Skip to main content

Advertisement

Log in

Submarine landslide tsunamis: how extreme and how likely?

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

A number of examples are presented to substantiate that submarine landslides have occurred along most continental margins and along several volcano flanks. Their properties of importance for tsunami generation (i.e. physical dimensions, acceleration, maximum velocity, mass discharge, and travel distance) can all gain extreme values compared to their subaerial counterparts. Hence, landslide tsunamis may also be extreme and have regional impact. Landslide tsunami characteristics are discussed explaining how they may exceed tsunamis induced by megathrust earthquakes, hence representing a significant risk even though they occur more infrequently. In fact, submarine landslides may cause potentially extreme tsunami run-up heights, which may have consequences for the design of critical infrastructure often based on unjustifiably long return periods. Giant submarine landslides are rare and related to climate changes or glacial cycles, indicating that giant submarine landslide tsunami hazard is in most regions negligible compared to earthquake tsunami hazard. Large-scale debris flows surrounding active volcanoes or submarine landslides in river deltas may be more frequent. Giant volcano flank collapses at the Canary and Hawaii Islands developed in the early stages of the history of the volcanoes, and the tsunamigenic potential of these collapses is disputed. Estimations of recurrence intervals, hazard, and uncertainties with today’s methods are discussed. It is concluded that insufficient sampling and changing conditions for landslide release are major obstacles in transporting a Probabilistic Tsunami Hazard Assessment (PTHA) approach from earthquake to landslide tsunamis and that the more robust Scenario-Based Tsunami Hazard Assessment (SBTHA) approach will still be most efficient to use. Finally, the needs for data acquisition and analyses, laboratory experiments, and more sophisticated numerical modelling for improved understanding and hazard assessment of landslide tsunamis are elaborated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abadie S, Harris JC, Grilli ST, Fabre R (2012) Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): tsunami source and near field effects. J Geophys Res 117:C05030

    Google Scholar 

  • Ambraseys NN, Melville CP (1982) A history of Persian earthquakes. Cambridge University Press, Cambridge

    Google Scholar 

  • Anita G, Marzocchi W, Sandri L, Gasparini P (2010) A Bayesian procedure for probabilistic tsunami hazard assessment. Nat Hazards 53:159–174

    Google Scholar 

  • Anita G, Sandri L, Marzocchi W, Argnani A, Gasparini P, Selva J (2012) Probabilistic tsunami hazard assessment for Messina Strait Area (Sicily, Italy). Nat Hazards 64:329–358

    Google Scholar 

  • Annaka T, Satake K, Sakakiyama T, Yanagisawa K, Shuto N (2007) Logic-tree approach for probabilistic tsunami hazard analysis and its applications to the Japanese coasts. Pure Appl Geophys 164:577–592

    Google Scholar 

  • Assier-Rzadkiewicz S, Heinrich P, Sabatier PC, Savoye B, Bourillet JF (2000) Numerical modelling of a landslide-generated tsunami: the 1979 Nice event. Pure Appl Geophys 157:1717–1727

    Google Scholar 

  • Baba T, Matsumoto H, Kashiwase K, Hyakudome T, Kaneda Y, Sano M (2012) Micro-bathymetric evidence for the effect of submarine mass movement on tsunami generation during the 2009 Suruga Bay earthquake, Japan. In: Yamada Y, Kawamura K, Ikehara K, Ogawa Y, Urgeles R, Mosher D, Chaytor J, Strasser M (eds) Submarine mass movements and their consequences. Advances in natural and technological hazards research, vol 31. Springer, Dordrecht, pp 485–495

    Google Scholar 

  • Bardet J-P, Synolakis CE, Davies HL, Imamura F, Okal EA (2003) Landslide tsunamis: recent findings and research directions. Pure Appl Geophys 160:1793–1809

    Google Scholar 

  • Berndt C, Brune S, Nisbet E, Zschau J, Sobolev SV (2009) Tsunami modeling of a submarine landslide in the Fram Strait, Geochem Geophys Geosyst 10 Q04009. doi:10.1029/2008GC002292

  • BGS (2009) TRANSFER project deliverable D3.1-D3.5: An examination of non-seismic sources of tsunamis and their impacts on European coastlines—WP3 of EU project TRANSFER http://www.transferproject.eu

  • Billi A, Funiciello R, Minelli L, Faccenna C, Neri G, Orecchio B, Presti D (2008) On the cause of the 1908 Messina tsunami, southern Italy. Geophys Res Lett 35 L06301. doi:10.1029/2008GL033251

  • Bohannon RG, Gardner JV (2004) Submarine landslides of San Pedro Sea Valley, south-west Long Beach, California. Mar Geol 203:261–268

    Google Scholar 

  • Bondevik S, Svendsen JI, Johnsen G, Mangerud J, Kaland PE (1997) The Storegga tsunami along the Norwegian coast, its age and run-up. Boreas 26:29–53

    Google Scholar 

  • Bondevik S, Løvholt F, Harbitz CB, Mangerud J, Dawson A, Svendsen JI (2005) The Storegga slide tsunami—comparing field observations with numerical simulations. Mar Pet Geol 22:195–208. doi:10.1016/j.marpetgeo.2004.10.003

    Google Scholar 

  • Breien H, De Blasio FV, Elverhøi A, Nystuen JP, Harbitz CB (2010) Transport mechanisms of sand in deep-marine environments—insights based on laboratory experiments. J Sedimentary Res 80:975–990. doi:10.2110/jsr.2010.079

    Google Scholar 

  • BRGM (2009) Data extracted from Tsunamis. BRGM www.tsunamis.fr

  • Brune S, Babeyko AY, Gaedicke C, Ladage S (2010a) Hazard assessment of underwater landslide-generated tsunamis: a case study in the Padang region, Indonesia. Nat Hazards 53:205–218. doi:10.1007/s11069-009-9424-x

    Google Scholar 

  • Brune S, Ladage S, Babeyko AY, Müller C, Kopp H, Sobolev SV (2010b) Submarine landslides at the eastern Sunda margin: observations and tsunami impact assessment. Nat Hazards 54:547–562

    Google Scholar 

  • Bryn P, Berg K, Forsberg CF, Solheim A, Kvalstad TJ (2005) Explaining the Storegga slide. Mar Pet Geol 22:11–19. doi:10.1016/j.marpetgeo.2004.12.003

    Google Scholar 

  • Bugge T, Belderson RH, Kenyon NH (1988) The Storegga slide. Phil Trans R Soc A 325:357–388

    Google Scholar 

  • Bungum H, Lindholm C, Faleide JI (2005) Postglacial seismicity offshore mid-Norway with emphasis on spatio-temporal-magnitudal variations. Mar Pet Geol 22:137–148. doi:10.1016/j.marpetgeo.2004.12.007

    Google Scholar 

  • Burroughs SM, Tebbens S (2005) Power-law scaling and probabilistic forecasting of tsunami runup heights. Pure Appl Geophys 162:331–342

    Google Scholar 

  • Byrkjeland UH, Bungum H, Eldholm O (2000) Seismotectonics of the Norwegian continental margin. J Geophys Res 105:6221–6236

    Google Scholar 

  • Camerlenghi A, Urgeles R, Fantoni L (2010) A database on submarine landslides of the Mediterranean Sea. In: Mosher DC, Moscardelli L, Shipp RC, Chaytor JD, Baxter CDP, Lee HJ, Urgeles R (eds) Submarine mass movements and their consequences. Advances in natural and technological hazards research, vol 28. Springer, Dordrecht, pp 491–501

    Google Scholar 

  • Canals M, Lastras G, Urgeles R, Casamor JL, Mienert J, Cattaneo A, De Batist M, Haflidason H, Imbo Y, Laberg JS, Locat J, Long D, Longva O, Masson DG, Sultan N, Trincardi F, Bryn P (2004) Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: case studies from the COSTA project. Mar Geol 213:9–72. doi:10.1016/j.margeo.2004.10.001

    Google Scholar 

  • Chaytor JD, ten Brink US, Solow AR, Andrews BD (2009) Size distribution of submarine landslides along the U.S. Atlantic Margin. Mar Geol 264(1–2):16–27

    Google Scholar 

  • Chiocci FL, Romagnoli C, Tommasi P, Bosman A (2008) The Stromboli 2002 tsunamigenic submarine slide: characteristics and possible failure mechanisms. J Geophys Res Solid Earth 113 B10. doi:10.1029/2007JB005172

  • Cisternas M, Atwater BF, Torrejon F, Sawai Y, Machuca G, Lagos M, Eipert A, Youlton C, Salgado I, Kamataki T, Shishikura M, Rajendran CP, Malik JK, Rizal Y, Husni M (2005) Predecessors of the giant 1960 Chile earthquake. Nature 437:404–407

    Google Scholar 

  • Dan G, Sultan N, Savoye B (2007) The 1979 Nice harbour catastrophe revisited: trigger mechanism inferred from geotechnical measurements and numerical modelling. Mar Geol 245:40–64

    Google Scholar 

  • Day SJ, Watts P, Grilli ST, Kirby JT (2005) Mechanical models of the 1975 Kalapana, Hawaii earthquake and tsunami. Mar Geol 215:59–92

    Google Scholar 

  • De Blasio FV, Engvik L, Harbitz CB, Elverhøi A (2004) Hydroplaning and submarine debris flows. J Geophys Res Oceans 109:C1 C01002. doi:10.1029/2002JC001714

  • De Blasio FV, Elverhøi A, Engvik L, Issler D, Gauer P, Harbitz CB (2006) Understanding the high mobility of subaqueous debris flows. Norw J Geol 86:275–284

    Google Scholar 

  • Deplus C, Le Friant A, Boudon G, Komorowski JC, Villemant B, Harford C, Segoufin J, Cheminee JL (2001) Submarine evidence for large-scale debris avalanches in the Lesser Antilles Arc. Earth Plan Sci Lett 192(2):145–157

    Google Scholar 

  • Droz L, Rabineau M, Shipboard Scientific Party (2003) Interrelationships between the sedimentary systems in the Western Mediterranean (Gulf of Lions and Balearic Abyssal Plain): preliminary results from PROGRES cruise (EUROSTRATAFORM programme). Ocean margin research conference OMARC Paris France 15–17 September 2003, p 130

  • Droz L, dos Reis AT, Rabineau M, Berné S, Bellaiche G (2006) Quaternary turbidite systems on the northern margins of the Balearic Basin (Western Mediterranean): a synthesis. Geo-Marine Letters 26(6):347–359. doi:10.1007/s00367-006-0044-0

    Google Scholar 

  • Edgers L, Karlsrud K (1982) Soil flows generated by submarine slides—case studies and consequences. In: Chryssostomidis C, Connor JJ (eds) Proceedings of the third international conference on the behaviour of offshore structures. Hemisphere Bristol, pp 425–437

  • Elverhøi A, De Blasio FV, Butt FA, Issler D, Harbitz CB, Engvik L, Solheim A, Marr J (2002) Submarine mass-wasting on glacially influenced continental slopes—processes and dynamics. In: Dowdeswell JA, Ó Cofaigh C (eds) Glacier-influenced sedimentation on high-latitude continental margins. Geological Society Special Publication 203. London UK, pp 73–88

  • Elverhøi A, Issler D, De Blasio FV, Ilstad T, Harbitz CB, Gauer P (2005) Emerging insights on the dynamics of submarine debris flows. Nat Hazards Earth Syst Sci 5:633–648

    Google Scholar 

  • Elverhøi A, Breien H, De Blasio FV, Harbitz CB, Pagliardi M (2010) Submarine landslides and the importance of the initial sediment composition for run-out length and final deposit. 70th anniversary of Prof. BN Gjevik. Ocean Dynamics Special Issue. doi:10.1007/s10236-010-0317-z

  • Engdahl ER, Villaseñor A (2002) Global seismicity: 1900–1999. IASPEI Int Handbook of Earthquake Eng Seismol 81:665–690

    Google Scholar 

  • Engdahl ER, Villaseñor A, DeShon HR, Thurber CH (2007) Teleseismic relocation and assessment of seismicity (1918–2005) in the region of the 2004 Mw 9.0 Sumatra–Andaman and 2005 Mw 8.6 Nias Island Great Earthquakes. Bull Seism Soc Am 97(1A):43–61

    Google Scholar 

  • Favalli M, Boschi E, Mazzarini F, Pareschi MT (2009) Seismic and landslide source of the 1908 Straits of Messina tsunami (Sicily, Italy). Geophys Res Lett 36:L16304. doi:10.1029/2009GL039135

  • Fine IV, Rabinovich AB, Bornhold BD, Thomson RE, Kulikov EA (2005) The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modelling. Mar Geol 215:45–57. doi:10.1016/j.margeo.2004.11.007

    Google Scholar 

  • Fisher MA, Normark WR, Greene HG, Lee HJ, Sliter RW (2005) Geology and tsunamigenic potential of submarine landslides in Santa Barbara Channel, Southern California. Mar Geol 224(1–4):1–22

    Google Scholar 

  • Fleming K, Johnston P, Zwartz D, Yokoyama Y, Lambeck K, Chappell J (1998) Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediate-field sites. Earth Plan Sci Lett 163(1–4):327–342

    Google Scholar 

  • Fritz HM, Hager WH, Minor H-E (2004) Near field characteristics of landslide generated impulse waves. J Waterway Port Coastal Ocean Eng 130(6):287–302

    Google Scholar 

  • Fritz HM, Kongko W, Moore A, McAdoo B, Goff J, Harbitz C, Uslu B, Kalligeris N, Suteja D, Kalsum K, Titov V, Gusman A, Latief H, Santoso E, Sujoko S, Djulkarnaen D, Sunendar H, Synolakis C (2007). Extreme runup from the 17 July 2006 Java tsunami. Geophys Res Lett 34:L12602. doi:10.1029/2007GL029404

  • Fryer GJ, Watts P, Pratson LF (2004) Source of the great tsunami of 1 April, 1946: a landslide in the upper Aleutian forearc. Mar Geol 203:201–218

    Google Scholar 

  • Garziglia S, Migeon S, Ducassou E, Loncke L, Mascle J (2008) Mass-transport deposits on the Rosetta province (NW Nile deep-sea turbidite system, Egyptian margin): characteristics, distribution, and potential causal processes. Mar Geol 250:180–198

    Google Scholar 

  • Gauer P, Kvalstad TJ, Forsberg CF, Bryn P, Berg K (2005) The last phase of the Storegga Slide: simulation of retrogressive slide dynamics and comparison with slide-scar morphology. Mar Pet Geol 22:171–178. doi:10.1016/j.marpetgeo.2004.10.004

    Google Scholar 

  • Gee MJR, Masson DG, Watts AB, Allen PA (1999) The Saharan debris flow: an insight into the mechanics of long runout debris flows. Sedimentology 46:317–335. doi:10.1046/j.1365-3091.1999.00215.x

    Google Scholar 

  • Gee MJR, Uy HS, Warren J, Morley CK, Lambiase JJ (2007) The Brunei slide: a giant submarine landslide on the North West Borneo Margin revealed by 3D seismic data. Mar Geol 246:9–23

    Google Scholar 

  • Geist EL, Parsons T (2006) Probabilistic analysis of tsunami hazards. Nat Hazards 37:277–314

    Google Scholar 

  • Geist EL, Parsons T (2010) Estimating the Empirical Probability of Submarine Landslide Occurrence. In Mosher DC, Moscardelli L, Shipp RC, Chaytor JD, Baxter CDP, Lee HJ, Urgeles R (eds) Submarine mass movements and their consequences. Advances in natural and technological hazards research 28, Springer, Dordrecht, pp 77–386

  • Geist EL, Lynett PJ, Chaytor JD (2009) Hydrodynamic modeling of tsunamis from the Currituck landslide. Mar Geol 264:41–52

    Google Scholar 

  • Gisler G, Weaver R, Gittings M (2006) SAGE calculations of the tsunami threat from La Palma. Sci Tsunami Hazards 24:288–301

    Google Scholar 

  • Glimsdal S, Pedersen GK, Løvholt F, Harbitz CB (2013) Dispersion of tsunamis; does it really matter? Accepted for publication in Nat Hazards Earth Syst Sci

  • Gokceoglu C, Tunusluoglu MC, Gorum T, Tur H, Gokasan E, Tekkeli AB, Batuk F, Alp H (2009) Description of dynamics of the Tuzla Landslide and its implications for further landslides in the northern slope and shelf of the Cinarcik Basin (Marmara Sea, Turkey). Eng Geol 106:133–153

    Google Scholar 

  • Goldfinger C (2009) Sub-aqueous paleoseismology. Int Geophys 95:119–170

    Google Scholar 

  • Goldfinger C (2011) Submarine paleoseismology based on turbidite records. Ann Rev Marine Sci 3:35–66

    Google Scholar 

  • Goldfinger C, Kulm LD, McNeill LC, Watts P (2000) Super-scale failure of the southern Oregon Cascadia margin. In: Keating B, Waythomas C, Dawson A (eds) Special issue on landslides tsunamis. Pure Applied Geophys 1189–1226

  • González FI, Geist EL, Jaffe B, Kânoğlu U, Mofjeld H, Synolakis CE, Titov VV, Arcas D, Bellomo D, Carlton D, Horning T, Johnson J, Newman J, Parsons T, Peters R, Peterson C, Priest G, Venturato A, Weber J, Wong F, Yalciner A (2009) Probabilistic tsunami hazard assessment at Seaside, Oregon, for near- and far-field seismic sources. J Geophys Res 114:C11023. doi:10.1029/2008JC005132

  • Graziani L, Maramai A, Tinti S (2006) A revision of the 1783–1784 Calabrian (southern Italy) tsunamis. Nat Hazards Earth Syst Sci 6:1053–1060

    Google Scholar 

  • Greene HG, Murai LY, Watts P, Maher NA, Fisher MA, Paull CE, Eichhubl P (2006) Submarine landslides in the Santa Barbara Channel as potential tsunami sources. Nat Hazards Earth Syst Sci 6:63–88

    Google Scholar 

  • Grilli ST, Watts P (2005) Tsunami generation by submarine mass failure Part I: modeling, experimental validation, and sensitivity analysis. J Waterway Port Coastal Ocean Eng 131(6):283–297

    Google Scholar 

  • Grilli ST, Taylor O-DS, Baxter CDP, Maretzki S (2009) Probabilistic approach for determining submarine landslide tsunami hazard along the upper East Coast of the United States. Mar Geol 264(1–2):74–97. doi:10.1016/j.margeo.2009.02.010

    Google Scholar 

  • Grilli ST, Dubosq S, Pophet N, Pérignon Y, Kirby JT, Shi F (2010) Numerical simulation and first-order analysis of large co-seismic tsunamis generated in the Puerto Rico trench: near-field impact on the North shore of Puerto Rico and far-field impact on the US East Coast. Nat Hazards Earth Syst Sci 10:2109–2125

    Google Scholar 

  • Grilli ST, Harris JC, Tajali-Bakhsh TS, Tappin DR, Masterlark T, Kirby JT, Shi F, Ma G (2012) Recent progress in the nonlinear and dispersive modeling of tsunami generation and coastal impact: application to Tohoku 2011. In: Proceedings of the 13th Journées Hydrodynamiques Chatou France 21–23 November 2012

  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72:272–299

    Google Scholar 

  • Haflidason H, Lien R, Sejrup HP, Forsberg CF, Bryn P (2005) The dating and morphometry of the Storegga slide. Mar Pet Geol 22:123–136. doi:10.1016/j.marpetgeo.2004.10.008

    Google Scholar 

  • Hampton MA, Lee HL, Locat J (1996) Submarine landslides. Rev Geophys 34:33–59

    Google Scholar 

  • Harbitz CB (1992) Model simulations of tsunamis generated by the Storegga slides. Mar Geol 105:1–21

    Google Scholar 

  • Harbitz CB, Parker G, Elverhøi A, Marr JG, Mohrig D, Harff PA (2003) Hydroplaning of subaqueous debris flows and glide blocks: analytical solutions and discussion. J Geophys Res 108:2349. doi:10.1029/2001JB001454

    Google Scholar 

  • Harbitz CB, Løvholt F, Pedersen G, Masson DG (2006) Mechanisms of tsunami generation by submarine landslides: a short review. Norw J Geol 86:249–258

    Google Scholar 

  • Harbitz CB, Løvholt F, Glimsdal S (2007) Tsunamis generated by landslides and earthquakes—wave characteristics and numerical modeling for hazard assessment in offshore geohazards. In: Proceedings offshore technology conference Houston, Texas 30 April–3 May 2007. OTC 18602

  • Harbitz CB, Glimsdal S, Løvholt F, Pedersen GK, Vanneste M, Eidsvig UMK, Bungum H (2009) Tsunami hazard assessment and early warning systems for the North East Atlantic. In: Proceedings of the DEWS midterm conference Potsdamm Germany 7–8 July 2009

  • Harbitz CB, Glimsdal S, Bazin S, Zamora N, Smebye HC, Løvholt F, Bungum H, Gauer P, Kjekstad O (2012) Tsunami hazard in the caribbean: regional exposure derived from credible worst case scenarios. Cont Shelf Res 38:1–23. doi:10.1016/j.csr.2012.02.006

    Google Scholar 

  • Harders R, Ranero CR, Weinrebe W, Behrmann JH (2011) Submarine slope failures along the convergent continental margin of the Middle America Trench. Geochem Geophys Geosyst 12:Q05S32. doi:10.1029/2010GC003401

  • Haugen KB, Løvholt F, Harbitz CB (2005) Fundamental mechanisms for tsunami generation by submarine flows in idealised geometries. Mar Pet Geol 22:209–217. doi:10.1016/j.marpetgeo.2004.10.016

    Google Scholar 

  • Hebert H, Schindele F, Altinok Y, Alpar B, Gazioglu C (2005) Tsunami hazard in the Marmara Sea (Turkey): a numerical approach to discuss active faulting and impact on the Istanbul coastal areas. Mar Geol 215(1–2):23–43

    Google Scholar 

  • Heezen BC, Ewing M (1952) Turbidity currents and submarine slumps, and the 1929 Grand Banks Earthquake. Am J Sci 250:775–793

    Google Scholar 

  • Hühnerbach V, Masson DG, COSTA project partners (2004) Landslides in the north Atlantic and its adjacent seas: an analysis of their morphology, setting and behaviour. Mar Geol 213:343–362. doi:10.1016/j.margeo.2004.10.013

    Google Scholar 

  • Hühnerbach V, Masson DG, Bohrmann G, Bull JM, Weinrebe W (2005) Deformation and submarine landsliding caused by seamount subduction beneath the Costa Rican margin—new insights from high-resolution sidescan sonar data. In: Hodgson DM, Flint SS (eds) Submarine slope systems: processes and products. Geol Soc Spec Publ 244:195–205. Geological Society, London

  • Hunt JE, Wynn RB, Masson DG, Talling PJ, Teagle DAH (2011) Sedimentological and geochemical evidence for multistage failure of volcanic island landslides: a case study from Icod landslide on north Tenerife. Canary Islands, Geochem Geophys Geosyst 12

    Google Scholar 

  • Iglesias O, Lastras G, Canals M, Olabarrieta M, Gonzalez M, Aniel-Quiroga I, Otero L, Duran R, Amblas D, Casamor JL, Tahchi E, Tinti S, De Mol B (2012) The BIG’95 submarine landslide-generated tsunami; a numerical simulation. J Geol 120(1):31–48

    Google Scholar 

  • Ikari MJ, Strasser M, Saffer DM, Kopf AJ (2011) Submarine landslide potential near the megasplay fault at the Nankai subduction zone. Earth Plan Sci Lett 312:453–462

    Google Scholar 

  • Imamura F, Gica E, Takahashi T, Shuto N (1995a) Numerical simulation of the 1992 Flores tsunami: interpretation of tsunami phenomena in northeastern Flores Island and damage at Babi Island. Pure Appl Geophys 144(3–4):555–568

    Google Scholar 

  • Imamura F, Synolakis CE, Gica E, Titov VV, Listanco E, Lee HJ (1995b) Field survey of the 1994 Mindoro Island, Philippines Tsunami. Pure Appl Geophys 144(3–4):875–890

    Google Scholar 

  • Imran J, Harff P, Parker G (2001) A numerical model of submarine debris flow with graphical user interface. Comput Geosci 27:717–729

    Google Scholar 

  • Inoue K (1999) Shimabara Shigatusaku earthquake and topographic changes by Shimabara Catastrophe in 1792. J Jpn Soc Erosion Control Eng 52(4):45–54

    Google Scholar 

  • Issler D, De Blasio FV, Elverhøi A, Bryn P, Lien R (2005) Scaling behaviour of clay-rich submarine debris flows. Mar Pet Geol 22:187–194. doi:10.1016/j.marpetgeo.2004.10.015

    Google Scholar 

  • Kahneman D (2012) Thinking, fast and slow. Farrar, Strauss and Giroux, New York

    Google Scholar 

  • Kawamura K, Sasaki T, Kanamatsu T, Sakaguchi A, Ogawa Y (2012) Large submarine landslides in the Japan Trench: a new scenario for additional tsunami generation. Geophys Res Lett 39:L05308. doi:10.1029/2011GL050661

  • Kitamura Y, Yamamoto Y (2012) Records of submarine landslides in subduction input recovered by IODP Expedition 322, Nankai Trough, Japan. In: Yamada Y, Kawamura K, Ikehara K, Ogawa Y, Urgeles R, Mosher D, Chaytor J, Strasser M (eds) Submarine mass movements and their consequences. Advances in natural and technological hazards research 31, Springer, Dordrecht, pp 659–670

  • Krastel S, Wynn RB, Georgiopoulou A, Geersen J, Henrich R, Meyer M, Schwenk T (2012) Large-scale mass wasting on the northwest African continental margin: Some general implications for mass wasting on passive continental margins. In: Yamada Y, Kawamura K, Ikehara K, Ogawa Y, Urgeles R, Mosher D, Chaytor J, Strasser M (eds) Submarine mass movements and their consequences. Advances in natural and technological hazards research 31, Springer, Dordrecht, pp 189–199

  • Kulikov EA, Rabinovich AB, Thomson RE, Bornhold BD (1996) The landslide tsunami of November 3, 1994 Skagway harbour, Alaska. J Geophys Res 101:6609–6615. doi:10.1029/95JC03562

    Google Scholar 

  • Kvalstad TJ, Andresen L, Forsberg CF, Berg K, Bryn P, Wangen M (2005a) The Storegga slide: evaluation of triggering sources and slide mechanics. Mar Pet Geol 22:245–256. doi:10.1016/j.marpetgeo.2004.10.019

    Google Scholar 

  • Kvalstad TJ, Nadim F, Kaynia A, Mokkelbost KH, Bryn P (2005b) Soil conditions and slope stability in the Ormen Lange area. Mar Pet Geol 22:299–310

    Google Scholar 

  • Laberg JS, Vorren TO (2000) The Trænadjupet Slide, offshore Norway—morphology, evacuation and triggering mechanisms. Mar Geol 171:95–114. ISSN 0025-3227

    Google Scholar 

  • Laberg JS, Vorren TO, Dowdeswell JA, Kenyon NH, Taylor J (2000) The Andøya slide and the Andøya canyon, north-eastern Norwegian-Greenland Sea. Mar Geol 162; 259-275. ISSN 0025-3227

    Google Scholar 

  • Laberg JS, Vorren TO, Mienert J, Haflidason H, Bryn P, Lien R (2003) Preconditions leading to the Holocene Traenadjupet slide, offshore Norway. In: Locat J, Mienert J (eds) Submarine mass movements and their consequences. Kluwer Academic Publishers, Dordrecht, pp 247–254

    Google Scholar 

  • Lastras G, Canals M, Urgeles R, De Batist M, Calafat AM, Casamor JL (2004) Characterisation of the recent BIG′95 debris flow deposit on the Ebro margin, Western Mediterranean Sea, after a variety of seismic reflection data. Mar Geol 213(1/4):235–255

    Google Scholar 

  • Lee HJ (2005) Undersea landslides: extent and significance in the Pacific Ocean, an update. Nat Hazards Earth Syst Sci 5:877–892

    Google Scholar 

  • Lee HJ (2009) Timing of occurrence of large submarine landslides on the Atlantic Ocean margin. Mar Geol 264:53–64

    Google Scholar 

  • Lee H, Ryan H, Kayen RE, Haeussler PJ, Dartnell P, Hampton MA (2006) Varieties of submarine failure morphologies of seismically-induced landslides in Alaskan fjords. Nor J Geol 86:221–230. ISSN 029-196X

    Google Scholar 

  • Lo Iacono C, Gràcia E, Zaniboni F, Pagnoni G, Tinti S, Bartolomé R, Masson DG, Wynn RB, Lourenço N, de Abreu MP, Dañobeitia JJ, Zitellini N (2012) Large, deepwater slope failures: implications for landslide-generated tsunamis. Geology 40:931–934

    Google Scholar 

  • Locat L, Lee HJ (2002) Submarine landslides: advances and challenges. Can Geotech J 39:193–212

    Google Scholar 

  • Locat J, Locat P, Lee HJ, Imran J (2004) Numerical analysis of the mobility of the Palos Verdes debris avalanche, California, and its implication for the generation of tsunamis. Mar Geol 20(3):269–280

    Google Scholar 

  • Locat J, Lee HJ, ten Brink U, Twichell D, Geist E, Sansoucy M (2009) Geomorphology, stability and mobility of the Currituck Slide. Mar Geol 264(1–2):28–40

    Google Scholar 

  • Loncke L, Gaullier V, Droz L, Ducassou E, Migeon S, Mascle J (2009) Multi-scale slope instabilities along the Nile deep-sea fan, Egyptian margin: a general overview. Mar Pet Geol 26(5):633–646. doi:10.1016/j.marpetgeo.2008.03.010

    Google Scholar 

  • Lorito S, Tiberti MM, Basili R, Piatanesi A, Valensise G (2008) Earthquake-generated tsunamis in the Mediterranean Sea: scenarios of potential threats to Southern Italy. J Geophys Res 113(B1):B01301

    Google Scholar 

  • Løvholt F, Harbitz CB, Haugen KB (2005) A parametric study of tsunamis generated by submarine slides in the Ormen Lange/Storegga area off western Norway. Mar Pet Geol 22:219–231. doi:10.1016/j.marpetgeo.2004.10.017

    Google Scholar 

  • Løvholt F, Bungum H, Harbitz CB, Glimsdal S, Lindholm C, Pedersen G (2006) Earthquake related tsunami hazard along the western coast of Thailand. Nat Hazards Earth Syst Sci 6:1–18

    Google Scholar 

  • Løvholt F, Pedersen G, Gisler G (2008) Oceanic propagation of a potential tsunami from the La Palma Island. J Geophys Res 113:C09026

    Google Scholar 

  • Løvholt F, Pedersen G, Glimsdal S (2010) Coupling of dispersive tsunami propagation and shallow water coastal response. In: Zahibo N, Pelinovsky E, Yalciner A, Titov V (eds) Proceedings of the “Caribbean Waves 2008” workshop in Guadeloupe Dec 2008. Open Oceanogr J 4:71–82

  • Løvholt F, Glimsdal S, Harbitz CB, Zamora N, Nadim F, Peduzzi P, Dao HI, Smebye H (2012a) Tsunami hazard and exposure on the global scale. Earth-Science Rev 110:58–73. doi:10.1016/j.earscirev.2011.10.002

    Google Scholar 

  • Løvholt F, Pedersen GK, Bazin S, Kühn D, Bredesen RE, Harbitz CB (2012b) Stochastic analysis of tsunami run-up due to heterogeneous co-seismic slip and dispersion. J Geophys Res Oceans 117:C3. doi:10.1029/2011JC007616

  • Løvholt F, Kühn D, Bungum H, Harbitz CB, Glimsdal S (2012c) Historical tsunamis and present tsunami hazard in Eastern Indonesia and the Philippines. J Geophys Res 117:B09310. doi:10.1029/2012JB009425

    Google Scholar 

  • Løvholt F, Kaiser G, Glimsdal S, Scheele L, Harbitz CB, Pedersen G (2012d) Modeling propagation and inundation of the 11 March 2011 Tohoku tsunami. Nat Hazards Earth Syst Sci 12:1017–1028. doi:10.5194/nhess-12-1017-2012

    Google Scholar 

  • Løvholt F, Vanneste M, Harbitz CB, De Blasio F, Urgeles R, Iglesias O, Canals M, Lastras G, Pedersen G, Glimsdal S (2013) Modeling a possible tsunami generated by the BIG′95 landslide. Accepted for publication in submarine mass movements and their consequences. Advances in natural and technological hazards research, Springer, Dordrecht

  • Mai PM, Beroza GC (2002) A spatial random field model to characterize complexity in earthquake slip. J Geophys Res 107(B11):2308 693. doi:10.1029/2001JB000588

    Google Scholar 

  • Masson DG (1996) Catastrophic collapse of the flank of El Hierro about 15,000 years ago, and the history of large flank collapses in the Canary Islands. Geology 24:231–234

    Google Scholar 

  • Masson DG, Watts AB, Gee MRJ, Urgeles R, Mitchell NC, Le Bas TP, Canals M (2002) Slope failures on the flanks of the western Canary islands. Earth Sci Rev 57:1–35. doi:10.1016/S0012-8252(01)00069-1

    Google Scholar 

  • Masson DG, Harbitz CB, Wynn RB, Pedersen G, Løvholt F (2006) Submarine landslides: processes, triggers and hazard prediction. Phil Trans R Soc A 364:2009–2039. doi:10.1098/rsta.2006.1810

    Google Scholar 

  • Matsumoto H, Baba T, Kashiwase K, Misu T, Kaneda Y (2012) Discovery of submarine landslide evidence due to the 2009 Suruga Bay earthquake. In: Yamada Y, Kawamura K, Ikehara K, Ogawa Y, Urgeles R, Mosher D, Chaytor J, Strasser M (eds) Submarine mass movements and their consequences. Advances in natural and technological hazards research, vol 31. Springer, Dordrecht, pp 549–559

    Google Scholar 

  • Mazzanti P, Bozzano F (2011) Revisiting the February 6th 1783 Scilla (Calabria, Italy) landslide and tsunami by numerical simulation. Mar Geophys Res. doi:10.1007/s11001-011-9117-1

  • McAdoo BG, Pratson LF, Orange DL (2000) Submarine landslide geomorphology, US continental slope. Mar Geol 169:103–136

    Google Scholar 

  • McCann WR (2006) Estimating the threat of tsunamigenic earthquakes and earthquake induced landslide in the Caribbean. In: Mercado-Irizarry A, Liu P (eds) Caribbean tsunami hazard. World Scientific, Singapore, pp 43–65

    Google Scholar 

  • McCloskey J, Antonioli A, Piatanesi A, Sieh K, Steacy S, Nalbant S, Cocco M, Giuchi C, Huang J, Dunlop P (2008) Tsunami threat in the Indian Ocean from a future megathrust earthquake west of Sumatra. Earth Plan Sci Lett 265:61–81

    Google Scholar 

  • McCulloch DS (1985) Evaluating earthquake hazards in the Los Angeles region—an earth science perspective. Prof Pap 1360 US Geolgical Survey, Department of Interior, Washington, DC

  • McGuire W (2006) Lateral collapse and tsunamigenic potential of marine volcanoes. In: Troise C, De Natale G, Kilburn CRJ (eds) Mechanisms of activity and unrest at large calderas. Geol Soc, London, Spec Publ 269:121–140

  • McMurtry GM, Watts P, Fryer G, Smith JR, Imamura F (2004) Giant landslides, mega-tsunamis, and paleo-sea level in the Hawaiian Islands. Mar Geol 203:219–233

    Google Scholar 

  • Mercado-Irizarry A, Liu P (eds) (2006) Caribbean tsunami hazard. World Scientific, Singapore

    Google Scholar 

  • Meyer M, Geersen J, Krastel S, Schwenk T, Winkelmann D (2012) Dakar Slide offshore Senegal, NW-Africa: interaction of stacked giant mass wasting events and canyon evolution. In: Yamada Y, Kawamura K, Ikehara K, Ogawa Y, Urgeles R, Mosher D, Chaytor J, Strasser M (eds) Submarine mass movements and their consequences. Advances in natural and technological hazards research, vol 31. Springer, Dordrecht, pp 177–188

    Google Scholar 

  • Mienert J (2002) Special issue: European North Atlantic Margin (ENAM II): quantification and modelling of large-scale sedimentary processes. Mar Geol 188:248

    Google Scholar 

  • Mohrig D, Elverhoi A, Parker G (1999) Experiments on the relative mobility of muddy subaqueous and subaerial debris flows, and their capacity to remobilize antecedent deposits. Mar Geol 154:117–129

    Google Scholar 

  • Moore JG, Moore GW (1984) Deposit from a giant wave on the island of Lanai, Hawaii. Science 226:1312–1315

    Google Scholar 

  • Moore JG, Clague DA, Holcomp RT, Lipman PW, Normark WR, Torresan ME (1989) Prodigious submarine landslides on the Hawaiian Ridge. J Geophys Res 94:17465–17484

    Google Scholar 

  • Moore JG, Normark WR, Holcomb RT (1994) Giant Hawaiian landslides. Ann Rev Earth Planet Sci 22:119–144

    Google Scholar 

  • Morita S, Nakajima T, Hanamura Y (2012) Possible ground instability factor implied by slumping and dewatering structures in high-methane-flux continental slope. In: Yamada Y, Kawamura K, Ikehara K, Ogawa Y, Urgeles R, Mosher D, Chaytor J, Strasser M (eds) Submarine mass movements and their consequences. Advances in natural and technological hazards research, 31, Springer, Dordrecht, pp 311–320

  • Mosher DC, Moscardelli L, Shipp RC, Chaytor JD, Baxter CDP, Lee HJ, Urgeles R (2010) Submarine mass movements and their consequences—introduction. In: Mosher DC, Moscardelli L, Shipp RC, Chaytor JD, Baxter CDP, Lee HJ, Urgeles R (eds) Submarine mass movements and their consequences. Advances in natural and technological hazards research, 28, Springer, Dordrecht

  • Mosher DC, Shimeld J, Hutchinson D, Lebedeva-Ivanova N, Chapman CB (2012) Submarine landslides in the arctic sedimentation: Canada Basin. In: Yamada Y, Kawamura K, Ikehara K, Ogawa Y, Urgeles R, Mosher D, Chaytor J, Strasser M (eds) Submarine mass movements and their consequences. Advances in natural and technological hazards research, 31, Springer, Dordrecht, pp 147–157

  • Murty TS (1979) Submarine slide-generated water waves in kitimat inlet, British Columbia. J Geophys Res 84(C12):7777–7779

    Google Scholar 

  • Nadim F (2012) Risk assessment for earthquake-induced submarine slides. In: Yamada Y, Kawamura K, Ikehara K, Ogawa Y, Urgeles R, Mosher D, Chaytor J, Strasser M (eds) Submarine mass movements and their consequences. Advances in natural and technological hazards research, vol 31. Springer, Dordrecht, pp 15–27

    Google Scholar 

  • Nadim F, Glade T (2006) On tsunami risk assessment for the west coast of Thailand. In: Nadim F, Pöttler R, Einstein H, Klapperich H, Kramer S (eds) ECI symposium series 7 http://services.bepress.com/eci/geohazards/28

  • Nadim F, Kvalstad TJ, Guttormsen T (2005) Quantification of risks associated with seabed instability at Ormen Lange. Mar Pet Geol 22:311–318. doi:10.1016/j.marpetgeo.2004.10.022

    Google Scholar 

  • Natawidjaja DH, Sieh K, Chlieh M, Galetzka J, Suwargadi BW, Cheng H, Edwards RL, Avouac J-P, Ward SN (2006) Source parameters of the great Sumatran megathrust earthquakes of 1797 and 1833 inferred from coral microatolls. J Geophys Res 111:B06403. doi:10.1029/2005JB004025

  • NGDC (2013) The National Geophysical Data Center tsunami run-up database http://www.ngdc.noaa.gov/hazard/tsu.shtml

  • NGI (2009) Natural disaster mitigation in the Caribbean; Regional tsunami exposure assessment. Nor Geotech Inst 20061575-1

  • NGI (2011) Institutional support and Human resource Development in Mitigation of Geohazards in India—historical Tsunamis in the Indian Ocean. Nor Geotech Inst 20091187-00-3-R Rev1 30 January 2012

  • Normark WR, McGann M, Sliter R (2004) Age of Palos Verdes submarine debris avalanche, southern California. Mar Geol 203:247–259

    Google Scholar 

  • NTL (2013) Expert Tsunami Database for the Atlantics.Version 36 of March 15 2002 Tsunami Laboratory Novosibirsk Russia http://tsun.sscc.ru/nh/tsunami.php

  • O’Loughlin KF, Lander JF (2003) Caribbean tsunamis, A 500-year history from 1498–1998, 2nd edn. Springer, The Netherlands

    Google Scholar 

  • Okal EA, Hebert H (2007) Far-field simulation of the 1946 Aleutian tsunami. Geophys J Int 169:1229–1238. doi:10.1111/j.1365-246X.2007.03375.x

    Google Scholar 

  • Okal EA, Synolakis CE (2003) Field survey and numerical simulations: a theoretical comparison of tsunamis from dislocations and landslides. Pure Appl Geophys 160:2177–2188

    Google Scholar 

  • Okal EA, Synolakis CE (2004) Source discriminants for near-field tsunamis. Geophys J Int 158:899–912

    Google Scholar 

  • Okal EA, Synolakis CE (2008) Far-field tsunami hazard from mega-thrust earthquakes in the Indian Ocean. Geophys J Int 172:995–1015

    Google Scholar 

  • Okal EA, Fritz HM, Raad PE, Synolakis C, Al-Shijbi Y, Al-Saifie M (2006a) Oman Field Survey after the December 2004 Indian Ocean Tsunami. Earthquake Spectra 22(S3):S203–S218. doi 10.1193/1.2202647

  • Okal EA, Borrero JC, Synolakis CE (2006b) Evaluation of tsunami risk from regional earthquakes at Pisco. Peru Bull Seism Soc Am 96(5):1634–1648

    Google Scholar 

  • Okal EA, Synolakis CE, Kalligeris N (2011) Tsunami simulations for regional sources in the South China and adjoining seas. Pure Appl Geophys 168:1153–1173

    Google Scholar 

  • Ortiz M, Bilham R (2003) Source area and rupture parameters of the 31 December 1881 Mw = 7.9 Car Nicobar earthquake estimated from tsunamis recorded in the Bay of Bengal. J Geophys Res 108(B4):2214. doi:10.1029/2002JB001941

    Google Scholar 

  • Pararas-Carayannis G (2002) Evaluation of the threat of mega tsunami generation from postulated massive slope failures of island stratovolcanoes on La Palma, Canary Islands, and on the island of Hawaii. Sci Tsunami Hazards 20(5):251–277

    Google Scholar 

  • Pararas-Carayannis, G (2006) The potential for tsunami generation along the Makran Subduction Zone in the Northern Arabian Sea. Case study: the earthquake and tsunami of November 28, 1945. Sci Tsunami Hazards 24(5):358–384

    Google Scholar 

  • Parsons T, Geist E (2009) Tsunami probability in the Caribbean Region. Pure Appl Geophys 165:2089–2116

    Google Scholar 

  • Pedersen G, Løvholt F (2008) Documentation of a global Boussinesq solver. Mechanics and Applied Mathematics 1, February 2008, Dept. of Mathematics, University of Oslo, Norway, ISSN 0809–4403 http://www.duo.uio.no/publ/matematikk/2008/124495/mech-01-08.pdf

  • Piper DJW, McCall C (2003) A synthesis of the distribution of submarine mass movements on the eastern Canadian Margin. In: Locat J, Mienert J (eds) Submarine mass movements and their consequences. Kluwer Academic Publishers, Dordrecht, pp 291–298

    Google Scholar 

  • Piper DJW, Cochonat P, Morrison ML (1999) The sequence of events around the epicenter of the 1929 Grand Banks earthquake: initiation of debris flows and turbidity currents inferred from sidescan sonar. Sedimentology 46:79–97. doi:10.1046/j.1365-3091.1999.00204.x

    Google Scholar 

  • Prior DB, Coleman JM (1982) Active slides and flows in underconsolidated marine sediments on the slope of the Mississippi delta. In: Saxov S, Nieuwenhuis JK (eds) Marine slides and other mass movements. Plenum Press, New York NY, pp 21–49

    Google Scholar 

  • Rajendran CP, Ramanamurthy MV, Reddy NT, Rajendran K (2008) Hazard implications of the late arrival of the 1945 Makran tsunami. Current Sci 95(12):1739–1743

    Google Scholar 

  • Rathburn AE, Levin LA, Tryon M, Ziebis W, Gieskes JM, Martin JB, Pérez ME, Fodrie FJ, Neira C, Mendoza G, McMillan PA, Adamic J, Kluesner J (2009) Geological and biological heterogeneity of the Aleutian Margin (1965–4822 m). Prog Oceanogr 80:22–50

    Google Scholar 

  • Romano F, Piatanesi A, Lorito S, D’Agostino N, Hirata K, Atzori S, Yamazaki Y, Cocco M (2012) Clues from joint inversion of tsunami and geodetic data of the 2011 Tohoku-oki earthquake. Sci Rep 2:385. doi:10.1038/srep00385

    Google Scholar 

  • Rothwell RG, Thomson J, Kähler G (1998) Low sea-level emplacement of a very large Late Pleistocene “megaturbidite” in the western Mediterranean Sea. Nature 392:377–380

    Google Scholar 

  • Ryan WBF, Pitman W (1999) Noah’s flood—the new scientific discoveries about the event that changed history. Simon and Schuster, New York 319 pp

    Google Scholar 

  • Sahal A, Lemahieu A (2011) The 1979 nice airport tsunami: mapping of the flood in Antibes. Nat Hazards 56:833–840. doi:10.1007/s11069-010-9594-6

    Google Scholar 

  • Satake K, Atwater BF (2007) Long-term perspectives on giant earthquakes and tsunamis at subduction zones. Ann Rev Earth Planet Sci 35:349–374

    Google Scholar 

  • Satake K, Fujii Y, Harada T, Namegaya Y (2013) Time and space distribution of coseismic slip of the 2011 Tohoku Earthquake as inferred from tsunami waveform data. Accepted for publication in Bull Seism Soc Am

  • Schwab JM, Krastel S, Grün M, Gross F, Pananont P, Jintasaeranee P, Bunsomboonsakul S, Weinrebe W, Winkelmann D (2012) Submarine mass wasting and associated tsunami risk offshore western Thailand, Andaman Sea, Indian Ocean. Nat Hazards Earth Syst Sci 12:2609–2630

    Google Scholar 

  • Shepherd JB, Lynch LL, Tanner JG (1995) An earthquake catalogue for the Caribbean. PanAm Inst Geogr History

  • Solheim A, Bryn P, Sejrup HP, Mienert J, Berg K (2005a) Ormen Lange—an integrated study for the safe development of a deep-water gas field within the Storegga Slide Complex, NE Atlantic continental margin; executive summary. Mar Pet Geol 22:1–9. doi:10.1016/j.marpetgeo.2004.10.01

    Google Scholar 

  • Solheim A, Berg K, Forsberg CF, Bryn P (2005b) The Storegga slide complex: repetitive large scale sliding with similar cause and development. Mar Pet Geol 22:97–107. doi:10.1016/j.marpetgeo.2004.10.013

    Google Scholar 

  • Solheim A, Forsberg CF, Yang S, Kvalstad TJ, Vaidya RA, Mohanty S, Longva O, Rise L (2007) The role of geological setting and depositional history in offshore slope instability. Offshore Technology Conference 2006 Houston Texas

  • Stein S, Okal EA (2011) The Size of the 2011 Tohoku earthquake need not have been a surprise. EOS Trans 92(27):227–228

    Google Scholar 

  • Strasser FO, Bommer JJ (2009) Review: strong ground motions—have we seen the worst? Bull Seism Soc Am 99(5):2613–2637. doi:10.1785/0120080300

    Google Scholar 

  • Strasser M, Henry P, Kanamatsu T, Thu MK, Moore GF, IODP Expedition 333 scientists (2012) Scientific drilling of mass-transport deposits in the Nankai accretionary wedge: First results from IODP Expedition 333. In: Yamada Y, Kawamura K, Ikehara K, Ogawa Y, Urgeles R, Mosher D, Chaytor J, Strasser M (eds) Submarine mass movements and their consequences Advances in Natural and technological hazards research, 31, Springer, Dordrecht, pp 671–681

  • Sørensen MB, Spada M, Babeyko AY, Wiemer S, Grünthal G (2012) Probabilistic tsunami hazard in the Mediterranean Sea. J Geophys Res 117:B01305

    Google Scholar 

  • Tang L, Titov VV, Chamberlin CD (2009) Development, testing, and applications of site-specific tsunami inundation models for real-time forecasting. J Geophys Res 114:C12025. doi:10.1029/2009JC005476

  • Tappin DR (2010) Mass transport events and their tsunami hazard. In: Mosher DC, Moscardelli L, Shipp RC, Chaytor JD, Baxter CDP, Lee HJ, Urgeles R (eds) Submarine mass movements and their consequences. Advances in natural and technological hazards research, 28, Springer, Dordrecht, pp 667–684

  • Tappin DR, Watts P, Grilli S (2008) The Papua New Guinea tsunami of 17 July 1998: anatomy of a catastrophic event. Nat Hazards Earth Syst Sci 8:1–24

    Google Scholar 

  • Teeuw R, Rust D, Solana C, Dewdney C, Robertson R (2009) Large coastal landslides and tsunami hazard in the Caribbean. EOS Trans 90(10):81–82

    Google Scholar 

  • ten Brink U (2009) Tsunami hazard along the U.S. Atlantic Coast. Mar Geol 264:1–3

    Google Scholar 

  • ten Brink US, Danforth WW, Polloni C, Andrews B, Llanes P, Smith SV, Parker E, Uozumi T (2004) New seafloor map of the Puerto Rico Trench helps assess earthquake and tsunami hazards. EOS 85(37):349–354

    Google Scholar 

  • ten Brink U, Jaffe BE, Geist EL (2005) Tsunami hazard potential in the Caribbean. USGS-Woods Hole Science Center

  • ten Brink U, Geist EL, Andrews BD (2006a) Size distribution of submarine landslides and its implication to tsunami hazard in Puerto Rico. Geophys Res Lett 33:L11307. doi:10.1029/2006GL026125

  • ten Brink U, Geist EL, Lynett P, Andrews B (2006b) Submarine slides north of Puerto Rico and their tsunami potential. In: Mercado-Irizarry A, Liu P (eds) Caribbean tsunami hazard. World Scientific Publishing, Singapors, pp 67–90

  • ten Brink U, Lee HJ, Geist EL, Twichell D (2009a) Assessment of tsunami hazard to the U.S. East Coast using relationships between submarine landslides and earthquakes. Mar Geol 264:65–73

    Google Scholar 

  • ten Brink U, Twichell D, Lynett P, Geist E, Chaytor J, Lee H, Buczkowski B, Flores C (2009b) Regional Assessment of Tsunami Potential in the Gulf of Mexico. US Geological Survey Administrative report

  • ten Brink US, Barkan R, Andrews BD, Chaytor JD (2009c) Size distributions and failure initiation of submarine and subaerial landslides. Earth Plan Sci Lett 287(1–2):31–42

    Google Scholar 

  • Thio HK, Somerville P, Polet J (2010) Probabilistic tsunami hazard in California. PEER Report 2010/108 Pacific Earthquake Engineering Research Center

  • Tinti S, Armigliato A (2003) The use of scenarios to evaluate the tsunami impact in southern Italy. Mar Geol 199(3–4):221–243

    Google Scholar 

  • Tinti S, Guidoboni E (1988) Revision of the tsunamis occurred in 1783 in Calabria and Sicily (Italy). Sci Tsunami Hazards 6(1):17–22

    Google Scholar 

  • Tinti S, Maramai A, Graziani L (2004) The new catalogue of Italian tsunamis. Nat Hazards 33:439–465

    Google Scholar 

  • Tinti S, Manucci A, Pagnoni G, Armigliato A, Zaniboni F (2005) The 30 December 2002 landslide-induced tsunamis in Stromboli: sequence of the events reconstructed from the eyewitness accounts. Nat Hazards Earth Syst Sci 5:763–775

    Google Scholar 

  • Tinti S, Pagnoni G, Zaniboni F (2006) The landslides and tsunamis of 30th December 2002 in Stromboli analysed through numerical simulations. Bull Volcanol 68:462–479

    Google Scholar 

  • Tinti S, Zaniboni F, Pagnoni G, Manucci A (2008) Stromboli Island (Italy): scenarios of tsunamis generated by submarine landslides. Pure Appl Geophys 165(11–12):2143–2167

    Google Scholar 

  • TRANSFER (2013): TRANSFER project deliverable D1.1: the TRANSFER tsunami catalogue in the form of a digital (GIS-type shell) database http://www.transferproject.eu

  • Twichell DC, Chaytor JD, ten Brink US, Buczkowski B (2009) Morphology of late quaternary submarine landslides along the U.S. Atlantic continental margin. Mar Geol 264(1–2):4–15

    Google Scholar 

  • Urgeles R, Canals M, Baraza J, Alonso B, Masson DG (1997) The most recent megaslides on the Canary islands: the El Golfo Debris avalanche and the Canary Debris flow. J Geophys Res 102:20305–20323

    Google Scholar 

  • Urgeles R, Locat J, Lee HJ, Martin F (2002) The Saguenay Fjord, Québec, Canada: integrating marine geotechnical and geophysical data for spatial seismic slope stability and hazard assessment. Mar Geol 185:319–340

    Google Scholar 

  • Urgeles R, Leynaud D, Lastras G, Canals M, Mienert J (2006) Back-analysis and failure mechanisms of a large submarine slide on the ebro slope, NW Mediterranean. Mar Geol 226:185–206

    Google Scholar 

  • Vanneste M, Forsberg CF, Glimsdal S, Harbitz CB, Issler D, Kvalstad T, Løvholt F, Nadim F (2011a) Submarine landslides and their consequences: What do we know, what can we do? Proceedings of 2nd World landslide forum 3–7 October 2011 Rome

  • Vanneste M, Harbitz CB, De Blasio FV, Glimsdal S, Mienert J, Elverhøi A (2011b) Hinlopen-Yermak Landslide, Arctic Ocean—Geomorphology, landslide dynamics and tsunami simulations. In: Shipp RC, Weimer P, Posamentier HW (eds) Mass-transport deposits in deepwater settings. SEPM Society for Sedimentary Geology Spec Publ 96

  • Villaseñor A, Engdahl R (2007) Systematic relocation of early instrumental seismicity: earthquakes in the international seismological summary for 1960–1963. Bull Seism Soc Am 97(6):1820–1832

    Google Scholar 

  • Völker D, Scholz F, Geersen J (2011) Recent submarine slide in the rupture area of the 27 February 2010 Maule earthquake offshore Chile. Mar Geol 288:79–89

    Google Scholar 

  • Völker D, Geersen J, Behrmann JH, Weinrebe WR (2012) Submarine mass wasting off Southern Central Chile: Distribution and possible mechanisms of slope failure at an active continental margin. In: Yamada Y, Kawamura K, Ikehara K, Ogawa Y, Urgeles R, Mosher D, Chaytor J, Strasser M (eds) Submarine mass movements and their consequences. Advances in natural and technological hazards research, 31, Springer, Dordrecht, pp 379–389

  • von Huene R, Bourgois J, Miller J, Pautot G (1989) A large tsunamogenic landslide and debris flow along the Peru Trench. J Geophys Res 94:1703–1714

    Google Scholar 

  • von Huene R, Ranero CR, Watts P (2004) Tsunamigenic slope failure along the Middle America Trench in two tectonic settings. Mar Geol 203:303–317

    Google Scholar 

  • Ward SN (2001) Landslide tsunami. J Geophys Res 106(B6):11201–11215. doi:10.1029/2000JB900450

    Google Scholar 

  • Ward SN, Day S (2001) Cumbre Vieja volcano—potential collapse and tsunami at La Palma, Canary Islands. Geophys Res Lett 28(17):3397–3400

    Google Scholar 

  • Watt SFL, Talling PJ, Vardy ME, Heller V, Hühnerbach V, Urlaub M, Sarkar S, Masson DG, Henstock TJ, Minshull TA, Paulatto M, Le Friant A, Lebas E, Berndt C, Crutchley GJ, Karstens J, Stinton AJ, Maeno F (2012) Combinations of volcanic-flank and seafloor-sediment failure offshore Montserrat, and their implications for tsunami generation. Earth Plan Sci Lett 319–320:228–240

    Google Scholar 

  • Watts P (2004) Probabilistic predictions of landslide tsunamis off Southern California. Mar Geol 203:281–301

    Google Scholar 

  • Waythomas CF, Watts P, Shi F, Kirby JT (2009) Pacific Basin tsunami hazards associated with mass flows in the Aleutian arc of Alaska. Quat Sci Rev 28:1006–1019

    Google Scholar 

  • Wynn R, Masson D (2003) Canary Islands landslides and tsunami generation: can we use turbidite deposits to interpret landslide processes. In: Locat J, Mienert J (eds) Submarine mass movements and their consequences. Kluwer Academic Publishers, Dordrecht, pp 325–332

    Google Scholar 

  • Yalçiner AC, Alpar B, Altınok Y, Özbay İ, Imamura F (2002) Tsunamis in the Sea of Marmara—historical documents for the past, models for the future. Mar Geol 190:445–463

    Google Scholar 

  • Yeh H, Imamura F, Synolakis C, Tsuji Y, Liu P, Shi S (1993) The Flores Island Tsunami. Eos Trans AGU 74(33):369

    Google Scholar 

  • Young RW, Bryant EA (1992) Catastrophic wave erosion on the southeastern coast of Australia: impact of the Lanai tsunamis ca. 105 ka? Geology 20:199–202

    Google Scholar 

  • Zahibo N, Pelinovsky E (2001) Evaluation of tsunami risk in Lesser Antilles. Nat Hazards Earth Syst Sci 3:221–231

    Google Scholar 

Download references

Acknowledgments

The authors are indebted to Profs. H.-P. Plag and S. Marsh for arranging the research conference ‘Understanding Extreme Geohazards: The Science of the Disaster Risk Management Cycle’ supported by the European Science Foundation (ESF) in partnership with the European Cooperation in Science and Technology (COST) in Sant Feliu de Guixols, Spain, 27 November–2 December 2011, and for initiating this subsequent special issue on extreme geohazards. M. Vanneste, A. Armigliato, and C.F. Forsberg are thanked for helpful discussions and information. Two anonymous reviewers are thanked for valuable comments that improved the manuscript. The work on this manuscript has been financially supported by the Research Council of Norway under project no. 205184. The Norwegian Geotechnical Institute (NGI), NORSAR, and the International Centre for Geohazards (ICG) are also thanked for supporting the work. This is contribution no. 419 of the ICG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl B. Harbitz.

Appendix

Appendix

Figures 2 and 5 are mainly based on databases of the NOAA National Geophysical Data Center (NGDC 2013) and the Novosibirsk Tsunami Laboratory (NTL 2013). For many of the events the source information is corrected based on recent updates of earthquake locations, focal depths, magnitudes, and tsunami observations (BRGM 2009; Engdahl and Villaseñor 2002; Engdahl et al. 2007; E. R. Engdahl pers. comm. 2007; Villaseñor and Engdahl 2007). Using the validity index describing how likely it is that the record is a tsunami or not, tsunamis categorized as erroneous or very doubtful were removed from the queries, whereas data being categorized as questionable, probable, or definite are included. Some data have also been removed (by us) after a careful inspection of the literature sources. Parameters assigned by NOAA/NGDC for recent events were largely reliable, but discrepancies are expected to be prominent for the older events.

If sources are categorized as earthquake or probable earthquake, they are referred to as earthquakes in the visualization and the statistics. For the earthquakes, we include the magnitude, which might be of unspecified kind, or reported as the surface wave magnitude M s or the moment magnitude M w . Moreover, for a number of the earthquakes, particularly the oldest ones, the magnitude is not reported. Where combinations of sources are reported, sources are grouped into one of the main categories (landslides or volcanoes) to simplify the visualization. For Fig. 2 the two databases are supplemented with papers describing certain events (Imamura et al. 1995b; Natawidjaja et al. 2006; Ortiz and Bilham 2003; Satake and Atwater 2007). For Fig. 5 the two databases are in turn based on tsunami catalogues compiled by Mercado-Irizarry and Liu (2006), O’Loughlin and Lander (2003), and Shepherd et al. (1995). The results should be used with caution, as there are large uncertainties related to these data. For further information on the databases, see Harbitz et al. (2012), Løvholt et al. (2012c), and NGI (2011).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harbitz, C.B., Løvholt, F. & Bungum, H. Submarine landslide tsunamis: how extreme and how likely?. Nat Hazards 72, 1341–1374 (2014). https://doi.org/10.1007/s11069-013-0681-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-013-0681-3

Keywords

Navigation