} P$ iff $\sigma', h' \models^{\Gamma} P$.

The separating conjunction proves some properties about the separator (defined in Fig. 3.7).

Lemma 19. Let Γ be a well-formed type environment. Let (σ, h) be a Γ -state. Let P_1 and P_2 be supported assertions in extended UFRL. Then

$$\sigma, h \models^{\Gamma} P_1 * P_2 \text{ implies } \sigma, h \models^{\Gamma} efs(P_2) / \text{modifies } fpt(P_1)$$

Note that it is not valid that $\sigma, h \models^{\Gamma} P_1 * P_2 \Rightarrow \sigma, h \models^{\Gamma} efs(P_2) / \text{modifies } readVar(efs(P_1)), readR(efs(P_1))$. For example, let P_1 be $x.f_1 = 4$ and P_2 be $x.f_2 = 5$, and $P_1 * P_2$ is valid. Because $efs(P_2) = \text{reads } x$, $\text{region}\{x.f_2\}$, and modifies $readVar(efs(P_1)), readR(efs(P_1)) = \text{modifies } x$, $\text{region}\{x.f_1\}$, they are not disjoint sets.

6.3.2 Proof Rules

In the following, assume that all UFRL assertions involved in separating conjunctions are supported. This section discusses the introduction rule for separating conjunction, which is as follows:

$$(I_{sc}) \xrightarrow{\vdash_{u}^{\Gamma} [\delta] \{P\} S \{Q\}[\varepsilon]}{\vdash_{u}^{\Gamma} [\delta] \{P * R\} S \{Q * R\}[\varepsilon]} \qquad P \&\& R \Rightarrow efs(R) / \text{modifies } fpt(P),$$

$$(I_{sc}) \xrightarrow{\vdash_{u}^{\Gamma} [\delta] \{P * R\} S \{Q * R\}[\varepsilon]} \text{ where } P \&\& R \Rightarrow efs(R) / \varepsilon \text{ and}$$

$$Q \&\& R \Rightarrow efs(R) / \text{modifies } fpt(Q)$$

The two extra side conditions are used to conclude P * R and Q * R, which is justified by the following lemma:

Lemma 20 (Soundness). I_{sc} is admissible in the extended UFRL proof system.

Proof. I_{sc} can be derived as follows:

$$(FRM_{u}) \xrightarrow{ \left| \begin{array}{c} \left| \left\{ D \right\} S \left\{ Q \right\} [\varepsilon] \right| \\ \left| \left\{ P \&\& R \right\} S \left\{ Q \&\& R \right\} [\varepsilon] \right| \\ (CONSEQ_{u}) \xrightarrow{ \left| \begin{array}{c} \left| \left\{ D \&\& R \right\} S \left\{ Q \&\& R \right\} [\varepsilon] \right| \\ \left| \left| \left\{ D \&\& R \right\} S \left\{ Q \&\& R \right\} [\varepsilon] \right| \\ \left| \left| \left\{ D \&\& R \right\} S \left\{ Q \&\& R \right\} [\varepsilon] \right| \\ \end{array} \right| \\ \end{array} \right|} where (*)$$

 $(*) \text{ is } P \&\& R \Rightarrow efs(R) / \texttt{modifies} fpt(P) \text{ and } Q \&\& R \Rightarrow efs(R) / \texttt{modifies} fpt_s(Q)$

Lemma 21. Let Γ be a well-formed type environment. Let P_1 and P_2 be supported assertions in extended UFRL proof system, and (σ, h) be a Γ -state. If $\sigma, h \models^{\Gamma} P_1$ and $\sigma, h \models^{\Gamma} P_2$ and $efs(P_2)$:/modifies $fpt(P_1)$, then $\sigma, h \models^{\Gamma} P_1 * P_2$.

Consider the example in Fig. 6.3. The example specifies a linked-list using the separating conjunction while the method append is specified in the style of UFRL, where its read effects are omitted, and are considered as **reads alloc** \downarrow . Adopting the convention of VeriFast [?], ?v and ?vlst declare (universally-quantified) variables v and vlst respectively that scope over the entire specification of append. In the body of append, right after the loop, the following must be true:

 $\operatorname{curr.next} = \operatorname{null})) * \operatorname{lst}(n, [v]), (6.10)$

which (by the definition of the predicate lst) implies:

(lst (**this**, vlst) && (lstseg(**this**, curr) * curr.val \mapsto ?cv *

$$curr.next \mapsto null)$$
 * lst (n, [v]), (6.11)

```
predicate lst(n : Node<T>, se : seq<T>)
   reads fpt(lst(n, se));
   decreases |se|;
 {
   (n = null \Rightarrow se = [])
                          &&
   (n \neq null \Rightarrow n.val \mapsto se[0] * lst(n.next, se[1..])
 }
predicate lstseq(s: Node<T>, e : Node<T>, se : seq<T>)
   reads fpt(lstseg(s, e, se));
   decreases |se|;
 {
   (s = e && se = []) ||
   (s \neq e \&\& (s.val \mapsto se[0] * lstseg(s.next, e, se[1..])))
 }
class Node<T> {
  var val: T; var next: Node<T>;
 method append(n: Node<T>)
    requires lst(n, [?v]) * lst(this, ?vlst);
    modifies region{last().next};
    ensures this.valst = old(this.valst) + [n.val];
    ensures this.repr = old(this.repr) + n.repr;
    ensures this.valid();
  {
    var curr: Node<T>;
                          curr := this;;
    while (curr.next \ne null)
      invariant lstseg(this, curr) * lst(curr, ?cvlst);
      invariant fpt(lstseg(this, curr)) + fpt(lst(curr, cvlst)) =
                 fpt(lst(this, vlst));
    { curr := curr.next;
                          }
    curr.next := n;
  }
  function last() : Node<T>
  { /* ... */ }
  /* ... other methods omitted */
}
```

Figure 6.3: A linked-list example written in UFRL with separating conjunction

which implies the precondition of the rule UPD_u . Using the rules UPD_u and $SubEff_u$, the following is derived:

$$[reads curr, alloc]$$

$$\vdash_{u}^{\Gamma} \{curr \neq null\} curr.next := n; \{curr.next = n\}$$

$$[modifies region\{curr.next\}]$$
(6.12)

By $CONSEQ_u$ and I_{sc} , the following is derived:

$$[reads curr, alloc] \\ \{curr \neq null * lstseg(this, curr) * curr.val \mapsto ?cv * lst(n, [v])\} \\ \vdash_{u}^{\Gamma} curr.next := n; \\ \{curr.next = n * lstseg(this, curr) * curr.val \mapsto ?cv * lst(n, [v])\} \\ [modifies region\{curr.next\}] \end{cases}$$
(6.13)

and the postcondition of Eq. (6.13) implies, by the definition of lst,

$$lst(curr,[curr,val]+[v]) \&\& lseg(\texttt{this},n)$$
(6.14)

To prove the postcondition, consider the second loop invariant in Fig. 6.3:

$$fpt(lstseg(this, curr)) + fpt(lst(curr, [curr, val])) = fpt(lst(this, vlst)), (6.15)$$

Together with Eq. (6.14), at the end of the method body, it must be true that fpt(lstseg(this,curr)) + fpt(lst(curr,[curr.val]+[v])) = fpt(lst(this, vlst + [v])), which implies the postcondition of the procedure.

6.3.3 Encoding SSL specifications:

Using separating conjunctions in extended UFRL, the SSL Hoare-formulas are encoded by substituting = for \mapsto as follows:

$$\begin{split} & \vdash_{s}^{\Gamma} \{a\} \times := \texttt{new T}; \{a * new_{s}(T, x) \text{ iff} \\ & [\texttt{reads } \textit{fpt}_{s}(a)] \\ & \vdash_{u}^{\Gamma} \{a[=/\mapsto]\} \times := \texttt{new T}; \{(a * new_{s}(T, x))[=/\mapsto]\} \\ & [\texttt{modifies } x, \texttt{modifies alloc}, \texttt{fresh}(\textit{fpt}_{s}(new_{s}(T, x)))] \end{split}$$

$$\begin{split} & \vdash_s \{a\}S\{a'\} \textit{ iff } \\ & \vdash_u^{\Gamma} [\texttt{reads} \textit{ fpt}_s(a)]\{a[=/\mapsto]\}S\{a'[=/\mapsto]\}[\texttt{modifies}(\mathsf{MV}(S),\textit{ fpt}_s(a)),\texttt{fresh}(\textit{ fpt}_s(a')-r)], \\ & \texttt{ where } a[=/\mapsto] \Rightarrow r =\textit{ fpt}_s(a), r \notin \mathsf{MV}(S) \textit{ and } S \neq x := \texttt{new } T; \end{split}$$

where MV(S) is the set of variables that S may modify, and r snapshots the set of locations of $fpt_s(a)$ in the pre-state. The encoded ALLOC rule has the similar exception to Section 6.2.5.

To avoid complicated formulas due to the translation, proofs of later examples use the rule I_{sc} if frames are constructed by separating conjunctions, otherwise, the rule FRM_u is used in the examples. The places where the rule I_{sc} is used can be considered as using the rule FRM_u as well due to our results.

6.3.4 Summary

We have introduced two approaches to supporting separating conjunctions: (1) encoding them into assertions in UFRL; (2) adding them to the syntax and extending the UFRL proof system. The second approach takes advantage of the first one's results, and makes the UFRL assertions more concise.

CHAPTER 7: RECURSIVE PREDICATES¹

This chapter presents the treatment for inductive predicates. Many examples in SL feature inductive predicates, as do some examples in this dissertation. Thus, the connection between SL and UFRL (or FRL) needs to treat such inductively-defined predicates. As part of this treatment, the syntax of assertions is extended with a limited form of recursive predicates. And it is shown how to translate abstract function definitions and calls in SL to recursive predicate definitions and calls in UFRL (or FRL).

7.1 Recursive Predicated in UFRL (FRL)

The following grammar shows the extension of the assertions defined in Fig. 3.1. In the syntax, dots "..." denotes the material defined previously. The extension allows predicate declarations and calls to predicates in assertions (P).

Predicate ::= predicate
$$p(\overline{x:T})$$
 reads δ ; [decreases G;]{ P }
P ::= ... | $p(\overline{G})$ | $x.p(\overline{G})$

where p is the predicate name and G is either an expression or a region expression (as in Fig. 2.1). Assume that predicate names are unique in each program. A restricted form of recursive definition is allowed; mutual recursion is not allowed. The **decreases** clause is used to prescribe an argument that becomes strictly smaller each time a recursive predicate is called. This treatment is similar to Dafny [57, 34]. The body of a predicate is just an assertion. To make sure the predicate is monotonic, recursive calls of predicates can only appear in positive positions (e.g., not on the left side of an implication). And the recursive calls to predicates are not allowed inside unbounded universal quantifiers [34].

¹The content in this chapter is submitted to *Formal Aspects of Computing*.

To keep the spirit of a two-valued logic, a recursive predicate is allowed to be used only if it is provably terminating. To prove it terminates, a well-founded relation on the domain of a recursive predicate is enforced, e.g., a subregion relation (\leq) is defined on the type **region**. One of the proof obligations of its body is to show that the argument, which the decreases clause specifies, to each recursive predicate call goes down in this ordering [34].

The semantic function body(T, p) maps a pair of a type T and a predicate name p to its definition, where T is a reference type. Global predicates are considered to be wrapped in a distinguished class **Object**. The semantic function formals(T, p) maps a pair of a type T and a predicate name p to its declared formal parameters, where T is a reference type. The semantic function rd maps a predicate name to its read effect. The notation $\overline{x} \mapsto \overline{y}$ means pointwise mapping. A semantic function for assertion is defined below:

$$\mathcal{E}_p$$
: Assertion Typing Judgment \rightarrow Store \times Heap \rightarrow {true, false}

The satisfaction relation defined in Fig. 3.2 is defined by

$$\mathcal{E}_p[\![\Gamma \vdash P : \texttt{bool}]\!](\varphi)\sigma, H \text{ iff } \sigma, H \models^{\Gamma} P$$

The semantics of a predicate call is defined as follows.

$$\mathcal{E}_p[\![\Gamma \vdash p(\overline{G}) : \texttt{bool}]\!](\sigma, H) = (fix\underline{\lambda}(\sigma', H') \cdot \mathcal{E}_p[\![\Gamma \vdash body(\texttt{Object}, p) : \texttt{bool}]\!](\sigma', H'))(\sigma(formals(\texttt{object}, p) \mapsto \overline{v}), H)$$
$$\textbf{where } \overline{v} = \overline{\mathcal{E}[\![\Gamma \vdash G : T]\!](\sigma)}$$

$$\mathcal{E}_{p}\llbracket\Gamma \vdash x.p(\overline{G}) : \mathbf{bool}\rrbracket(\sigma, H) = \sigma(x) = o \text{ and } o \neq null \text{ and}$$

$$(fix\underline{\lambda}(\sigma', H') \cdot \mathcal{E}_{p}\llbracket\Gamma \vdash body(T, p) : \mathbf{bool}\rrbracket(\sigma', H'))(\sigma(\mathtt{this}, formals(T, p)) \mapsto (o, \overline{v})), H)$$

$$\mathbf{where} \ T = type(o) \text{ and } \overline{v} = \overline{\mathcal{E}}\llbracket\Gamma \vdash G : T\rrbracket(\sigma)$$

$$(7.2)$$

The read effects of predicate calls are defined as follows:

$$\begin{aligned} efs(p(\overline{F})) &= efs(F), \delta[\overline{F}/\overline{z}] \text{ where } \delta = rd(p) \text{ and } \overline{z} = formals(\texttt{Object}, p) \\ efs(x.p(\overline{F})) &= \texttt{reads } x, efs(F), \delta[(x,\overline{F})/(\texttt{this},\overline{z})] \\ & \texttt{where } \delta = rd(p) \text{ and } \overline{z} = formals(type(\sigma(x)), p) \end{aligned}$$

The rules $LIntrol_u$ and $LIntrol_u$ introduce the form of a predicate call to left-hand side of the judgment. The rules $RIntrol_u$ and $RIntrol_u$ introduce the form of a predicate call to the right-hand side of the judgment. The type environment $\Gamma(x)$ is omitted in the judgment.

$$(LIntrol_u) \frac{P' \vdash_u^{\Gamma} P}{p(\overline{F}) \vdash_u^{\Gamma} P} \text{ where } P' = body(\textit{Object}, p)[\overline{F}/formals(\textit{Object}, p)]$$

$$(LIntro2_u) \frac{x \neq null \&\& P' \vdash_u^{\Gamma} P}{x.p(\overline{F}) \vdash_u^{\Gamma} P} \text{ where } P' = body(\Gamma(x), p)[\overline{F}/formals(\Gamma(x), p)]$$

$$(RIntrol_u) \frac{P \vdash_u^{\Gamma} P'}{P \vdash_u^{\Gamma} p(\overline{F})} \text{ where } P' = body(\textit{Object}, p)[\overline{F}/formals(\textit{Object}, p)]$$

$$(RIntro2_u) \frac{P \vdash_u^{\Gamma} x \neq null \&\& P'}{P \vdash_u^{\Gamma} x.p(\overline{F})} \text{ where } P' = body(\Gamma(x), p)[\overline{F}/formals(\Gamma(x), p)]$$

Lemma 22. The rules $LIntro1_u$, $LIntro2_u$, $RIntro1_u$ and $RIntro2_u$ are sound.

Proof. As the meaning of a predicate is defined by its body, i.e., the predicate is true if and only if its body is true, the four proof rules are sound. \Box

7.2 Inductive Definition in SSL

The following grammar shows the extension of the SSL syntax given in Def. 13. It allows predicate calls in assertions.

 $a ::= \ldots | p_s(\overline{e})$

where p_s is the predicate name and \overline{e} are arguments. Apply the definition of "inductive definition set" from Brotherston's work [23] to SSL as follows:

Definition 20 (Inductive Definition). Let an inductive predicate $p_s(\overline{z:T})$ in SSL. Then p_s is a set of conjunction of inductive cases. Each inductive case is in the form $b \Rightarrow a$.

The following shows a valid inductive definition in SSL, which has two inductive cases, where Def. 20 is instantiated with $b_1 := (n = null)$, $a_1 := (se = [])$, $b_2 := (n \neq null)$ and $a_2 := (\exists m. n.val \mapsto se[0] * n.next \mapsto m * list(m, se[1..]))$, where se is a sequence.

$$list(n, se) \stackrel{\text{def}}{=} (n = null \Rightarrow se = []) \land$$

$$(n \neq null \Rightarrow (\exists m. n.val \mapsto se[0] * n.next \mapsto m * list(m, se[1..])))$$

$$(7.3)$$

The semantic function *idf* maps a predicate name to its induction definition, which is the conjunction of inductive cases. The semantic function *formals*_s maps a predicate name to its formal parameters.

A semantic function for assertion is defined below:

$$\mathcal{E}_a: a \to Store \times Heap \to \{true, false\}$$

The satisfaction relation defined by Def. 11 is defined by

$$\mathcal{E}_a[[\Gamma \vdash a]](\sigma, h) \text{ iff } \sigma, h \models_s^{\Gamma} a$$

The semantics of inductive predicate $p_s(\overline{e})$ is defined as follows:

$$\mathcal{E}_{a}\llbracket\Gamma \vdash p_{s}(\overline{e})\rrbracket(\sigma,h) = (fix\underline{\lambda}(\sigma',h') \cdot \mathcal{E}_{a}\llbracket\Gamma \vdash idf(p_{s})\rrbracket(\sigma',h'))(\sigma(formals_{s}(p_{s}) \mapsto \overline{v},h))$$
where $\overline{v} = \overline{\mathcal{E}_{s}\llbracket\Gamma \vdash e:T\rrbracket(\sigma)}$
(7.4)

Let $b \Rightarrow a$ be one of the inductive cases of predicate $p_s(\overline{z})$, then the rules *LIntros* and *RIntros* introduce the form of a predicate call to the left-hand side and the right-hand side of the judgment

respectively.

$$(LIntro_{s}) \frac{a \vdash_{s}^{\Gamma} a'}{p_{s}(\overline{e}) \vdash_{s}^{\Gamma} a'} \text{ where } a = (b \Rightarrow a)[\overline{e}/formals_{s}(p_{s})]$$
$$(RIntro_{s}) \frac{a' \vdash_{s}^{\Gamma} a}{a' \vdash_{s}^{\Gamma} p_{s}(\overline{e})} \text{ where } a = (b \Rightarrow a)[\overline{e}/formals_{s}(p_{s})]$$

7.3 Encoding

The translation of recursive predicate call is defined as follows:

$$\operatorname{TR}\llbracket p_s(\overline{e}) \rrbracket = p_s(\operatorname{TR}\llbracket e \rrbracket). \tag{7.5}$$

Assume an inductive predicate p_s has n inductive cases. Fig. 7.1 on the following page shows the encoding of p_s 's inductive definition to a recursive predicate declaration in UFRL. The body of the generating recursive predicate is a conjunction of each encoded inductive case. The notation $RE_1 ! ! ... !! RE_n$ means pairwise region disjointness. For each inductive predicate $p_s : \overline{z : T} \mapsto$ **bool**, there is a region function with the signature $region_p_s : \overline{z : T} \mapsto region$ that computes the semantic footprint of the predicate p_s 's definition. The function's body is the semantic footprint of p_s 's definition. The region function is also used in the **decreases** clause. Fig. 7.2 on the next page shows the encoding of the inductive predicate in Eq. (7.3). Note that the invalid syntax can be solved by program instruments.

By the definition of region_{ps} and the results in Section 6.2.3, it is known that $TR[[p_s]] \vdash_u^{\Gamma}$ region_p_s frm $TR[[p_s]]$.

Lemma 23. Let Γ be a well-formed type environment. Let (σ, h) be a Γ -state, and p_s be an inductive predicate in SSL. Then

$$\mathcal{E}_{a}\llbracket\Gamma \vdash p_{s}(\overline{e}) : \textbf{bool} \rrbracket(\sigma, h) = \mathcal{E}_{p}\llbracket\Gamma \vdash TR\llbracketp_{s}(\overline{e})\rrbracket : \textbf{bool} \rrbracket(\sigma, h).$$


```
predicate list(n : Node<T>, se: sequence<T>)
  reads region_list(n, se);
  decreases region_list(n, se);
{
    (n = null \Rightarrow se = []) \&\&
    (n \neq null \Rightarrow (\exists m. n.val = se[0] \&\& n.next = m \&\& list(m, se[1..])
         && region{n.val} !! region{n.next} !! region_list(m, se[1..]))
}
function region_list(n : Node<T>, se: sequence<T>)
  reads region_list(n, se);
  decreases region_list(n, se);
{
  ret :=
    if (n = null) then region {} +
    if (n \neq null) then
       region{n.val} + region{n.next} + region_list(n.next, se[1..]);
}
```

Figure 7.2: The encoding of the predicate Eq. (7.3)

The proof is found in Appendix I. By the syntactic mapping from SSL to UFRL proofs Def. 18,

the induction rule in SSL ($LIntro_s$ and $RIntro_s$) is encoded to the followings:

$$(\operatorname{TR}\llbracket LIntro_s \rrbracket) \xrightarrow{\operatorname{TR}\llbracket a \rrbracket} \vdash_u^{\Gamma} \operatorname{TR}\llbracket a' \rrbracket \qquad \text{where } a = (b \Rightarrow a) [\overline{e}/formals_s(p_s)]$$

$$(\operatorname{TR}\llbracket RIntro_{s}\rrbracket) \xrightarrow{\operatorname{TR}\llbracket a'\rrbracket \vdash_{u}^{\Gamma} \operatorname{TR}\llbracket a\rrbracket} where \ a = (b \Rightarrow a)[\overline{e}/formals_{s}(p_{s})]$$

The encoded rules are admissible in the UFRL proof system by Theorem 7 and Lemma 23.

CHAPTER 8: REASONING ABOUT SUBTYPING

This chapter extends the programming language defined in Chapter 2 and Chapter 3 with inheritance, in a way that is similar to Java. To handle dynamic types, the FRL logic framework is extended by adding axioms and rules for dynamic and static method calls. A semantic model for behavior subtyping with explicit frame conditions is defined and proved sound.

8.1 Programming Language Extended with Inheritance

Fig. 8.1 shows the extensions of the program syntax from Fig. 2.1 and Fig. 3.1. In the syntax, dots "…" denotes the material defined previously. It contains typical object-oriented features, such as interface declarations, inheritance and method calls in statements. For simplicity, exception handling and overloading (e.g., field overloading and method overloading) are not provided. Recursive predicates presented in the previous chapter are not included for simplicity as well.

```
\begin{array}{rcl} Prog & ::= & \overline{Interface} & \overline{Class} & S \\ Class & ::= & \dots & | & \textbf{class} & C & [\texttt{extends} & C'] & [\texttt{implements}\overline{I}] & \{ & \overline{Field} & \overline{Method} & \} \\ Interface & ::= & \texttt{interface} & I & [\texttt{extends} & \overline{I'}] & \{ & \overline{Field} & \overline{MHead} & \} \\ MHead & ::= & \texttt{method} & m(\overline{x:T}) & [:T'] \\ T & ::= & \dots & | & I \\ Expr & ::= & \dots & | & x & \texttt{is} & T \\ S & ::= & \dots & | & x & \texttt{is} & T \\ P & ::= & \dots & | & x:T \end{array}
```

Figure 8.1: The extended syntax with OO features

There is a designated variable **super** that is used to access members of the superclass of the current derived class. And there is a distinguished class named **Object**, which is the default superclass of a class that does not declare a superclass explicitly with the **extends** clause. Class

Table 8.1: Auxiliary functions used in the semantics

Notation	Description
implements(T)	The interface names that are directly and transitively implemented by T ,
	where T is a class name or an interface name, where $T \notin implements(T)$
super(C)	The class name that C directly extends (if any)
supers(C)	The class names and interface names that are directly and transitively
	extended and implemented by class C , where $C \notin supers(C)$
formals(T,m)	The method $T.m$'s formal parameters, where T is a class name or
	an interface name
body(C,m)	The method $C.m$'s body, where C is a class name

names and interface names are unique in each program. Interfaces may contain fields that are used in specifications.

For simplicity, all fields are protected and all methods are public.¹ All classes (except **Object**) inherit from exactly one class and may implement multiple interfaces. Nested class declarations are not allowed for simplicity. All methods defined in a superclass are inherited by its subclasses. A method defined in a subclass with the same signature in the superclass *overrides* the superclass's declaration.

Recall that each well-formed type environment, written Γ , maps from identifiers to types:

$$\Gamma \in VarTypeEnv = Ids \stackrel{\text{fin}}{\to} T$$

The collection of types T contains primitive types and reference types that are class names and interface names. The type of a method is of the form $\overline{T} \to T'$. To streamline the presentation, the auxiliary functions defined in Table. 8.1 are used.

The subtype relation, \leq :, is a partial, reflexive and transitive relation on types. **Object** is the top of the subtype relation. The subtyping for a function type is contravariant for parameters and

¹This treatment simplifies the formalization.

covariant for the result. This is formalized as follows:

$$C \leqslant: \mathbf{Object} \qquad C \leqslant: C \qquad \frac{T \in supers(C)}{C \leqslant: T} \qquad \frac{I' \in implements(I)}{I \leqslant: I'}$$
$$\frac{T_1 \leqslant: T_2 \qquad T_2 \leqslant: T_3}{T_1 \leqslant: T_3} \qquad \frac{\overline{T_2} \leqslant: \overline{T_1} \qquad T_1' \leqslant: T_2'}{\overline{T_1} \to T_1' \leqslant: \overline{T_2} \to T_2'}$$

The functions dfields(C) and dmeths(C) define the type of fields and methods that the class C defines respectively. The functions dfields(I) and dmeths(I) define the type of fields and methods that the interface I defines, respectively. The functions ifields(T) and imeths(T) define the type of fields and methods that the type T inherits, respectively. The function fields(T) is re-defined as the type of fields that the type T defines or inherits. This definition is compatible with the definition in Chapter 2, as the language defined there does not have inheritance. The function meths(T) defines the type T defines or inherits.

$$\begin{aligned} dfields(T) &= \{(f:T') \mid (\texttt{var} f:T') \text{ is declared in the reference type} T \} \\ ifields(T) &= \begin{cases} \bigcup_{c' \in supers(T)} dfields(C') \cup \bigcup_{I \in implements(T)} dfields(I) & \text{ if } T \text{ is a class name} \\ dfields(\texttt{Object}) \cup \bigcup_{I \in implements(T)} dfields(I) & \text{ if } T \text{ is an interface name} \end{cases} \\ fields(T) &= dfields(T) \cup ifields(T) \\ dmeths(T) &= \{(T,m) \mapsto (\overline{T} \to T') \mid m(\overline{T}) : T' \text{ is declared in the reference type } T \} \\ imeths(T) &= \begin{cases} \bigcup_{C \in supers(T)} dmeths(C) \cup \bigcup_{I \in implements(T)} dmeths(I) & \text{ if } T \text{ is a class name} \\ dmeths(\texttt{Object}) \cup \bigcup_{I \in implements(T)} dmeths(I) & \text{ if } T \text{ is a class name} \end{cases} \\ meths(T) &= dmeths(T) \cup imeths(T) \end{cases} \end{aligned}$$

The typing rule for the type test expression is shown as follows:

$$\frac{\Gamma \vdash x : T'}{\Gamma \vdash x \text{ is } T : \text{bool}} \quad \text{where } is Ref(T') \text{ and } T \leqslant :T'$$

Typing rules for other expressions and region expressions are unchanged; see Appendix A. The following shows the typing rules for statements. They are adjusted from Fig. A.2. The typing rules for statements that are not shown here are unchanged.

$\Gamma \vdash x: T' \qquad \Gamma \vdash G: T$	$\Gamma \vdash x: T'$
$\Gamma \vdash x := G; : ok(\Gamma)$	$\Gamma \vdash x := \operatorname{new} T; : ok(\Gamma)$
where $x \neq \texttt{this}$ and $T \leqslant : T'$	where $x \neq \texttt{this}$ and $T \leq : T'$
$\Gamma \vdash x: T'$	$\Gamma \vdash y:T$
$\Gamma \vdash x := y.f; : ok(\Gamma)$	$\Gamma \vdash x.f := y; : ok(\Gamma)$
where $x \neq \texttt{this}, (f:T) \in \textit{fields}(\Gamma(y))$	where $x \neq \texttt{this}, (f:T') \in \textit{fields}(\Gamma(x))$
and $T \leqslant : T'$	and $T \leqslant: T'$

The typing rules for the type cast and method call statements are shown as follows. Note that the form super. $m(\overline{E})$ can only be called from code in a subclass, i.e., this $\in dom(\Gamma)$.

 $\begin{array}{ll} \Gamma \vdash x:T' & \Gamma \vdash \overline{E}:\overline{T_1} & \Gamma \vdash x:T'' \\ \hline \Gamma \vdash x:=(T)y;:ok(\Gamma) & \Gamma \vdash x:=y.m(\overline{E}):ok(\Gamma) \\ \text{where } x \neq \texttt{this}, \textit{isRef}(T') & \text{where } ((\Gamma(y),m) \mapsto (\overline{T} \to T')) \in \textit{meths}(\Gamma(y)), \\ \text{and } T \leqslant:T' & T' \leqslant:T'' \text{ and } \overline{T_1} \leqslant:\overline{T} \end{array}$

 $\begin{array}{ll} \Gamma \vdash \overline{E} : \overline{T_1} & \Gamma \vdash x : T'' \\ \hline \Gamma \vdash x := \texttt{super}.m(\overline{E}) : ok(\Gamma) \\ \texttt{where this} \in dom(\Gamma), C = super(\Gamma(\texttt{this})), \\ & (C,m) \mapsto (\overline{T} \to T')) \in meths(C), T' \leqslant :T'' \text{ and } \overline{T_1} \leqslant :\overline{T} \end{array}$

The typing rules for assertions are adjusted as follows:

$$\begin{array}{ll} \hline \Gamma \vdash E_1 : T_1 & \Gamma \vdash E_2 : T_2 \\ \hline \Gamma \vdash E_1 = E_2 : \texttt{bool} & \hline \Gamma \vdash E_1 : T_1 & \Gamma \vdash E_2 : T_2 \\ \hline \Gamma \vdash E_1 = E_2 : \texttt{bool} & \hline \Gamma \vdash E_1 : T_1 & \Gamma \vdash E_2 : T_2 \\ \hline \end{array} \\ \texttt{where } T_1 \leqslant : T_2 \text{ or } T_2 \leqslant : T_1 & \texttt{where } T_1 \leqslant : T_2 \text{ or } T_2 \leqslant : T_1 \\ \hline \frac{\Gamma \vdash x : T' & \Gamma \vdash E : T_2}{\Gamma \vdash x.f = E : \texttt{bool}} \\ \texttt{where } isRef(T'), (f : T_1) \in fields(T') \text{ and } (T_1 \leqslant : T_2 \text{ or } T_2 \leqslant : T_1) \end{array}$$

The typing rule for a dynamic type test assertion is shown as follows:

$$\frac{\Gamma \vdash x: T'}{\Gamma \vdash x: T: \texttt{bool}} \quad \texttt{where } \textit{isRef}(T') \text{ and } T \leqslant: T'$$

8.2 Semantics

The function, *RefCtx*, is used to denote sets of reference contexts that map references, *Ref*, to class names:

$$\rho \in RefCtx = Ref \xrightarrow{\text{fin}} ClassName$$

A program Γ -state is extended to either be a triple of a store, a reference context, and a heap or an error:

$$s \in State = Store \times RefCtx \times Heap \cup \{err\}$$

A Γ -state (ρ, σ, H) is a state such that $dom(\Gamma) = dom(\sigma)$.

There is a method environment, θ , which is a table of meanings of methods in all classes indexed by a pair of a class name and its method name, such that

$$\theta = fix(\lambda g \, \cdot \, \lambda(C, m) \, \cdot \, \underline{\lambda}s \, \cdot \, \mathcal{MS}[[\Gamma \vdash body(C, m) \, : \, ok(\Gamma')]](g)(s))$$

The underlined lambda $(\underline{\lambda})$ denotes a strict function that cannot recover form a nonterminating computation [80]. The semantic functions are re-defined as follows.

$$\mathcal{E}$$
 : Expression Typing Judgment \rightarrow Store \times RefCtx \rightarrow Value
 \mathcal{MS} : Statement Typing Judgment \rightarrow S \rightarrow MethEnv \rightarrow State \rightarrow State

The semantics of a type test expression is defined as follows:

$$\mathcal{E}\llbracket\Gamma \vdash x \text{ is } T: \texttt{bool}\rrbracket(\sigma, \rho) = \sigma(x) \neq null and \ \rho(\sigma(x)) \leqslant: T$$

The semantics of other expressions is re-defined by using ρ in place of the function *type*. By the definition of ρ and *type*, this chapter's $\mathcal{E}[[\Gamma \vdash G : T]](\sigma, \rho)$ is equivalent to the previous $\mathcal{E}[[\Gamma \vdash G : T]](\sigma)$ in Fig. 2.3. The semantics of statements is similar to Fig. 2.4, except the one for allocation:

$$\mathcal{MS}\llbracket\Gamma \vdash x := \operatorname{new} T; : ok(\Gamma) \rrbracket(\theta)(\sigma, \rho, h) = \operatorname{let} (l, h') = \operatorname{allocate}(T, h) \text{ in}$$
$$\operatorname{let} (f_1 : T_1, \dots, f_n : T_n) = \operatorname{fields}(T) \text{ in}$$
$$\operatorname{let} \sigma' = \sigma[x \mapsto l] \text{ in}$$
$$\operatorname{let} \rho' = \operatorname{Extend}(\rho, l, T) \text{ in}$$
$$(\sigma', \rho', h'[(\sigma'(x), f_1) \mapsto \operatorname{default}(T_1), \dots, (\sigma'(x), f_n) \mapsto \operatorname{default}(T_n)])$$

The semantics for a type cast statement is defined below:

$$\mathcal{MS}\llbracket\Gamma \vdash x := (T)y; : ok(\Gamma)\rrbracket(\theta)(\sigma, \rho, h) =$$

if $\sigma(y) = null$ or $\rho(\sigma(y)) \leq : T$ then $(\sigma[x \mapsto \sigma(y)], \rho, h)$ else *err*

The semantics for a dynamic method call is defined below:

$$\begin{split} \mathcal{MS}[\![\Gamma \vdash x := y.m(\overline{G}); : ok(\Gamma)]\!](\theta)(\sigma, \rho, h) &= \\ & \text{if } \sigma(y) \neq null \text{ then} \\ & \text{let } \overline{z} = formals(\rho(\sigma(y)), m) \text{ in} \\ & \text{let } \sigma'' = Extend(\sigma, (\texttt{this}, \overline{z}), (\sigma(y), \overline{\mathcal{E}[\![\Gamma \vdash G : T]\!](\sigma, \rho)}))) \text{in} \\ & \text{if } (\rho(\sigma(y)), m) \in \theta \text{ then} \\ & \text{let } v = (\theta(\rho(\sigma(y), m))(\sigma'', \rho, h) \text{in} \\ & \text{if } v = (\sigma', \rho', h') \text{ then } (\sigma[x \mapsto \sigma'(\texttt{ret})], \rho', h') \\ & \text{else if } v = err \text{ then } err \text{ else } \bot \end{split}$$

else err

else err

The semantics for a static method call does not need to pass the **this** parameter, as **this** points to the subclass that invokes **super.** $m(\overline{G})$.

$$\mathcal{MS}\llbracket\Gamma \vdash x := \mathbf{super}.m(\overline{G}); :ok(\Gamma) \rrbracket(\theta)(\sigma, \rho, h) =$$

$$\mathbf{let} \ C = super(\Gamma(\mathtt{this})) \mathbf{in}$$

$$\mathbf{let} \ \overline{z} = formals(C, m) \mathbf{in}$$

$$\mathbf{let} \ \sigma'' = Extend(\sigma, \overline{z}, \overline{\mathcal{E}}\llbracket\Gamma \vdash G : T \rrbracket(\sigma, \rho)) \mathbf{in}$$

$$\mathbf{if} \ (C, m) \in \theta \mathbf{then}$$

$$\mathbf{let} \ v = (\theta(C, m))(\sigma'', \rho, h) \mathbf{in}$$

$$\mathbf{if} \ v = (\sigma', \rho', h') \mathbf{then} \ (\sigma[x \mapsto \sigma'(\mathtt{ret})], \rho', h')$$

$$\mathbf{else} \ \mathbf{if} \ v = err \mathbf{then} \ err \mathbf{else} \ \bot$$

$$\mathbf{else} \ err$$

Lemma 1 is adjusted with the new definition of the semantic state as follows:

Lemma 1A. Let Γ and Γ' be two well-formed type environments. Let S be a statement, such that $\Gamma \vdash S : ok(\Gamma')$. Let Γ'' be a well-formed type environment, such that $dom(\Gamma) \cap dom(\Gamma'') = \emptyset$ and $dom(\Gamma') \cap dom(\Gamma'') = \emptyset$. Then

1. if
$$\mathcal{MS}[[\Gamma \vdash S : ok(\Gamma')]](\sigma, \rho, h) \neq err$$
, then $\mathcal{MS}[[\Gamma, \Gamma'' \vdash S : ok(\Gamma', \Gamma'')]](\sigma, \rho, h) \neq err$.

2. if
$$\mathcal{MS}\llbracket\Gamma \vdash S : ok(\Gamma') \rrbracket(\sigma, \rho, h) = (\sigma', \rho', h')$$
, then $\mathcal{MS}\llbracket\Gamma, \Gamma'' \vdash S : ok(\Gamma', \Gamma'') \rrbracket(\sigma, \rho, h) = (\sigma', \rho', h')$.

The semantics of assertions is re-defined by using ρ in place of the function *type*. By the definition of ρ and *type*, this chapter's $\sigma, \rho, h \models^{\Gamma} P$ is equivalent to the previous $\sigma, h \models^{\Gamma} P$ in Fig. 3.2. The semantics of dynamic type test assertion is defined below:

$$\sigma, \rho, h \models^{\Gamma} x : T \text{ iff } \sigma(x) \neq null \text{ and } \rho(\sigma(x)) = T$$

Also Lemma 2 is adjusted with the new definition of the semantic state as follows:

Lemma 2A. Let Γ and Γ' be two well-formed type environments such that $dom(\Gamma) \cap dom(\Gamma') = \emptyset$. Let (σ, ρ, h) be a Γ -state. Then $\sigma, \rho, h \models^{\Gamma} P$ implies $(\sigma, \rho, h) \models^{\Gamma, \Gamma'} P$.

8.3 Effects

The definition of agreement needs to consider the reference context as well, i.e., if two states agree on a read effect, δ , then the two states must agree on its dynamic types of objects as well.

Definition 4A (Agreement on Read Effects). Let Γ be a well-formed type environment. Let δ be an effect that is well-typed in Γ . Let $\Gamma' \ge \Gamma$ and $\Gamma'' \ge \Gamma$. Let (σ', ρ', h') and (ρ'', σ'', h'') be a Γ' -state and a Γ'' -state respectively. Then (σ', ρ', h') and (ρ'', σ'', h'') agree on δ , written $(\sigma', \rho', h') \stackrel{\delta}{=} (\rho'', \sigma'', h'')$, if and only if:

- 1. for all (**reads** x) $\in \delta :: \sigma'(x) = \sigma''(x)$, and if $\sigma'(x) \in dom(\rho')$, then $\rho'(\sigma'(x)) = \rho''(\sigma''(x))$.
- 2. for all (reads region{x.f}) $\in \delta$ and for all o such that $o = \sigma'(x)$ and $o \neq$ null and $(f:T') \in fields(\rho'(o)), h'[o, f] = h''[o, f]$ and if $\rho'(h'[o, f]) \in dom(\rho')$, then $\rho''(h''[o, f]) \in dom(\rho'')$ and $\rho'(h'[o, f]) = \rho''(h''[o, f])$.

The read effects of the type test expression is defined as efs(x is T) = reads x. The read effects of other expressions and atomic assertions are unchanged.

8.3.1 The read effect of a class

In program verification, it is common practice to use an object invariant expressed by logical formulas and "abstract" data [39] to describe all possible states of the object. An invariant is either encoded through methods' pre- and postconditions, or is explicitly specified (e.g., by the keyword **invariant**). To frame an invariant, ghost fields are commonly used in the dynamic frames based approaches, e.g., RL, FRL and Dafny. Ghost fields are specification-only fields that can be manipulated by specifications as a program runs, but cannot change a program's (non ghost) data or execution path. Consider the example in Fig. 8.2. The predicate valid is an invariant of the class Node<T>. The field fpt is a ghost field that computes the regions that frame the predicate valid. The method add prepends the node n to the linked-list. At the last line of its implementation, the ghost field fpt of the object **ret** is updated to frame its predicate valid. It is said that **reads** fpt is the read effects of the class Node<T>. For ease of the discussion, it is assumed that there is a function *bnd* that maps a class name to its read effects.

8.4 Supertype Abstraction and Local Reasoning

Supertype abstraction [50] allows one to use a supertype's method specification to reason about calls to a subtype's method. Leavens and Naumann [49] have shown that *behavioral subtyping* is necessary and sufficient for the validity of supertype abstraction. They define behavioral subtyping in terms of specification refinement, and define specification refinement in terms of preconditions and postconditions, but give no explicit treatment of frame conditions. To apply their result to the framework of local reasoning, the constraints for frame conditions are needed. This section defines the problem in the framework of FRL and achieves behavioral subtyping by using the techniques

```
class Node<T> {
  var val : T; var next : Node<T>;
  var fpt: region;
  predicate valid()
    reads this, this.fpt;
  {
    region{this.*} \leq this.fpt &&
    (this.next = null \Rightarrow region{this.*} = this.fpt) &&
    (this.next \neq null \Rightarrow region{this.next.*} \leq this.fpt &&
      next.fpt < this.fpt && region{this.*} !! next.fpt &&</pre>
      this.fpt = region{this.*} + next.fpt && next.valid())
  }
  method add(n: Node<T>) : Node<T>
    requires n \neq null && n.next = null;
    requires n.valid() && this.valid();
    requires n.fpt !! this.fpt;
    modifies region{n.next}, region{n.fpt};
    ensures ret = n && ret.valid();
    ensures ret.fpt = region{ret.*} + this.fpt;
  {
    ret := n;
    ret.next := this;
    ret.fpt := region{ret.*} + this.fpt;
  }
}
```

Figure 8.2: An example of framing invariant

of encapsulation and specification inheritance [30].

8.4.1 Problem

Suppose *m* is an instance of *T*'s method with specification $\{P_T\} T.m(\overline{x:T'}) \{Q_T\}[\varepsilon_T]$ in FRL. Let *R* be a predicate whose read effects are separate from the write effects of ε_T . In the spirit of supertype abstraction, it would be ideal if the following were valid:

for all
$$o: T :: \{ o \neq null \&\& P_T \&\& R \} o.m(\overline{G}) \{ Q_T \&\& R \} [\varepsilon_T].$$
 (8.1)

Eq. (8.1) means that the method *m*'s implementations in *T*'s subtypes have to comply with *T.m*'s specification. Let *S* be a subtype of *T* and $\{P_S\}m(\overline{x:T'})\{Q_S\}[\varepsilon_S]$ be *m*'s specification in *S*. To make Eq. (8.1) valid, a behavioral subtyping constraint is enforced on the specification of *S.m* [49], i.e., $\{P_S\}m(\overline{x:T'})\{Q_S\}[\varepsilon_S]$ refines $\{P_T\}T.m(\overline{x:T'})\{Q_T\}[\varepsilon_T]$. According to result in the work of Leavens and Naumann [49], such constraints are $P_T \Rightarrow P_S$ and $\mathsf{old}(P_T) \land Q_S \Rightarrow Q_T$. Because their work ignores frame conditions with the assumption that they could be encoded to postconditions, the relation between ε_T and ε_S is not clear. Therefore, this dissertation focus on the effects of overridden methods and formalizes this framing problem in the FRL proof system. Let δ be the read effect of *R* in a state where P_T holds, i.e., such that $P_T \vdash^{\Gamma} \delta frm R$. As *R* is preserved during the execution of the method *T.m*, then it must be true that $P_T \& R \Rightarrow \delta'/\varepsilon_T$.

Write effects only make sense when the precondition is true. Furthermore, for supertype abstraction, one can assume that the supertype's precondition is true; so suppose that P_T is true, in which case P_T && R && δ'/ε_S is true. Consider different cases of the relation between ε_S and ε_T .

- 1. Suppose $\varepsilon_S = \varepsilon_T$. This is the case where $P_T \&\& R \&\& \delta'/\varepsilon_S$. As $P_T \Rightarrow P_S$, for validity it must be that $P_S \&\& R \&\& \delta'/\varepsilon_S$. Thus, S.m automatically preserves R.
- 2. Suppose $\varepsilon_S < \varepsilon_T$. As P_T && R && δ'/ε_T , it must be that P_T && R && δ'/ε_S . And because $P_T \Rightarrow P_S$, validity requires that P_S && R && δ'/ε_S , which also preserves R.
- 3. Suppose ε_S ≤ ε_T. In this case, ε_S may contain additional fields that are introduced by the type S. This is the so called "the extended state problem" [52, 66]. A solution to the extended state problem is to divide the effect ε_S into two parts: ε_{S1} and ε_{S2}, where ε_{S1} ≤ ε_T and ε_{S2} ∩ ε_T = Ø. Following the previous two cases, validity requires that P_S && R && δ[·]/ε_{S1}.

Since reasoning at the level of the supertype knows nothing about ε_{S_2} , the regions in ε_{S_2} must be such that R cannot possibly depend on them. Following standard software engineering practice, it is called lack of dependency on ε_{S_2} "encapsulation".

8.4.2 Encapsulation

In object-oriented programming, an object contains field names and methods that manipulate these fields. The values of these fields represent the state of the object. If fields can only be accessed through their class, in the sense that the only way to read or write these fields is by calling a method defined in (or inherited by) the class, then those fields are *encapsulated* by the class. Fig. 8.3 shows three examples of encapsulation. The examples of Cell and ReCell are adapted from the work of Parkinson and Bierman [75]. The class Cell is the base class, and the classes ReCell and FCell are its derived classes. The class ReCell declares an additional field bak with type **int**. The class FCell declares an additional field fcc with type Cell.

Fig. 8.4 illustrates three objects of these three classes residing in disjoint parts of the heap; these three objects are $\sigma(c)$, $\sigma(rc)$, and $\sigma(fc)$. In the store, $(c : \sigma(c))$ means that the value of the variable c has value $\sigma(c)$. The left side of the store shows the types of variables, e.g., the variable c has type Cell, the variable rc has type ReCell, and the variable fc has type FCell. In the heap, $((\sigma(c), val) : 0)$ means that the location $(\sigma(c), val)$ stores the value 0. The fields of the object fc has reference type, and the object fc.fcc is created by the object fc. Thus, the data of fc is encapsulated as well.

In the figure, dashed boxes indicate regions where an object's data is stored. Each dashed box is said to frame the object. For example, region R_c frames the object c, R_{rc} frames the object rc, and R_{fc} frames the object fc. The relation between these regions can be expressed as: $R_{c} \parallel R_{rc} \parallel R_{fc}$,²

²The formula $R_1 \parallel R_2 \parallel R_3$ means that the three regions are pointwise disjoint.

```
class ReCell extends Cell {
                           val bak : int;
class Cell {
                           method ReCell() {
  var val : int;
                             super(); bak := 0;
                           }
  method Cell() {
    val := 0;
                           method set(v : int){
                             this.bak := super.get();
  }
                             super.set(v);
 method set(v : int){
                           }
    this.val := v;
                         }
  }
                         class FCell extends Cell {
                           var fcc : Cell;
 method get() : int{
    ret := this.val;
  }
                           method FCell() {
}
                             super();
                             fcc := new Cell();
                           }
                         }
```

Figure 8.3: Classes Cell, ReCell and FCell

i.e., there is no sharing among those objects. Since these fields are all protected, this relation also implies that the objects are encapsulated.

An object is always encapsulated if for all states, either its frame is a subregion of other objects' frames, or its frame is disjoint with them. If all the objects of type C are encapsulated, then the type C is said to be encapsulated. This idea is formalized in the following two definitions.

Definition 21 (Class C encapsulates RE). Let Γ be a well-formed type environment, and C be a class. Let RE be a subregion of bnd(C), i.e., RE < bnd(C). Then the class C encapsulates RE only if for all Γ -states (σ, ρ, h) and for all x : C, x' : C', $x \neq x' (\sigma, \rho, h) \models^{\Gamma} RE[x/this] !! bnd(C')[x'/this].$

Definition 22 (Encapsulation). Let Γ be a well-formed type environment, and C be a class. Then

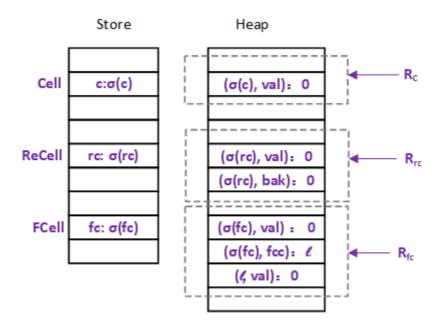


Figure 8.4: Encapsulation example

the class C is encapsulated only if for all $x : C, x' : C', \Gamma$ -states (σ, ρ, h) , such that $x \neq x'$, either $(\sigma, \rho, h) \models^{\Gamma} bnd(C)[x/this] < bnd(C')[x'/this]$ or for all subregions of bnd(C), RE, C encapsulates RE.

In Def. 22, the case where bnd(C)[x/this] < bnd(C')[x'/this] is that one object is a substructure of the other, i.e., in Fig. 8.4, the class Cell is a substructure of the class FCell.

The following lemma shows that if *RE* is encapsulated by a class, then the regions in the read effect of *RE* are encapsulated as well. This property is used in the definition of specification refinement.

Lemma 24. Let x and x' be two variables whose types are some class C and C' respectively, where $x \neq x'$. Let RE be a region expression such that C encapsulates RE. Then RE[x/this] is P/modifies bnd(C')[x'/this]-immune,

Proof. Let $region\{x.f_1....f_n\}$ in *RE* be arbitrary. By the definition of read effect in Fig. 3.5, $efs(region\{x.f_1....f_n\}) = reads \ x, region\{x.f_1\}....region\{x.f_1....f_{n-1}\}$. Let *R* be the union of all regions in $efs(region\{x.f_1....f_n\})$. Let $r' = region\{x'.g_1....g_m\}$ in bnd(C') be arbitrary. By the definition of immune (Def. 6), the proof obligation is to show that regions in R are all disjoint from r'. The rest of the proof proceeds by contradiction. Let **region** $\{x.f_1....f_i\} \in R$, where $1 < i \leq n - 1$, such that $x.f_1....f_i = x'.g_1....g_m$. Then, there are two cases: (1) when i = n - 1, then it must be that $x'.g_1....g_m....f_n = x.f_1....f_n$; (2) i < n - 1, then it must be that $x'.g_1....g_m.f_{i+1}....f_n = x.f_1....f_n$. The two cases both contradict the definition that RE is encapsulated by the class C, i.e., RE ! ! RE'.

However, aliasing may break representation encapsulation by argument exposure and representation exposure [60, 67, 70]. Argument exposure happens when a type T's representation is aliased by the reference to a client, through arguments of T's methods. Consider the example in Fig. 8.5. The class ECell inherits the class Cell, and declares an additional field ecc with type Cell. Its constructor is an example of argument exposure as the field ecc is aliased with the object cpassed to it.

Consider the following client code.

In the client code, the object c is used to construct the object e, which leads to the aliasing between the object e and the object c. Thus, changing the states of the object c may change the states of the object e. At the end of the client code, the read effect of the object c is $bnd(Cell)[c/this] = reads region{<math>c.val$ }, and the read effect of the object e is $bnd(ECell)[e/this] = (reads region{<math>e.val$ } + region{e.ecc} + region{e.ecc.val}). Let P be $c \neq null \&\& e \neq null \&\& e.ecc \neq null$. At the end of the client code, where c = e.ecc, shown in Fig. 8.6, the frame of the object c is a subregion of the frame of the object e. Thus, the object c is encapsulated. But the object e is not encapsulated, as its frame is either not a subregion or not disjoint from the frame of c.

Representation exposure happens when a type T's representation object is aliased by its clients through T's methods' return values. An example is the following method declaration:

```
class ECell extends Cell {
  var ecc : Cell;
  ECell(c : Cell)
    requires c≠null;
    modifies region{this.*};
    ensures this.get() = 0 && this.ecc = c;
  {
    this.val := 0; this.ecc := c;
  }
  function wf_set() : region {
    ret := super.wf_set() + region{ecc.val};
  }
  method set(v : int)
    requires this.ecc≠null;
    modifies wf_set();
    ensures this.get() = v && this.ecc.get() = v;
  { super.set(v); ecc.set(v); }
}
```

Figure 8.5: The specification of the class ECell

class C{ var f : T; method m () : T { ret := this.f; } }

where f has reference type. In this case, a subregion of the the class C's frame may be shared with other objects. Thus, the class C is not encapsulated. Section 8.6 introduces the methodology of capturing exposed regions in the case of argument exposure and representation exposure.

8.5 The Proof System

Recall that previously the effect, ε_S in a subtype S is divided into two parts, ε_{S_1} and ε_{S_2} , where $\varepsilon_{S_1} \leq \varepsilon_{S_2}, \varepsilon_{S_2} \cap \varepsilon_T = \emptyset$ and $writeR(\varepsilon_{S_2})$, are encapsulated by S. As those locations may frame parts of the extended state, thus, it must be true that for each method of S, $writeR(\varepsilon_{S_2}) \leq$

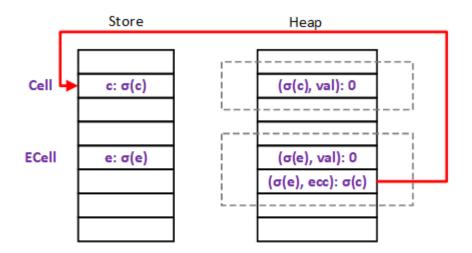


Figure 8.6: Argument exposure example

$$(bnd(S) - bnd(T)).$$

The previous analysis leads to the following definition of specification refinement.

Definition 23 (Specification Refinement). Let S and T be two types, such that $S \leq T$. Let $\{P_T\} T.m(\overline{x:T'}) \{Q_T\}[\varepsilon_T]$ and $\{P_S\} S.m(\overline{x:T'}) \{Q_S\}[\varepsilon_S, \text{modifies RE}]$ be specifications of a method m in T and in S respectively, where $\overline{x:T'}$ are its formal parameters. Then the specification of S.m refines the specification of T.m if $P_T \Rightarrow P_S$, $old(P_T) \land Q_S \Rightarrow Q_T$, $\varepsilon_S \leq \varepsilon_T$, modifies $RE \notin \varepsilon_T$ and RE is P_T/ε_T -immune.

To make sure S.m's specification is refined by T.m's specification, this dissertation adopts specification inheritance [30] as in JML [47]. The formula $\{P_T\}_{-}\{Q_T\}[\varepsilon_T]$ **also** $\{P_S\}_{-}\{Q_S\}[\varepsilon_S, RE]$ is defined as follows, where $\varepsilon_S \leq \varepsilon_T$, **modifies** $RE \notin \varepsilon_T$ and RE is P_T/ε_T -immune:

$$\{P_T \mid\mid P_S\}_{-}\{(\mathsf{old}(P_T) \Rightarrow Q_T) \&\& (\mathsf{old}(P_S) \Rightarrow Q_S)\}[\varepsilon_T, \varepsilon_S, RE], \tag{8.2}$$

The following lemma justifies the definition of the semantics of **also**.

Lemma 25. Let T and S be two types, such that $S \leq T$ and $S \neq T$. Let T's method m be specified as: $\{P_T\}T.m(\overline{x:T'})\{Q_T\}[\varepsilon_T]$. Let S.m be specified by $\{P_T\}S.m(\overline{x:T'})\{Q_T\}[\varepsilon_T]$ **also** $\{P_S\}S.m(\overline{x:T'})\{Q_S\}[\varepsilon_S, RE]$, where $\varepsilon_S \leq \varepsilon_T$, modifies $RE \notin \varepsilon_T$ and RE is P_T/ε_T -immune. Then the specification of T.m is refined by the specification of S.m

Proof. Let Γ be a well-formed type environment. Define R as $\forall \operatorname{region}\{x_i, y_i\} \in RE :: x_i \cdot f_i = z_i$, where z_i is fresh; this R is implicitly always true by the program semantics. The proof is shown in the following derivation.

8.5.1 Correctness Judgment

A judgment with hypothesis is written as follows:

$$\Delta \vdash_{r}^{\Gamma} \{P\} S \{Q\}[\varepsilon]$$

where Δ is a *specification context* that maps pairs of class and method names to the corresponding method's specification. Each method specification is written in the form $\{P\}T.m(\overline{x:T'})\{Q\}[\varepsilon]$.

The specifications are obtained from declared specifications and combinations of specification from supertypes, e.g., a specification inheritance in JML [47]. A specification context Δ is Γ valid if all the specifications in Δ are well-typed under Γ . A Δ -method environment θ means $dom(\Delta) = dom(\theta)$.

Definition 24 (Behaviorally-Subtyped Specification Context). Let Γ be a well-formed type environment. A specification context Δ is Γ -valid behaviorally-subtyped if for all specifications in $dom(\Delta)$ are well-typed under Γ , and for each $(T,m) \in dom(\Delta)$, if $S \leq :T$, then $(S,m) \in dom(\Delta)$ and $\Delta(S.m)$ refines $\Delta(T.m)$.

Def. 25 defines the meaning of a specification context.

Definition 25 (Specification Context Interpretation). Let Γ be a well-formed type environment, and Δ be a Γ -valid behaviorally-subtyped specification context. Then, θ is a Δ -interpretation if for each $\Delta(T, m) = \{P\} T.m(\overline{x:T'}) \{Q\}[\varepsilon]$, for all Γ -states, (σ, ρ, h) :

$$1. \ (\theta(T,m))(\sigma,\rho,h) \neq err \iff (\sigma,\rho,h) \models^{\Gamma} P$$

2. if
$$(\sigma, \rho, h) \models^{\Gamma} P$$
 and $(\sigma', \rho', h') = (\theta(T, m))(\sigma, \rho, h)$, then $(\sigma', \rho', h') \models^{\Gamma'} Q$ and

(a) for all $x \in dom(\sigma)$, if $\sigma(x) \neq \sigma'(x)$, then **modifies** $x \in \varepsilon$ (b) for all $(o, f) \in dom(h)$, if $h'(o, f) \neq h(o, f)$, then $(o, f) \in \mathcal{E}[[\Gamma \vdash writeR(\varepsilon) : region]](\sigma, \rho)$

$$(c) \ for \ all \ (o, f) \in \mathcal{E}[\![\Gamma' \vdash freshR(\varepsilon) : region]\!](\sigma', \rho'), \ (o, f) \in (dom(h') - dom(h)) \quad \blacksquare$$

In a verification logic, a method call is interpreted by checking its precondition, havocing its frame condition, and assuming its postcondition. If its precondition is not true, the verification fails. Following the Banerjee and Naumann's work [2], this case is called a *p*-fault. To capture *p*-fault in the semantics, the semantic function for statements is re-defined as follows.

 $\mathcal{MS}: \textit{Typing Judgment} \rightarrow S \rightarrow \textit{MethEnv} \rightarrow \textit{Specification Context} \rightarrow \textit{State} \rightarrow \textit{State}_{\perp} + \{\textit{p-fault}\}$

The method environment, θ , is re-defined as follows:

$$\theta = fix(\lambda g \, . \, \lambda \Delta \, . \, \lambda(C,m) \, . \, \underline{\lambda}s \, . \, \mathcal{MS}[\![\Gamma \vdash body(C,m) : ok(\Gamma')]\!](\theta)(\Delta)(g)(s))$$

This chapter's $\mathcal{MS}[\Gamma \vdash S : ok(\Gamma')](\theta)(\Delta)(\sigma, \rho, h)$ is equivalent to the previous $\mathcal{MS}[\Gamma \vdash S : ok(\Gamma')](\theta)(\sigma, \rho, h)$ except for the semantics of a dynamical method call:

$$\mathcal{MS}[\![\Gamma \vdash x := y.m(\overline{G}); : ok(\Gamma)]\!](\theta)(\Delta)(\sigma, \rho, h) =$$
if $\sigma(y) \neq null$ then
let $\overline{z} = formals(\rho(\sigma(y)), m)$ in
let $\overline{v} = \overline{\mathcal{E}}[\![\Gamma \vdash G : T]\!](\sigma, \rho)$ in
let $\sigma'' = Extend(\sigma, (\texttt{this}, \overline{z}), (\sigma(y), \overline{v}))$ in
let $\{P\}_{-}\{Q\}[\varepsilon] = \Delta(\rho(\sigma(y)), m)$ in
if $\sigma, \rho, h \models^{\Gamma} P[\overline{v}/\overline{z}]$ then
if $(\rho(\sigma(y)), m) \in \theta$ then
let $v = (\theta(\rho(\sigma(y), m))(\Delta)(\sigma'', \rho, h)$ in
if $v = (\sigma', \rho', h')$ then $(\sigma[x \mapsto \sigma'(\texttt{ret})], \rho', h')$
else if $v = err$ then err else \bot
else err

else *p*-fault

else err

and a static method call:

$$\mathcal{MS}[\![\Gamma \vdash x := \mathbf{super}.m(\overline{G}); : ok(\Gamma)]\!](\theta)(\Delta)(\sigma, \rho, h) =$$

$$\mathbf{let} \ C = super(\Gamma(\mathbf{this})) \ \mathbf{in}$$

$$\mathbf{let} \ \overline{z} = formals(C, m) \ \mathbf{in}$$

$$\mathbf{let} \ \overline{v} = \overline{\mathcal{E}}[\![\Gamma \vdash G : T]\!](\sigma, \rho) \ \mathbf{in}$$

$$\mathbf{let} \ \sigma'' = Extend(\sigma, \overline{z}, \overline{v}) \mathbf{in}$$

$$\mathbf{let} \ \sigma'' = Extend(\sigma, \overline{z}, \overline{v}) \mathbf{in}$$

$$\mathbf{let} \ \{P\}_{-}\{Q\}[\varepsilon] = \Delta(C, m) \ \mathbf{in}$$

$$\mathbf{if} \ \sigma, \rho, h \models^{\Gamma} P[\overline{v}/\overline{z}] \ \mathbf{then}$$

$$\mathbf{if} \ (C, m) \in \theta \ \mathbf{then}$$

$$\mathbf{let} \ v = (\theta(C, m))(\Delta)(\sigma'', \rho, h) \mathbf{in}$$

$$\mathbf{if} \ v = (\sigma', \rho', h') \ \mathbf{then} \ (\sigma[x \mapsto \sigma'(\mathbf{ret})], \rho', h')$$

$$\mathbf{else} \ \mathbf{if} \ v = err \ \mathbf{then} \ err \ \mathbf{else} \ p\ fault$$

$$\mathbf{else} \ err$$

A valid FRL Hoare-Formula is defined as follows.

Definition 26 (Valid FRL Hoare-Formula with Hypothesis). Let Γ be a well-formed type environment, and Δ be a Γ -valid behaviorally-subtyped specification context, and θ be a Δ -interpretation. Let *S* be a statement. Let *P* and *Q* be assertions, ε be effects, and (σ, ρ, h) be a Γ -state. Then $\{P\} S \{Q\}[\varepsilon]$ is valid in (σ, ρ, h) under Γ and θ written $(\sigma, \rho, h); \theta \models_r^{\Gamma} \{P\} S \{Q\}[\varepsilon]$, if and only if whenever $(\sigma, \rho, h) \models^{\Gamma} P$, then

- 1. $\mathcal{MS}[\Gamma \vdash S : ok(\Gamma')](\theta)(\Delta)(\sigma, \rho, h) \neq err,$
- 2. $\mathcal{MS}[[\Gamma \vdash S : ok(\Gamma')]](\theta)(\Delta)(\sigma, \rho, h) \neq p$ -fault,

3. if $(\sigma', \rho', h') = \mathcal{MS}[[\Gamma \vdash S : ok(\Gamma')]](\theta)(\Delta)(\sigma, \rho, h)$, then $(\sigma', \rho', h') \models^{\Gamma'} Q$ and

- (a) for all $x \in dom(\sigma)$: $\sigma'(x) \neq \sigma(x)$: modifies $x \in \varepsilon$
- (b) for all $(o, f) \in dom(h)$, if $h'[o, f] \neq h[o, f]$, then $(o, f) \in \mathcal{E}[\![\Gamma \vdash writeR(\varepsilon) : region]\!](\sigma, \rho)$

(c) for all
$$(o, f) \in \mathcal{E}[[\Gamma' \vdash freshR(\varepsilon) : region]](\sigma', \rho') :: (o, f) \in (dom(h') - dom(h)).$$

A FRL judgment $\Delta \vdash_r^{\Gamma} \{P\} S \{Q\}[\varepsilon]$ is valid if and only if for all Δ -interpretation θ , and all Γ -states $s :: s; \theta \models_r^{\Gamma} \{P\} S \{Q\}[\varepsilon]$.

The axioms and inference rules defined in Fig. 4.1 are unchanged. Structural rules defined in Fig. 4.2 and Fig. 4.3 are adjusted by adding hypothesis. The axiom for the type cast statement is shown below:

 $(TypeCast_r) \vdash_r^{\Gamma} \{y = null \mid | y:T'\} x := (T)y; \{x = y\} [\text{modifies } x] \text{ where } T' \leqslant: T$

The axiom for dynamic method calls that is adapted from Banerjee and Naumann's work [2] as follows:

 $(DCall_r) \Delta, \{P\} T.m(\overline{z:T}) \{Q\}[\varepsilon] \vdash_r^{\Gamma} \{x \neq null \&\& P[\overline{G}/\overline{z}]\} x.m(\overline{G}) \{Q[\overline{G}/\overline{z}]\}[\varepsilon[\overline{G}/\overline{z}]]$ where $\Gamma(x) = T$

where $P[\overline{G}/\overline{z}]$ simultaneously substitutes \overline{G} for \overline{z} in P. The axiom for static method calls is:

$$(SCall_r) \ \Delta, \{P\} \ C.m(\overline{z:T}) \ Q\}[\varepsilon] \vdash_r^{\Gamma} \{P[\overline{G}/\overline{z}]\} \ C.m(\overline{G}) \ \{Q[\overline{G}/\overline{z}]\}[\varepsilon[\overline{G}/\overline{z}]]\}$$

The following two structural rules show that additional type declarations and method declarations do not invalidate proved statements.

$$(TypeExt_r) \frac{\Delta \vdash_r^{\Gamma} \{P\} S \{Q\}[\varepsilon]}{\Delta \vdash_r^{\Gamma, \Gamma'} \{P\} S \{Q\}[\varepsilon]} \quad (MethExt_r) \frac{\Delta \vdash_r^{\Gamma} \{P\} S \{Q\}[\varepsilon]}{\Delta, \Delta' \vdash_r^{\Gamma} \{P\} S \{Q\}[\varepsilon]}$$

Lemma 26. The rules TypeCast_r, DCall_r, SCall_r, TypeExt_r and MethExt_r are sound.

Proof. Each rule is proved in turn. Let (σ, ρ, h) and (σ', ρ', h') be pre- and post-state respectively. *TypeCast_r*: In this case, the precondition, y = null || y : T', is assumed. There are two cases:

- y = null: By its semantics, $\sigma' = \sigma[x \mapsto \sigma(y)]$, $\rho' = \rho$ and h' = h. It must be true that $(\sigma', \rho', h') \models^{\Gamma} x = y$. Moreover, the write effect modifies x is correct as x is the only variable that is modified.
- y: T': In this case, ρ(σ(y)) = T'. By the side condition, T' ≤: T, it is true that ρ(σ(y)) ≤:
 T. By its semantics, σ' = σ[x ↦ σ(y)], ρ' = ρ and h' = h. It must be true that (σ', ρ', h') ⊨^Γ
 x = y. Moreover, the write effect modifies x is correct as x is the only variable that is modified.

 $DCall_r$: In this case, the precondition, $x \neq null \&\& P[\overline{G}/\overline{z}]$, is assumed. By the side condition, the static type of x is T. Let the dynamic type of x be S, such that $S \leq T$, and $\Delta(S,m) = \{P_S\}m(\overline{z:T})\{Q_S\}[\varepsilon_S]$. Because Δ is a behaviorally-subtyped specification context, $\Delta(S,m)$ refines $\Delta(T,m)$. Let (σ, ρ, h) be a state such that $\sigma, \rho, h \models^{\Gamma} P_T$, suppose m terminates, the proof obligation is to check the following:

- 1. $\sigma, \rho, h \models^{\Gamma} P_S$, which is true, by the definition of specification refinement, $P_T \Rightarrow P_S$.
- 2. $\theta(S,m)(\Delta)(\sigma,\rho,h) \neq err$, which is true by the definition of θ .
- 3. $\theta(S,m)(\Delta)(\sigma,\rho,h) \neq p$ -fault, which is true by the definition of θ .
- 4. let (σ', ρ', h') be θ(S, m)(Δ)(σ, ρ, h). It needs to show that (σ', ρ', h') ⊨^{Γ'} Q_T, which is true because by the definition of θ, (σ', ρ', h') ⊨^{Γ'} Q_S, and σ, ρ, h ⊨^Γ P_T and (σ', ρ', h') ⊨^{Γ'} Q_S implies (σ', ρ', h') ⊨^{Γ'} Q_T.
 - (a) for all $x \in dom(\sigma)$, $\sigma'(x) \neq \sigma(x)$: modifies $x \in \varepsilon$
 - (b) for all $(o, f) \in dom(h)$, if $h'[o, f] \neq h[o, f]$, then $(o, f) \in \mathcal{E}[\![\Gamma \vdash writeR(\varepsilon) : region]\!](\sigma, \rho)$

(c) for all
$$(o, f) \in \mathcal{E}[[\Gamma' \vdash freshR(\varepsilon) : region]](\sigma', \rho') :: (o, f) \in (dom(h') - dom(h)).$$

Because Δ is behaviorally-subtyped, it is sound to use the specification of T.m as hypothesis. Let θ be its interpretation, such that $(T, m) \in dom(\theta)$. By the definition of specification context interpretation (Def. 25) and the assumption that the precondition is true, it is true $(\theta(T, m))(\sigma, \rho, h) \neq err$, $(\sigma', \rho', h') = (\theta(T, m))(\sigma, \rho, h)$ and $(\sigma', \rho', h') \models^{\Gamma} Q[\overline{G}/\overline{z}]$. And the effect, $\varepsilon[\overline{G}/\overline{z}]$, is correct. Scall_r: As the statement explicitly indicate the method C.m is called, it is sound to use the specification of C.m as hypothesis. The proof is similar to the proof of the rule $DCall_r$, thus, is omitted.

TypeExt_r: By definition of a well-formedness type environment, $dom(\Gamma) \cap dom(\Gamma') = \emptyset$. By Lemma 2, it must be true that $\sigma, \rho, h \models^{\Gamma} P$ implies $\sigma, \rho, h \models^{\Gamma, \Gamma'} P$. By Lemma 1, $\mathcal{MS}[[\Gamma, \Gamma' \vdash S : ok(\Gamma'')]](\sigma, \rho, h) = (\sigma', \rho', h')$. By Lemma 2, the postcondition follows as well. As the original specification is well-typed, $dom(\Gamma') \cap FV(S) = \emptyset$. Thus, the effect is just ε as well.

MethExt_r Let $\Gamma' = \{P_{T'}\}T'.m(\overline{x:T})\{Q_{T'}\}[\varepsilon_{T'}]$. There are two cases.

- the method T'.m inherits from T.m, where S ≤: T. By the definition of behaviorallysubtyped specification context, the specification of T'.m refines the specification of T.m. The result follows supertype abstraction.
- 2. the method T'.m is new and does not inherit from any supertype's methods. Thus, T'.m cannot be invoked by S.

Definition 27 (Modular Soundness). Let Γ be a type environment. Let Δ be a Γ -valid behaviorallysubtyped specification context. Let P and Q be assertions, S be a statement, and ε be effects. The judgment, $\Delta \vdash_r^{\Gamma} \{P\} S \{Q\}[\varepsilon]$, is modularly sound if and only if for all $\Gamma' \ge \Gamma$, for all Γ' -valid behaviorally-subtyped specification contexts, Δ' , such that $\Delta' \ge \Delta$, and for all Δ' -interpretations, θ' ,

$$\Delta \vdash_{r}^{\Gamma} \{P\} S \{Q\}[\varepsilon] \Rightarrow \theta' \models_{r}^{\Gamma'} \{P\} S \{Q\}[\varepsilon].$$

Theorem 10. Let Γ be a well-formed type environment. Let Δ be a Γ -valid behaviorally-subtyped specification context. Let P and Q be assertions, S be a statement, and ε be effects. The judgment, $\Delta \vdash_r^{\Gamma} \{P\} S\{Q\}[\varepsilon]$, is modularly sound.

Proof. Assume $\Delta \vdash_r^{\Gamma} \{P\} S \{Q\}[\varepsilon]$. By Lemma 26, it must be true that $\Delta, \Delta' \vdash_r^{\Gamma,\Gamma'} \{P\} S \{Q\}[\varepsilon]$ Then the theorem is proved by the soundness theorem (Theorem 1).

8.6 Examples

This section explains how encapsulation is specified and proved by examples. To capture exposed regions, each reference type is equipped with a field, df, which stores an object's frame, e.g., df stores the dynamic frames of a linked-list. Another field exposed is used to store the locations that may be shared with other objects. It has default value **region**{} as fields are protected in this dissertation. It is updated in the methods where arguments exposures and representation exposure may happen. Since all the objects have these two fields, this dissertation assumes that they are declared in the class **Object** such that:

```
class Object{ var df : region; var exposed : region; }
```

As all the classes inherit from the class **Object**, the two fields are inherited in all types. A type's invariant, which is the condition that an object has to hold for all states, is specified by explicit preand postconditions of all the methods of the type.

In addition, to make sure $\varepsilon_S \leq \varepsilon_T$, incrementally defined region functions are used to simulate data groups [52]. Incremental definition can be enforced by syntactically checking, i.e., the function declared in the superclass has to be invoked in its subclasses.

Protected field names cannot be used in the specification of public methods, as they are invisible and meaningless to non-privileged clients. Therefore, the keyword **spec_public** is used in the field declaration. The declaration

var spec_public val : int;

is a shorthand for the declaration

var val : int;
public var abstract _val : int;
rep _val <- val;</pre>

The **spec_public** modifier is adopted from JML [24]. The **abstract** modifier defines fields that are only used for specifications. The meaning of an abstract field is defined by an abstraction function whose body is declared by the **rep** clause. As abstraction is not what this dissertation focuses on, it is not formalized. Functions are just methods without side effects. For simplicity, formalizing functions and pure methods are not provided. The theoretical foundation for these can be found in the work of Banerjee et al. [3].

Fig. 8.7 shows the specifications of the classes Cell. The field df in the class Cell stores the regions that frame its data representation, which is the region **region**{**this**.val}. As its type is not a reference type, the field **exposed** is always **region**{}. This condition is defined in the body of the predicate inv.

Fig. 8.8 shows the revised specification of the class ECell. The field df in the class ECell stores the regions that frame its data representation, which are the regions **region**{**this**.val} that inherits from its supertype, **region**{**this**.ecc} that is introduced by the class ECell, and also the frame of the object **this**.ecc, when it is not null. This is specified by the first assertion in the body of the predicate inv. The assertion **this**.ecc \neq null ? ecc.df : **region**{} is a conditional region expression, which abbreviates the assertion **this**.ecc = t && t \neq null ? ecc.df : **region**{}, where t is fresh.

The method ECell.set updates both val and ecc.val with the new value. Its write effects is specified by the function wf_set. To make sure an incremental definition of the function, **super**.wf_set is forced to be called in its body. This is enforced by a syntactic check. Its

```
class Cell{
  var spec_public val : int;
  function wf_set() : region
    reads wf_set();
  { ret := region{this.val}; }
  predicate inv()
    reads this.df;
  { df = region{this.val} && this.exposed = region{}
                                                      }
  method Cell()
    modifies this.df;
    ensures this.val = 0 && inv();
  {
     this.val := 0;
     this.df := region{this.val};
     this.exposed := region{};
  }
  function get() : int
    requires inv();
    reads wf_set();
    ensures ret = this.val;
  { ret := val; }
  method set(v : int)
    requires inv();
    modifies wf_set();
    ensures this.val = v && inv();
  { val := v; }
}
```

Figure 8.7: The specification of class Cell

body adds the region **region**{ecc.val} as well, which belongs to the extended state of the class ECell. By the definition of specification refinement (Def. 23), the proof obligation is to show that the region **region**{ecc.val} is encapsulated, i.e., it is disjoint from what may be

exposed, i.e., **this**.exposed. This disjointness condition has to be true for all the states of the class ECell's objects. Therefore, this condition is defined in the predicate inv, which is enforced to be true before and after each method after the object is constructed. However, the postcondition of the constructor implies that **this**.exposed = ecc.df, and by the specification of the class Cell, ecc.val = ecc.df. Therefore, the disjointness condition is violated and the error is captured.

```
class ECell extends Cell {
  var spec_public ecc : Cell;
 predicate inv() {
    this.df = region{this.val} + region{this.ecc} +
              (this.ecc \neq null ? ecc.df : region{}) &&
    this.exposed !! region{ecc.val}
  }
  function wf_set() : region
    reads wf_set();
  { ret := super.wf_set() + region{ecc.val}; }
 method ECell(c : Cell)
    requires c \neq null;
    modifies region{this.*};
    ensures this.val = 0 && this.ecc = c;
    ensures this.exposed = ecc.df;
    ensures inv();
  {
    this.val := 0;
    this.ecc := c;
    this.df := region{this.val} + region{this.ecc} + ecc.df;
    this.exposed = ecc.df;
  }
 method set(v : int)
  also
    requires inv() && this.ecc ≠ null;
    modifies wf_set();
    ensures this.get() = v && ecc.get() = v;
    ensures inv();
  {
    super.set(v);
    ecc.set(v);
  }
}
```

Figure 8.8: The revised specification of class ECell

CHAPTER 9: APPLICATIONS¹

This chapter shows several potential applications of the results in this dissertation.

9.1 A Footprint Function

The specification language can be further extended with a footprint function, say **fpt**, for supported assertions. However, such a footprint function would not be well-defined for arbitrary assertions, since not all are supported, and thus not all footprints would be semantic footprints. Note that, by construction, an SSL assertion a and its translation TR[[a]] have the same semantic footprints, i.e., $fpt_s(a) = ftpt(TR[[a]])$, where ftpt is the semantic footprint function for the UFRL (or FRL) assertions. The specification of the method mark (Fig. 9.4) is one example of using the **fpt** function. In this case, **fpt** (dag(d)) returns the set of locations of the DAG d that satisfy the predicate dag.

9.2 Intraoperation of FRL and SSL

The results in this dissertation allow specifications written in the style of either UFRL, FRL or SSL to be understood in one UFRL proof system. A program verifier built in UFRL should identify specifications written in FRL and SSL, and encode them to UFRL by using the corresponding translating rules automatically. This section introduces a scheme that interprets these styles of specifications. Given a method specification, there are two cases.

- 1. If both the read effect the and write effect (including the fresh effect) of the method are specified, then verifies check the implementation of the method by using the axioms and proof rules in UFRL. There is no translation involved.
- 2. If the read effect of the method is not specified, then there are two cases.

¹Part of the content in this chapter is submitted to *Formal Aspect of Computing*.

- (a) If the write effect of the method is specified, or if the method is decorated by the keyword **pure** (that is a shorthand for a frame of **modifies** Ø), then verifiers consider that the specification is written in the style of FRL, set the read effects to the default value, **reads alloc** ↓, and verify the implementation of the method by using the axioms and proof rules in UFRL.
- (b) Otherwise, the specifications are considered as written in the style of SSL. After a syntactical check on the assertions appear in the specification, i.e., they should be all supported, verifiers translate the specification to UFRL and verify the implementation by using the axioms and proof rules in UFRL.

9.3 Hypothetical Reasoning and Interoperation between Modules

A program may conceptually consist of distinct modules or components, each of which manipulates a separate internal resources, e.g., part of the heap. Different modules' specifications may be specified in the style of either SSL or FRL. This section shows how these different styles of specifications interoperate with each other.

Assume the form of program correctness judgment with hypothesis in UFRL is $\Delta_u \vdash_u^{\Gamma} [\delta] \{P_1\} S \{P_2\} [\varepsilon]$, which states that S satisfies its Hoare-formula under certain hypotheses, Δ_u , which map pairs of a class and a method name to the corresponding method's specification. Hypotheses are given by the grammar:

$$\Delta_u ::= \emptyset \mid \Delta_{u_1}, \Delta_{u_2} \mid [\delta] \{P\} T.m(\overline{x:T}) \{Q\} [\varepsilon]$$

Recall the hypotheses defined in Section 8.5 as follows:

$$\Delta_r ::= \emptyset \mid \Delta_{r_1}, \Delta_{r_2} \mid \{P\}T.m(\overline{x:T}) \{Q\}[\varepsilon]$$

Hypotheses specified by SSL are given by the following grammar [73]:

$$\Delta_s ::= \emptyset \mid \Delta s_1, \Delta s_2 \mid ssl\{a\}T.m(\overline{x:T})\{a'\}[X]$$

where X = MV(S) and S = body(C, m).

There is a syntactic translation function, TR_{Δ} , that maps the hypotheses in FRL and SSL to those in UFRL as follows:

$$TR_{\Delta}[\![\varnothing]\!] = \varnothing$$

$$TR_{\Delta}[\![\Delta_{r_{1}}, \Delta_{r_{2}}]\!] = TR_{\Delta}[\![\Delta_{r_{1}}]\!], TR_{\Delta}[\![\Delta_{r_{2}}]\!]$$

$$TR_{\Delta}[\![\{P\}T.m(\overline{x:T})\{Q\}[\varepsilon]]\!] = [\mathbf{reads alloc}\downarrow]\{P\}T.m(\overline{x:T})\{Q\}[\varepsilon]$$

$$TR_{\Delta}[\![\Delta_{s_{1}}, \Delta_{s_{2}}]\!] = TR_{\Delta}[\![\Delta_{s_{1}}]\!], TR_{\Delta}[\![\Delta_{s_{2}}]\!]$$

$$TR_{\Delta}[\![ssl\{a\}T.m(\overline{x:T})\{a'\}[X]]\!] = [\mathbf{reads } r\downarrow]\{TR[\![a]]\}T.m(\overline{x:T})\{TR[\![a']]\}$$

$$[\mathbf{modifies } (r\downarrow, X), \mathbf{fresh}(fpt_{s}(a') - r)]$$

$$\mathbf{where } TR[\![a]\!] \Rightarrow r = fpt_{s}(a) \text{ and } r \notin X$$

Another way to encode SSL hypotheses would be

$$\begin{aligned} \mathrm{TR}_{\Delta}[\![ssl\{a\}T.m(\overline{x:T})\{a'\}[X]]\!] &= \\ [\texttt{reads } r \downarrow]\{\mathrm{TR}[\![a]\!]\&\&r = fpt_s(a)\}T.m(\overline{x:T})\{\mathrm{TR}[\![a']\!]\} \\ [\texttt{modifies } (r \downarrow, X), \texttt{fresh}(fpt_s(a') - r)] \\ \text{where } r \notin X \end{aligned}$$

Consider the example shown in Fig. 9.1 and Fig. 9.2 that define two classes, NumberS and NumberR. They are specified in the style of SSL and FRL respectively. The method setX declared in the class NumberR does not need precondition, as **this** \neq null is implicit by the program's semantics. However, the precondition of the method setX declared in the class NumberS is needed, because the location **region**{this.x} has to be requested there, otherwise, it is not a valid SSL Hoare-formula. The method addOne declared in the class NumberR adds one to the value stored in the region **region**{n.x} and assigns to **this**.x. Thus, its write effect is just **region**{this.x}. Consider the following client code.

```
class NumberS{
  var x : int;

method NumberS()
  ensures this.x \dots 0;
  { this.x := 0; }

method setX(v: int)
  requires ∃ y.this.x \dots y;
ensures this.x \dots v;
ensures 1 v.this.x \dots v;
ensures this.x \dots v;
ensures this.x \dots v * ret = v;
{ ret := this.x; }
```

Figure 9.1: The class NumberS specified in the style of SSL

```
method addOne(n : NumberS)
class NumberR{
                              requires n \neq null;
  var x : int;
                              modifies region{this.x};
                              ensures this.x = n.x + 1;
 method NumberR()
                            { this.x := n.getX() + 1; }
    ensures this.x = 0;
  { this.x := 0; }
                            method getX() : int
                             modifies \emptyset;
 method setX(v: int)
                             ensures ret = this.x;
    ensures this.x = v;
                            { ret := this.x; }
  { this.x := v; }
                          }
```

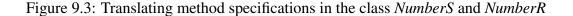
Figure 9.2: The class NumberR specified in the style of FRL

```
var sNumber; sNumber := new NumberS();
var rNumber; rNumber := new NumberR();
sNumber.setX(5); rNumber.addOne(sNumber);
assert sNumber.getX() = 5; assert rNumber.getX() = 6;
```

To prove the assertion is true, the two styles of specifications are translated to the specifications in UFRL shown in Fig. 9.3.

The read effects of Δ_{u_1} and Δ_{u_2} can be extended to **alloc** \downarrow by using the rule *SubEff*_u.

$$\Delta_{u_1} = \begin{bmatrix} \operatorname{reads \, region}\{\operatorname{this} .x\} \\ \exists \, y.\operatorname{this} .x = y\} \, NumberS.setX(v:int); \{\operatorname{this} .x = v\} \\ \begin{bmatrix} \operatorname{modifies \, region}\{\operatorname{this} .x\} \end{bmatrix} \\ \Delta_{u_2} = \begin{bmatrix} \operatorname{reads \, region}\{\operatorname{this} .x\} \\ \exists \, v.\operatorname{this} .x = v\} \, NumberS.getX(); \{\operatorname{this} .x = v \, \&\& \, \operatorname{ret} = v\} \\ \begin{bmatrix} \operatorname{modifies \, region}\{\operatorname{this} .x\} \end{bmatrix} \\ \Delta_{u_3} = \begin{bmatrix} \operatorname{reads \, alloc} \downarrow \end{bmatrix} \\ \{true\} \, NumberR.setX(v:int); \{\operatorname{this} .x = v\} \\ \begin{bmatrix} \operatorname{modifies \, region}\{\operatorname{this} .x\} \end{bmatrix} \\ \Delta_{u_4} = \begin{bmatrix} \operatorname{reads \, alloc} \downarrow \end{bmatrix} \\ \{n \neq \operatorname{null}\} \, NumberR.addOne(n:NumberS); \{\operatorname{this} .x = n.x + 1\} \\ \begin{bmatrix} \operatorname{modifies \, region}\{\operatorname{this} .x\} \end{bmatrix} \\ \Delta_{u_5} = [\operatorname{reads \, alloc} \downarrow] \{true\} \, getX(); \{\operatorname{ret} = \operatorname{this} .x\} [\varnothing] \end{bmatrix}$$



After the declaration and initialization (**var** sNumber; sNumber := **new** Numbers; **var** rNumber; rNumber := **new** NumberR;), it must be true that *sNumber.x* = 0 && *rNumber.x* = 0, which implies the precondition of sNumber.setSX(5). Thus, its postcondition is assumed right after it. As the read effects of *rNumber.x* = 0 is separate from the method's write effects, using the rule FRM_u , it must be true that *sNumber.x* = 5 && *rNumber.x* = 0, which implies the precondition of rNumber.addOne(sNumber.). Thus its postcondition is assumed right after it. As the read effects of *sNumber.x* = 5 is separate from the method's write effects, using the rule FRM_u , it must be true that *sNumber.x* = 5 is separate from the method's write effects, using the rule FRM_u , it must be true that *sNumber.x* = 5 is separate from the method's write effects, using the rule FRM_u , it must be true that *sNumber.x* = 5 is separate from the method's write effects, using the rule FRM_u , it must be true that *sNumber.x* = 5 is separate from the method's write effects, using the rule FRM_u , it must be true that *sNumber.x* = 5 is separate from the method's write effects, using the rule FRM_u , it must be true that *sNumber.x* = 5 is separate from the method's write effects, using the rule FRM_u , it must be true that *sNumber.x* = 5 is separate from the method's write effects.

region{
$$rNumber.x$$
} is $sNumber.x \mapsto 0/modifies region{ $sNumber.x$ }-immune. (9.1)$

By the definition of immune (Def. 6), the proof obligation is to show:

$$efs(region{rNumber.x}) / modifies region{sNumber.x}, (9.2)$$

which is true. Then the two statements' write effects are accumulated by using $CONSEQ_u$ and $SEQ1_u$:

$$[\texttt{alloc}] \\ \{sNumber.x = 0\} \\ \Delta \vdash_u^{\Gamma} \text{ sNumber.setX(5); rNumber.addOne(sNumber); (9.3)} \\ \{sNumber.x = 5 \&\& rNumber.x = sNumber.x + 1\} \\ [\texttt{modifies region}\{sNumber.x\}, \texttt{region}\{rNumber.x\}]$$

where $\Delta = \Delta_{u_1}, \Delta_{u_2}, \Delta_{u_3}, \Delta_{u_4}, \Delta_{u_5}$. Thus, it can be proved that sNumber.getX() = 5 and rNumber.getX() = 6.

9.4 The DAG Example

This section specifies and verifies marking a directed acyclic graph. Fig. 9.4 on the following page specifies directed acyclic graphs (DAGs), where sharing is permitted between sub-DAGs, but cycles are not permitted. A predicate dag describes its structure written in the style of SL. The use of the conjunction (instead of separating conjunction) indicates that sub-DAGs may share some locations.

It is proved that the body of the method *mark* satisfies its specification under the hypothesis that recursive calls satisfy the specification being proved. Another method hypothesis is the specification of unmarked. When reasoning about *mark*, the specification of the method *unmarked* is used, instead of its body, i.e., if *unmarked*'s precondition is satisfied, its postcondition is assumed after calling it. Because *mark*'s precondition implies the one of *unmarked*, the function *unmarked* can be used to specify the write effect of the method *mark*. Its read effect is not specified, thus

```
class Dag { var mark : int; var l : Dag; var r : Dag };
predicate dag(d:Dag)
  reads fpt(dag(d));
  decreases fpt(dag(d));
{ d \neq null \Rightarrow \exists i, j, k. (d.mark \mapsto i * d.l \mapsto j * d.r \mapsto k *
                            (dag(j) \land dag(k)))
function unmarked(d: Dag) : region
  requires dag(d);
  reads fpt(dag(d));
  ensures \forall n : Dag. (region {n.mark} \leq fpt (dag(d)) & n.mark \mapsto 0 \iff
                         region{n.mark} < ret)</pre>
  decreases fpt(dag(d));
{
  if (d == null) ret := region{};
  else{
    ret := region{};
    if (d.mark = 0) {
       ret := ret + region{d.mark};
     }
    ret := ret + unmarked(d.l);
    ret := ret + unmarked(d.r);
  }
}
method mark (d: Dag)
  requires dag(d);
  requires d \neq null \land d.mark \mapsto 1 \Rightarrow
                    \forall n:Dag.(region{n.mark} \leq fpt(dag(d)) \Rightarrow n.mark \mapsto 1);
  modifies unmarked(d);
  ensures d \neq null \Rightarrow
                    \forall n:Dag.(region{n.mark} \leq fpt(dag(d)) \Rightarrow n.mark \mapsto 1);
  decreases fpt(dag(d));
{
  if (d \neq null \&\& d.mark = 0) {
       d.mark := 1; mark(d.l); mark(d.r);
  }
}
```

Figure 9.4: The specification of marking a DAG

is **alloc** \downarrow by default. Assume all the nodes in a DAG are not marked before mark is invoked. The algorithm marks its left sub-DAGs first. Suppose the node *n* is shared by the left and right sub-DAGs. *n* and *n*'s sub-DAGS are marked when marking the left sub-DAGs. Therefore, the second precondition is true. Proving the body of the method mark considers the following three cases.

- 1. d = null: The second precondition is vacuously true; the write effect is an empty set. The call does not do anything, which is consistent with its write effects. The postcondition is vacuously true.
- 2. dag(d) ∧ d ≠ null ∧ d.mark → 1: According to the precondition, the DAG d is all marked, which is also what the postcondition describes. For the write effects, also under this assumption that the DAG is marked, the set of locations that satisfies the postcondition of unmarked is an empty set. The call does not do anything, which is consistent with its write effects. Similar to the previous case, the precondition implies the postcondition.
- dag(d) ∧ d ≠ null ∧ d.mark → 0: This case means that the current node is not marked and its sub-DAGs may not be marked. Assume i and j are the witnesses of the existential variables in the predicate dag. The following must be true:

$$d.mark \mapsto 0 * d.l \mapsto i * d.r \mapsto j * (dag(d.l) \land dag(d.r)), \tag{9.4}$$

which implies the precondition of the rule UPD_u , the following is derived:

$$[reads d]$$

$$\vdash_{u}^{\Gamma} \{ d \neq null \} d.mark := 1; \{ d.mark \mapsto 1 \}$$

$$[modifies region \{ d.mark \}]$$

$$(9.5)$$

One can translate Eq. (9.5) into a formula in UFRL by Def. 16, or use the result in Section 6.3

without translation. To avoid big formulas, the second approach is explored:

$$d \neq null \vdash_{u}^{\Gamma} (\texttt{reads} d, \texttt{region}\{d.l\}, \texttt{region}\{d.r\}, \texttt{fpt}(dag(d.l) \land dag(d.r)))$$

$$frm(d.l \mapsto i * d.r \mapsto j * (dag(d.l) \land dag(d.r)))$$
(9.6)

Thus, the read effects are separate from the write effects, **region** $\{d.mark\}$. Using the rule I_{sc} , the following is derived:

$$[\text{reads } d] \\ \{d \neq null * d.l \mapsto i * d.r \mapsto j * (dag(d.l) \land dag(d.r))\} \\ \vdash_{u}^{\Gamma} \text{ d.mark } := 1; \\ \{d.mark \mapsto 1 * d.l \mapsto i * d.r \mapsto j * (dag(d.l) \land dag(d.r))\} \\ [\text{modifies region}\{d.mark\}]$$

$$(9.7)$$

which implies the precondition of mark (d.1). Thus the following must be true (noting that preconditions, or postconditions, written on different lines of a method specification are conjoined):

$$[\texttt{reads alloc}] \\ \left\{ \begin{array}{l} dag(d.l) \land (d \neq null \land d.mark \mapsto 1 \Rightarrow \\ \forall n : Node.(\texttt{region}\{n.mark\} \leqslant \texttt{fpt}(dag(d)) \Rightarrow n.mark \mapsto 1)) \end{array} \right\} \\ \\ \texttt{mark} (d.1); \\ \left\{ d.l \neq null \Rightarrow \forall n : Dag.(\texttt{region}\{n.mark\} \leqslant \texttt{fpt}(dag(d.l)) \Rightarrow n.mark \mapsto 1) \right\} \\ \\ [\texttt{modifies} unmarked(d.l)] \end{cases}$$

$$(9.8)$$

The rule $SubEff_u$ is used on Eq. (9.7) and Eq. (9.8) to match up the effects for the rule $SEQ1_u$. Then the rule $CONSEQ_u$ is used on Eq. (9.8) to match up the postcondition of d.mark := 1 and the precondition of mark (d.1) and to get rid of the implication in the precondition. Thus, the following is derived:

$$[\text{reads alloc}\downarrow, d] \\ \{d \neq null * d.l \mapsto i * d.r \mapsto j * (dag(d.l) \land dag(d.r))\} \\ \vdash_{u}^{\Gamma} \text{ d.mark } := 1; \\ \{d.mark \mapsto 1 * d.l \mapsto i * d.r \mapsto j * (dag(d.l) \land dag(d.r))\} \\ [\text{modifies region}\{d.mark\}]$$

$$(9.9)$$

and

$$[\texttt{reads alloc}\downarrow, d] \\ \{dag(d.l)\} \\ \vdash_{u}^{\Gamma} \text{ mark (d.l);} \\ \{d.l \neq null \Rightarrow \forall n : Dag.(\texttt{region}\{n.mark\} \leqslant \texttt{fpt}(dag(d.l)) \Rightarrow n.mark \mapsto 1)\} \\ [\texttt{modifies } unmarked(d.l)]$$
(9.10)

By using the rule I_{sc} , FRM_u and $CONSEQ_u$ for Eq. (9.10), the following is derived:

$$\begin{bmatrix} \operatorname{reads} \operatorname{alloc}_{\downarrow}, d \end{bmatrix} \\ \{d.mark \mapsto 1 * d.l \mapsto i * d.r \mapsto j * (dag(d.l) \wedge dag(d.r)) \} \\ \vdash_{u}^{\Gamma} \begin{cases} \operatorname{mark} (d.1) ; \\ \left\{ (d.l \neq null \Rightarrow \forall n : Dag.(\operatorname{region}\{n.mark\} \leqslant \operatorname{fpt}(dag(d.l)) \Rightarrow \\ n.mark \mapsto 1) \right) \wedge (d.mark \mapsto 1 * d.l \mapsto i * d.r \mapsto j * (dag(d.l) \wedge dag(d.r))) \end{cases} \\ \end{bmatrix} \\ \begin{bmatrix} \operatorname{modifies} unmarked(d.l) \end{bmatrix}$$
(9.11)

In order to use the rule $SEQI_u$, the following side condition has to be true:

unmarked(d.l) is $(d \neq null * d.l \mapsto i * d.r \mapsto j * (dag(d.l) \land dag(d.r))/dag(d.r))/dag(d.r))$

 $region{d.mark}-immune (9.12)$

By the definition of immune (Def. 6), the proof obligation is to show that *for all***modifies***RE* in unmarked(d.l):

$$(d \neq null * d.l \mapsto i * d.r \mapsto j * (dag(d.l) \land dag(d.r)) \text{ implies } efs(RE) / region{d.mark}.$$

Here shows the above is true by contradiction. Suppose that there is some RE, such that efs(RE) contains the location **region**{d.mark}. Then RE must have the form d.mark.f, for some field name f, by definition of effects (Fig. 3.5). Because the type of mark is **int**, not a reference, this is impossible.

Now the two statements' write effects can be accumulated. And the following is derived:

$$\begin{bmatrix} \operatorname{reads} \operatorname{alloc}_{\downarrow}, d \end{bmatrix}$$

$$\{d \neq null * d.l \mapsto i * d.r \mapsto j * (dag(d.l) \wedge dag(d.r))\}$$

$$\vdash_{u}^{\Gamma} \begin{cases} d. \operatorname{mark} := 1; \quad \operatorname{mark} (d.1); \\ \left\{ (d.l \neq null \Rightarrow \forall n : Dag.(\operatorname{region}\{n.mark\} \leqslant \operatorname{fpt}(dag(d.l)) \Rightarrow \\ n.mark \mapsto 1) \right\} \wedge (d.mark \mapsto 1 * d.l \mapsto i * d.r \mapsto j * (dag(d.l) \wedge dag(d.r))) \end{cases}$$

$$[\operatorname{modifies} \operatorname{region}\{d.mark\}, unmarked(d.l)]$$

$$(9.13)$$

The postcondition of the above implies the precondition of the method mark (d.r). Using the rule *CONSEQ*_u (getting rid of the implication in the precondition), the following must be true:

$$[\texttt{reads alloc}] \\ \{dag(d.r)\} \\ \vdash_{u}^{\Gamma} \text{ mark (d.r);} \\ \{d.r \neq null \Rightarrow \forall n : Dag.(\texttt{region}\{n.mark\} \leq \texttt{fpt}(dag(d.r)) \Rightarrow n.mark \mapsto 1)\} \\ [\texttt{modifies } unmarked(d.r)]$$
(9.14)

As the function unmarked only collects unmarked locations, the following must be true:

$$(d.l \neq null \Rightarrow (\forall n : Dag.(\texttt{region}\{n.mark\} \leqslant \texttt{fpt}(dag(d.l)) \Rightarrow n.mark \mapsto 1)))$$

$$\Rightarrow \texttt{reads fpt}(dag(d.l)) \not / \texttt{modifies} unmarked(d.r)$$

$$(9.15)$$

By using the rules I_{sc} , FRM_u , $CONSEQ_u$ and $SubEff_u$, the following is derived.

$$\begin{bmatrix} \operatorname{reads} \operatorname{alloc}_{\downarrow}, d \end{bmatrix} \begin{cases} (d.l \neq null \Rightarrow \forall n : Dag.(\operatorname{region}\{n.mark\} \leqslant \operatorname{fpt}(dag(d.l)) \Rightarrow \\ n.mark \mapsto 1) \end{pmatrix} \land (d.mark \mapsto 1 * d.l \mapsto i * d.r \mapsto j * (dag(d.l) \land dag(d.r))) \end{cases} \\ \\ \operatorname{mark} (d.r); \\ \vdash_{u}^{\Gamma} \begin{cases} (d.r \neq null \Rightarrow \forall n : Dag.(\operatorname{region}\{n.mark\} \leqslant \operatorname{fpt}(dag(d.r)) \Rightarrow \\ n.mark \mapsto 1)) \land \\ (d.l \neq null \Rightarrow \forall n : Dag.(\operatorname{region}\{n.mark\} \leqslant \operatorname{fpt}(dag(d.l)) \Rightarrow \\ n.mark \mapsto 1)) \land (d.mark \mapsto 1 * d.l \mapsto i * d.r \mapsto j * (dag(d.l) \land dag(d.r))) \end{cases} \\ \\ \begin{bmatrix} \operatorname{modifies} unmarked(d.r) \end{bmatrix} \end{cases}$$

$$\begin{bmatrix} \operatorname{modifies} unmarked(d.r) \end{bmatrix}$$

$$\tag{9.16}$$

Again, the side condition has to be true in order to use the rule $SEQI_u$, i.e., unmarked(d.r) is

$$(d \neq null * d.l \mapsto i * d.r \mapsto j * (dag(d.l) \land dag(d.r)))/$$

$$(region\{d.mark\}, unmarked(d.l)) - immune (9.17)$$

By the definition of immune (Def. 6), the proof obligation is to show:

• for all modifies
$$RE \in region\{d.mark\}$$
:

$$(d \neq null * d.l \mapsto i * d.r \mapsto j * (dag(d.l) \land dag(d.r)))$$
 implies $efs(RE)$:/unmarked(d.r).

In this case, RE is just region $\{d.mark\}$, by the assumption, which is disjoint with $fpt(dag(d.l) \wedge dag(d.r))$ that is unmarked(d.r)'s superset.

• for all modifies $RE \in unmarked(d.l)$:

$$(d \neq null * d.l \mapsto i * d.r \mapsto j * (dag(d.l) \land dag(d.r)))$$
 implies $efs(RE)$:/unmarked(d.r).

It is proved by contradiction. Suppose under the assumption, there is some RE that has the form **region** $\{d.f_1, \ldots, f_n.mark\}$, then efs(RE) is **region** $\{d.f_1, \ldots, f_n\}$, where $f_i \in \{l, r\}$, and $1 \leq i \leq n$. Moreover $d.f_1, \ldots, f_n$ has the type Dag. However, all the regions in unmarked(d.r) has the form **region** $\{d.f_1, \ldots, f_m.mark\}$, and $d.f_1, \ldots, f_m.mark$ has the type **int**, where $f_j \in \{l, r\}$, and $1 \leq j \leq m$. Thus, there is no overlapping between the two sets of locations.

Now by using the rule $SEQ1_u$, the following is derived:

$$[\operatorname{reads} \operatorname{alloc} \downarrow, d] \\ \{d \neq null * d.l \mapsto i * d.r \mapsto j * (dag(d.l) \wedge dag(d.r))\} \\ \text{d.mark} := 1; \operatorname{mark} (d.1); \operatorname{mark} (d.r); \\ \vdash_{u}^{\Gamma} \begin{cases} (d.r \neq null \Rightarrow \forall n : Dag.(\operatorname{region} \{n.mark\} \leqslant \operatorname{fpt}(dag(d.r)) \Rightarrow \\ n.mark \mapsto 1)) \wedge \\ (d.l \neq null \Rightarrow \forall n : Dag.(\operatorname{region} \{n.mark\} \leqslant \operatorname{fpt}(dag(d.l)) \Rightarrow \\ n.mark \mapsto 1)) \wedge (d.mark \mapsto 1 * d.l \mapsto i * d.r \mapsto j * (dag(d.l) \wedge dag(d.r))) \end{cases} \\ [\operatorname{modifies} \operatorname{region} \{d.mark\}, unmarked(d.l), unmarked(d.r)]$$
(9.18)

The postcondition above can imply the one for mark, thus the program is verified.

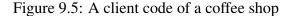
Remark: in this example, the write effects of mark are not necessarily precise. Let ε_l and ε_r be the write effects of mark(d.l) and mark(d.r) respectively. Suppose the location **region** $\{x.mark\}$ is contained in both write effects. To use the sequence rule, the proof obligation is to show that ε_r is $dag(d)/\varepsilon_l$ -immune. By the definition of immune (Def. 6), the proof obligation is to show that for all **modifies** $RE \in \varepsilon_r :: RE$ is $dag(d)/\varepsilon_l$ -immune. In this case, the proof obligation is to show that dag(d) implies $efs(region\{x.mark\})$ $\neg \varepsilon_1$, by Def. 6. By the definition of read effects, $efs(region\{x.mark\}) = reads x$. There are two cases.

- x = d. In this case, the proof obligation is to show that dag(d) implies reads d '/·
 region{d.mark}, which is true.
- 2. x = d.f₁....f_n, where f₁...f_n are either the field name l or the field name r. In this case, the proof obligation is to show that dag(d) implies (**reads region**{d.f₁....f_n}, efs(d.f₁....f_{n-1})) // **region**{d.f₁....f_n.mark}, which is true because, the field f_n has type Dag, the field mark has the type **bool**, thus **region**{d.f₁....f_n} ! ! **region**{d.f₁....f_n.mark}. Similarly, the regions contained in the read effect efs(d.f₁....f_{n-1}) are all disjoint with the region **region**{d.f₁....f_n.mark}.

9.5 An Integrated Example

This subsection demonstrates mixed specification and verification in FRL and SSL, using an order program for a coffee shop as an example. Parts of this program are specified in the style of FRL, parts in SSL, and parts in a mixed style. Consider a client code shown in Fig. 9.5.

```
var menu : Menu; menu := new Menu;
var shop : CoffeeShop; shop := new CoffeeShop(menu);
var shop1 : CoffeeShop; shop1 := new CoffeeShop(menu);
shop.takeOrder(1,1); shop.takeOrder(1,3); shop.takeOrder(2,3);
shop.takeOrder(4,5); shop1.takeOrder(3,3); shop1.takeOrder(1,1);
shop1.takeOrder(2,4); shop1.takeOrder(4,6);
shop.service();
```



Two shop objects share one menu object. Taking orders and performing services only read the menu. Thus, it can be proved that executing shop1's method service preserves shop2's property, as the write effects of shop1.service in Fig. 9.11 do not overlap the read effects

of shop2's predicate. In particular, the read effects of menu's predicate are separate from the write effects of shop1.service. This is credited to FRL's flexibility of specifying write effects. Another example that showcases such a benefit is the specification of iterator written in FRL in Fig. 9.7. The keyword **pure** is another way to specify that hasNext does not have write effects. If the iterator methods hasNext and next were specified in SSL, then their frames would contain the footprints of their preconditions, so the underlying data structure would be modifiable. These larger write effects would also propagate to service, since that method needs to call the iterator methods, so its write effects of service would have to contain the footprint of the iterator methods. These larger write effects could cause trouble in some cases.

In addition, the SSL style of specifications has been used in the example as well, i.e., the specification of add in Fig. 9.6. Moreover, the use of separating conjunction makes the specifications concise.

Here explains the example in detail. The program is deployed to a digital device on each table. Customers or waiters order coffee by choosing item numbers from the menu. For each item on the menu, the system will look for its identifier (which is used in some other internal systems). For simplicity, assume that each order only contains one item. Each table may have multiple orders.

The coffee shop maintains a list of orders and the menu; each order stores a table number, the menu item number, and whether it has already been served. The list of orders is implemented by a generic linked-list List<T> in Fig. 9.6. The class List<T> is implemented by a list of Node<T> that may be invisible to clients. For the convenience, the specifications of the class Node<T> that are used to verify the implementation of the class List<T> are summarized in Table. 9.1. The specifications and implementations of the class List<T> are shown in Fig. 9.6 on the following page. One can add a node to the list by invoking the method add, test whether a list is empty or not by invoking the pure method isEmpty, and obtain its iterator by invoking the pure method iterator. Fig. 9.7 shows an implementation of List<T>'s iterator. The field curr denotes the cursor position.

```
class List<T>{
 var h : Node<T>;
 predicate vList(se: seq<T>)
    reads fpt(vList(se));
  { lst(h, se) }
 method List<T>()
    requires true;
   modifies region{this.*};
   ensures vList([]);
  { h := null; }
 method add(t : T)
    requires vList(?vlst);
   ensures vList(vlst + [t]);
  {
     var n: Node<T>;
     n := new Node<T>(t);
     if h = null then h := n;
     else h.append(n);
     /* calls append method of node h */
  }
 method isEmpty() : int
    requires vList(?vlst);
    reads region{this.*};
    ensures (h = null \Rightarrow ret = 1) & &
      (h \neq null \Rightarrow ret = 0)
  { if (h = null) ret := 1; else ret := 0; }
 method iterator() : ListIterator<T>
    requires vList(?vlst);
    fresh region{ret.*};
    ensures ret \neq null && ret.list = this
         && ret.curr = this.h && ret.vLIter(vlst);
  { ret := new ListIterator<T>(this); }
  /* ... other methods omitted */
```

Figure 9.6: The specification of a generic linked-list written in a mixed style

}

```
class ListIterator<T>{
  var list : List<T>; var curr : Node<T>;
 method ListIterator(l : List<T>)
    requires l \neq null && l.vList(?vlst);
    modifies region{this.*};
    ensures list = 1 && curr = 1.h
         && vLIter(vlst);
  { list := l; curr := l.h; }
  method hasNext() : int
    requires vLIter();
    ensures (curr \neq null \Rightarrow ret = 1)
          && (curr = null \Rightarrow ret = 0);
  {
    if (curr \neq null) then ret := 1;
    else ret := 0;
  }
  method next() : T
    requires vLIter() && hasNext();
    modifies region{this.curr};
    ensures (curr = old(curr.next))
                                      &&
            ret = old(curr.get());
  { ret := curr.get(); curr := curr.next; }
  predicate vLIter()
    reads fpt(vLIter());
  { list \neq null && list.vList(?vlst)
     && vLIter(vlst) }
  predicate vLIter(vlst: seq<T>)
    reads fpt(vLIter(vlst));
  {
    list.vList(vlst) &&
    region{curr.*} < fpt(list.vList(vlst))</pre>
  }
  /* ... other methods omitted */
}
```

Figure 9.7: The class ListIterator specified in the style of FRL

Method	Precondition	Postcondition	Write effects
Node <t>(v)</t>	true	lst(this, [v])	$region{this.*}$
get()	true	<pre>ret = this.val</pre>	Ø
append(n)	lst(n, [?v]) * lst(this, ?vlst)	lst(this, vlst + [v])	<pre>region{last().next}</pre>

Table 9.1: Selected specifications for the class Node<T>

Fig. 9.8 specifies a generic dictionary as a mapping. The generic Dictionary<Key, Value> is implemented by an acyclic list of Pair<Key, Value> that may be invisible to the clients. A generic mathematical sequence map<Key, Value> is used as an abstract model of the values stored in Dictionary<Key, Value>. Operations and formulas for a map are defined in Table. 2.1. The pure method lookup returns a value for a given key. Its precondition makes sure that the key is in the domain of the dictionary.

The class order contains table, itemId and served. The field table records the number of the table in an order. The field itemId stores a coffee's identifier. The field served tracks whether the order is served. The class CoffeeShop maintains a List of Order and a menu that is initialized by the parameter of the constructor of CoffeeShop, and stores the mapping between Coffee's numbers and identifiers. For simplicity, the details of Menu is omitted. The method takeOrder looks up the coffee's identifier in the menu, generates a new order and adds it to the order list. The method service sets the orders to be served. The predicate cshop specifies the structure of a CoffeeShop. The formal parameter lseq specifies the sequence of Order. The formal parameter oseq specifies the contents of orders in the list. The following formula specifies that the sequence of Order contains the expected contents:

$$\forall i.0 \le i \&\& i \le |lseq| \Rightarrow lseq[i].vOrder(oseq[3 * i..3 * i + 2])$$

where oseq[i..j] generates a new sequence that starts from the element oseq[i] and end with the element oseq[j]. It is well-formed if $0 \le i \le j \le |oseq|$. The sequence oseq is the

```
predicate dic(p : Pair<Key, Value>, m : map<Key, Value>)
  reads fpt(dic(p, m));
  decreases |m|;
{
  (p = null \Rightarrow |m| = 0) \land
   p \neq null \Rightarrow p.key \in m * p.val \mapsto m[p.key] *
               dic(p.next, (map i | i \in m \land i \neq p.key :: m[i]))
}
class Pair<Key, Value>{
  var key : Key;
                   var val : Value;
  var next : Pair<Key, Value>;
}
class Dictionary<Key, Value>{
  var head : Pair<Key, Value>;
  predicate vDic(m: map<Key, Value>)
    reads vDic(m);
  {
    dic(head, m)
  }
  method lookup(k: Key) : Value
    requires vDic(?m) ∧ k ∈ m;
    { /* ... omitted */ }
  /* ... other methods omitted */
}
```

Figure 9.8: The specification of a generic dictionary written in the style of SSL

flattened sequence of 3-element array. Each array corresponds the three fields of an order. The formal parameter m specifies the menu. In the dynamic frames approach [45, 46], this can be specified by declaring these three parameters as ghost fields and updating them when it is needed.

Abstraction: Although information hiding and abstraction are not a focus of this dissertation, they

```
class Order{
  var table int;
  var itemId : int;
  var served : int;
  predicate vOrder(se: seq<int>)
    reads region{this.*};
  {
    |se| = 3 \&\&
   this.table → se[0] *
   this.itemId → se[1] *
   this.served → se[2]
  }
   method Order(t: int, item: int)
     modifies region{this.*};
     ensures vOrder([t, item, 0]);
   {
     this.table := t; this.itemId := item;
     this.served := 0;
   }
   method served()
     requires this.served → _;
     ensures this.served → 1;
   { this.served := 1; }
   method isServed() : int
     reads region{this.served};
     ensures ret = served;
   { if (served = 1) then ret := 1; else ret := 0; }
   /* ... other methods omitted */
}
```

Figure 9.9: The class Order

```
class CoffeeShop{
  var orders : List<Order>; var menu : Dictionary<int, int>;
  predicate cshop(lseq: seq<Order>, oseq: seq<int>, m: map<int, int>)
    reads fpt(cshop(lseq, oseq, m));
  { orders \neq null * menu \neq null * orders.vList(lseq) * menu.vDis(m) *
     \forall i. 0 <= i && i <|lseq| \Rightarrow lseq[i].vOrder(oseq[3*i..3*i+2])
  }
  function severd_seq(se: seq<T>) : seq<T>
    requires \exists i. (i >= 0 \Rightarrow |seq| = 3 \star i);
    reads \emptyset;
    decreases |se|;
  {
     if se = [] then ret := [];
     else ret := se[2 := 1] + serverd_seq(se[3..])
  }
 method CoffeeShop(menu : Menu)
    requires menu ≠ null && menu.vDic(?m);
    modifies region{this.*};
    ensures cshop([], [], m);
  /* ... omit the postcondition about menu */
  { orders = new List<Order>(); /* ... omitted */ }
   method takeOrder(item: int, table: int) : Order
     requires cshop(?lseq, ?oseq, ?m) && item \in m;
     ensures cshop(lseq + [ret], oseq + [table, item, m.[item]], m)
   {
     var itemId = menu.lookup(item);
     ret := new Order(table, itemId);
     orders.add(ret);
   }
```

Figure 9.10: The specification of an application program written in a mixed style (part 1)

```
method service()
  requires cshop(?lseq, ?oseq, ?m);
  modifies filter(fpt(cshop(lseq, oseq, m)), Order, served);
  ensures cshop(lseq, severd_seq(oseq),m);
  {
    var iter := orders.iterator();
    while (iter.hasnext()) {
        var o = iter.next();
        if (o.isServed ≠ 1)
            o.served();
    }
    /* ... other methods omitted */
}
```

Figure 9.11: The specification of an application program written in a mixed style (part 2)

figure prominently in other works on SL [74, 75]. This technique can also be handled. In the example, assume that the classes List<T> and Dictionary<Key, Value> are libraries, and are declared in a separate module from clients. Their implementations are hidden from its clients. Thus, their clients can only see their predicate names. Table. 9.2 summarizes the set of predicate names that are used to visible to clients.

Therefore, the class CoffeeShop uses the name of predicates vList and vDis to define its own predicate; the actual formulas that are defined by those predicated are abstracted away. Thus, CoffeeShop does not know the internal representation of List, thus is not influenced by the change of List's representation, i.e., replacing a linked list with an array.

However, some specifications use the hidden fields to describe observable behaviors of methods. For example, the write effects of the method next in Fig. 9.7 exposes the field curr that is supposed to be a private field. This can be solved by (at least) two established methodologies: *data groups* [52, 61] and *model variables* [25, 51]. Following JML [47], the second approach is

Table 9.2:	The	predicates	that are	used	by	clients

Class Name	Predicate Name
List <t></t>	vList(se : seq <t>)</t>
ListIterator <t></t>	vLIter(vlst : seq <t>)</t>
Dictionary <key, value=""></key,>	vDic(m : map <key, value="">)</key,>

explored. Model variables are used to define abstract values. For example, the specifications of ListIterator<T> can be revised by declaring

public model var _curr; private represents _curr <- curr;</pre>

Here _curr is a model variable represented by the private field curr. The represents clause says that the value of _curr is the value of the field curr. That is, the value of _curr changes immediately when the value of curr changes. Moreover, the location **this**._curr is connected with the location **this**.curr implicitly. Thus the write effects of the method next can be rewritten as:

modifies region{this._curr};

And also the specifications that use **this**.curr can be rewritten by substituting **this**.curr for it. For simplicity, in the remainder of this dissertation, program fields are used and are considered to be publicly accessible in specifications.

Interoperation: The specifications in this example are written in different styles, nevertheless, they can be combined and used in verification. The example is used to show how to verify that the implementation of the method takeOrder satisfies its specification.

A preliminary step in making the different styles interoperate with each other (following Section 9.2) is to translate specifications without explicit effects into UFRL, giving them explicit read and write effects. For the SL specifications, these effects are derived from the footprint of the SL

precondition. For example, the specification of the method lookup in Fig. 9.8 is encoded in UFRL as:

$$[reads fpt(vDic(m) \land k \in m)]$$

$$\{vDic(?m) \land k \in m\} \lor := lookup(k:Key); \{vDic(m) \land v = m[k]\}$$
(9.19)
$$[modifies fpt(vDic(m) \land k \in m)]$$

By using the rule $SubEff_u$, the following is derived:

$$[\texttt{reads alloc}] \\ \{vDic(?m) \land k \in m\} \\ \vdash_{u}^{\Gamma} lookup(k : Key) \texttt{returns} (v : Value) \\ \{vDic(m) \land v = m[k]\} \\ [\texttt{modifies fpt}(vDic(m) \land k \in m)]$$

$$(9.20)$$

Specifications with explicit write effects are encoded into those in UFRL with read effects that are **reads alloc**. For example the specification of takeOrder is encoded in UFRL as:

[reads alloc]

$$\{cshop(?lseq, ?oseq, ?m) \&\& item \in m\}$$

$$\vdash_{u}^{\Gamma} takeOrder(item : int, table : int)returns(ret : Order) \qquad (9.21)$$

$$\{cshop(lseq + [ret], oseq + [table, item, m.[item]], m)\}$$

$$[modifies fpt(cshop(lseq, oseq, m) \&\& item \in m)]$$

Proceeding to the verification of the body of takeOrder, its precondition is assumed:

$$cshop(lseq, oseq, m) \&\& item \in m,$$
 (9.22)

which implies the precondition of menu.lookup by using the definition of the predicate cshop in Fig. 9.10. For the write effects, by the definition of the predicate cshop again, it must be true that $\mathtt{fpt}(vDic(m)) \leq \mathtt{fpt}(cshop(lseq, oseq, m) \&\& item \in m)$. Thus, the method call menu.lookup is allowed in the body of the method takeOrder. After finishing executing method menu.lookup, its postcondition gets assumed: $menu.vDis(m) \land itemId = m[item]$.

As the precondition of the constructor of Order is true, and it only changes the values in the newly allocated locations on the heap; it does not change existing locations. Thus, it is allowed in the body of the method takeOrder. After it finishes executing, and by using the rule I_{sc} , it must be true that $(menu.vDis(m) \land itemId = m[item]) * ret.vOrder([table, itemId, 0]) * orders.vList(lseq)$, which implies the precondition of the method orders.add(ret). For the write effects, according to Section 9.2, its specification is encoded as:

$$[reads alloc]{vList(?vlst)} add(t); \{vList(vlst+[t])\}[modifies fpt(vList(vlst))].$$
(9.23)

Together with the definition of the predicate cshop in Fig. 9.10, the following must be true:

$$fpt(orders.vlst(lseq)) \leq fpt(cshop(lseq, oseq, m) \&\& item \in m), \qquad (9.24)$$

Thus, orders.add is allowed in the body of takeOrder. After finishing executing it, its postcondition gets assumed. And using the rule I_{sc} , it must be true that $(menu.vDis(m) \land itemId = m[item]) * ret.vOrder([table, itemId, 0]) * orders.vList(lseq + [ret])$, which implies the postcondition of takeOrder. Thus, the implementation is verified.

Verifying a Client of CoffeeShop: For simplicity, assume the items that customers chose are all available, i.e., always exist in the internal system. Using the specification of CoffeeShop, consider the client code in Fig. 9.5. Although the two instances, shop and shop1, share menu, the write effects of service claim that only the fields served of the object Order may be modified. Thus, the following is true:

reads fpt(shop1.cshop(?l,?o,m))./.

modifies filter(fpt(shop.cshop(lseq, oseq, m)), Order, served). (9.25)

```
class DCell extends Cell
{
  method set(v : int)
  also
    requires inv();
  modifies wf_set();
  ensures this.val = 2*v;
  { super.set(2*v); }
}
```

Figure 9.12: The specification of the class DCell

Then using the rule FRM_u and the rule $CONSEQ_u$, it can be proved that shop1 is not served. Note that in the body of service, an iterator is used. As it only reads the underlying data structure that is traversing, the iterator is specified in the style of FRL; the underlying data structure is specified to be untouched. That allows the write effects of service to be precise.

9.6 Examples on Behavioral Subtyping

This section presents examples of reasoning about inheritance. Fig. 9.12, Fig. 9.13 and Fig. 9.14 are examples adapted from Parkinson and Bierman's work [75]. The class DCell reuses the field name val of its superclass and stores double the value which is passed to. There is no need to override the pure method wf_set and the predicate inv as there is no additional fields. The combined specification of DCell.set is shown below:

```
{this.inv()}
DCell.set(v : int)
{this.val = v && this.inv() && this.val = 2 * v}
[modifies this.wf_set()]
```

The postcondition implies *false*. Thus, the body of DCell.set is not a correct implementation against its specification. If the implementation is **while** true { skip; }, then it would

satisfy the specification, as the definition of the correctness judgment assumes termination. This implementation does not terminate, so the specification is vacuously satisfied.

The class ReCell extends from class Cell in Fig. 8.7 by introducing the field bak. The method ReCell.set overrides the one declared in its superclass; it updates val with the new value x and stores its old value in the field bak. Its write effect is specified by the pure method wf_set() that overrides Cell.wf_set() as well, where **super**.wf_set is invoked in its body.

The specification of ReCell.set is shown below. Following the definition of specification inheritance (Eq. (8.2)), they are the combination of the one specified in the class ReCell and the one of Cell.set.

By the program semantics, the assertion $\exists d.this.val = d$ is implicit. Thus, by the rule *CON*-SEQ_r, the above specification is derived to

Fig. 9.14 shows the specification of the class TCell. It declares an additional field val2. A type invariant, this.val = this.val2, restricts the behavior of its super class Cell [75]. The

combined specification of TCell.set is shown below:

```
{super.inv() || this.inv()}
TCell.set(v:int)
{(old(super.inv()) ⇒ this.val = v && super.inv()) &&
  (old(this.inv()) ⇒ this.val = v && this.inv())}
[modifies this.wf_set()]
```

By the rule $CONSEQ_r$, the above specification is derived to

It can be proved that the implementation of the method TCell.set satisfies the above specification.

Fig. 9.15 declares the class OCell that inherits from the class Cell, and declares two additional fields, c and o. Together with the inherited field val, they compose OCell's data representation. The field c is created by OCell's constructor and is encapsulated. But the field o is initialized by the constructor's parameter. That causes argument exposure. Therefore, the last line of the constructor updates the field exposed by o.df.

The method OCell.set updates both this.val and this.c.val with the new value. Its write effects is specified by the function wf_set. Its definition returns regions that come from two parts: one part is from its supertype, i.e., **super**.wf_set(); the other is from the extended state, i.e., c.df. Thus, the definition of the predicate inv describes the disjointness, i.e., **this**.exposed!!c.df, which means that c.df is encapsulated by OCell. Therefore, the specification of OCell.set refines the specification of Cell.set.

```
class ReCell extends Cell
{
  var spec_public bak : int;
  predicate inv()
     reads this.df;
  {
    this.df = region{this.val} + region{this.bak} &&
    this.exposed = region{}
  }
  pure method wf_set() : region
    reads wf_set;
  {
    ret := super.wf_set() + region{this.bak};
  }
  method ReCell()
    modifies region{this.*};
    ensures this.val = 0 && this.bak = 0;
    ensures inv();
  {
    this.val := 0;
    this.bak := 0;
    this.df := region{this.val} + region{this.bak};
    this.exposed := region{};
  }
  method set(v : int)
  also
    requires (3 d.this.val = d) && inv();
    modifies wf_set();
    ensures val = v && bak = d;
  {
     bak := val; super.set(v);
  }
}
```

Figure 9.13: The specification of the class ReCell

```
class TCell extends Cell {
  var spec_public val2 : int;
  predicate inv()
    reads this.df;
  {
    this.df = region{this.val} + region{this.val2} &&
    this.exposed = region{} & &&
    this.val = this.val2
  }
  pure method wf_set() : region
    reads wf_set;
  {
    ret := super.wf_set() + region{this.val2};
  }
  method TCell()
    modifies region{this.*};
    ensures this.val = 0 && this.val2 = 0;
    ensures inv();
  {
    this.val := 0;
    this.val2 := 0;
    this.df := region{this.val} + region{this.val2};
    this.exposed := region{};
  }
  method set(v : int)
  also
    requires inv();
    modifies wf_set();
    ensures this.val = v && inv();
  {
    super.set(v);
    this.val2 := v;
  }
}
```

Figure 9.14: The specification of the class TCell

```
class OCell extends Cell {
  var spec_public c : Cell;
 var spec_public o : Object;
 pure wf_set() : region
    reads wf_set();
  { ret := super.wf_set() + c.df }
 predicate inv()
    reads this.df;
  {
    (df = region{this.val} + region{this.c} + region{this.o} +
          (c \neq null ? c.df : region{}) +
           o \neq null ? o.df : region{}) &&
    (this.exposed !! c.df )
  }
 method OCell(o : Object)
    requires \circ \neq null;
    modifies region{this.*}
    ensures this.o = o && inv();
  {
    this.o := o;
    this.c := new Cell();
    this.df := region{this.*} + c.df + o.df;
    this.exposed := this.o.df + this.c.exposed;
  }
 method set(v : int)
  also
    requires c ≠ null && inv();
    modifies wf_set();
    ensures v = this.val && v = c.get() && inv();
  { c.set(this.v); super.set(v);
                                   }
}
```

Figure 9.15: The specification of the class OCell

CHAPTER 10: CONCLUSION AND FUTURE WORK

This dissertation has presented the logic, UFRL, which is able to reason about object-based programs specified in the styles of FRL and SSL. This is accomplished by a translation from SSL to UFRL which preserves not only the meaning of assertions, but which can also translate proofs in SSL into UFRL proofs. Thus, UFRL provides a single mechanism that allows FRL and SSL to interoperate with each other, allowing designers flexibility in writing specifications in either style or in a mix of styles. Also, a frame condition for behavioral subtyping is defined and proved sound.

10.1 Future Work

10.1.1 Formalization

The programming language defined in this dissertation lacks many features, such as exceptions, access modes, module declarations, etc. The problems of data abstraction and information hiding are not addressed in this dissertation. Extending the language with these features would make the programs closer to the programs used in practice, such as Java programs. That would ease the transfer of the ideas from this dissertation on UFRL into JML [24].

This dissertation only formalized a restricted form of recursive predicates. Mutual recursive predicates, functions and pure methods [3] that are used in the examples should be added to the assertion language.

10.1.2 Encoding or incorporating other methodologies

Parkinson and Bierman [74, 75] develop abstract predicate families to reason about inheritance based on the separation logic that requires a second-order quantifier. UFRL could be extended to encode these abstract predicate families as well. Then, it would be possible to compare the results on reasoning about inheritance. One way of encoding would use model fields or pure methods. The ownership model has been extensively studied in many works, such as [9, 11, 65, 68, 70]. It is valuable to connect FRL or UFRL with one of these ownership models. In particular, FRL or UFRL specifications could be simplified if they could generate equivalent conditions for some properties and proof obligations that are generated by the Universe Type System [65].

Another methodology that FRL or UFRL could incorporate is the work on typestate [18, 19, 29, 84]. Typestates provide a way to more abstractly write specifications. A typestate transition graph can be generated, which give designers and programmers intuitions about the object. FRL may use ghost variables to express typestates.

10.1.3 Implementation

Both FRL and UFRL can be encoded into first-order logic with modular verification. Firstly, the quantifiers in FRL (UFRL) are first-order. This allows implementations to use a theorem prover like a SMT solver, such as Z3 [28] or CVC4 [13]. Secondly, the type **region** in FRL (UFRL) is a set of locations. Region operators, i.e., union, difference and intersection, are translated into corresponding set operations, which are first-order operations. Thirdly, automated verification tools prove programs in a method-modular way. When verifying a method body, its precondition is assumed. Automated verification tools check whether the locations that are intended to update by a method body are a subset of the method's frame conditions. Instead of directly accumulating effects and composing each proof rule similarly to the approach used in the dissertation, verification tools for FRL (UFRL) can be implemented by computing weakest preconditions or by symbolic execution.

The intermediate verification language Boogie [9, 54] can be used to generate verification conditions. The fpt_s function would be encoded to an uninterpreted function and axioms in the generated Boogie program [37].

APPENDIX A: TYPING RULES

This section shows the typing rules. The predicate isRef(T) returns true just when T is a reference type in the program. Typing rules for expressions and region expressions are shown Fig. A.1. Typing rules for statements are shown in Fig. A.2. The typing rules for assertions are defined in Fig. A.3.

Figure A.1: The typing rules for pure expressions and region expressions

$$\begin{split} \Gamma \vdash \mathbf{skip}; : ok(\Gamma) & \Gamma \vdash \mathbf{var} \; x:T; : ok(\Gamma, x:T) \\ \mathbf{where} \; x \notin dom(\Gamma) & \Pi \vdash T: \Gamma \vdash G:T \\ \hline \Gamma \vdash x: = G; : ok(\Gamma) \\ \mathbf{where} \; x \notin dom(\Gamma) & \mathbf{where} \; x \neq \mathbf{this} \\ \hline \Gamma \vdash x: = G; : ok(\Gamma) \\ \mathbf{where} \; x \neq \mathbf{this}, isRef(T') \text{ and } (f:T) \in fields(T') \\ \hline \Gamma \vdash x: = G; : ok(\Gamma) \\ \mathbf{where} \; x \neq \mathbf{this}, isRef(T') \text{ and } (f:T) \in fields(T') \\ \hline \Gamma \vdash x: = G; : ok(\Gamma) \\ \mathbf{where} \; x \neq \mathbf{this}, isRef(T') \text{ and } (f:T) \in fields(T') \\ \hline \Gamma \vdash x: = G; : ok(\Gamma) \\ \mathbf{where} \; x \neq \mathbf{this}, isRef(T') \text{ and } (f:T) \in fields(T') \\ \hline \Gamma \vdash x: = G; : ok(\Gamma) \\ \mathbf{where} \; x \neq \mathbf{this}, isRef(T') \text{ and } (f:T) \in fields(T') \\ \hline \Gamma \vdash x: = \mathbf{new} \; T; : ok(\Gamma) \\ \mathbf{where} \; x \neq \mathbf{this} \; \mathbf{and} \; isRef(T) \\ \hline \Gamma \vdash \mathbf{tif} \; E \; \mathbf{then} \; \{S_1\} \; \mathbf{else} \; \{S_2\} : ok(\Gamma) \\ \hline \Gamma \vdash S_1 : ok(\Gamma') \\ \hline \Gamma \vdash S_1 S_2 : ok(\Gamma') \\ \hline \Gamma \vdash S_2 : ok(\Gamma') \\ \hline \end{bmatrix}$$

 $\Gamma \vdash x:T \qquad \Gamma \vdash G:T$

Figure A.2: The typing rules for statements

$\Gamma \vdash E_1 : T \qquad \Gamma \vdash E_2 :$	$T \qquad \Gamma \vdash$	$-E_1:T$	$\Gamma \vdash E_2 : T$		
$\Gamma \vdash E_1 = E_2:$ bool]	$\Gamma \vdash E_1 \neq E_2$	bool		
$\frac{\Gamma \vdash x: T' \qquad \Gamma \vdash E: T}{\Gamma \vdash x.f = E: \texttt{bool}}$ where $isRef(T')$ and $(f:T) \in fields(T')$		$\frac{1}{RE_1} \leq \frac{\Gamma}{RE_2}$	- RE2: region : bool		
$\Gamma \vdash \textit{RE}_1: \texttt{region} \qquad \Gamma \vdash \textit{RE}_2: \texttt{regi}$.on $\Gamma \vdash I$	$\mathcal{D}_1:\texttt{bool}$	$\Gamma \vdash P_2: \texttt{bool}$		
$\Gamma \vdash \textit{RE}_1 !! \textit{RE}_2 : \texttt{bool}$		$\Gamma \vdash P_1 \&\&$	$P_2: \texttt{bool}$		
$\frac{\Gamma \vdash P_1 : \texttt{bool} \qquad \Gamma \vdash P_2 : \texttt{bool}}{\Gamma \vdash P_1 \mid\mid P_2 : \texttt{bool}} \qquad \frac{\Gamma}{\Gamma}$			$int \vdash P : bool$ c: int :: P : bool		
$\frac{\Gamma \vdash RE : \texttt{region} \qquad \Gamma, x : T \vdash P}{\Gamma \vdash \forall x : T : \texttt{region}\{x.f\} \leq RE : P}$ where <i>isRef</i> (T) and $(f : T') \in fields(T)$	bool		$\mathbf{z} \vdash P : \mathbf{bool}$ nt :: $P : \mathbf{bool}$		
$\frac{\Gamma \vdash RE : \texttt{region} \qquad \Gamma, x : T \vdash P : \texttt{bool}}{\Gamma \vdash \exists x : T : \texttt{region}\{x.f\} \leqslant RE : P : \texttt{bool}}$ where $isRef(T)$ and $(f : T') \in fields(T)$					

Figure A.3: The typing rules for assertions

APPENDIX B: PROOF OF THEOREM 1

Theorem 1: The judgment $\vdash_r^{\Gamma} \{P\}S\{Q\}[\varepsilon]$ that is derivable by the axioms and inference rules in Fig. 4.1, and the structural rules in Fig. 4.2 and Fig. 4.3 are valid.

Proof. The proof is done by induction on the derivation and by cases on the last rule used. In each axiom, it is shown that the judgment is valid according to the statement's semantics. In each inference rule, it is shown that the proof rule derives valid conclusions from valid premises when its side conditions is satisfied. Let S be a statement and (σ, h) be an arbitrary state, and without loss of generality, let $(\sigma', h') = \mathcal{MS}[[\Gamma \vdash S : ok(\Gamma')]](\sigma, h)$. Assume $\vdash_r^{\Gamma} \{P\} S \{Q\}[\varepsilon]$, and $\sigma, h \models^{\Gamma} P$. Then the proof obligation is to prove $\sigma', h' \models^{\Gamma'} Q$, and that all the changed locations are in ε . There are 6 base cases.

- (SKIP_r) In this case, S is skip;, P is true, Q is true, ε is Ø. By the program semantics
 Fig. 4.1, σ' = σ, h' = h and Γ' = Γ Thus, σ', h' ⊨^{Γ'} true. For the frame condition, S does not change anything, thus, it is Ø.
- (VAR_r) In this case, S is varx : T;, P is true, Q is x = default(T) and ε is Ø. By the program semantics Fig. 4.1, Γ' = Γ, (x : T), σ' = Extend(σ, x, default(T)) and h' = h. Thus (σ', h') entails Q. For the frame condition, as the statement does not change anything existing in the prestate, thus, it is Ø.
- 3. (ALLOC_r) In this case, S is x := new T;, P is true, Q is $\overline{x \cdot f} = default(T)$ and $\varepsilon = \text{modifies } x$, alloc, fresh(region{ $x \cdot *$ }). By the program semantics Fig. 4.1, $\Gamma' = \Gamma$, $\sigma' = \sigma(x \mapsto l)$ and $h' = h''[\overline{(l, f)} \mapsto default(T)}]$, where (l, h'') = allocate(T, h). Thus, (σ', h') entails Q.

For the frame condition, S only updates the variable x and **alloc**. By the semantics, the function *allocate* returns a new heap. So **fresh**(**region**{x.*}) is the fresh effect.

4. (ASSGN_r) In this case, S is x := G;, P is x = x', Q is $\{x = G/(x \mapsto x')\}$ and $\varepsilon =$ **modifies** x, where $x \notin FV(G)$. By the program semantics Fig. 4.1, $\Gamma' = \Gamma$, $(\sigma', h') =$

 $(\sigma[x \mapsto \mathcal{E}[\Gamma \vdash G : T]](\sigma)], h)$, which entails Q.

For the frame condition, this statement only updates variable x. Therefore, ε is **modifies** x is correct.

5. (UPD_r) In this case, S is x.f := G;, P is $x \neq null$, Q is x.f = G and ε is modifies region $\{x.f\}$. By the program semantics Fig. 4.1, $\Gamma' = \Gamma$, $(\sigma', h') = (\sigma, h[(\mathcal{E}[\Gamma \vdash x : T]](\sigma), f) \mapsto \mathcal{E}[[\Gamma \vdash G : T']](\sigma)])$, which entails Q.

For the frame condition, this statement changes the singleton heap location ($\sigma(x), f$). Therefore, ε is modifies region {x.f} is correct.

6. (ACC_r) In this case, S is x := x'.f; P is $x' \neq null$, Q is $x = x_1.f$, and ε is modifies x, where $x \neq x'$. By the program semantics Fig. 4.1, $\Gamma' = \Gamma$, $(\sigma', h') = (\sigma[x \mapsto h[(\mathcal{E}[\Gamma \vdash x':T]](\sigma), f)]], h)$, which entails Q.

For the frame condition, this statement only updates variable x. Therefore, $\varepsilon = \text{modifies}$ x is correct.

The inductive hypothesis is that for all substatements S_i , if $\vdash_r^{\Gamma_i} \{P_i\} S_i \{Q_i\} [\varepsilon_i]$, and $\sigma_i, h_i \models^{\Gamma_i} P_i$, then $\sigma'_i, h'_i \models^{\Gamma'_i} Q_i$.

- 1. (IF_r) In this case, S is if E then $\{S_1\}$ else $\{S_2\}$. There are two cases:
 - *E*. By the inductive hypothesis, it must be true that $\sigma, h \models^{\Gamma} P \&\& E, (\sigma', h') = \mathcal{MS}[[\Gamma \vdash S_1 : ok(\Gamma_1)]](\sigma, h)$, which entails *Q*. And the frame condition is correct.
 - $\neg E$. By the inductive hypothesis, it must be true that $\sigma, h \models^{\Gamma} P \&\& \neg E, (\sigma'', h'') = \mathcal{MS}[[\Gamma \vdash S_2 : ok(\Gamma_2)]](\sigma, h)$, which entails Q. And the frame condition is correct.

By the program semantics Fig. 4.1, if P holds in the prestate, no matter which path the program takes, if the program terminates, Q holds.

(WHILE_r) In this case, S is while E do {S}. P = I, Q = I && E and the frame conditions is ε. The premise is ⊢^Γ_r {I && E} {S} {I}[ε].

By the program semantics Fig. 4.1, let g be a recursive point function, such that

$$g = \underline{\lambda}s.\mathbf{if} \mathcal{E}\llbracket\Gamma \vdash E: \mathbf{bool}\rrbracket(\sigma) \neq 0 \mathbf{then} \ \mathbf{let}s' = \mathcal{MS}\llbracket\Gamma \vdash S: ok(\Gamma')\rrbracket(\sigma, H)\mathbf{in}g \circ s' \mathbf{else} \ s \in S$$

By definition, fix is a fixed point function, so fix(g) = g. Then the following proves $fix(g)(\sigma, h) \models^{\Gamma'} I$ by fixed-point induction.

Base Case: $\perp \models^{\Gamma'} I$ holds vacuously. It requires to prove all members in \perp implies I, but there is nothing in \perp . Hence it is vacuously true.

Inductive Case: Let $(\sigma'', h'') \models^{\Gamma'} I$ hold for an arbitrary iteration of g, and ε is the frame condition. Then the proof obligation is to show that $fix(g)(\sigma'', h'') \models^{\Gamma'} I$ holds, and the changed locations on the heap is ε .

There are two cases:

- E. By the semantics, fix(g)(σ", h") = g(MS[[Γ⊢S:ok(Γ')]](σ", h")). By the inductive hypothesis, g(MS[[Γ⊢S:ok(Γ')]](σ", h")) ⊨^{Γ'} I holds. Hence fix(g)(σ", h") ⊨^{Γ'} I holds. For the frame condition, since the fixed point function always returns the same function g, which is framed by ε by the induction hypothesis, therefore ε is the frame condition for an arbitrary iteration.
- ¬E. By the semantics, fix(g)(σ", h") = (σ", h"). Therefore, by the inductive hypothesis, fix(g)(σ", h") ⊨^{Γ'} I holds. For the frame condition, since the state does not change, the frame is region{}, which is the subset of ε.

Now it has been shown that if the loop exits, which means that $\neg E$ holds, the loop invariant *I* holds. Therefore, *Q* holds and ε is its frame condition.

3. (SEQ1_r) In this case, S is S₁S₂, where S₁ ≠ var x : T;. Let (σ, h) be a state, such that (σ, h) ⊨^Γ P. By the inductive hypothesis for S₁ and S₂, (σ", h") = MS[[Γ ⊢ S₁ : ok(Γ")]](σ, h), and (σ", h") ⊨^{Γ"} P₁. By the second premise and the semantics, (σ', h') = MS[[Γ" ⊢ S₂ : ok(Γ')]](σ", h"). Hence (σ', h') ⊨^{Γ'} P'.

For the frame condition, the proof obligation is to show $(\sigma, h) \rightarrow (\sigma', h') \models^{\Gamma}$ $(\varepsilon_1, \varepsilon_2, \mathbf{fresh}(RE))$, which is proved by Lemma 7. It is instantiated with $\Gamma_0 := \Gamma, \Gamma_1 := \Gamma'',$ $\Gamma_2 := \Gamma', RE_1 := RE_1, (\sigma_0, h_0) := (\sigma, h), (\sigma_1, h_1) := (\sigma'', h''), (\sigma_2, h_2) := (\sigma', h')$ and $\varepsilon_1 := (\varepsilon_1, \mathbf{fresh}(RE))$. The following conditions, which are required by the Lemma, are satisifed:

- $(\sigma, h) \models^{\Gamma} P$ and $(\sigma'', h'') \models^{\Gamma''} P_1$ from the above;
- $(\sigma, h) \rightarrow (\sigma'', h'') \models^{\Gamma} (\varepsilon_1, \texttt{fresh}(RE))$ by the inductive hypothesis;
- $(\sigma'', h'') \to (\sigma', h') \models^{\Gamma''} (\varepsilon_2, \text{ modifies } RE_1)$ by the inductive hypothesis.
- ε_2 is P/ε_1 -immune by the given side condition;
- for all $fresh(RE) \in \varepsilon_1 :: RE$ is $P/(\varepsilon_2, modifies RE_1)$ -immune by the given side condition.
- $\mathcal{E}\llbracket\Gamma'' \vdash RE_1 : \operatorname{region} \rrbracket(\sigma'') \cap \sigma(\operatorname{alloc}) = \emptyset$, RE are freshly allocated regions by S_1 , i.e., $\mathcal{E}\llbracket\Gamma'' \vdash RE_1 : \operatorname{region} \rrbracket(\sigma'') \subseteq (\sigma''(\operatorname{alloc}) \sigma(\operatorname{alloc}))$.
- 4. $(SEQ2_r)$ In this case, S is **var** $x : T; S_2$. This case follows the inductive hypothesis and the program semantics.
- (SUBEFF_r) By the inductive hypothesis, ⊨^Γ_r {P}S{Q}[ε]. Hence when applying the frame condition ε' ≥ ε, the locations that may be changed are also contained in ε'. Therefore ε' is a correct frame.
- 6. (FRM_r) In this case, by the inductive hypothesis, it must be true that $\models_r^{\Gamma} \{P\}S\{Q\}[\varepsilon]$. And

by the assumption, it must be true that $P \models^{\Gamma} \delta frm Q$ and $P \&\& R \Rightarrow \delta'/\varepsilon$. The proof obligation is to show $\models_{r}^{\Gamma} \{P \&\& R\}S\{Q \&\& R\}[\varepsilon]$. Because P && R implies P, Thus, it must be true that $\models_{r}^{\Gamma} \{P \&\& R\}S\{Q\}[\varepsilon]$. Let $(\sigma', H') = \mathcal{MS}[[\Gamma \vdash S : ok(\Gamma')]](\sigma, H)$. The proof obligation is to show that $(\sigma', H') \models^{\Gamma'} R$. By $(\sigma, H) \models^{\Gamma} P \&\& R$ and the side condition $P \&\& R \Rightarrow \delta'/\varepsilon$, it must be true that $(\sigma, H) \models^{\Gamma} \delta'/\varepsilon$. As the write effect is $(\sigma, H) \rightarrow (\sigma', H') \models^{\Gamma} \varepsilon$, it must be true that $(\sigma, H) \stackrel{\delta}{=} (\sigma', H')$. By the definition of framing (Def. 5) and $(\sigma, H) \models^{\Gamma} P \&\& R$, it must be true that $(\sigma', H') \models^{\Gamma'} R$.

7. (*CONSEQ_r*) In this case, by the inductive hypothesis, it must be true that $\models_r^{\Gamma} \{P'\}S\{Q'\}[\varepsilon]$. By the premise, $P \Rightarrow P'$ and $Q' \Rightarrow Q$. Hence $\models_r^{\Gamma} \{P\}S\{Q\}[\varepsilon]$ is valid.

APPENDIX C: PROOF OF THEOREM 3

Theorem 3: Let Γ be a well-formed type environment. Let *S* be a statement. Let P_1 and P_2 be assertions. Let ε be effects. Then

$$\vdash_{r}^{\Gamma} \{P_{1}\}S\{P_{2}\}[\varepsilon] \text{ iff } \vdash_{u}^{\Gamma} [\texttt{reads } r \downarrow]\{P_{1}\}S\{P_{2}\}[\varepsilon]$$

where $P_{1} \Rightarrow r = \texttt{alloc}$ and $\texttt{modifies} r \notin \varepsilon$

Proof. The left hand side implies the right hand side is firstly proved; i.e., that if there is a proof in FRL, then the encoded proof is in UFRL. The proof is done by the induction on FRL derivation and by cases on the last rule used. There are 6 base cases.

- SKIP: In this case, suppose that the FRL proof consists of the axiom SKIP_r, which is
 ⊢^Γ_r {true}skip; {true}[Ø]. Then, the proof obligation is to show that the judgment
 ⊢^Γ_u [reads r↓]{true}skip; {true}[Ø], where true ⇒ r = alloc, is derivable in UFRL.
 It can be done by using the axiom SKIP_u and the structural rule SubEff_u.
- 2. VAR: In this case, suppose that the FRL proof consists of the axiom VAR_r , which is $\vdash_r^{\Gamma} \{true\} \texttt{var} x : T; \{x = default(T)\}[\emptyset]$. Then, the proof obligation is to show that the judgment $\vdash_u^{\Gamma} [\texttt{reads } r \downarrow] \{true\} \texttt{var} x : T; \{x = default(T)\}[\emptyset]$, where $true \Rightarrow r = \texttt{alloc}$, is derived in UFRL. It can be done by using the axiom VAR_u and the structural rule $SubEff_u$.
- ALLOC: In this case, suppose that the FRL proof consists of the axiom ALLOC_r, which is ⊢^Γ_r {true} x := new T; {new(T, x)}[modifies x, alloc, fresh(region{x.*})]. Then, the proof obligation is to show the following judgment is derivable in UFRL.

$$\begin{split} \vdash_{u}^{\Gamma} & \begin{bmatrix} \texttt{reads} \ r \downarrow \end{bmatrix} \\ & \{true\} \ x := \texttt{new} \ T; \ \{new(T, x) \ [\texttt{modifies} \ x, \texttt{alloc}, \texttt{fresh}(\texttt{region}\{x.*\})] \\ & \texttt{where} \ true \Rightarrow r = \texttt{alloc} \end{split}$$

It can be done by using the axiom $ALLOC_u$ and the structural rule $SubEff_u$.

4. UPD: Suppose that the FRL proof consists of the axiom UPD_r , which is $\vdash_r^{\Gamma} \{x \neq null\} x.f := G; \{x.f = G\} [modifies region \{x.f\}], where <math>x \notin FV(G)$. Then, the

proof obligation is to show that the following judgment is derivable.

 $\vdash_{u}^{\Gamma} [\text{reads } r \downarrow] \{ x \neq null \} x.f := G; \{ x.f = G \} [\text{modifies region} \{ x.f \}]$ where $x \notin FV(G)$ and $x \neq null \Rightarrow r = \texttt{alloc}$

It can be done by using the axiom UPD_u and the structural rule $SubEff_u$.

5. ASGN: Suppose that the FRL proof consists of the axiom $ASGN_r$: $\vdash_r^{\Gamma} \{true\} x := G; \{x = G\} [modifies x]$, where $x \notin FV(G)$. Then, the proof obligation is to show that the following judgment is derivable.

$$\vdash_{u}^{\Gamma} [\texttt{reads } r \downarrow] \{ true \} \; x := G; \; \{ x = G \} [\texttt{modifies } x]$$

where $x \notin FV(G)$ and $true \Rightarrow r = \texttt{alloc}$

It can be done by using the axiom $ASGN_u$ and the structural rule $SubEff_u$.

6. ACC: Suppose that the FRL proof consists of the axiom ACC_r , which is $\vdash_r^{\Gamma} \{x' \neq null\}x := x'.f$; $\{x = x'.f\}$ [modifies x], where $x \neq x'$. Then, the proof obligation is to show that the following judgment is derivable.

$$\vdash_{u}^{\Gamma} [\texttt{reads } r \downarrow] \{ x' \neq null \} x := x'.f; \{ x = x'.f \} [\texttt{modifies } x]$$
where $x \neq x'$ and $x' \neq null \Rightarrow r = \texttt{alloc}$

It can be done by using the axiom ACC_u and the structural rule $SubEff_u$.

The inductive hypothesis is that for all substatements S_i , it is true that $\vdash_r^{\Gamma} \{P_i\}S_i\{Q_i\}[\varepsilon_i]$ iff \vdash_u^{Γ} [reads $r\downarrow]\{P_i\}S_i\{Q_i\}[\varepsilon_i]$, where $P_i \Rightarrow r =$ alloc and and modifies $r \notin \varepsilon$.

1. IF: In this case, suppose that the FRL proof consists of the rule IF_r , which is

$$\vdash_{r}^{\Gamma} \{P \&\& E\} S_{1} \{P'\}[\varepsilon] \qquad \vdash_{r}^{\Gamma} \{P \&\& \neg E\} S_{2} \{P'\}[\varepsilon]$$
$$\vdash_{r}^{\Gamma} \{P\} \texttt{if} E \texttt{then} \{S_{1}\} \texttt{else} \{S_{2}\}\{P'\}[\varepsilon]$$

Then the proof obligation is to show that the following is derivable.

$$\frac{\vdash_{u}^{\Gamma} [\operatorname{reads} r \downarrow] \{P \&\& E\} S_1 \{P'\}[\varepsilon] \qquad \vdash_{u}^{\Gamma} [\operatorname{reads} r \downarrow] \{P \&\& \neg E\} S_2 \{P'\}[\varepsilon]}{\vdash_{u}^{\Gamma} [\operatorname{reads} r \downarrow] \{P\} if E then \{S_1\} else \{S_2\} \{P'\}[\varepsilon]}$$
where $P \Rightarrow r = alloc$

By the inductive hypothesis, the two premises are assumed. Using the rule IF_u , the following is derived

Then, using the rule $SubEff_u$, the conclusion of is derived.

2. WHILE: Suppose that the FRL proof consists of the rule $WHILE_r$, which is

$$\begin{split} & \vdash^{\Gamma}_{r} \{P \&\& E\} S\{P\} \left[\varepsilon, \texttt{fresh}(RE)\right] \\ & \vdash^{\Gamma}_{r} \{P \&\& r = \texttt{alloc}\} \texttt{while} E \{S\} \{P \&\& \neg E\} \left[\varepsilon\right] \end{split},$$

where $P \Rightarrow RE ! ! r, \varepsilon$ is fresh-free, ε is P/ε -immune and modifies $r \notin \varepsilon$

where r snapshots the domain of the heap in the pre-state. Then the proof obligation is to show the following is derivable.

$$\begin{aligned} & \vdash_{u}^{\Gamma} [\texttt{reads} \ r \downarrow] \{P \&\& E\} \ S\{P\} \ [\varepsilon, \texttt{fresh}(RE)] \\ & \vdash_{u}^{\Gamma} [\texttt{reads} \ r \downarrow] \{P \&\& \ r = \texttt{alloc}\} \ \texttt{while} \ E \ \{S\} \ \{P \&\& \ \neg E\} \ [\varepsilon] \\ & \texttt{where} \ P \Rightarrow r = \texttt{alloc} \ \texttt{and} \ \texttt{modifies} \ r \notin \varepsilon \end{aligned}$$

By the inductive hypothesis, the premises is assumed. To use the rule $WHILE_u$, its side conditions have to be true. In addition to the side condition that is given by the assumption, it needs to prove that **reads** r is P/ε -immune, which is true because **modifies** $r \notin \varepsilon$. Then, using the rule $WHILE_u$, the following is derived

$$\begin{split} & \vdash_{u}^{\Gamma} \left[\texttt{reads} \ r \downarrow \right] \{ P \&\& E \} S\{P\} \left[\varepsilon, \texttt{fresh}(RE) \right] \\ & \vdash_{u}^{\Gamma} \left[\texttt{reads} \ r \downarrow, \delta_{E} \right] \{ P \&\& \ r = \texttt{alloc} \} \texttt{while} \ E \left\{ S \right\} \{ P \&\& \neg E \} \left[\varepsilon \right] \\ & \texttt{where} \ P \Rightarrow r = \texttt{alloc}, P \Rightarrow RE \ ! \ ! \ r, \varepsilon \text{ is fresh-free}, \varepsilon \text{ is } P/\varepsilon \text{-immune} \\ & \texttt{and modifies } \mathbf{r} \notin \varepsilon, \end{split}$$

where $\delta_E = efs(E)$. Then, the conclusion is derived by using the structural rule SubEff_u.

3. SEQ1: Suppose that the FRL proof consists of the rule $SEQ1_r$, which is

$$\frac{\vdash_{r}^{\Gamma} \{P\} S_{1} \{P_{1}\}[\varepsilon_{1}, \texttt{fresh}(RE)]}{\vdash_{r}^{\Gamma} \{P\} S_{1} S_{2} \{P'\}[\varepsilon_{2}, RE]}$$

$$\frac{\vdash_{r}^{\Gamma} \{P\} S_{1} S_{2} \{P'\}[\varepsilon_{1}, \varepsilon_{2}, \texttt{fresh}(RE)]}{\texttt{where } S_{1} \neq \texttt{var } x : T;, \varepsilon_{1} \texttt{ is fresh-free}, \varepsilon_{2} \texttt{ is } P/\varepsilon_{1}\texttt{-immune}, \texttt{ and } RE \texttt{ is } P_{1}/(\texttt{modifies } RE, \varepsilon_{2})\texttt{-immune}}$$

Then the proof obligation is to show that the following is derivable.

$$\vdash_{u}^{\Gamma} [\texttt{reads} \ r \downarrow] \{P\} \ S_1 \ \{P_1\} [\varepsilon_1, \texttt{fresh}(RE)] \qquad \vdash_{u}^{\Gamma} [\texttt{reads} \ r \downarrow] \{P_1\} \ S_2 \ \{P'\} [\varepsilon_2, RE]$$
$$\vdash_{u}^{\Gamma} [\texttt{reads} \ r \downarrow] \{P\} \ S_1 S_2 \ \{P'\} [\varepsilon_1, \varepsilon_2, \texttt{fresh}(RE)]$$

where $P \Rightarrow r =$ alloc and modifies $r \notin (\varepsilon_1, \varepsilon_2)$

By the inductive hypothesis, the two premises are assumed. To use the rule $SEQI_u$, check the side condition **reads** r is P/ε_1 -immune, which is true because **modifies** $r \notin (\varepsilon_1, \varepsilon_2)$ by the inductive hypothesis. Then, the conclusion is derived by using the rule $SEQI_u$.

4. SEQ2: Suppose that the FRL proof consists of the rule $SEQ1_r$:

$$\frac{\vdash_{r}^{\Gamma} \{P \&\& x = default(T)\} : S \{Q\}[\texttt{modifies } x, \varepsilon]}{\vdash_{r}^{\Gamma} \{P\} \texttt{var } x : T; S \{P'\}[\varepsilon]}$$

Then, the proof obligation is to show that the following is derivable.

$$\frac{\vdash_{u}^{\Gamma} [\operatorname{reads} r \downarrow] \{P \&\& x = default(T)\} S \{Q\} [\operatorname{modifies} x, \varepsilon]}{\vdash_{u}^{\Gamma} [\operatorname{reads} r \downarrow] \{P\} \operatorname{var} x : T; S \{P'\} [\varepsilon]}$$
where $P \Rightarrow r = \operatorname{alloc}$ and $r \neq x$;

By the inductive hypothesis, the assumption is assumed. Then the conclusion is derived by using the rule $SEQ2_u$.

5. *FRM:* Suppose that the FRL proof consists of the rule FRM_r :

$$\frac{\vdash_{r}^{\Gamma} \{P\} S \{P'\}[\varepsilon] \qquad P \vdash^{\Gamma} \delta frm Q}{\vdash_{r}^{\Gamma} \{P \&\& Q\} S \{P' \&\& Q\}[\varepsilon]} \quad \text{where } P \&\& Q \Rightarrow \delta'/\varepsilon$$

Then the proof obligation is to show that the following is derivable in UFRL.

By inductive hypothesis, the two premises of the above equations are assumed. Then, the conclusion can be derived by using the rule FRM_u .

6. *SubEff:* Suppose that the FRL proof consists of the rule $SubEff_r$:

$$\frac{\vdash_{r}^{\Gamma} \{P\} S \{P'\}[\varepsilon] \qquad P \vdash^{\Gamma} \varepsilon \leqslant \varepsilon'}{\vdash_{r}^{\Gamma} \{P\} S \{P'\}[\varepsilon']}$$

Then the proof obligation is to show that the following is derivable in UFRL.

$$\frac{\vdash_{u}^{\Gamma} [\operatorname{\mathbf{reads}} r \downarrow] \{P\} S \{P'\}[\varepsilon] \qquad P \vdash^{\Gamma} \varepsilon \leqslant \varepsilon'}{\vdash_{u}^{\Gamma} [\operatorname{\mathbf{reads}} r \downarrow] \{P\} S \{P'\}[\varepsilon']}$$
where $P \Rightarrow r =$ alloc and reads $r \notin \varepsilon$

By the inductive hypothesis, the two premises are assumed. Then, the conclusion can be derived by using the rule $SubEff_u$, because the side condition $regRW(\varepsilon, reads r) \leq regRW(\varepsilon', reads r)$ is true.

7. *CONSEQ*: suppose that the FRL proof consists of the rule $CONSEQ_r$:

$$\frac{P_2 \Rightarrow P_1}{\vdash_r^{\Gamma} \{P_1\} S \{P_1'\}[\varepsilon] \qquad P_1' \Rightarrow P_2'}{\vdash_r^{\Gamma} \{P_2\} S \{P_2'\}[\varepsilon]}$$

Then, the proof obligation is to show that the following is derivable.

$$\frac{P_2 \Rightarrow P_1}{\vdash_u^{\Gamma} [\operatorname{reads} r \downarrow] \{P_1\} S \{P_1'\}[\varepsilon] \qquad P_1' \Rightarrow P_2'}{\vdash_u^{\Gamma} [\operatorname{reads} r \downarrow] \{P_2\} S \{P_2'\}[\varepsilon]}$$
where $P \Rightarrow r = \operatorname{alloc}$ and $\operatorname{reads} r \notin \varepsilon$

By the inductive hypothesis, the two premises are assumed. Then, its conclusion can be derived by using the rule $CONSEQ_u$.

8. *ConEff:* suppose that the FRL proof consists of the rule $ConEff_r$:

$$\frac{\vdash_{r}^{\Gamma} \{P \&\& E\} S \{P'\}[\varepsilon_{1}] \qquad \vdash_{r}^{\Gamma} \{P \&\& \neg E\} S \{P'\}[\varepsilon_{2}]}{\vdash_{r}^{\Gamma} \{P\} S \{P'\}[E ? \varepsilon_{1} : \varepsilon_{2}]}$$

Then, the proof obligation is to show that the following is derivable in UFRL.

$$\vdash_{u}^{\Gamma} [\operatorname{reads} r \downarrow] \{P \&\& E\} S \{P'\}[\varepsilon_{1}] \qquad \vdash_{u}^{\Gamma} [\operatorname{reads} r \downarrow] \{P \&\& \neg E\} S \{P'\}[\varepsilon_{2}]$$
$$\vdash_{u}^{\Gamma} [\operatorname{reads} r \downarrow] \{P\} S \{P'\}[E ? \varepsilon_{1} : \varepsilon_{2}]$$

where $P \Rightarrow r =$ alloc and reads $r \notin \varepsilon$

By the inductive hypothesis, the two premises are assumed. Then, its conclusion can be derived by using the rule $ConEff_u$

9. *ConMask1*: Suppose that the FRL proof consists of the rule *ConMask1*_r:

$$\frac{\vdash_{r}^{\Gamma} \{P\} S \{P'\}[\varepsilon, E ? \varepsilon_{1} : \varepsilon_{2}]}{\vdash_{r}^{\Gamma} \{P\} S \{P'\}[\varepsilon, \varepsilon_{1}]} \quad \text{where } P \Rightarrow E$$

Then, the proof obligation is to show that the following is derivable in UFRL.

$$\begin{array}{l} \displaystyle \begin{array}{c} \displaystyle \displaystyle \vdash_{u}^{\Gamma} \left[\texttt{reads} \ r \downarrow \right] \{P\} \ S \ \{P'\} [\varepsilon, \ E \ ? \ \varepsilon_{1} \ : \ \varepsilon_{2} \right] \\ \\ \displaystyle \quad \displaystyle \quad \displaystyle \vdash_{u}^{\Gamma} \left[\texttt{reads} \ r \downarrow \right] \{P\} \ S \ \{P'\} [\varepsilon, \varepsilon_{1}] \end{array} \\ \\ \textbf{where} \ P \Rightarrow E, P \Rightarrow r = \texttt{alloc} \ \texttt{and} \ \texttt{reads} \ r \notin \varepsilon \end{array}$$

By the inductive hypothesis, the premise is assumed. Then, its conclusion is derived by using the rule $ConMaskI_u$

10. *ConMask2*: suppose that the FRL proof consists of the rule $ConMask2_r$:

$$\frac{\vdash_{r}^{\Gamma} \{P\} S \{P'\}[\varepsilon, E ? \varepsilon_{1} : \varepsilon_{2}]}{\vdash_{r}^{\Gamma} \{P\} S \{P'\}[\varepsilon, \varepsilon_{2}]} \quad \text{where } P \Rightarrow \neg E$$

Then, the proof obligation is to show that the following is derivable in UFRL.

$$\frac{\vdash_{u}^{\Gamma} [\operatorname{reads} r \downarrow] \{P\} S \{P'\} [\varepsilon, E ? \varepsilon_{1} : \varepsilon_{2}]}{\vdash_{u}^{\Gamma} [\operatorname{reads} r \downarrow] \{P\} S \{P'\} [\varepsilon, \varepsilon_{2}]}$$
where $P \Rightarrow \neg E, P \Rightarrow r = \operatorname{alloc}$ and reads $r \notin$

By the inductive hypothesis, the premise is assumed. Then, its conclusion is derived by using the rule $ConMask2_u$.

ε

11. PostToFr: Suppose that the FRL proof consists of the rule $PostToFr_r$:

where
$$P \Rightarrow r =$$
 alloc, reads $r \notin \varepsilon, P \Rightarrow (E \&\& RE_1 !! alloc)$
and $P \Rightarrow (\neg E \&\& RE_2 !! alloc)$

By the inductive hypothesis, the premise is assumed. Then, the conclusion is derived by using the rule $PostToFr_u$.

12. *FrToPost:* Suppose that the FRL proof consists of the rule *FrToPost_r*:

Then, the proof obligation is to show that the following is derivable

$$\begin{split} & \vdash_{u}^{\Gamma} \left[\texttt{reads} \ r \downarrow \right] \{P\} \ S \ \{P'\} [\varepsilon, \ E \ ? \ \texttt{fresh}(RE_1) \ : \ \texttt{fresh}(RE_2) \right] \\ & \left[\texttt{reads} \ r \downarrow \right] \\ & \vdash_{u}^{\Gamma} \ \{P\} \ S \ \{P' \&\& \ (b \Rightarrow RE_1 \ ! \ ! \ r) \&\& \ (\neg b \Rightarrow RE_2 \ ! \ ! \ r) \} \\ & \left[\varepsilon, \ E \ ? \ \texttt{fresh}(RE_1) \ : \ \texttt{fresh}(RE_2) \right] \end{split}$$

where
$$P \Rightarrow r = \texttt{alloc}, P \Rightarrow b = E, \texttt{modifies} \ b \notin \varepsilon \text{ and modifies } r \notin \varepsilon$$

By the inductive hypothesis, the premise is assumed. Then, the conclusion can be derived by using the rule $FrToPost_u$.

13. *VarMask1*: suppose that the FRL proof consists of the rule *VarMask1_r*:

Then, the proof obligation is to show that the following is derivable in UFRL.

$$\begin{array}{l} \vdash_{u}^{\Gamma} [\texttt{reads} \ r \downarrow] \{P\} \ S \ \{P'\} [\ E \ ? \ (\texttt{modifies} \ x, \varepsilon_1) \ : \ \varepsilon_2] \\ \\ \vdash_{u}^{\Gamma} [\texttt{reads} \ r \downarrow] \{P\} \ S \ \{P'\} [\ E \ ? \ \varepsilon_1 \ : \ \varepsilon_2] \\ \\ \texttt{where} \ P \ \Rightarrow \ r = \texttt{alloc}, P \ \Rightarrow \ b = E, P \ \Rightarrow \ b, P \ || \ P' \ \Rightarrow \ x = y, \\ P \ \&\& \ b \ \Rightarrow \ \texttt{reads} \ y' / (x, \varepsilon), \texttt{modifies} \ r \notin (\varepsilon_1, \varepsilon_2) \ \texttt{and} \ \texttt{modifies} \ b \notin (\varepsilon_1, \varepsilon_2) \end{array}$$

By the inductive hypothesis, the premise is assumed. Then, its conclusion is derived by using the rule $VarMaskl_u$.

14. *VarMask2*: Suppose that the FRL proof consists of the rule $VarMask2_r$:

Then, the proof obligation is to show that the following is derivable in UFRL.

By the inductive hypothesis, the premise is assumed. Then, its conclusion is derived by using the rule $VarMask2_u$.

15. *FieldMask1*: Suppose that the FRL proof consists of the rule *FieldMask1*_r:

Then, the proof obligation is to show that the following is derivable in UFRL.

$$\frac{\vdash_{u}^{\Gamma} [\operatorname{reads} r \downarrow] \{P\} S \{P'\} [\varepsilon, E ? (\operatorname{modifies region} \{x.f\}, \varepsilon_{1}) : \varepsilon_{2}]}{\vdash_{u}^{\Gamma} [\operatorname{reads} r \downarrow] \{P\} S \{P'\} [\varepsilon, E ? \varepsilon_{1} : \varepsilon_{2}]}$$
where $P \Rightarrow r = \operatorname{alloc}, P \Rightarrow b = E, P \Rightarrow b, P \mid\mid P' \Rightarrow x.f = y,$
 $P' \&\& b \Rightarrow \operatorname{reads} x'/ \operatorname{modifies} \varepsilon, P' \&\& b \Rightarrow \operatorname{reads} y'/ \operatorname{modifies} \varepsilon$
modifies $r \notin (\varepsilon, \varepsilon_{1}, \varepsilon_{2})$ and modifies $b \notin (\varepsilon, \varepsilon_{1}, \varepsilon_{2})$
(C.1)

By the inductive hypothesis, the premise is assumed. Then, its conclusion is derived by using the rule $FieldMaskl_u$.

16. *FieldMask2*: Suppose that the FRL proof consists of the rule $FieldMask2_r$:

 Then the proof obligation is to show that the following is derivable in UFRL.

$$\begin{array}{l} \vdash_{u}^{\Gamma} [\operatorname{reads} r \downarrow] \{P\} \ S \ \{P'\} [\varepsilon, \ E \ ? \ \varepsilon_{1} \ : \ (\operatorname{modifies} \operatorname{region} \{x.f\}, \varepsilon_{2})] \\ \\ \vdash_{u}^{\Gamma} [\operatorname{reads} r \downarrow] \{P\} \ S \ \{P'\} [\varepsilon, \ E \ ? \ \varepsilon_{1} \ : \ \varepsilon_{2}] \\ \end{array} \\ \\ \begin{array}{l} \text{where} \ P \Rightarrow r = \texttt{alloc}, P \Rightarrow b = E, P \Rightarrow \neg b, P \ || \ P' \Rightarrow x.f = y, \\ \\ P' \ \&\& \ \neg b \Rightarrow \texttt{reads} \ x'/ \ \texttt{modifies} \ \varepsilon, P' \ \&\& \ \neg b \Rightarrow \texttt{reads} \ y'/ \texttt{modifies} \ \varepsilon \\ \\ \operatorname{modifies} r \ \notin \ (\varepsilon, \varepsilon_{1}, \varepsilon_{2}) \ \texttt{and} \ \texttt{modifies} \ b \ \notin \ (\varepsilon, \varepsilon_{1}, \varepsilon_{2}) \end{array}$$

By the inductive hypothesis, the premise is assumed. Then, its conclusion is derived by using the rule $FieldMask2_u$.

Next, it is proved from the right side of the left side. It means that if there is a proof \vdash_u^{Γ} [reads $r \downarrow$]{ P_1 }S{ P_2 }[ε] in UFRL, where $P_1 \Rightarrow r =$ alloc and modifies $r \notin \varepsilon$, then there is a proof \vdash_r^{Γ} { P_1 }S{ P_2 }[ε] in FRL. The proof is done by the induction on the UFRL derivation and by cases on the last rule used, and is omitted.

APPENDIX D: PROOF OF THEOREM 5

Theorem 5: An assertion in SL is supported if and only if it has semantic footprint.

Proof. Let Γ be a well-formed type environment. Let (σ, h) be a state and a be an assertion in SL, such that $\sigma, h \models_s^{\Gamma} a$. Let $\mathcal{H} \stackrel{\text{def}}{=} \{h' | h' \subseteq h \land \sigma, h' \models_s^{\Gamma} a\}$. Any subset of \mathcal{H} defines a partial order, i.e., $\mathcal{H}_1 \leq \mathcal{H}_2$ *iff* $\mathcal{H}_1, \mathcal{H}_2, \in \mathcal{P}(\mathcal{H})$ and $\mathcal{H}_1 \subseteq \mathcal{H}_2$. Define $(\downarrow \mathcal{H}_i) \stackrel{\text{def}}{=} \{\mathcal{H}' | \mathcal{H}' \leq \mathcal{H}_i \land \mathcal{H}' \in \mathcal{P}(\mathcal{H})\}$, where $\mathcal{H}_i \in \mathcal{P}(\mathcal{H})$. For any pair of \mathcal{H}_1 and $\mathcal{H}_2, (\downarrow \mathcal{H}_1) \cap (\downarrow \mathcal{H}_2)$ is a partial order. Let $\prod_{\mathcal{H}}$ define the greatest lower bound of any subset of the intersection. Let $\prod_{\mathcal{H}}$ define the greatest lower bound of any subset of the intersection. If it has a greatest lower bound of \mathcal{H}_1 and \mathcal{H}_2 , then

$$\mathcal{H}_a \leq (\mathcal{H}_1 \prod_{\mathcal{H}} \mathcal{H}_2) iff (\mathcal{H}_a \leq \mathcal{H}_1 and \mathcal{H}_a \leq \mathcal{H}_2)$$

Thus, H_a is the least subheap for an assertion a in Definition 14. Next, it is shown that $dom(H_a)$ is a's semantic footprint. Let $\mathcal{R} \stackrel{\text{def}}{=} \{r | \sigma, h \upharpoonright r \models_s^{\Gamma} a\}$. Any subset of \mathcal{R} defines a partial order in a way similar to \mathcal{H} . Let $\prod_{\mathcal{R}}$ define the greatest lower bound of any subset of \mathcal{R} . Let \mathcal{DOM} be a functor from $\mathcal{P}(\mathcal{H})$ to $\mathcal{P}(\mathcal{R})$, such that $\mathcal{DOM}(\{h_1, h_2, \dots, h_n\}) = \{dom(h_1), dom(h_2), \dots, dom(h_n)\}$. If $(\mathcal{H}_1) \leq (\mathcal{H}_2)$, then $\mathcal{DOM}(\mathcal{H}_1) \leq \mathcal{DOM}(\mathcal{H}_2)$. Thus $\mathcal{H}_p \leq (\mathcal{H}_1 \prod_{\mathcal{H}} \mathcal{H}_2)$ iff $\mathcal{DOM}(\mathcal{H}_p) \leq \mathcal{DOM}(\mathcal{H}_1) \prod_{\mathcal{R}} \mathcal{DOM}(\mathcal{H}_2)$.

APPENDIX E: PROOF OF THEOREM 7

Theorem 7: Let Γ be a well-formed type environment. Let a be an assertion in SSL. Then $\sigma, h \models_s^{\Gamma} a$ iff $\sigma, h \models_u^{\Gamma} \text{TR}[\![a]\!]$.

Proof. The proof is by the induction on the assertion's structure. Here it is only shown the most interesting case that encodes the separating conjunction. Other proofs are found in the KIV project [7]. It is an inductive case when a is of the form $a_1 * a_2$. The inductive hypothesis is that for all subassertions $a_i, \sigma, h \models_s^{\Gamma} a_i iff \sigma, h \models_u^{\Gamma} TR[[a_i]]$.

From the left side to the right side is firstly proved. Assume $\sigma, h \models_s^{\Gamma} a_1 * a_2$. The proof obligation is to show that $\sigma, h \models_u^{\Gamma} \text{TR}[\![a_1]\!]$ && $\text{TR}[\![a_2]\!]$ && $(fpt_s(a_1) !! fpt_s(a_2))$.

 $\sigma, h \models_s^{\Gamma} a_1 * a_2$

iff \langle by the semantics of separation logic (Def. 11) \rangle

exists $h_1, h_2 :: (h_1 \perp h_2 \text{ and } h = h_1 \cdot h_2 \text{ and } \sigma, h_1 \models_s^{\Gamma} a_1 \text{ and } \sigma, h_2 \models_s^{\Gamma} a_2)$

iff \langle by let fresh variables, h_1 and h_2 , be the witnesses of the existential variables. \rangle

 $h_1 \perp h_2 \text{ and } h = h_1 \cdot h_2 \text{ and } \sigma, h_1 \models_s^{\Gamma} a_1 \text{ and } \sigma, h_2 \models_s^{\Gamma} a_2$

implies (by truth of assertions is preserved under heap extension (Lemma 9))

 $h_1 \perp h_2 \text{ and } h = h_1 \cdot h_2 \text{ and } \sigma, h_1 \models_s^{\Gamma} a_1 \text{ and } \sigma, h_2 \models_s^{\Gamma} a_2 \text{ and } \sigma, h \models_s^{\Gamma} a_1 \text{ and } \sigma, h \models_s^{\Gamma} a_2$

implies (by let r_1 and r_2 be fresh, and by Theorem 6)

$$h_1 \perp h_2 \text{ and } h = h_1 \cdot h_2 \text{ and } \sigma, h_1 \models_s^{\Gamma} a_1 \text{ and } \sigma, h_2 \models_s^{\Gamma} a_2 \text{ and } \sigma, h \models_s^{\Gamma} a_1 \text{ and } \sigma, h \models_s^{\Gamma} a_2 \text{ and } \sigma$$

 $\mathcal{E}[[\Gamma \vdash fpt_s(a_1) : \texttt{region}]](\sigma) = r_1 \text{ and } \mathcal{E}[[\Gamma \vdash fpt_s(a_2) : \texttt{region}]](\sigma) = r_2$

implies (by Corollary 4 and $h_1 \perp h_2$)

$$h_1 \perp h_2 \text{ and } h = h_1 \cdot h_2 \text{ and } \sigma, h_1 \models_s^{\Gamma} a_1 \text{ and } \sigma, h_2 \models_s^{\Gamma} a_2 \text{ and } \sigma, h \models_s^{\Gamma} a_1 \text{ and } \sigma, h \models_s^{\Gamma} a_2 \text{ and } \sigma$$

 $\mathcal{E}[[\Gamma \vdash fpt_s(a_1) : \texttt{region}]](\sigma) = r_1 \text{ and } \mathcal{E}[[\Gamma \vdash fpt_s(a_2) : \texttt{region}]](\sigma) = r_2 \text{ and } r_1 ! ! r_2$

iff \langle by inductive hypothesis \rangle

 $h_{1}\perp h_{2} \text{ and } h = h_{1} \cdot h_{2} \text{ and } \sigma, h_{1} \models_{s}^{\Gamma} a_{1} \text{ and } \sigma, h_{2} \models_{s}^{\Gamma} a_{2} \text{ and } \sigma, h \models_{s}^{\Gamma} a_{1} \text{ and } \sigma, h \models_{s}^{\Gamma} a_{2} \text{ and } \sigma, h \models_{s}^{\Gamma} a_{1} \text{ and } \sigma, h \models_{s}^{\Gamma} a_{2} \text{ and } \sigma, h \models_{s}^{\Gamma} a_{2} \text{ and } \sigma, h \models_{s}^{\Gamma} a_{2} \text{ and } \sigma, h \models_{s}^{\Gamma} a_{1} \text{ and } \sigma, h \models_{s}^{\Gamma} a_{1} \text{ and } \sigma, h \models_{u}^{\Gamma} \text{TR}[a_{1}]] \text{ and } \sigma, h \models_{u}^{\Gamma} \text{TR}[a_{2}]]$

iff \langle by the semantics of assertions (Fig. 3.2) \rangle $\sigma, h \models_{u}^{\Gamma} \text{TR}[[a_{1}]] \&\& \text{TR}[[a_{2}]] \&\& (fpt_{s}(a_{1}) !! fpt_{s}(a_{2}))$ *iff* \langle by Mapping from SSL to UFRL (Def. 16) \rangle

 $\sigma, h \models_u^{\Gamma} \mathrm{TR}[\![a_1 \ast a_2]\!]$

Next, it is proved it from the right side to the left side. Assume

 $\sigma, h \models_u^{\Gamma} \operatorname{TR}[[a_1]] \&\& \operatorname{TR}[[a_2]] \&\& (fpt_s(a_1) ! ! fpt_s(a_2)).$ The proof obligation is to show that $\sigma, h \models_s^{\Gamma} a_1 * a_2.$

$$\sigma, h \models^{\Gamma}_{u} \operatorname{TR}\llbracket a_1 \rrbracket \&\& \operatorname{TR}\llbracket a_2 \rrbracket \&\& (\textit{fpt}_s(a_1) ! ! \textit{fpt}_s(a_2))$$

$$\begin{aligned} & \text{(by the semantics of assertions (Fig. 3.2))} \\ & \sigma, h \models_{u}^{\Gamma} \operatorname{TR}\llbracket a_{1} \rrbracket \text{ and } \sigma, h \models_{u}^{\Gamma} \operatorname{TR}\llbracket a_{2} \rrbracket \text{ and } \mathcal{E}\llbracket \Gamma \vdash fpt_{s}(a_{1}) : \operatorname{\textbf{region}} \rrbracket(\sigma) = r_{1} \text{ and} \\ & \mathcal{E}\llbracket \Gamma \vdash fpt_{s}(a_{2}) : \operatorname{\textbf{region}} \rrbracket(\sigma) = r_{2} \text{ and } r_{1} ! ! r_{2} \end{aligned}$$

$$\begin{aligned} & \text{(by inductive hypothesis)} \\ & \sigma, h \models_{u}^{\Gamma} \operatorname{TR}\llbracket a_{1} \rrbracket \text{ and } \sigma, h \models_{u}^{\Gamma} \operatorname{TR}\llbracket a_{2} \rrbracket \text{ and } \mathcal{E}\llbracket \Gamma \vdash fpt_{s}(a_{1}) : \operatorname{\mathbf{region}} \rrbracket(\sigma) = r_{1} \text{ and} \\ & \mathcal{E}\llbracket \Gamma \vdash fpt_{s}(a_{2}) : \operatorname{\mathbf{region}} \rrbracket(\sigma) = r_{2} \text{ and } r_{1} ! ! r_{2} \text{ and } \sigma, h \models_{u}^{\Gamma} a_{1} \text{ and } \sigma, h \models_{u}^{\Gamma} a_{2} \end{aligned}$$

iff
$$\langle$$
 by Corollary 5 \rangle

 $\sigma, h \models_{u}^{\Gamma} \operatorname{TR}\llbracketa_{1} \text{ and } \sigma, h \models_{u}^{\Gamma} \operatorname{TR}\llbracketa_{2} \text{ and } \mathcal{E}\llbracket\Gamma \vdash fpt_{s}(a_{1}) : \operatorname{\mathbf{region}} \rrbracket(\sigma) = r_{1} \text{ and}$ $\mathcal{E}\llbracket\Gamma \vdash fpt_{s}(a_{2}) : \operatorname{\mathbf{regoin}} \rrbracket(\sigma) = r_{2} \text{ and } r_{1} ! ! r_{2} \text{ and } \sigma, h \upharpoonright r_{1} \models_{u}^{\Gamma} a_{1} \text{ and } \sigma, h \upharpoonright r_{2} \models_{u}^{\Gamma} a_{2}$ $implies \left\langle \begin{array}{c} \text{by } h \upharpoonright r_{2} \subseteq h \upharpoonright (dom(h) - r_{1}) \text{ and truth of assertions is closed under heap extension} \\ \text{(Lemma 9)} \end{array} \right\rangle$ $\sigma, h \models_{u}^{\Gamma} \operatorname{TR}\llbracketa_{1} \text{ and } \sigma, h \models_{u}^{\Gamma} \operatorname{TR}\llbracketa_{2} \text{ and } \mathcal{E}\llbracket\Gamma \vdash fpt_{s}(a_{1}) : \operatorname{\mathbf{region}} \rrbracket(\sigma) = r_{1} \text{ and}$ $\mathcal{E}\llbracket\Gamma \vdash fpt_{s}(a_{2}) : \operatorname{\mathbf{region}} \rrbracket(\sigma) = r_{2} \text{ and } r_{1} ! ! r_{2}$ $and \sigma, h \upharpoonright r_{1} \models_{u}^{\Gamma} a_{1} \text{ and } \sigma, h \upharpoonright r_{2} \models_{u}^{\Gamma} a_{2} \text{ and } \sigma, h \upharpoonright (dom(h) - r_{1}) \models_{u}^{\Gamma} a_{2}$ $\left\langle \operatorname{by} \operatorname{Corollary} A r_{1} \lor (domh - r_{1}) = dom(h) \text{ and } h_{1} = h \upharpoonright r_{1} \text{ and } h_{2} = h \upharpoonright \rangle$

 $and \ \sigma, h \upharpoonright r_1 \models_u^{\Gamma} a_1 \ and \ \sigma, h \upharpoonright r_2 \models_u^{\Gamma} a_2 \ and \ \sigma, h \upharpoonright (dom(h) - r_1) \models_u^{\Gamma} a_2$ $implies \left\langle by \ Corollary \ 4, \ r_1 \cup (domh - r_1) = dom(h), \ and \ h_1 = h \upharpoonright r_1 \ and \ h_2 = h \upharpoonright \right\rangle$ $(dom(h) - r_1)$

exists $h_1, h_2 :: (h_1 \perp h_2 \text{ and } h = h_1 \cdot h_2 \text{ and } \sigma, h_1 \models_s^{\Gamma} a_1 \text{ and } \sigma, h_2 \models_s^{\Gamma} a_2)$

iff \langle by the semantics of separation logic (Def. 11) \rangle

$\sigma, h \vDash_s^{\Gamma} a_1 * a_2$

APPENDIX F: PROOF OF LEMMA 13

Lemma 13: Let Γ be a well-formed type environment. Let a and a' be assertions and S be a statement, such that $\models_s^{\Gamma} \{a\}S\{a'\}$. Let (σ, H) be an arbitrary state. If $\sigma, H \models_s^{\Gamma} a$ and $\mathcal{MS}[[\Gamma \vdash S : ok(\Gamma')]](\sigma, H) = (\sigma', H')$, then:

- 1. for all $x \in dom(\sigma)$:: $\sigma'(x) \neq \sigma(x)$ implies $x \in MV(S)$.
- 2. for all $(o, f) \in dom(H)$:: $H'[o, f] \neq H[o, f]$ implies $(o, f) \in \mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \texttt{region}\rrbracket(\sigma)$.
- 3. for all $(o, f) \in (\mathcal{E}\llbracket\Gamma' \vdash fpt_s(a') : \operatorname{region} \rrbracket(\sigma') \mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \operatorname{region} \rrbracket(\sigma)) :: (o, f) \in (dom(H') dom(H)).$

Proof. Let $a, a', S, (\sigma, H)$ be given, such that $\models_s^{\Gamma} \{a\}S\{a'\}$. Let (σ', H') be such that $(\sigma', H') = \mathcal{MS}[[\Gamma \vdash S : ok(\Gamma')]](\sigma, H)$.

For property 1, it must be shown that for all $x \in dom(\sigma)$:: $\sigma'(x) \neq \sigma(x)$ implies $x \in MV(S)$. The proof is by induction on the structure of the statement *S* and the definition of MV(S). There are 6 base cases.

- 1. (*SKIP*) In this case, S has the form **skip**;. According to its semantics Fig. 2.4, $\sigma = \sigma'$. Thus, it is vacuously true.
- 2. (VAR) In this case, S has the form **var** x : T;. According to its semantics Fig. 2.4, $\sigma' = Extend(\sigma, x, default(T))$. Thus, it is vacuously true, as *Extend* only extends σ by definition.
- (ALLOC) In this case, S has the form y := new T;, for some variable y. According to the semantics Fig. 2.4, σ' = σ[y → l], where l is some new location. Thus, no other variables are mapped to different values by σ'. For y, it must be true that σ'(y) ≠ σ(y), and y ∈ MV(y := new T;) = {y}, according to Fig. 6.2.
- 4. (ASGN) In this case, S has the form y := e; for some variable y. According to its semantics Fig. 2.4, σ' = σ[y → v], where v is the value of e. For y, σ'(y) ≠ σ(y), and y ∈ MV(y := e) = {y}, according to Fig. 6.2.

- 5. (UPD) In this case, S has the form y f := e; According to its semantics Fig. 2.4, $\sigma' = \sigma$. Thus, it is vacuously true.
- 6. (ACC) In this case, S has the form y := x'.f;. According to its semantics Fig. 2.4, σ' = σ[y → v], where v is the value of x'.f. Thus, σ'(y) ≠ σ(y), and y ∈ MV(y := x'.f) = {y}, according to Fig. 6.2.

The inductive hypothesis is that for all substatements S_i , (σ_i, H_i) , and (σ'_i, H'_i) , for all $x \in dom(\sigma_i) :: \sigma'_i(x) \neq \sigma_i(x)$ implies $x \in MV(S_i)$. There are 3 inductive cases.

- (*IF*) In this case, S has the form if e {S₁} else {S₂}. According to its semantics Fig. 2.4, if *E*[[Γ ⊢ e : bool]](σ) ≠ 0, then the result follows from the inductive hypothesis applied to S₁. Similarly if ¬*E*[[Γ ⊢ e : bool]](σ), the result also follows similarly.
- (WHILE) In this case, S has the form while e {S}. According to its semantics Fig. 2.4 on page 23, there exists n ≥ 0, such that σ' = σ_n and ¬E[[Γ ⊢ e : bool]](σ_n). The proof is done by induction on n. The base case is n = 0. According to the semantics Fig. 2.4, σ' = σ. Thus, it is vacuously true. For the inductive case, assume for all x ∈ dom(σ) :: σ_{n-1}(x) ≠ σ(x) implies x ∈ MV(S). And by the inductive hypothesis, for all x ∈ dom(σ_{n-1}) :: σ_n(x) ≠ σ_{n-1} implies x ∈ MV(S). Thus, for all x ∈ dom(σ) :: σ(x) ≠ σ'(x) implies x ∈ MV(S).
- 3. (SEQ) In this case, S has the form S₁S₂. By definition, MV(S₁S₂) = MV(S₁) ∪ MV(S₂). According to the statement's semantics Fig. 2.4, assume σ₁ is the post-states of S₁. By the inductive hypothesis, for all x ∈ dom(σ) :: σ₁(x) ≠ σ(x) implies x ∈ MV(S₁), and for all x ∈ dom(σ₁) :: σ'(x) ≠ σ₁(x) implies x ∈ MV(S₂). Thus, for all x ∈ dom(σ) :: σ'(x) ≠ σ(x) implies (x ∈ MV(S₁S₂)).

For property 2, it must be shown that for all $(o, f) \in dom(H)$:: $H'[o, f] \neq H[o, f]$ implies $(o, f) \in \mathcal{E}[[\Gamma \vdash fpt_s(a) : region]](\sigma)$. Assume that $\sigma, H \models_s^{\Gamma} \{a\} S \{a'\}, \sigma, H \models_s^{\Gamma} a$ and $\mathcal{MS}[[\Gamma \vdash S : ok(\Gamma')]](\sigma, H) = (\sigma', H')$. The proof is done in calculational style, starting from the assumptions.

$$\begin{split} \sigma, H &\models_{s}^{\Gamma} \{a\} S \{a'\} \text{ and } \sigma, H \models_{s}^{\Gamma} a \text{ and } \mathcal{MS}\llbracket\Gamma \vdash S : ok(\Gamma') \rrbracket(\sigma, H) = (\sigma', H') \\ & \text{iff} \\ & \left\langle \begin{array}{c} \text{by assumption} \models_{s}^{\Gamma} \{a\} S \{a'\}, \\ \text{thus } (\sigma, H \upharpoonright \mathcal{E}\llbracket\Gamma \vdash fpt_{s}(a) : \texttt{region} \rrbracket(\sigma)) \models_{s}^{\Gamma} \{a\} S \{a'\} \text{ iff } \sigma, H \models_{s}^{\Gamma} \{a\} S \{a'\} \end{array} \right\rangle \\ & (\sigma, H \upharpoonright \mathcal{E}\llbracket\Gamma \vdash fpt_{s}(a) : \texttt{region} \rrbracket(\sigma)) \models_{s}^{\Gamma} \{a\} S \{a'\} \text{ and } \sigma, H \models_{s}^{\Gamma} a \text{ and} \\ & \mathcal{MS}\llbracket\Gamma \vdash S : ok(\Gamma') \rrbracket(\sigma, H) = (\sigma', H') \end{split}$$

iff
$$\langle \text{by Corollary 5: } \sigma, H \vDash_s^{\Gamma} a \ iff (\sigma, H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \text{region}]\!](\sigma)) \vDash_s^{\Gamma} a \rangle$$

 $(\sigma, H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \text{region}]\!](\sigma)) \vDash_s^{\Gamma} \{a\} S\{a'\} \ and \ \sigma, H \vDash_s^{\Gamma} a \ and$
 $\mathcal{MS}[\![\Gamma \vdash S : ok(\Gamma')]\!](\sigma, H) = (\sigma', H') \ and \ (\sigma, H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \text{region}]\!](\sigma)) \vDash_s^{\Gamma}$

iff
$$\langle$$
 by the definition of SSL valid Hoare-formula (Def. 17) \rangle
 $(\sigma, H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \mathbf{region}]\!](\sigma)) \models_s^{\Gamma} \{a\}S\{a'\} and \sigma, H \models_s^{\Gamma} a and$
 $\mathcal{MS}[\![\Gamma \vdash S : ok(\Gamma')]\!](\sigma, H) = (\sigma', H') and (\sigma, H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \mathbf{region}]\!](\sigma)) \models_s^{\Gamma} a and$
 $\mathcal{MS}[\![\Gamma \vdash S : ok(\Gamma')]\!](\sigma, H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \mathbf{region}]\!](\sigma)) \neq err$ and if
 $((\sigma', H'') = \mathcal{MS}[\![\Gamma \vdash S : ok(\Gamma')]\!](\sigma, H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \mathbf{region}]\!](\sigma)), \text{ then } \sigma', H'' \models_s^{\Gamma'} a').$
iff \langle by frame property of SL \rangle

a

$$(\sigma, H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \operatorname{region}]\!](\sigma)) \models_{s}^{\Gamma} \{a\} S\{a'\} and \sigma, H \models_{s}^{\Gamma} a and$$

$$\mathcal{MS}[\![\Gamma \vdash S : ok(\Gamma')]\!](\sigma, H) = (\sigma', H') and (\sigma, H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \operatorname{region}]\!](\sigma)) \models_{s}^{\Gamma} a and$$

$$\mathcal{MS}[\![\Gamma \vdash S : ok(\Gamma')]\!](\sigma, H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \operatorname{region}]\!](\sigma)) \neq err and$$

$$((\sigma', H'') = \mathcal{MS}[\![\Gamma \vdash S : ok(\Gamma')]\!](\sigma, H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \operatorname{region}]\!](\sigma)), and \sigma', H'' \models_{s}^{\Gamma'} a')$$

$$and H'' \bot H \upharpoonright (dom(H) - \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \operatorname{region}]\!](\sigma)) and$$

$$H' = H'' \cdot H \upharpoonright (dom(H) - \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \operatorname{region}]\!](\sigma))$$

implies \langle by A and B implies $B \rangle$

$$\begin{array}{l} H'' \perp H \upharpoonright (dom(H) - \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \mathbf{region}]\!](\sigma)) \text{ and } \\ H' = H'' \cdot H \upharpoonright (dom(H) - \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \mathbf{region}]\!](\sigma)) \\ \text{iff} & \left\langle \begin{array}{l} \text{by} & for all (o, f) \in \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \mathbf{region}]\!](\sigma) \text{ is a tautology} \\ H'' \perp H \upharpoonright (dom(H) - \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \mathbf{region}]\!](\sigma)) \text{ and } \\ H' = H'' \cdot H \upharpoonright (dom(H) - \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \mathbf{region}]\!](\sigma)) \text{ and } \\ for all (o, f) \in \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \mathbf{region}]\!](\sigma) : : H''[o, f] \neq \\ H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \mathbf{region}]\!](\sigma)[o, f] \text{ implies } (o, f) \in \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \mathbf{region}]\!](\sigma) \\ \text{implies} \left\langle \begin{array}{l} \text{by} & H' = H'' \cdot H \upharpoonright (dom(H) - \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \mathbf{region}]\!](\sigma)) \text{ and } \\ H' = H'' \cdot H \upharpoonright (dom(H) - \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \mathbf{region}]\!](\sigma)) \\ \text{and for all } (o, f) \in \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \mathbf{region}]\!](\sigma)) \cap \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \mathbf{region}]\!](\sigma) = \mathcal{O} \\ H'' \perp H \upharpoonright (dom(H) - \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \mathbf{region}]\!](\sigma)) \\ \text{and for all } (o, f) \in \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \mathbf{region}]\!](\sigma)) \\ \text{and for all } (o, f) \in \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \mathbf{region}]\!](\sigma) \\ \text{implies} \langle \text{by Corollary 4, } \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \mathbf{region}]\!](\sigma) \cong dm(H), \text{ wice} \rangle \\ H'' \perp H \upharpoonright (dom(H) - \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \mathbf{region}]\!](\sigma)) \\ \text{and for all } (o, f) \in dom(H) : \mathcal{H}[c, f] \neq H[o, f] \text{ implies } (o, f) \in \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \mathbf{region}]\!](\sigma) \\ \text{implies} \langle \text{by Corollary 4, } \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \mathbf{region}]\!](\sigma)) \\ \text{and } H' - H'' \cdot H \upharpoonright (dom(H) - \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \mathbf{region}]\!](\sigma)) \\ \text{and } for all (o, f) \in dom(H) : \mathcal{H}[o, f] \neq H[o, f] \text{ implies } (o, f) \in \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \mathbf{region}]\!](\sigma) \\ \text{implies} \langle \text{by A and B impliesB} \rangle \\ for all (o, f) \in dom(H) : : H'[o, f] \neq H[o, f] \text{ implies } (o, f) \in \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \mathbf{region}]\!](\sigma) \\ \text{implies} \langle \text{by A and B impliesB} \rangle \\ for all (o, f) \in dom(H) : : H'[o, f] \neq H[o, f] \text{ implies } (o, f) \in \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \mathbf{region}]\!](\sigma) \\ \text{implies} \langle \text{by A and B impliesB} \rangle \\ for all (o, f) \in dom(H) : : H'[o, f] \neq H[o, f] \text{ implies } (o, f) \in \mathcal{E}[\![\Gamma \vdash f$$

starting from the assumptions.

$$\sigma, H \models_s^{\Gamma} \{a\} S \{a'\} and \sigma, H \models_s^{\Gamma} a and \mathcal{MS}\llbracket\Gamma \vdash S : ok(\Gamma') \rrbracket(\sigma, H) = (\sigma', H')$$

$$\begin{split} \sigma', H'' &\models_s^{\Gamma'} a' \text{ and } H'' \bot H \upharpoonright (dom(H) - \mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \texttt{region} \rrbracket(\sigma)) \text{ and} \\ H' &= H'' \cdot H \upharpoonright (dom(H) - \mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \texttt{region} \rrbracket(\sigma)) \end{split}$$

iff
$$\langle \text{by } (for all (o, f) \in (r' - r) :: (o, f) \in (r' - r)) \text{ is a tautology} \rangle$$

$$\begin{split} &\sigma', H'' \models_s^{\Gamma'} a' \ and \ H'' \bot H \upharpoonright (dom(H) - \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \mathbf{region}]\!](\sigma)) \ and \\ &H' = H'' \cdot H \upharpoonright (dom(H) - \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \mathbf{region}]\!](\sigma)) \ and \\ &for \ all \ (o, f) \in (\mathcal{E}[\![\Gamma' \vdash fpt_s(a') : \mathbf{region}]\!](\sigma') - \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \mathbf{region}]\!](\sigma)) \\ &: (o, f) \in (\mathcal{E}[\![\Gamma' \vdash fpt_s(a') : \mathbf{region}]\!](\sigma') - \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \mathbf{region}]\!](\sigma)) \\ &implies \langle \text{by Corollary 4, } \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \mathbf{region}]\!](\sigma) \subseteq dom(H) \rangle \\ &\sigma', H'' \models_s^{\Gamma'} a' \ and \ H'' \bot H \upharpoonright (dom(H) - \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \mathbf{region}]\!](\sigma)) \ and \\ &for \ all \ (o, f) \in (\mathcal{E}[\![\Gamma' \vdash fpt_s(a') : \mathbf{region}]\!](\sigma') - \\ &\mathcal{E}[\![\Gamma \vdash fpt_s(a) : \mathbf{region}]\!](\sigma)) :: (o, f) \in (\mathcal{E}[\![\Gamma' \vdash fpt_s(a') : \mathbf{region}]\!](\sigma') - dom(H))) \\ &implies \langle \text{by } H' = H'' \cdot H \upharpoonright (dom(H) - \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \mathbf{region}]\!](\sigma)) \ and \\ &for \ all \ (o, f) \in (\mathcal{E}[\![\Gamma' \vdash fpt_s(a') : \mathbf{region}]\!](\sigma') - \\ &\mathcal{E}[\![\Gamma \vdash fpt_s(a) : \mathbf{region}]\!](\sigma)) :: (o, f) \in (\mathcal{E}[\![\Gamma' \vdash fpt_s(a) : \mathbf{region}]\!](\sigma)) \ and \\ &for \ all \ (o, f) \in (\mathcal{E}[\![\Gamma' \vdash fpt_s(a') : \mathbf{region}]\!](\sigma)) \ and \\ &H' = H'' \cdot H \upharpoonright (dom(H) - \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \mathbf{region}]\!](\sigma)) \ and \\ &H' = H'' \cdot H \upharpoonright (dom(H) - \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \mathbf{region}]\!](\sigma)) \ and \\ &for \ all \ (o, f) \in (\mathcal{E}[\![\Gamma' \vdash fpt_s(a') : \mathbf{region}]\!](\sigma)) \ and \\ &for \ all \ (o, f) \in (\mathcal{E}[\![\Gamma' \vdash fpt_s(a') : \mathbf{region}]\!](\sigma)) \ and \\ &for \ all \ (o, f) \in (\mathcal{E}[\![\Gamma' \vdash fpt_s(a') : \mathbf{region}]\!](\sigma)) \ and \\ &for \ all \ (o, f) \in (\mathcal{E}[\![\Gamma' \vdash fpt_s(a') : \mathbf{region}]\!](\sigma') - \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \mathbf{region}]\!](\sigma)) \ :: \\ &(o, f) \in (dom(H') - dom(H)) \\ &implies \langle \text{by } A \ and \ B \ implies \ B \rangle \end{aligned}$$

$$(for all (o, f) \in (\mathcal{E}\llbracket\Gamma' \vdash fpt_s(a') : \texttt{region} \rrbracket(\sigma') - \mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \texttt{region} \rrbracket(\sigma)) :: (o, f) \in (dom(H') - dom(H)))$$

APPENDIX G: PROOF OF THEOREM 8

Theorem 8: Let Γ be a well-formed type environment. Let S be a statement, and let a and a' be assertions in SSL, such that $\models_s^{\Gamma} \{a\}S\{a'\}$. Let r be a region variable. Let (σ, H) be a Γ -state. If $\sigma, H \models^{\Gamma} \mathrm{TR}[\![a]\!] \Rightarrow r = \mathit{fpt}_s(a) \text{ and } r \notin \mathrm{MV}(S) \text{, then}$

$$\begin{split} \sigma, H &\models_s^{\Gamma} \{a\} S\{a'\} \textit{ iff } \\ \sigma, H &\models_u^{\Gamma} [\textit{fpt}_s(a)]\{\texttt{TR}[\![a]\!]\}S\{\texttt{TR}[\![a']\!]\}[\texttt{modifies} \textit{fpt}_s(a), \texttt{MV}(S), \texttt{fresh} (\textit{fpt}_s(a') - r)] \end{split}$$

Proof. Assume that $\sigma, H \models_s^{\Gamma} \{a\}S\{a'\}$. The lemma is proved by mutual implication. First it is proved that the left side implies the right side.

$$\begin{split} \sigma, H &\models_{s}^{\Gamma} \{a\} S \{a'\} \\ & \text{iff} \qquad \left\langle \begin{array}{c} \text{by assumption} \models_{s}^{\Gamma} \{a\} S \{a'\}, \\ & \text{thus } (\sigma, H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \texttt{region}]\!](\sigma)) \models_{s}^{\Gamma} \{a\} S \{a'\} \text{ iff } \sigma, H \models_{s}^{\Gamma} \{a\} S \{a'\} \end{array} \right\rangle \\ & (\sigma, H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \texttt{region}]\!](\sigma)) \models_{s}^{\Gamma} \{a\} S \{a'\} \end{split}$$

iff
$$\langle$$
 by the definition of SSL valid Hoare-formula (Def. 17) \rangle

$$(\sigma, H \upharpoonright \mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \mathbf{region} \rrbracket(\sigma)) \vDash_s^{\Gamma} a \text{ implies}$$
$$\mathcal{MS}\llbracket\Gamma \vdash S : ok(\Gamma') \rrbracket(\sigma, H \upharpoonright \mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \mathbf{region} \rrbracket(\sigma)) \neq err \text{ and}$$
$$\text{if } (\sigma', H') = \mathcal{MS}\llbracket\Gamma \vdash S : ok(\Gamma') \rrbracket(\sigma, H \upharpoonright \mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \mathbf{region} \rrbracket(\sigma)), \text{ then } \sigma', H' \vDash_s^{\Gamma'} a'$$
$$implies/\text{by Lemma 13}$$

implies (by Lemma 13)

$$(\sigma, H \upharpoonright \mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \mathbf{region} \rrbracket(\sigma)) \models_s^{\Gamma} a \text{ implies}$$

$$\mathcal{MS}\llbracket\Gamma \vdash S : ok(\Gamma') \rrbracket(\sigma, H \upharpoonright \mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \mathbf{region} \rrbracket(\sigma)) \neq err \text{ and}$$

$$\text{if } (\sigma', H') = \mathcal{MS}\llbracket\Gamma \vdash S : ok(\Gamma') \rrbracket(\sigma, H \upharpoonright \mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \mathbf{region} \rrbracket(\sigma)), \text{ then } \sigma', H' \models_s^{\Gamma'} a'$$

$$and \text{ for all } x \in dom(\sigma) : \sigma'(x) \neq \sigma(x) : x \in \mathsf{MV}(S) \text{ and}$$

$$for all (o, f) \in \mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \mathbf{region} \rrbracket(\sigma) :$$

$$H'[o, f] \neq H \upharpoonright \mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \mathbf{region} \rrbracket(\sigma)[o, f] : (o, f) \in \mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \mathbf{region} \rrbracket(\sigma) \text{ and}$$

$$for all (o, f) \in (\mathcal{E}\llbracket\Gamma' \vdash fpt_s(a') : \mathbf{region} \rrbracket(\sigma') - \mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \mathbf{region} \rrbracket(\sigma)) :$$

$$(o, f) \in (dom(H') - \mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \mathbf{region} \rrbracket(\sigma)))$$

by termination monotonicity as
$$(H - H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \operatorname{region}]\!](\sigma)) \perp$$

 $H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \operatorname{region}]\!](\sigma) and H =$
 $(H - H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \operatorname{region}]\!](\sigma)) \vdash H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \operatorname{region}]\!](\sigma)$
 $(\sigma, H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \operatorname{region}]\!](\sigma)) \models_s^{\Gamma} a \text{ implies}$
 $\mathcal{MS}[\![\Gamma \vdash S : ok(\Gamma')]\!](\sigma, H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \operatorname{region}]\!](\sigma)) \neq err and$
if $(\sigma', H') = \mathcal{MS}[\![\Gamma \vdash S : ok(\Gamma')]\!](\sigma, H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \operatorname{region}]\!](\sigma)), \text{ then}$
 $\sigma', H' \models_s^{\Gamma'} a' and(\sigma', H'') = \mathcal{MS}[\![\Gamma \vdash S : ok(\Gamma')]\!](\sigma, H) and$
for all $x \in dom(\sigma) : \sigma'(x) \neq \sigma(x) : x \in M \lor (S)$ and
for all $(o, f) \in \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \operatorname{region}]\!](\sigma) : H'[o, f] \neq$
 $H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \operatorname{region}]\!](\sigma)[o, f] : (o, f) \in \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \operatorname{region}]\!](\sigma)) ::$
 $(o, f) \in (dom(H') - \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \operatorname{region}]\!](\sigma)))$

 $\textit{implies}\langle \text{by the frame property of SL}\rangle$

$$\begin{aligned} (\sigma, H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \mathbf{region}]\!](\sigma)) &\models_s^{\Gamma} a \text{ implies} \\ \mathcal{MS}[\![\Gamma \vdash S : ok(\Gamma')]\!](\sigma, H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \mathbf{region}]\!](\sigma)) \neq err and \\ \text{if } (\sigma', H') &= \mathcal{MS}[\![\Gamma \vdash S : ok(\Gamma')]\!](\sigma, H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \mathbf{region}]\!](\sigma)), \text{ then} \\ \sigma', H' &\models_s^{\Gamma'} a' and (\sigma', H'') &= \mathcal{MS}[\![\Gamma \vdash S : ok(\Gamma')]\!](\sigma, H) and \\ H'' &= H' \cdot (H - H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \mathbf{region}]\!](\sigma)) and \\ H' \bot (H - H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \mathbf{region}]\!](\sigma)) and \\ for all x \in dom(\sigma) : \sigma'(x) \neq \sigma(x) : x \in \mathsf{MV}(S) and \\ for all (o, f) \in \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \mathbf{region}]\!](\sigma) : H'[o, f] \neq \\ H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \mathbf{region}]\!](\sigma)[o, f] : (o, f) \in \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \mathbf{region}]\!](\sigma) and \\ for all (o, f) \in (\mathcal{E}[\![\Gamma' \vdash fpt_s(a') : \mathbf{region}]\!](\sigma') - \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \mathbf{region}]\!](\sigma)) :: \\ (o, f) \in (dom(H') - \mathcal{E}[\![\Gamma \vdash fpt_s(a) : \mathbf{region}]\!](\sigma))) \end{aligned}$$

implies (by Corollary 5)

$$\begin{split} \sigma, H \vDash_{s}^{\Gamma} a \text{ implies } \mathcal{MS}[\![\Gamma \vdash S : ok(\Gamma')]\!](\sigma, H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \texttt{region}]\!](\sigma)) \neq err \text{ and} \\ \text{if } (\sigma', H') &= \mathcal{MS}[\![\Gamma \vdash S : ok(\Gamma')]\!](\sigma, H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \texttt{region}]\!](\sigma)), \text{ then } \sigma', H' \vDash_{s}^{\Gamma'} a' \\ and (\sigma', H'') &= \mathcal{MS}[\![\Gamma \vdash S : ok(\Gamma')]\!](\sigma, H) \text{ and} \\ H'' &= H' \cdot (H - H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \texttt{region}]\!](\sigma)) \text{ and} \\ H' \bot (H - H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \texttt{region}]\!](\sigma)) \text{ and} \\ for all x \in dom(\sigma) : \sigma'(x) \neq \sigma(x) : x \in \mathsf{MV}(S) \text{ and} \\ for all (o, f) \in \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \texttt{region}]\!](\sigma) : H'[o, f] \neq \\ H \upharpoonright \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \texttt{region}]\!](\sigma)[o, f] : (o, f) \in \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \texttt{region}]\!](\sigma) \text{ and} \\ for all (o, f) \in (\mathcal{E}[\![\Gamma' \vdash fpt_{s}(a') : \texttt{region}]\!](\sigma') - \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \texttt{region}]\!](\sigma)) :: \\ (o, f) \in (dom(H') - \mathcal{E}[\![\Gamma \vdash fpt_{s}(a) : \texttt{region}]\!](\sigma))) \end{split}$$

iff
$$\langle$$
 by Theorem 7, twice \rangle

$$\begin{split} &\sigma, H \models_{u}^{\Gamma} \operatorname{TR}\llbracketa\rrbracket \text{ implies } \mathcal{MS}\llbracket\Gamma \vdash S : ok(\Gamma') \rrbracket(\sigma, H \upharpoonright \mathcal{E}\llbracket\Gamma \vdash fpt_{s}(a) : \operatorname{\mathbf{region}}\rrbracket(\sigma)) \neq err \text{ and} \\ &\text{ if } (\sigma', H') = \mathcal{MS}\llbracket\Gamma \vdash S : ok(\Gamma') \rrbracket(\sigma, H \upharpoonright \mathcal{E}\llbracket\Gamma \vdash fpt_{s}(a) : \operatorname{\mathbf{region}}\rrbracket(\sigma)), \text{ then} \\ &\sigma', H' \models^{\Gamma'} \operatorname{TR}\llbracketa' \rrbracket \text{ and } (\sigma', H'') = \mathcal{MS}\llbracket\Gamma \vdash S : ok(\Gamma') \rrbracket(\sigma, H) \text{ and} \\ &H'' = H' \cdot (H - H \upharpoonright \mathcal{E}\llbracket\Gamma \vdash fpt_{s}(a) : \operatorname{\mathbf{region}}\rrbracket(\sigma)) \text{ and} \\ &H' \bot (H - H \upharpoonright \mathcal{E}\llbracket\Gamma \vdash fpt_{s}(a) : \operatorname{\mathbf{region}}\rrbracket(\sigma)) \text{ and} \\ &for \text{ all } x \in dom(\sigma) : \sigma'(x) \neq \sigma(x) : x \in \operatorname{MV}(S) \text{ and} \\ &for \text{ all } (o, f) \in \mathcal{E}\llbracket\Gamma \vdash fpt_{s}(a) : \operatorname{\mathbf{region}}\rrbracket(\sigma) : H'[o, f] \neq \\ &H \upharpoonright \mathcal{E}\llbracket\Gamma \vdash fpt_{s}(a) : \operatorname{\mathbf{region}}\rrbracket(\sigma)[o] : (o, f) \in \mathcal{E}\llbracket\Gamma \vdash fpt_{s}(a) : \operatorname{\mathbf{region}}\rrbracket(\sigma) \text{ and} \\ &for \text{ all } (o, f) \in (\mathcal{E}\llbracket\Gamma' \vdash fpt_{s}(a') : \operatorname{\mathbf{region}}\rrbracket(\sigma') - \mathcal{E}\llbracket\Gamma \vdash fpt_{s}(a) : \operatorname{\mathbf{region}}\rrbracket(\sigma)) :: \\ &(o, f) \in (dom(H') - \mathcal{E}\llbracket\Gamma \vdash fpt_{s}(a) : \operatorname{\mathbf{region}}\rrbracket(\sigma)) \\ \\ & \text{by } dom(H') - \mathcal{E}\llbracket\Gamma \vdash fpt_{s}(a) : \operatorname{\mathbf{region}}\rrbracket(\sigma) = dom(H') - dom(H), \text{ because} \\ & \text{implies} \\ & \mathcal{E}\llbracket\Gamma \vdash fpt_{s}(a) : \operatorname{\mathbf{region}}\rrbracket(\sigma) \subseteq dom(H) \text{ by Corollary 4, and} \\ &H' \bot (H - H \upharpoonright \mathcal{E}\llbracket\Gamma \vdash fpt_{s}(a) : \operatorname{\mathbf{region}}\rrbracket(\sigma)) \end{aligned}$$

$$\begin{split} &\sigma, H \models_{u}^{\Gamma} \operatorname{TR}[[a]] \text{ implies } \mathcal{MS}[[\Gamma \vdash S: ok(\Gamma')]](\sigma, H \upharpoonright \mathbb{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \neq err \ and \\ &\text{if } (\sigma', H') = \mathcal{MS}[[\Gamma \vdash S: ok(\Gamma')]](\sigma, H \upharpoonright \mathbb{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)), \text{ then } \\ &\sigma', H' \models^{\Gamma'} \operatorname{TR}[[a']] \ and (\sigma', H'') = \mathcal{MS}[[\Gamma \vdash S: ok(\Gamma')]](\sigma, H) \ and H'' = \\ &H' \cdot (H - H \upharpoonright \mathbb{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \ and H' \bot (H - H \upharpoonright \mathbb{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \\ &\text{and } for \ all \ x \in dom(\sigma) : \sigma'(x) \neq \sigma(x) : x \in \operatorname{MV}(S) \ and \\ &for \ all \ (o, f) \in \mathbb{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma) : H'[o, f] \neq \\ &H \upharpoonright \mathbb{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)[o, f] : (o, f) \in \mathbb{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) :: \\ &(o, f) \in (\mathcal{Om}(H') - dom(H)) \\ &\text{by } \left\{ (o, f) \in \mathbb{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma) : : \\ &H'[o, f] \neq H \vDash \mathbb{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)[o, f] \right\} = \\ &implies \left\langle \begin{array}{c} H'[o, f] \neq H \upharpoonright \mathbb{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)[o, f] \\ &= \\ &(o, f) \in dom(H) :: H'[o, f] \neq H[o, f] \right\}, \text{ because} \\ & \mathbb{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma) \subseteq dom(H) \\ &\text{ by Corollary } 4, \ and H' \bot (H - H \upharpoonright \mathbb{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \neq err \ and \\ &\text{if } (\sigma', H') = \mathcal{MS}[[\Gamma \vdash S : ok(\Gamma')]](\sigma, H \upharpoonright \mathbb{E}[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)), \text{ then } \\ &\sigma', H' \models^{\Gamma'} \operatorname{TR}[[a]] \ and \ (\sigma', H'') = \mathcal{MS}[[\Gamma \vdash S : ok(\Gamma')]](\sigma, H) \\ &(fr \ H' \models^{T'} \operatorname{TR}[[a']] \ and \ (\sigma', H'') = \mathcal{MS}[[\Gamma \vdash S : ok(\Gamma')]](\sigma, H) \\ &(fr \ H' \models^{T'} \operatorname{TR}[[a']] \ and \ (\sigma', H'') = \mathcal{MS}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)), \text{ then } \\ &\sigma', H' \models^{\Gamma'} \operatorname{TR}[[a']] \ and \ (\sigma', H'') = \mathcal{MS}[[\Gamma \vdash S : ok(\Gamma')]](\sigma, H) \\ &(fr \ H' \models^{T'} \operatorname{TR}[[a']] \ and \ (\sigma', H'') = \mathcal{MS}[[\Gamma \vdash Fpt_{s}(a) : \operatorname{region}]](\sigma)) \\ &(fr \ all \ (o, f) \in dom(H) : H'[o, f] \neq H[o, f] : (o, f) \in \mathbb{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \\ &(fr \ (lo \ H') - dom(H)) \\ &(ff \ (lo \ H') - lom(H)) \\ &(ff \ (lo \ H') - lom(H)) \\ &(ff \ (lo \ H') - lom(H)) \\ &(ff \ (lo \ H') - lo$$

$$\begin{split} &\sigma, H \models_{u}^{\Gamma} \operatorname{TR}[[a]] \text{ implies } \mathcal{MS}[[\Gamma \vdash S: ok(\Gamma')]](\sigma, H \upharpoonright \mathbb{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \neq err \ and \\ &\text{if } (\sigma', H') = \mathcal{MS}[[\Gamma \vdash S: ok(\Gamma')]](\sigma, H \upharpoonright \mathbb{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)), \text{ then} \\ &\sigma', H' \models^{\Gamma'} \operatorname{TR}[[a']] \ and \ (\sigma', H'') = \mathcal{MS}[[\Gamma \vdash S: ok(\Gamma')]](\sigma, H) \ and \\ &for \ all \ x \in dom(\sigma) : \sigma'(x) \neq \sigma(x) : x \in \operatorname{MV}(S) \ and \\ &for \ all \ (o, f) \in dom(H) : H'[o, f] \neq H[o, f] : (o, f) \in \mathbb{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma) \ and \\ &for \ all \ (o, f) \in (\mathbb{E}[[\Gamma' \vdash fpt_{s}(a') : \operatorname{region}]](\sigma') - \mathbb{E}[[\Gamma \vdash r : \operatorname{region}]](\sigma)) :: \\ &(o, f) \in (dom(H') - dom(H)) \\ ⇔ \qquad (by \ \mathbb{E}[[\Gamma \vdash r : \operatorname{region}]](\sigma) = \mathbb{E}[[\Gamma' \vdash r : \operatorname{region}]](\sigma') \ because \ r \notin \operatorname{MV}(S) \rangle \\ &\sigma, H \models_{u}^{\Gamma} \operatorname{TR}[[a]] \ implies \ \mathcal{MS}[[\Gamma \vdash S : ok(\Gamma')]](\sigma, H \upharpoonright \mathbb{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)) \neq err \ and \\ &\text{if } (\sigma', H') = \mathcal{MS}[[\Gamma \vdash S : ok(\Gamma')]](\sigma, H \upharpoonright \mathbb{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)), \ then \\ &\sigma', H' \models^{\Gamma'} \operatorname{TR}[[a']] \ and \ (\sigma', H'') = \mathcal{MS}[[\Gamma \vdash S : ok(\Gamma')]](\sigma, H \upharpoonright \mathbb{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma)), \ then \\ &\sigma', H' \models^{\Gamma'} \operatorname{TR}[[a']] \ and \ (\sigma', H'') = \mathcal{MS}[[\Gamma \vdash S : ok(\Gamma')]](\sigma, H \upharpoonright \mathbb{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma) \ and \\ for \ all \ x \in dom(\sigma) : \ \sigma'(x) \neq \sigma(x) : x \in \operatorname{MV}(S) \ and \\ for \ all \ (o, f) \in dom(H) : H'[o, f] \neq H[o, f] : (o, f) \in \mathbb{E}[[\Gamma \vdash fpt_{s}(a) : \operatorname{region}]](\sigma) \ and \\ for \ all \ (o, f) \in \mathbb{E}[\Gamma' \vdash (fpt_{s}(a') - r) : \operatorname{region}]](\sigma') : (o, f) \in (dom(H') - dom(H)) \\ &\text{implies} \\ & \text{by the definition of UFRL valid Hoare-formula (Def. 8), \\ & as \ freshR(\operatorname{modifies} fpt_{s}(a), \operatorname{MV}(S), \operatorname{fresh}(fpt_{s}(a') - r)) \ is \ (fpt_{s}(a') - r)) \\ &\sigma, H \models_{u}^{\Gamma} [fpt_{s}(a)] \{\operatorname{TR}[[a]] \}S\{\operatorname{TR}[[a']]\}[\operatorname{modifies} fpt_{s}(a), \operatorname{MV}(S), \operatorname{fresh}(fpt_{s}(a') - r))] \\ & \text{where } \operatorname{TR}[[a]] \ implies r = \ fpt_{s}(a) \end{aligned}$$

Next, let $r = fpt_s(a)$. The proof goes from the right side to the left side.

$$\sigma, H \models_{u}^{\Gamma} [fpt_{s}(a)] \{ \operatorname{TR}[\![a]\!] \} S \{ \operatorname{TR}[\![a']\!] \} [\operatorname{modifies} fpt_{s}(a), \operatorname{MV}(S), \operatorname{fresh} (fpt_{s}(a') - r))]$$

$$implies \left\langle \begin{array}{c} \text{by the definition of UFRL valid Hoare-formula (Def. 8),} \\ as freshR(\operatorname{modifies} fpt_{s}(a), \operatorname{MV}(S), \operatorname{fresh} (fpt_{s}(a') - r)) \text{ is } (fpt_{s}(a') - r) \end{array} \right\rangle$$

$$\sigma, H \models_u^{\Gamma} \operatorname{TR}\llbracketa\rrbracket \text{ implies } \mathcal{MS}\llbracket\Gamma \vdash S : ok(\Gamma')\rrbracket(\sigma, H \upharpoonright \mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \operatorname{region}\rrbracket(\sigma)) \neq err \text{ and}$$

if $(\sigma', H') = \mathcal{MS}\llbracket\Gamma \vdash S : ok(\Gamma')\rrbracket(\sigma, H \upharpoonright \mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \operatorname{region}\rrbracket(\sigma))$, then
 $\sigma', H' \models_u^{\Gamma} \operatorname{TR}\llbracketa'\rrbracket \text{ and for all } x \in dom(\sigma) : \sigma'(x) \neq \sigma(x) : x \in \operatorname{MV}(S) \text{ and}$
for all $(o, f) \in dom(H) : H'[o, f] \neq H[o, f] : (o, f) \in \mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \operatorname{region}\rrbracket(\sigma) \text{ and}$
for all $(o, f) \in \mathcal{E}\llbracket\Gamma' \vdash (fpt_s(a') - r) : \operatorname{region}\rrbracket(\sigma') :: (o, f) \in (dom(H') - dom(H))$
implies $\langle by A \text{ and } B \text{ implies } A \rangle$

$$\sigma, H \models_u^{\Gamma} \operatorname{TR}\llbracketa\rrbracket \text{ implies } \mathcal{MS}\llbracket\Gamma \vdash S : ok\rrbracket(\sigma, H \upharpoonright \mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \operatorname{region}\rrbracket(\sigma)) \neq err \text{ and}$$

if $(\sigma', H') = \mathcal{MS}\llbracket\Gamma \vdash S : ok(\Gamma')\rrbracket(\sigma, H \upharpoonright \mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \operatorname{region}\rrbracket(\sigma)),$ then
 $\sigma', H' \models^{\Gamma'} \operatorname{TR}\llbracketa'\rrbracket$

iff
$$\langle$$
 by Theorem 7, twice \rangle

$$\sigma, H \models_s^{\Gamma} a \text{ implies } \mathcal{MS}\llbracket\Gamma \vdash S : ok(\Gamma') \rrbracket (\sigma, H \upharpoonright \mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \texttt{region} \rrbracket (\sigma)) \neq err \text{ and}$$

if $(\sigma', H') = \mathcal{MS}\llbracket\Gamma \vdash S : ok(\Gamma') \rrbracket (\sigma, H \upharpoonright \mathcal{E}\llbracket\Gamma \vdash fpt_s(a) : \texttt{region} \rrbracket (\sigma)), \text{ then } \sigma', H' \models_s^{\Gamma'} a'$
implies \by Corollary 5 \

$$\sigma, H \upharpoonright \mathcal{E}\llbracket \Gamma \vdash fpt_s(a) : \operatorname{region} \rrbracket(\sigma) \models_s^{\Gamma} a \text{ implies}$$

$$\mathcal{MS}\llbracket \Gamma \vdash S : ok(\Gamma') \rrbracket(\sigma, H \upharpoonright \mathcal{E}\llbracket \Gamma \vdash fpt_s(a) : \operatorname{region} \rrbracket(\sigma)) \neq err \text{ and}$$

$$\operatorname{if} (\sigma', H') = \mathcal{MS}\llbracket \Gamma \vdash S : ok(\Gamma') \rrbracket(\sigma, H \upharpoonright \mathcal{E}\llbracket \Gamma \vdash fpt_s(a) : \operatorname{region} \rrbracket(\sigma)), \text{ then } \sigma', H' \models_s^{\Gamma'} a'$$

iff
$$\langle$$
 by the definition of SL validity Hoare-formula (Def. 17) \rangle

$$\sigma, H \upharpoonright \mathcal{E}\llbracket\Gamma \vdash fpt_{s}(a) : \operatorname{region} \rrbracket(\sigma) \models_{s}^{\Gamma} \{a\} S \{a'\}$$

$$iff \qquad \left\langle \begin{array}{c} \text{by assumption} \models_{s}^{\Gamma} \{a\} S \{a'\}, \\ \text{thus } (\sigma, H \upharpoonright \mathcal{E}\llbracket\Gamma \vdash fpt_{s}(a) : \operatorname{region} \rrbracket(\sigma)) \models_{s}^{\Gamma} \{a\} S \{a'\} iff \sigma, H \models_{s}^{\Gamma} \{a\} S \{a'\} \end{array} \right\rangle$$

$$\sigma, H \models_{s}^{\Gamma} \{a\} S \{a'\}$$

	-	_	ı

APPENDIX H: PROOF OF THEOREM 9

Theorem 9: Each translated SSL axiom is derivable, and each translated rule is derivable in the UFRL proof system.

Proof. The proof is by the induction on the derivation and by cases in the last rule used. In each case, it is shown that the translated proof axioms and rules are derivable in UFRL.

- 1. SKIP: by Def. 18, the encoded axiom is the axiom $SKIP_u$.
- 2. VAR: by Def. 18, the encoded axiom is the axiom VAR_u .
- 3. ALLOC: by the rule $ALLOC_s$ and Def. 18, the translated rule is is shown below:

$$\begin{bmatrix} \operatorname{reads} fpt_s(a) \end{bmatrix}$$

$$\vdash_u^{\Gamma} \{\operatorname{TR}[\![a]\!]\}x := \operatorname{new} T; \{\operatorname{TR}[\![a * new_s(T, x)]\!]\}$$

$$[\operatorname{modifies} fpt_s(a), x, \operatorname{alloc}, \operatorname{fresh}(fpt_s(new_s(T, x)))]$$

$$\text{where } x \notin \operatorname{FV}(a)$$
(H.1)

By definition of the predicate $new_s(T, x)$, it is known that $fpt_s(new_s(T, x)) = region\{x.*\}$. Given the axiom $ALLOC_u$, the translated rule is derived by using the rules FRM_u and $SubEff_u$. The derivation is shown in Fig. H.1. The program semantics assumes that the location for each field in a class is disjoint with each other, thus new(T, x) iff $new_s(T, x)$.

4. ACC: by the rule ACC_s and Def. 18, the translated rule is shown below:

$$[region\{x'.f\}]$$

$$\vdash_{u}^{\Gamma} \{x'.f = z\} \times := x' f; \{x'.f = z \&\& x = z\}$$

$$[modifies region\{x'.f\}, x]$$
where $x \neq x', x' \neq z$ and $x \neq z$

$$(H.2)$$

where the fresh effect is empty, thus, it is omitted; it is true that $fpt_s(x = z) !! fpt_s(x'.f \mapsto z)$, thus, it is omitted. Given the axiom ACC_u , by definition of read effects for assertions in Fig. 3.5, it must be true that $(x'.f = z) \vdash^{\Gamma} (\text{reads } x', \text{region}\{x'.f\}, z) frm x'.f = z$. By the side conditions and the definition of separator, it must be true that $(reads (x', region \{x'.f\}, z))$ modifies x. Hence x.'f = z is the frame. Using the rules FRM_u and $SubEff_u$, the translated rule is derived in Fig. H.2.

5. UPD: by the rule UPD_s and Def. 18, the translated rule is derived as follows:

$$\begin{split} \vdash_{u}^{\Gamma} & [\text{reads region}\{x.f\}] \\ & \{\exists z.x.f = z\}x.f := E; \{x.f = E\}[\text{modifies region}\{x.f\}] \\ & \text{ where } x \notin FV(E) \end{split}$$

where the fresh effect is empty, thus, it is omitted. Note that $x.f \mapsto _$ is an abbreviation for $\exists z.x.f \mapsto _$. Thus $x.f \mapsto _$ is translated to $\exists z.x.f = z$. The translated rule is derived by using the rules $SubEff_u$ and $CONSEQ_u$. The derivation is shown in Fig. H.3.

6. SEQ: by the rule SEQ_s and Def. 18, the translated rule is derived as follows:

$$\begin{split} & \vdash_{u}^{\Gamma} \frac{[\operatorname{\mathbf{reads}} r_{1}\downarrow]}{\{\operatorname{TR}[\![a]\!]\}} S_{1} \{\operatorname{TR}[\![b]\!]\} [\operatorname{\mathbf{modifies}} r_{1}\downarrow, \operatorname{MV}(S_{1}), \operatorname{\mathbf{fresh}} (r_{2} - r_{1})] \\ & \vdash_{u}^{\Gamma} \frac{[\operatorname{\mathbf{reads}} r_{2}\downarrow]}{\{\operatorname{TR}[\![b]\!]\}} S_{2} \{\operatorname{TR}[\![a']\!]\} [\operatorname{\mathbf{modifies}} r_{2}\downarrow, \operatorname{MV}(S_{2}), \operatorname{\mathbf{fresh}} (fpt_{s}(a') - r_{2})] \\ & \vdash_{u}^{\Gamma} \frac{[\operatorname{\mathbf{reads}} r_{1}\downarrow]}{\{\operatorname{TR}[\![a]\!]\}} S_{1}S_{2} \{\operatorname{TR}[\![a']\!]\} [\operatorname{\mathbf{modifies}} r_{1}\downarrow, \operatorname{MV}(S_{1}S_{2}), \operatorname{\mathbf{fresh}} (fpt_{s}(a') - r_{1})] \\ & \operatorname{\mathbf{mere}} \operatorname{TR}[\![a]\!] \Rightarrow r_{1} = fpt_{s}(a), r_{1} \notin \operatorname{MV}(S_{1}), \operatorname{TR}[\![b]\!] \Rightarrow r_{2} = fpt_{s}(b) \text{ and } r_{2} \notin \operatorname{MV}(S_{2}) \\ & (\mathrm{H.4}) \end{split} \end{split}$$

There are two cases:

(a) $S_1 = \operatorname{var} x T$; In this case, by the rule VAR_s , it must be true that b = a * default(T),

 $MV(var x : T) = \emptyset$ and $r_1 = r_2 = fpt_s(a)$. Then the proof obligation is to show

$$\begin{split} \vdash_{u}^{\Gamma} \left[\mathbf{reads} \ r_{1} \downarrow \right] \{ \mathrm{TR}[\![a]\!] \} \mathbf{var} \ x : T; \ \{ \mathrm{TR}[\![a * default(T)]\!] \} [\ \mathbf{modifies} \ r_{1} \downarrow] \\ & \left[\mathbf{reads} \ r_{1} \downarrow \right] \\ \vdash_{u}^{\Gamma} \ \{ \mathrm{TR}[\![a * default(T)]\!] \} \ S_{2} \ \{ \mathrm{TR}[\![a']\!] \} \\ & \left[\ \mathbf{modifies} \ r_{1} \downarrow, \mathrm{MV}(S_{2}), \mathbf{fresh} \ (fpt_{s}(a') - r_{1}) \right] \\ & \left[\mathbf{reads} \ r_{1} \downarrow \right] \\ \vdash_{u}^{\Gamma} \ \{ \mathrm{TR}[\![a]\!] \} \mathbf{var} \ x : T; S_{2} \ \{ \mathrm{TR}[\![a']\!] \} \\ & \left[\ \mathbf{modifies} \ r_{1} \downarrow, \mathrm{MV}(S_{2}), \mathbf{fresh} \ (fpt_{s}(a') - r_{1}) \right] \end{aligned}$$
(H.5)

where $\operatorname{TR}[[a * default(T)]] \Rightarrow r_2 = fpt_s(a) \text{ and } r_2 \notin \operatorname{MV}(S_2)$

Using the rule $SubEff_u$ on the second premise, the following is derived

$$[\texttt{reads } r_1 \downarrow]$$

$$\vdash_u^{\Gamma} \{\texttt{TR}[[a * default(T)]]\} S_2 \{\texttt{TR}[[a']]\}$$
(H.6)
$$[\texttt{modifies } r_1 \downarrow, x, \texttt{MV}(S_2), \texttt{fresh} (fpt_s(a') - r_1)]$$

Using the rule $SEQ2_u$, the conclusion of Eq. (H.5) is derived.

(b) $S_1 \neq \operatorname{var} x : T$;: consider the following cases:

• S_1 does not allocate new locations, i.e., $r_1 = r_2$. The rule $SEQI_u$ is instantiated with RE :=**region**{}, $RE_1 :=$ **region**{} and $RE_2 :=$ **region**{}. If the immunity side conditions are satisfied, then the conclusion of (H.4) is derived by using the rule $SEQI_u$. Otherwise, for all $x \in MV(S_1)$ and x in FV(b), there exists z, such that b implies x = z and $z \notin MV(S_1)$. The variable z is substituted for x in $fpt_s(b)$. Then the second premise of Eq. (H.4) is re-written as:

$$\begin{bmatrix} \operatorname{reads} r_1 \downarrow [\overline{z}/\operatorname{MV}(S_1)] \end{bmatrix}$$

$$\vdash_u^{\Gamma} \{ \operatorname{TR}[\![b]\!] \} S_2 \{ \operatorname{TR}[\![a']\!] \}$$

$$[\operatorname{modifies} r_1 \downarrow [\overline{z}/\operatorname{MV}(S_1)], \operatorname{MV}(S_2), \operatorname{fresh}(fpt_s(a') - r_1)]$$

$$(H.7)$$

where $r_1 \downarrow [\overline{z}/MV(S_1)]$ means that for all $RE \in r_1 \downarrow :: RE[MV(S_1)/\overline{z}]$. From the first premise of Eq. (H.4) and Eq. (H.7), the immunity side conditions are satisfied. After using the rule $SEQI_u$,

the following is derived.

$$\begin{bmatrix} \operatorname{reads} r_1 \downarrow, r_1 \downarrow [\overline{z}/\operatorname{MV}(S_1)] \end{bmatrix}$$

$$\vdash_u^{\Gamma} \{\operatorname{TR}[\![a]\!]\} S_1 S_2 \{\operatorname{TR}[\![a']\!]\}$$

$$\begin{bmatrix} \operatorname{modifies} r_1 \downarrow, r_2 \downarrow [\operatorname{MV}(S_1)/\overline{z}], \operatorname{MV}(S_1 S_2), \operatorname{fresh}(fpt_s(a') - r_1 \downarrow [\operatorname{MV}(S_1)/\overline{z}])] \\ (H.8) \end{bmatrix}$$

Because for all $RE \in r_1 :: RE$ in $r_2 \downarrow [\overline{y/x}]$, Eq. (H.8) can be simplified to

$$\begin{bmatrix} \texttt{reads} \ r_1 \downarrow \end{bmatrix}$$

$$\vdash_u^{\Gamma} \ \{\texttt{TR}[\![a]\!]\}S_1S_2\{\texttt{TR}[\![a']\!]\}$$

$$\begin{bmatrix} \texttt{modifies} \ r_1 \downarrow, \texttt{MV}(S_1S_2), \texttt{fresh}(\textit{fpt}_s(a') - r_1) \end{bmatrix}$$

• S_1 allocates some new locations. Then the second premise of Eq. (H.4) can be re-written as:

$$\begin{bmatrix} \texttt{reads} \ r_1 \downarrow, (r_2 - r_1) \end{bmatrix}$$
$$\vdash_u^{\Gamma} \quad \{\texttt{TR}\llbracket a * \textit{default}(T) \rrbracket\} \ S_2 \ \{\texttt{TR}\llbracket a' \rrbracket\}$$
$$\begin{bmatrix} \texttt{modifies} \ r_1 \downarrow, (r_2 - r_1), \texttt{MV}(S_2), \texttt{fresh} \ (\textit{fpt}_s(a') - r_2) \end{bmatrix}$$

The rule $SEQI_u$ is instantiated with $RE := r_2 - r_1$, $RE_1 := r_2 - r_1$ and $RE_2 := r_2 - r_1$. If the immunity side conditions are satisfied, then union the fresh effects of the two statements and get $fpt_s(a') - r_1$. Hence, the conclusion of Eq. (H.4) is derived by using the rule $SEQI_u$. Otherwise, the treatment is similar to the previous case. 7. IF: by the rule IF_s and Def. 18, the translated rule is shown as follows:

$$[\operatorname{reads} fpt_{s}(a)]$$

$$\vdash_{u}^{\Gamma} \{\operatorname{TR}[\![a]\!] \&\& E\} S_{1} \{\operatorname{TR}[\![a']\!]\}$$

$$[\operatorname{modifies} fpt_{s}(a), \operatorname{MV}(S_{1}), \operatorname{fresh} (fpt_{s}(a') - r)]$$

$$[\operatorname{reads} fpt_{s}(a)]$$

$$\vdash_{u}^{\Gamma} \{\operatorname{TR}[\![a]\!] \&\& \neg E\} S_{2} \{\operatorname{TR}[\![a']\!]\}$$

$$[\operatorname{modifies} fpt_{s}(a), \operatorname{MV}(S_{2}), \operatorname{fresh} (fpt_{s}(a') - r)]$$

$$[\operatorname{reads} fpt_{s}(a)]$$

$$\vdash_{u}^{\Gamma} \{\operatorname{TR}[\![a]\!]\} \text{ if } E \operatorname{then} \{S_{1}\} \operatorname{else} \{S_{2}\} \{\operatorname{TR}[\![a']\!]\}$$

$$[\operatorname{modifies} fpt_{s}(a), \operatorname{MV}(S_{1}), \operatorname{MV}(S_{2}), \operatorname{fresh} (fpt_{s}(a') - r)]$$
where $\operatorname{TR}[\![a]\!] \Rightarrow r = fpt_{s}(a) \text{ and } r \notin \operatorname{MV}(S_{1}) \cup \operatorname{MV}(S_{2})$

$$(H.9)$$

Note that $fpt_s(E)$ and $fpt_s(\neg E)$ are both **region**{}, thus are omitted. By the inductive hypothesis, the premise of Eq. (H.9) is assumed. Then, using the rule IF_u , the following is derived.

$$[\operatorname{reads} fpt_s(a), \operatorname{reads} efs(E)] \\ \vdash_u^{\Gamma} \{\operatorname{TR}[\![a]\!]\} \text{ if } E \operatorname{then}\{S_1\} \operatorname{else}\{S_2\} \{\operatorname{TR}[\![a']\!]\} \\ [\operatorname{modifies} fpt_s(a), \operatorname{MV}(S_1), \operatorname{MV}(S_2), \operatorname{fresh}(fpt_s(a') - r)]$$
(H.10)

Now, consider to use the rule $SubEff_u$. Because $regRW(reads fpt_s(a), reads efs(E),$ modifies $fpt_s(a), MV(S_1), MV(S_2), fresh(fpt_s(a') - r)) = fpt_s(a)$, the following side condition is true:

$$\mathit{fpt}_s(a) \leqslant \mathit{regRW}(\texttt{reads}\mathit{fpt}_s(a), \, \texttt{modifies}\mathit{fpt}_s(a), \, \texttt{MV}(S_1), \, \texttt{MV}(S_2), \, \texttt{fresh}(\mathit{fpt}_s(a') - r))$$

Therefore, after using the rule $SubEff_u$, the conclusion of Eq. (H.9) is derived.

8. WHILE: by the rule $WHILE_s$ and Def. 18, the translated rule is shown below:

$$\begin{array}{c} \vdash_{u}^{\Gamma} [\operatorname{reads} fpt_{s}(I)] \{ \operatorname{TR}\llbracket I \rrbracket \&\& \} S \{ \operatorname{TR}\llbracket I \rrbracket \} [\operatorname{modifies} fpt_{s}(I), \operatorname{MV}(S)] \\ [\operatorname{reads} fpt_{s}(I)] \\ \vdash_{u}^{\Gamma} \{ \operatorname{TR}\llbracket I \rrbracket \} \text{while} E \{ S \} \{ \operatorname{TR}\llbracket I \rrbracket \&\& \neg E \} \\ [\operatorname{modifies} fpt_{s}(I), \operatorname{MV}(S)] \end{array}$$
(H.11)

The rule $WHILE_u$ is instantiated with $RE := region\{\}$. The treatment about the immunity side condition is similar to that of the sequence rule. If it is satisfied, then the rule WHILEu is used and the following is derived.

$$[\operatorname{reads} fpt_s(I), efs(E)] \\ \vdash_u^{\Gamma} \{\operatorname{TR}\llbracket I \rrbracket\} \text{ while } E\{S\} \{\operatorname{TR}\llbracket I \rrbracket \&\& \neg E\}$$
(H.12)
$$[\operatorname{modifies} fpt_s(I), \operatorname{MV}(S)]$$

Similarly to the case of the rule IF_u , using the rule $SubEff_u$, the conclusion of Eq. (H.11) is derived.

If the immunity side condition is not satisfied, for all $x \in MV(S)$ and $x \in FV(I)$, there exists z, such that I implies x = z and $z \notin MV(S)$. The variable z is substituted for x in $fpt_s(I)$. Then the immunity side condition is satisfied. the rules $WHILE_u$ and $SubEff_u$ are used and the conclusion is derived. 9. FRM: by the rule FRM_s and Def. 18, the translated rule is shown as follows:

$$[\operatorname{reads} r_1 \downarrow]$$

$$\vdash_{u}^{\Gamma} \{\operatorname{TR}[\![a]\!]\} S \{\operatorname{TR}[\![a']\!]\}$$

$$[\operatorname{modifies} r_1 \downarrow, \operatorname{MV}(S), \operatorname{fresh}(fpt_s(a') - r_1)]$$

$$[\operatorname{reads} r_1 + r_2]$$

$$\vdash_{u}^{\Gamma} \{\operatorname{TR}[\![a]\!] \&\& \operatorname{TR}[\![c]\!] \&\& (r_1 ! ! r_2)\} S \{\operatorname{TR}[\![a']\!] \&\& \operatorname{TR}[\![c]\!] \&\& (fpt_s(a') ! ! r_2)\}$$

$$[\operatorname{modifies} fpt_s(a) + r, \operatorname{MV}(S), \operatorname{fresh}(fpt_s(a') + r_2 - r')]$$
where $\operatorname{TR}[\![a]\!] \Rightarrow r_1 = fpt_s(a), \operatorname{TR}[\![c]\!] \Rightarrow r_2 = fpt_s(c), r_1 \notin \operatorname{MV}(S), r_2 \notin \operatorname{MV}(S),$

$$\operatorname{TR}[\![a]\!] \&\& \operatorname{TR}[\![c]\!] \&\& (fpt_s(a') ! ! r_2) \Rightarrow r' = r_1 + r_2, \operatorname{and} \operatorname{MV}(S) \cap \operatorname{FV}(c) = \emptyset$$

$$(H.13)$$

By the inductive hypothesis, the premise of Eq. (H.13) is assumed. The rule FRM_u is instantiated with Q := TR[[c]] and $\eta := efs(TR[[c]])$. The proof obligation is to show the side condition, which is:

$$TR[[a]] \&\& TR[[c]] \&\& (r_1 !! r_2) \text{ implies } efs(TR[[c]]) / (modifies MV(S), fpt_s(a)) \quad (H.14)$$

By Lemma 14 and by the definition of separator (Fig. 3.7), Eq. (H.14) is true. After using the rule FRM_u , the following is derived.

$$[\operatorname{reads} r_1 \downarrow]$$

$$\vdash_u^{\Gamma} \{\operatorname{TR}[\![a]\!] \&\& \operatorname{TR}[\![c]\!] \&\& (r_1 ! ! r_2)\} S \{\operatorname{TR}[\![a']\!] \&\& \operatorname{TR}[\![c]\!]\}$$
(H.15)
$$[\operatorname{modifies} r_1 \downarrow, \operatorname{MV}(S), \operatorname{fresh} (fpt_s(a') - r_1)]$$

Now, consider to use the rule FRM_u again. It is instantiated with $Q := r_1 !! r_2$ and $\eta :=$ **reads** r_1 , **reads** r_2 . The proof obligation is to show the side condition is true, which is:

$$(\mathsf{TR}\llbracketa\rrbracket\&\& \mathsf{TR}\llbracketc\rrbracket\&\& (r_1 !! r_2)) \text{ implies } (\mathsf{reads } r_1, \mathsf{reads } r_2)^{\cdot} / (\mathsf{modifies } r_1 \downarrow, \mathsf{MV}(S))$$

$$(H.16)$$

By $r_1 \notin MV(S)$ and $r_2 \notin MV(S)$, Eq. (H.16) is true. Note that **modifies** $r_1 \downarrow$ means that values in the locations contained in r_1 may be modified. The variable r_1 is not changed. After using the rule FRM_u , the following is derived.

$$\begin{bmatrix} \text{reads } r_1 \downarrow \end{bmatrix} \\ \vdash_{u}^{\Gamma} \{ \text{TR}[\![a]\!] \&\& \text{TR}[\![c]\!] \&\& (r_1 ! ! r_2) \} S \{ \text{TR}[\![a']\!] \&\& \text{TR}[\![c]\!] \&\& (r_1 ! ! r_2) \}$$
(H.17)
$$\begin{bmatrix} \text{modifies } r_1 \downarrow, \text{MV}(S), \text{fresh} (fpt_s(a') - r_1) \end{bmatrix}$$

Because TR[[c]] is preserved by S, $r_2 = fpt_s(c)$ in the post-state. Thus, after using the rule $CONSEQ_u$, the following is derived.

$$\begin{bmatrix} \mathbf{reads} \ r_1 \downarrow \end{bmatrix}$$

$$\vdash_{u}^{\Gamma} \{ \mathrm{TR}[\![a]\!] \&\& \mathrm{TR}[\![c]\!] \&\& (r_1 ! ! r_2) \} S \{ \mathrm{TR}[\![a']\!] \&\& \mathrm{TR}[\![c]\!] \&\& (r_1 ! ! fpt_s(c)) \}$$

$$[\mathbf{modifies} \ r_1 \downarrow, \mathrm{MV}(S), \mathbf{fresh} \ (fpt_s(a') - r_1)]$$

$$(H.18)$$

Now the proof obligation is to show that $fpt_s(a') ! ! fpt_s(c)$ in the poststate. By the definition of SSL Hoare-formula, it is known that $fpt_s(a') = r_1 + RE$, where *RE* are possibly empty regions that do not exist in the pre-state, hence *RE* ! ! $fpt_s(c)$. Hence, $fpt_s(a') ! ! fpt_s(c)$ is true. Then, after using the rule *CONSEQ_u*, the following is derived.

$$[\operatorname{reads} r_1 \downarrow] \\ \vdash_u^{\Gamma} \{\operatorname{TR}[\![a]\!] \&\& \operatorname{TR}[\![c]\!] \&\& (r_1 ! ! r_2)\} S \{\operatorname{TR}[\![a']\!] \&\& \operatorname{TR}[\![c]\!] \&\& (fpt_s(a') ! ! fpt_s(c))\} \\ [\operatorname{modifies} r_1 \downarrow, \operatorname{MV}(S), \operatorname{fresh} (fpt_s(a') - r_1)]$$

$$(H.19)$$

Now, consider the fresh effects. By the side condition $r' = r_1 + r_2$, it must be true that

$$fpt_s(a') - r_1 = fpt_s(a') + r_2 - r_1 - r_2 = fpt_s(a') + r_2 - r'.$$

Finally, using the rule $SubEff_u$ to loosen the read effects, the conclusion of Eq. (H.13) is derived.

$$(ALLOC_u) \vdash_u^{\Gamma} \begin{bmatrix} \emptyset \end{bmatrix}$$

$$(ALLOC_u) \vdash_u^{\Gamma} \{true\} \times := new T; \{new(T, x)\}$$

$$[modifies x, alloc, fresh(region\{x.*\})]$$

$$true \vdash_u^{\Gamma} efs(TR[[a]]) frm TR[[a]]$$
where $TR[[a]] \Rightarrow efs(TR[[a]]) / (x, alloc)$ and
$$FV(a) \cap \{x\} = \emptyset \Rightarrow FV(TR[[a]]) \cap \{x\} = \emptyset (Lemma 15)$$

$$(FRM_u) \frac{FV(a) \cap \{x\} = \emptyset \Rightarrow FV(TR[[a]]] \&\& new(T, x)\}}{[modifies x, alloc, fresh region\{x.*\}]}$$

$$(SubEff_u) \frac{(Subeffect) \vdash^{\Gamma} \emptyset \leq reads fpt_s(a)}{[reads fpt_s(a)]}$$

$$\vdash_u^{\Gamma} \{TR[[a]]\} \times := new T; \{TR[[a]] \&\& new(T, x)\}}{[modifies x, alloc, fresh region\{x.*\}]}$$

$$(Subeffect) TR[[a]] \vdash^{\Gamma} (modifies x, alloc, fresh region\{x.*\}]$$

$$(Subeffect) TR[[a]] \vdash^{\Gamma} (modifies x, alloc, fresh region\{x.*\}]$$

$$(Subeff_u) \frac{[reads fpt_s(a)]}{[reads fpt_s(a)]}$$

$$\vdash_u^{\Gamma} \{TR[[a]] \times := new T; \{TR[[a]] \&\& new(T, x)\}}{[modifies x, alloc, fpt_s(a), fresh region\{x.*\}]}$$

$$(SubEff_u) \frac{[reads fpt_s(a)]}{[reads fpt_s(a)]}$$

$$(FrToPost_u) \vdash_u^{\Gamma} \times := new T; \{TR[[a]] \&\& new(T, x) \&\& (fpt_s(a) !! region\{x.*\})\}}{[modifies x, alloc, fpt_s(a), fresh(region\{x.*\})]}$$

Figure H.1: The derivation of rule $TR_R[ALLOC_s]$

$$(ACC_{u}) \vdash_{u}^{\Gamma} [efs(x'.f)]\{x' \neq null\} x := x' \cdot f; \{x = x'.f\}[\text{modifies } x] \\ (x'.f = z) \vdash_{u}^{\Gamma} (\text{region}\{x'.f\}, x', z) frm(x'.f = z) \quad \text{where } (1) \\ \hline \vdash_{u}^{\Gamma} [efs(x'f)]\{x'.f = z\} x := x' \cdot f; \{x = z \&\& x'.f = z\}[\text{modifies } x] \\ (SubEff_{u}) \frac{(Subeffect) \vdash^{\Gamma} \text{modifies } x \leqslant \text{modifies } x, \text{region}\{x'.f\}]}{[efs(x'.f)]} \\ \vdash_{u}^{\Gamma} \{x'.f = z\} x := x' \cdot f; \{x = z \&\& x'.f = z\} \quad \text{where } (2) \\ [\text{modifies } x, \text{region}\{x'.f\}] \\ \vdash_{u}^{\Gamma} \{x'.f = z\} x := x' \cdot f; \{x = z \&\& x'.f = z\} \\ [\text{modifies } x, \text{region}\{x'.f\}] \\ \vdash_{u}^{\Gamma} \{x'.f = z\} x := x' \cdot f; \{x = z \&\& x'.f = z\} \\ [\text{modifies } x, \text{region}\{x'.f\}] \\ (1) \text{ is } x'.f = z \&\& x \neq y \&\& x' \neq y \Rightarrow ((\text{region}\{x'.f\}, x', y)) x) \text{ and } \\ x' \neq null \Rightarrow \exists z.(x'.f = z) \\ (2) \text{ is } x' \neq null \Rightarrow regRW(efs(x'.f), x, \text{region}\{x'.f\}) \leqslant regRW(\text{region}\{x'.f\}, x) \\ \end{cases}$$

Figure H.2: The derivation of rule $TR_R[ACC_s]$

$$(UPD_u) \vdash_u^{\Gamma} \{x \neq null\} \times f := E; \{x.f = E\}$$

$$(CONSEQ_u) \frac{[reads x, efs(E)]}{[reads x, efs(E)]} + \int_u^{\Gamma} \{\exists z.x.f = z\} x.f := E; \{x.f = E\}$$

$$[modifies region\{x.f\}]$$

$$(Subeffect)$$

$$(SubEff_u) \frac{\vdash_u^{\Gamma} reads readR(reads x, efs(E)) \leq reads region\{x.f\}]}{[reads region\{x.f\}]} + \int_u^{\Gamma} \{\exists z.x.f = z\} \times f := E; \{x.f = E\}$$

$$[modifies region\{x.f\}]$$

$$(1) \text{ is } x \neq null \Rightarrow \exists z.x.f = z$$

Figure H.3: The derivation of rule $TR_R[[UPD_s]]$

APPENDIX I: PROOF OF LEMMA 23

Lemma 23:Let (σ, h) be a state, and p_s be an inductive predicate in SSL. Then

$$\mathcal{E}_a[\![\Gamma \vdash p_s(\overline{e}) : \texttt{bool}]\!](\sigma, h) = \mathcal{E}_p[\![\Gamma \vdash \texttt{TR}[\![p_s(\overline{e})]\!] : \texttt{bool}]\!](\sigma, h)$$

Proof. The proof is an inductive case of the proof of Theorem 7. The inductive hypothesis is that for all subassertions a_i , $\mathcal{E}_a[[\Gamma \vdash a_i : bool]](\sigma, h) = \mathcal{E}_p[[\Gamma \vdash TR[[a_i]] : bool]](\sigma, h)$. Let $b_1 \Rightarrow a_1 \cdots b_n \Rightarrow a_n$ be inductive cases for p_s . We prove it as follows.

 $\mathcal{E}_a[\![\Gamma \vdash p_s(\overline{e}) : \texttt{bool}]\!](\sigma, h)$

iff \langle by semantics of inductive predicates Eq. (7.4) \rangle

$$(fix\underline{\lambda}(\sigma',h') \cdot \mathcal{E}_a[\![\Gamma \vdash (b_1 \Rightarrow a_1) \land \dots \land (b_n \Rightarrow a_n) : \texttt{bool}]\!](\sigma',h'))$$
$$(\sigma(formals_s(p_s) \mapsto \overline{\mathcal{E}_s[\![\Gamma \vdash e:T]\!](\sigma)}),h)$$

iff \langle by semantics of assertions Def. 11 \rangle

$$(fix\underline{\lambda}(\sigma',h') . (\mathcal{E}_{a}\llbracket\Gamma \vdash b_{1} \Rightarrow a_{1} : \mathbf{bool}\rrbracket(\sigma',h') and \dots and$$
$$\mathcal{E}_{a}\llbracket\Gamma \vdash b_{n} \Rightarrow a_{n} : \mathbf{bool}\rrbracket(\sigma',h')))(\sigma(formals_{s}(p_{s}) \mapsto \overline{\mathcal{E}_{s}\llbracket\Gamma \vdash e:T\rrbracket(\sigma)}),h)$$

iff \langle by inductive hypothesis \rangle

$$(fix\underline{\lambda}(\sigma',h').(\mathcal{E}_p\llbracket\Gamma \vdash \mathrm{TR}\llbracket b_1 \Rightarrow a_1]]: \texttt{bool}](\sigma',h') and \dots and$$
$$\mathcal{E}_p\llbracket\Gamma \vdash \mathrm{TR}\llbracket b_n \Rightarrow a_n]]: \texttt{bool}](\sigma',h'))(\sigma(formals_s(p_s) \mapsto \overline{\mathcal{E}_s\llbracket\Gamma \vdash e:T]](\sigma)}),h)$$

iff
$$\langle$$
 by Lemma 11: $\mathcal{E}_s[\![\Gamma \vdash e : T]\!](\sigma) = \mathcal{E}[\![\Gamma \vdash \mathrm{TR}[\![e]\!] : T]\!](\sigma) \rangle$
 $(fix \underline{\lambda}(\sigma', h') . (\mathcal{E}_p[\![\Gamma \vdash \mathrm{TR}[\![b_1 \Rightarrow a_1]\!] : \mathbf{bool}]\!](\sigma', h') and ... and$
 $\mathcal{E}_p[\![\Gamma \vdash \mathrm{TR}[\![b_n \Rightarrow a_n]\!] : \mathbf{bool}]\!](\sigma', h')))(\sigma(formals_s(p_s) \mapsto \overline{\mathcal{E}[\![\Gamma \vdash \mathrm{TR}[\![e : T]\!]]\!](\sigma)}), h)$

iff
$$\langle \text{by the semantics of assertions (Fig. 3.2)} \rangle$$

 $(fix\underline{\lambda}(\sigma',h') . (\mathcal{E}_p[\![\Gamma \vdash \text{TR}[\![b_1 \Rightarrow a_1 : \text{bool}]\!] \&\& \dots \&\& \text{TR}[\![b_n \Rightarrow a_n]\!] : \text{bool}]\!](\sigma',h')))$
 $(\sigma(formals_s(p_s) \mapsto \overline{\mathcal{E}[\![\Gamma \vdash \text{TR}[\![e]\!] : T]\!](\sigma)}),h)$

iff
$$\langle$$
 by the definition of encoding inductive predicates in Fig. 7.1 \rangle
 $(fix \underline{\lambda}(\sigma', h') . (\mathcal{E}_p[\![\Gamma \vdash \mathrm{TR}[\![idf(p_s)]\!] : \mathbf{bool}]\!](\sigma', h')))$
 $(\sigma(formals_s(p_s) \mapsto \overline{\mathcal{E}[\![\Gamma \vdash \mathrm{TR}[\![e : T]\!]]\!](\sigma)}), h)$

iff \langle by semantics of recursive predicate. \rangle

 $\mathcal{E}_p[\![\Gamma \vdash \mathrm{Tr}[\![p_s(\overline{e})]\!]:\texttt{bool}]\!](\sigma,h)$

LIST OF REFERENCES

- P. America. A behavioural approach to subtyping in object-oriented programming languages. Technical Report 443, Philips Research Laboratories, Nederlandse Philips Bedrijven B. V., Apr. 1989. Revised from the January 1989 version.
- [2] A. Banerjee and D. A. Naumann. Local reasoning for global invariants, part ii: Dynamic boundaries. *Journal of the ACM*, 60(3):19:1–19:73, June 2013.
- [3] A. Banerjee, D. A. Naumann, and M. Nikouei. A logical analysis of framing for specifications with pure method calls. ACM Trans. Prog. Lang. Syst., under review. https://www.cs. stevens.edu/~naumann/publications/lafsp2.pdf.
- [4] A. Banerjee, D. A. Naumann, and S. Rosenberg. Regional logic for local reasoning about global invariants. In J. Vitek, editor, *European Conference on Object-Oriented Programming* (ECOOP), volume 5142 of Lecture Notes in Computer Science, pages 387–411, New York, NY, 2008. Springer-Verlag.
- [5] A. Banerjee, D. A. Naumann, and S. Rosenberg. Local reasoning for global invariants, part i: Region logic. *Journal of the ACM*, 60(3):18:1–18:56, June 2013.
- [6] Y. Bao and G. Ernst. A KIV project for defining semantics for intuitionistic separation logic. http://www.eecs.ucf.edu/~ybao/project/sl-semantics/index. xml, 2016.
- [7] Y. Bao and G. Ernst. A KIV project for proving encoding supported separation logic into unified fine-grained region logic. http://www.eecs.ucf.edu/~ybao/project/ frl-sep-expr/index.xml, 2016.

- [8] Y. Bao, G. T. Leavens, and G. Ernst. Conditional effects in fine-grained region logic. In Proceedings of the 17th Workshop on Formal Techniques for Java-like Programs, FTfJP '15, pages 5:1–5:6, New York, NY, USA, 2015. ACM.
- [9] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A modular reusable verifier for object-oriented programs. In *Formal Methods for Components and Objects (FMCO) 2005, Revised Lectures*, volume 4111 of *Lecture Notes in Computer Science*, pages 364–387, New York, NY, 2006. Springer-Verlag.
- [10] M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte. Verification of objectoriented programs with invariants. *Journal of Object Technology*, 3(6):27–56, 2004.
- [11] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An overview. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, editors, *Construction and Analysis of Safe, Secure, and Interoperable Smart devices (CASSIS 2004)*, volume 3362 of *Lecture Notes in Computer Science*, pages 49–69, New York, NY, 2005. Springer-Verlag.
- [12] M. Barnett and D. Naumann. Friends need a bit more: Maintaining invariants over shared state. In D. Kozen, editor, *Mathematics of Program Construction (MPC)*, volume 3125 of *Lecture Notes in Computer Science*, pages 54–84. Springer-Verlag, July 2004.
- [13] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A. Reynolds, and C. Tinelli. Cvc4. In *Proceedings of the 23rd International Conference on Computer Aided Verification*, CAV'11, pages 171–177, Berlin, Heidelberg, 2011. Springer-Verlag.
- [14] B. Beckert, R. Hähnle, and P. H. Schmitt. Verification of Object-Oriented Software: The KeY Approach, volume 4334 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2007.

- [15] J. Berdine, C. Calcagno, and P. OHearn. A decidable fragment of separation logic. In K. Lodaya and M. Mahajan, editors, *FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science*, volume 3328 of *Lecture Notes in Computer Science*, pages 97–109. Springer Berlin Heidelberg, 2005.
- [16] J. Berdine, C. Calcagno, and P. W. O'Hearn. Smallfoot: Modular automatic assertion checking with separation logic. In *Proceedings of the 4th International Conference on Formal Methods for Components and Objects*, FMCO'05, pages 115–137, Berlin, Heidelberg, 2006. Springer-Verlag.
- [17] J. Berdine, C. Calcagno, P. W. Ohearn, and Q. Mary. Symbolic execution with separation logic. In *In APLAS*, pages 52–68. Springer, 2005.
- [18] K. Bierhoff and J. Aldrich. Lightweight object specification with typestates. SIGSOFT Softw. Eng. Notes, 30(5):217–226, Sept. 2005.
- [19] K. Bierhoff and J. Aldrich. Modular typestate checking of aliased objects. In Proceedings of the 22Nd Annual ACM SIGPLAN Conference on Object-oriented Programming Systems and Applications, OOPSLA '07, pages 301–320, New York, NY, USA, 2007. ACM.
- [20] F. Bobot and J.-C. Filliâtre. Formal Methods and Software Engineering: 14th International Conference on Formal Engineering Methods, ICFEM 2012, Kyoto, Japan, November 12-16, 2012. Proceedings, chapter Separation Predicates: A Taste of Separation Logic in First-Order Logic, pages 167–181. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.
- [21] A. Borgida, J. Mylopoulos, and R. Reiter. On the frame problem in procedure specifications. *IEEE Transactions on Software Engineering*, 21(10):785–798, Oct. 1995.
- [22] R. Bornat, C. Calcagno, P. O'Hearn, and M. Parkinson. Permission accounting in separation logic. In *Principles of Programming Languages (POPL)*, pages 259–270. ACM, Jan. 2005.

- [23] J. Brotherston. Formalised inductive reasoning in the logic of bunched implications. In Proceedings of the 14th International Conference on Static Analysis, SAS'07, pages 87–103, Berlin, Heidelberg, 2007. Springer-Verlag.
- [24] P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll. Beyond assertions: Advanced specification and verification with JML and ESC/Java2. In *Formal Methods for Components and Objects* (*FMCO*) 2005, *Revised Lectures*, volume 4111 of *Lecture Notes in Computer Science*, pages 342–363, Berlin, 2006. Springer-Verlag.
- [25] Y. Cheon, G. T. Leavens, M. Sitaraman, and S. Edwards. Model variables: Cleanly supporting abstraction in design by contract. *Software—Practice & Experience*, 35(6):583–599, May 2005.
- [26] B. Cook, C. Haase, J. Ouaknine, M. Parkinson, and J. Worrell. CONCUR 2011 Concurrency Theory: 22nd International Conference, CONCUR 2011, Aachen, Germany, September 6-9, 2011. Proceedings, chapter Tractable Reasoning in a Fragment of Separation Logic, pages 235–249. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.
- [27] B. J. Cox. *Object Oriented Programming: an Evolutionary Approach*. Addison-Wesley Publishing Co., Reading, Mass., 1986.
- [28] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Tools and Algorithms for the Construction and Analysis (TACAS), volume 4963 of Lecture Notes in Computer Science, pages 337–340, Berlin, 2008. Springer-Verlag.
- [29] R. DeLine and M. Fähndrich. Typestates for objects. In ECOOP 2004 Object-Oriented Programming, 18th European Conference, volume 3086 of Lecture Notes in Computer Science, pages 465–490. Springer Verlag, June 2004.

- [30] K. K. Dhara and G. T. Leavens. Forcing behavioral subtyping through specification inheritance. Technical Report 95-20c, Department of Computer Science, Iowa State University, Ames, Iowa, 50011, Dec. 1997. Also in Proceedings of the 18th International Conference on Software Engineering, Berlin, Germany, 1996, pp. 258–267. Available by anonymous ftp from ftp.cs.iastate.edu, and by e-mail from almanac@cs.iastate.edu.
- [31] D. Distefano, P. W. O'Hearn, and H. Yang. A local shape analysis based on separation logic. In Proceedings of the 12th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS'06, pages 287–302, Berlin, Heidelberg, 2006. Springer-Verlag.
- [32] G. Ernst, J. Pfhler, G. Schellhorn, D. Haneberg, and W. Reif. KIV: overview and verifythis competition. *International Journal on Software Tools for Technology Transfer*, pages 1–18, 2014.
- [33] M. Fahndrich and R. DeLine. Adoption and focus: Practical linear types for imperative programming. In *Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design and Implementation*, PLDI '02, pages 13–24, New York, NY, USA, 2002. ACM.
- [34] R. L. Ford and K. R. M. Leino. Dafny reference manual (draft). https://github.com/Microsoft/dafny/blob/master/Docs/DafnyRef/out/DafnyRef.pdf.
- [35] J.-Y. Girard. Linear logic: A survey. In F. L. Bauer, W. Brauer, and H. Schwichtenberg, editors, *Logic and Algebra of Specification*, volume 94 of *NATO ASI Series. Series F : Computer and System Sciences*, pages 63–112. Springer-Verlag, New York, NY, 1993.
- [36] J. V. Guttag, J. J. Horning, and J. M. Wing. The Larch family of specification languages. *IEEE Software*, 2(5):24–36, Sept. 1985.

- [37] S. Heule, I. T. Kassios, P. Müller, and A. J. Summers. Verification condition generation for permission logics with abstract predicates and abstraction functions. In *European Conference* on Object-Oriented Programming, pages 451–476. Springer, 2013.
- [38] C. A. R. Hoare. An axiomatic basis for computer programming. *Commun. ACM*, 12(10):576–580, Oct. 1969.
- [39] C. A. R. Hoare. Proof of correctness of data representations. *Acta Informatica*, 1(4):271–281, 1972.
- [40] C. A. R. Hoare and N. Wirth. An axiomatic definition of the programming language Pascal. *Acta Informatica*, 2(4):335–355, 1973.
- [41] A. Hobor and J. Villard. The ramifications of sharing in data structures. In *Proceedings of the* 40th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL '13, pages 523–536, New York, NY, USA, 2013. ACM.
- [42] S. S. Ishtiaq and P. W. O'Hearn. BI as an assertion language for mutable data structures. In Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL '01, pages 14–26, New York, NY, USA, 2001. ACM.
- [43] B. Jacobs, J. Smans, and F. Piessens. The VeriFast program verifier: A tutorial, 2010.
- [44] C. B. Jones. Systematic software development using VDM. International Series in Computer Science. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1986.
- [45] I. T. Kassios. Dynamic frames: Support for framing, dependencies and sharing without restrictions. In E. S. J. Misra, T. Nipkow, editor, *Formal Methods (FM)*, volume 4085 of *Lecture Notes in Computer Science*, pages 268–283, Berlin, 2006. Springer-Verlag.
- [46] I. T. Kassios. The dynamic frames theory. *Formal Aspects of Computing*, 23(3):267–288, May 2011.

- [47] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: A behavioral interface specification language for Java. Technical Report 98-06q, Iowa State University, Department of Computer Science, Dec. 2001. This is an obsolete version.
- [48] G. T. Leavens and D. A. Naumann. Behavioral subtyping, specification inheritance, and modular reasoning. ACM Trans. Program. Lang. Syst., 37(4):13:1–13:88, Aug. 2015.
- [49] G. T. Leavens and D. A. Naumann. Behavioral subtyping, specification inheritance, and modular reasoning. *TOPLAS*, 37(4):13:1–13:88, Aug. 2015.
- [50] G. T. Leavens and W. E. Weihl. Specification and verification of object-oriented programs using supertype abstraction. *Acta Informatica*, 32(8):705–778, Nov. 1995.
- [51] K. R. M. Leino. *Toward Reliable Modular Programs*. PhD thesis, California Institute of Technology, 1995. Available as Technical Report Caltech-CS-TR-95-03.
- [52] K. R. M. Leino. Data groups: Specifying the modification of extended state. In OOPSLA '98 Conference Proceedings, volume 33(10) of ACM SIGPLAN Notices, pages 144–153, New York, NY, Oct. 1998. ACM.
- [53] K. R. M. Leino. Specification and verification of object-oriented software. Lecture notes from Marktoberdorf Internation Summer School, available at http://research. microsoft.com/en-us/um/people/leino/papers/krml190.pdf, 2008.
- [54] K. R. M. Leino. This is Boogie 2. Manuscript KRML 178, 2008. Available at http: //research.microsoft.com/~leino/papers.html.
- [55] K. R. M. Leino. Dafny: An automatic program verifier for functional correctness. In *Logic for Programming, Artificial Intelligence, and Reasoning, 16th International Conference, LPAR-16*, volume 6355 of *Lecture Notes in Computer Science*, pages 348–370. Springer-Verlag, 2010.

- [56] K. R. M. Leino. Logic for Programming, Artificial Intelligence, and Reasoning: 16th International Conference, LPAR-16, Dakar, Senegal, April 25–May 1, 2010, Revised Selected Papers, chapter Dafny: An Automatic Program Verifier for Functional Correctness, pages 348–370. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.
- [57] K. R. M. Leino and R. Monahan. Dafny meets the verification benchmarks challenge. In Proceedings of the Third international conference on Verified software: theories, tools, experiments, volume 6217 of Lecture Notes in Computer Science, pages 112–126, Berlin, 2010. Springer-Verlag.
- [58] K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In M. Odersky, editor, European Conference on Object-Oriented Programming (ECOOP), volume 3086 of Lecture Notes in Computer Science, pages 491–516, Berlin, June 2004. Springer-Verlag.
- [59] K. R. M. Leino and P. Müller. A basis for verifying multi-threaded programs. In G. Castagna, editor, *Programming Languages and Systems, 18th European Symposium on Programming, ESOP 2009*, volume 5502 of *Lecture Notes in Computer Science*, pages 378–393, Berlin, Mar. 2009. Springer-Verlag.
- [60] K. R. M. Leino and G. Nelson. Data abstraction and information hiding. ACM Trans. Prog. Lang. Syst., 24(5):491–553, Sept. 2002.
- [61] K. R. M. Leino, A. Poetzsch-Heffter, and Y. Zhou. Using data groups to specify and check side effects. In *Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design and Implementation (PLDI'02)*, volume 37(5) of ACM SIGPLAN Notices, pages 246–257, New York, NY, June 2002. ACM.
- [62] B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Trans. Prog. Lang. Syst., 16(6):1811–1841, Nov. 1994.

- [63] B. Meyer. *Object-oriented Software Construction*. Prentice Hall, New York, NY, second edition, 1997.
- [64] W. Mostowski and M. Ulbrich. Dynamic dispatch for method contracts through abstract predicates. In *Proceedings of the 14th International Conference on Modularity*, MODULARITY 2015, pages 109–116, New York, NY, USA, 2015. ACM.
- [65] P. Müller. *Modular Specification and Verification of Object-Oriented Programs*, volume 2262 of *Lecture Notes in Computer Science*. Springer-Verlag, Berlin, 2002.
- [66] P. Müller and A. Poetzsch-Heffter. Modular specification and verification techniques for object-oriented software components. In G. T. Leavens and M. Sitaraman, editors, *Foundations of Component-Based Systems*, chapter 7, pages 137–159. Cambridge University Press, 2000.
- [67] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular specification of frame properties in JML. *Concurrency and Computation: Practice and Experience*, 15(2):117–154, Feb. 2003.
- [68] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants for layered object structures. *Sci. Comput. Programming*, 62(3):253–286, Oct. 2006.
- [69] L. Nistor, J. Aldrich, S. Balzer, and H. Mehnert. Object propositions. In FM 2014: Formal Methods, pages 497–513. Springer, 2014.
- [70] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In E. Jul, editor, ECOOP '98 Object-Oriented Programming, 12th European Conference, Brussels, Belgium, volume 1445 of Lecture Notes in Computer Science, pages 158–185. Springer-Verlag, July 1998.
- [71] P. O'Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that alter data structures. In *Proceedings of CSL'01*, volume 2142 of *Lecture Notes in Computer Science*, pages 1–19, Berlin, 2001. Springer-Verlag.

- [72] P. W. O'Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL '04, pages 268–280, New York, NY, USA, 2004. ACM.
- [73] P. W. O'Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding. ACM Trans. Program. Lang. Syst., 31(3):11:1–11:50, Apr. 2009.
- [74] M. Parkinson and G. Bierman. Separation logic and abstraction. In J. Palsberg and M. Abadi, editors, ACM Symposium on Principles of Programming Languages, pages 247–258, New York, NY, Jan. 2005. ACM.
- [75] M. Parkinson and G. Bierman. Separation logic, abstraction and inheritance. In P. Wadler, editor, ACM Symposium on Principles of Programming Languages, pages 75–86, New York, NY, Jan. 2008. ACM.
- [76] M. J. Parkinson. Local reasoning for Java. Technical Report 654, University of Cambridge Computer Laboratory, Nov. 2005. The author's Ph.D. dissertation.
- [77] M. J. Parkinson and A. J. Summers. The relationship between separation logic and implicit dynamic frames. *Logical Methods in Computer Science*, 8(3), 2012.
- [78] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In *Proceedings* of the Seventeenth Annual IEEE Symposium on Logic in Computer Science, pages 55–74, Los Alamitos, California, 2002. IEEE Computer Society Press.
- [79] S. Rosenberg, A. Banerjee, and D. A. Naumann. Decision procedures for region logic. In Verification, Model Checking, and Abstract Interpretation, pages 379–395. Springer, 2012.
- [80] D. A. Schmidt. Denotational Semantics: A Methodology for Language Development. Allyn and Bacon, Inc., Boston, Mass., 1986.

- [81] J. Smans, B. Jacobs, and F. Piessens. Heap-dependent expressions in separation logic. In Proceedings of the 12th IFIP WG 6.1 International Conference and 30th IFIP WG 6.1 International Conference on Formal Techniques for Distributed Systems, FMOODS'10/FORTE'10, pages 170–185, Berlin, Heidelberg, 2010. Springer-Verlag.
- [82] J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames. ACM Trans. Program. Lang. Syst., 34(1):2:1–2:58, May 2012.
- [83] J. Smans, B. Jacobs, F. Piessens, and W. Schulte. Automatic verification of java programs with dynamic frames. *Formal Aspects of Computing*, 22(3):423–457, 2010.
- [84] R. Strom and S. Yemini. Typestate: A programming language concept for enhancing software reliability. *IEEE Transactions on Software Engineering*, SE-12(1):157–171, Jan. 1986.
- [85] B. Weiß. Deductive Verification of Object-Oriented Software: Dynamic Frames, Dynamic Logic and Predicate Abstraction. PhD thesis, Karlsruhe Institute of Technology, 2011.
- [86] H. Yang and P. W. O'Hearn. A semantic basis for local reasoning. In Proceedings of the 5th International Conference on Foundations of Software Science and Computation Structures, FoSSaCS '02, pages 402–416, London, UK, UK, 2002. Springer-Verlag.