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Abstract

Adaptive optimization methods, which perform local optimization with a metric
constructed from the history of iterates, are becoming increasingly popular for
training deep neural networks. Examples include AdaGrad, RMSProp, and Adam.
We show that for simple overparameterized problems, adaptive methods often find
drastically different solutions than gradient descent (GD) or stochastic gradient
descent (SGD). We construct an illustrative binary classification problem where
the data is linearly separable, GD and SGD achieve zero test error, and AdaGrad,
Adam, and RMSProp attain test errors arbitrarily close to half. We additionally
study the empirical generalization capability of adaptive methods on several state-
of-the-art deep learning models. We observe that the solutions found by adaptive
methods generalize worse (often significantly worse) than SGD, even when these
solutions have better training performance. These results suggest that practitioners
should reconsider the use of adaptive methods to train neural networks.

1 Introduction

An increasing share of deep learning researchers are training their models with adaptive gradient
methods [3, 12] due to their rapid training time [6]. Adam [8] in particular has become the default
algorithm used across many deep learning frameworks. However, the generalization and out-of-
sample behavior of such adaptive gradient methods remains poorly understood. Given that many
passes over the data are needed to minimize the training objective, typical regret guarantees do not
necessarily ensure that the found solutions will generalize [17].

Notably, when the number of parameters exceeds the number of data points, it is possible that the
choice of algorithm can dramatically influence which model is learned [15]. Given two different
minimizers of some optimization problem, what can we say about their relative ability to generalize?
In this paper, we show that adaptive and non-adaptive optimization methods indeed find very different
solutions with very different generalization properties. We provide a simple generative model for
binary classification where the population is linearly separable (i.e., there exists a solution with large
margin), but AdaGrad [3], RMSProp [21], and Adam converge to a solution that incorrectly classifies
new data with probability arbitrarily close to half. On this same example, SGD finds a solution with
zero error on new data. Our construction suggests that adaptive methods tend to give undue influence
to spurious features that have no effect on out-of-sample generalization.

We additionally present numerical experiments demonstrating that adaptive methods generalize worse
than their non-adaptive counterparts. Our experiments reveal three primary findings. First, with
the same amount of hyperparameter tuning, SGD and SGD with momentum outperform adaptive
methods on the development/test set across all evaluated models and tasks. This is true even when
the adaptive methods achieve the same training loss or lower than non-adaptive methods. Second,
adaptive methods often display faster initial progress on the training set, but their performance quickly
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plateaus on the development/test set. Third, the same amount of tuning was required for all methods,
including adaptive methods. This challenges the conventional wisdom that adaptive methods require
less tuning. Moreover, as a useful guide to future practice, we propose a simple scheme for tuning
learning rates and decays that performs well on all deep learning tasks we studied.

2 Background

The canonical optimization algorithms used to minimize risk are either stochastic gradient methods
or stochastic momentum methods. Stochastic gradient methods can generally be written

wk+1 = wk − αk ∇̃f(wk), (2.1)

where ∇̃f(wk) := ∇f(wk;xik) is the gradient of some loss function f computed on a batch of data
xik .

Stochastic momentum methods are a second family of techniques that have been used to accelerate
training. These methods can generally be written as

wk+1 = wk − αk ∇̃f(wk + γk(wk − wk−1)) + βk(wk − wk−1). (2.2)

The sequence of iterates (2.2) includes Polyak’s heavy-ball method (HB) with γk = 0, and Nesterov’s
Accelerated Gradient method (NAG) [19] with γk = βk.

Notable exceptions to the general formulations (2.1) and (2.2) are adaptive gradient and adaptive
momentum methods, which choose a local distance measure constructed using the entire sequence of
iterates (w1, · · · , wk). These methods (including AdaGrad [3], RMSProp [21], and Adam [8]) can
generally be written as

wk+1 = wk − αkH−1k ∇̃f(wk + γk(wk − wk−1)) + βkH
−1
k Hk−1(wk − wk−1), (2.3)

where Hk := H(w1, · · · , wk) is a positive definite matrix. Though not necessary, the matrix Hk is
usually defined as

Hk = diag

{ k∑
i=1

ηigi ◦ gi

}1/2
 , (2.4)

where “◦” denotes the entry-wise or Hadamard product, gk = ∇̃f(wk + γk(wk − wk−1)), and ηk is
some set of coefficients specified for each algorithm. That is, Hk is a diagonal matrix whose entries
are the square roots of a linear combination of squares of past gradient components. We will use the
fact that Hk are defined in this fashion in the sequel. For the specific settings of the parameters for
many of the algorithms used in deep learning, see Table 1. Adaptive methods attempt to adjust an
algorithm to the geometry of the data. In contrast, stochastic gradient descent and related variants use
the `2 geometry inherent to the parameter space, and are equivalent to setting Hk = I in the adaptive
methods.

SGD HB NAG AdaGrad RMSProp Adam
Gk I I I Gk−1 +Dk β2Gk−1 + (1− β2)Dk β2

1−βk
2
Gk−1 +

(1−β2)

1−βk
2
Dk

αk α α α α α α 1−β1

1−βk
1

βk 0 β β 0 0 β1(1−βk−1
1 )

1−βk
1

γ 0 0 β 0 0 0

Table 1: Parameter settings of algorithms used in deep learning. Here, Dk = diag(gk ◦ gk) and
Gk := Hk ◦Hk. We omit the additional ε added to the adaptive methods, which is only needed to ensure
non-singularity of the matrices Hk.

In this context, generalization refers to the performance of a solution w on a broader population.
Performance is often defined in terms of a different loss function than the function f used in training.
For example, in classification tasks, we typically define generalization in terms of classification error
rather than cross-entropy.
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2.1 Related Work

Understanding how optimization relates to generalization is a very active area of current machine
learning research. Most of the seminal work in this area has focused on understanding how early
stopping can act as implicit regularization [22]. In a similar vein, Ma and Belkin [10] have shown
that gradient methods may not be able to find complex solutions at all in any reasonable amount of
time. Hardt et al. [17] show that SGD is uniformly stable, and therefore solutions with low training
error found quickly will generalize well. Similarly, using a stability argument, Raginsky et al. [16]
have shown that Langevin dynamics can find solutions than generalize better than ordinary SGD
in non-convex settings. Neyshabur, Srebro, and Tomioka [15] discuss how algorithmic choices can
act as implicit regularizer. In a similar vein, Neyshabur, Salakhutdinov, and Srebro [14] show that a
different algorithm, one which performs descent using a metric that is invariant to re-scaling of the
parameters, can lead to solutions which sometimes generalize better than SGD. Our work supports
the work of [14] by drawing connections between the metric used to perform local optimization and
the ability of the training algorithm to find solutions that generalize. However, we focus primarily on
the different generalization properties of adaptive and non-adaptive methods.

A similar line of inquiry has been pursued by Keskar et al. [7]. Hochreiter and Schmidhuber [4]
showed that “sharp” minimizers generalize poorly, whereas “flat” minimizers generalize well. Keskar
et al. empirically show that Adam converges to sharper minimizers when the batch size is increased.
However, they observe that even with small batches, Adam does not find solutions whose performance
matches state-of-the-art. In the current work, we aim to show that the choice of Adam as an optimizer
itself strongly influences the set of minimizers that any batch size will ever see, and help explain why
they were unable to find solutions that generalized particularly well.

3 The potential perils of adaptivity

The goal of this section is to illustrate the following observation: when a problem has multiple global
minima, different algorithms can find entirely different solutions when initialized from the same point.
In addition, we construct an example where adaptive gradient methods find a solution which has
worse out-of-sample error than SGD.

To simplify the presentation, let us restrict our attention to the binary least-squares classification
problem, where we can easily compute closed the closed form solution found by different methods.
In least-squares classification, we aim to solve

minimizew RS [w] :=
1
2‖Xw − y‖

2
2. (3.1)

Here X is an n × d matrix of features and y is an n-dimensional vector of labels in {−1, 1}. We
aim to find the best linear classifier w. Note that when d > n, if there is a minimizer with loss 0
then there is an infinite number of global minimizers. The question remains: what solution does an
algorithm find and how well does it perform on unseen data?

3.1 Non-adaptive methods

Most common non-adaptive methods will find the same solution for the least squares objective (3.1).
Any gradient or stochastic gradient of RS must lie in the span of the rows of X . Therefore, any
method that is initialized in the row span of X (say, for instance at w = 0) and uses only linear
combinations of gradients, stochastic gradients, and previous iterates must also lie in the row span
of X . The unique solution that lies in the row span of X also happens to be the solution with
minimum Euclidean norm. We thus denote wSGD = XT (XXT )−1y. Almost all non-adaptive
methods like SGD, SGD with momentum, mini-batch SGD, gradient descent, Nesterov’s method,
and the conjugate gradient method will converge to this minimum norm solution. The minimum norm
solutions have the largest margin out of all solutions of the equation Xw = y. Maximizing margin
has a long and fruitful history in machine learning, and thus it is a pleasant surprise that gradient
descent naturally finds a max-margin solution.
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3.2 Adaptive methods

Next, we consider adaptive methods where Hk is diagonal. While it is difficult to derive the general
form of the solution, we can analyze special cases. Indeed, we can construct a variety of instances
where adaptive methods converge to solutions with low `∞ norm rather than low `2 norm.

For a vector x ∈ Rq , let sign(x) denote the function that maps each component of x to its sign.

Lemma 3.1 Suppose there exists a scalar c such that X sign(XT y) = cy. Then, when initialized at
w0 = 0, AdaGrad, Adam, and RMSProp all converge to the unique solution w ∝ sign(XT y).

In other words, whenever there exists a solution of Xw = y that is proportional to sign(XT y), this
is precisely the solution to which all of the adaptive gradient methods converge.

Proof We prove this lemma by showing that the entire trajectory of the algorithm consists of iterates
whose components have constant magnitude. In particular, we will show that

wk = λk sign(XT y) ,

for some scalar λk. The initial point w0 = 0 satisfies the assertion with λ0 = 0.

Now, assume the assertion holds for all k ≤ t. Observe that

∇RS(wk + γk(wk − wk−1)) = XT (X(wk + γk(wk − wk−1))− y)
= XT

{
(λk + γk(λk − λk−1))X sign(XT y)− y

}
= {(λk + γk(λk − λk−1))c− 1}XT y

= µkX
T y,

where the last equation defines µk. Hence, letting gk = ∇RS(wk + γk(wk − wk−1)), we also have

Hk = diag

{ k∑
s=1

ηs gs ◦ gs

}1/2
 = diag

{ k∑
s=1

ηsµ
2
s

}1/2

|XT y|

 = νk diag
(
|XT y|

)
,

where |u| denotes the component-wise absolute value of a vector and the last equation defines νk.

In sum,

wk+1 = wk − αkH−1k ∇f(wk + γk(wk − wk−1)) + βtH
−1
k Hk−1(wk − wk−1)

=

{
λk −

αkµk
νk

+
βkνk−1
νk

(λk − λk−1)
}

sign(XT y),

proving the claim.1

This solution is far simpler than the one obtained by gradient methods, and it would be surprising if
such a simple solution would perform particularly well. We now turn to showing that such solutions
can indeed generalize arbitrarily poorly.

3.3 Adaptivity can overfit

Lemma 3.1 allows us to construct a particularly pernicious generative model where AdaGrad fails
to find a solution that generalizes. This example uses infinite dimensions to simplify bookkeeping,
but one could take the dimensionality to be 6n. Note that in deep learning, we often have a number
of parameters equal to 25n or more [20], so this is not a particularly high dimensional example by
contemporary standards. For i = 1, . . . , n, sample the label yi to be 1 with probability p and −1 with
probability 1− p for some p > 1/2. Let xi be an infinite dimensional vector with entries

xij =


yi j = 1

1 j = 2, 3

1 j = 4 + 5(i− 1), . . . , 4 + 5(i− 1) + 2(1− yi)
0 otherwise

.

1In the event that XT y has a component equal to 0, we define 0/0 = 0 so that the update is well-defined.
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In other words, the first feature of xi is the class label. The next 2 features are always equal to 1.
After this, there is a set of features unique to xi that are equal to 1. If the class label is 1, then there
is 1 such unique feature. If the class label is −1, then there are 5 such features. Note that the only
discriminative feature useful for classifying data outside the training set is the first one! Indeed,
one can perform perfect classification using only the first feature. The other features are all useless.
Features 2 and 3 are constant, and each of the remaining features only appear for one example in the
data set. However, as we will see, algorithms without such a priori knowledge may not be able to
learn these distinctions.

Take n samples and consider the AdaGrad solution for minimizing 1
2 ||Xw − y||

2. First we show that
the conditions of Lemma 3.1 hold. Let b =

∑n
i=1 yi and assume for the sake of simplicity that b > 0.

This will happen with arbitrarily high probability for large enough n. Define u = XT y and observe
that

uj =


n j = 1

b j = 2, 3

yj if j > 3 and xb j+1
5 c,j

= 1

0 otherwise

and sign(uj) =


1 j = 1

1 j = 2, 3

yj if j > 3 and xb j+1
5 c,j

= 1

0 otherwise

Thus we have 〈sign(u), xi〉 = yi + 2 + yi(3− 2yi) = 4yi as desired. Hence, the AdaGrad solution
wada ∝ sign(u). In particular, wada has all of its components equal to ±τ for some positive constant
τ . Now since wada has the same sign pattern as u, the first three components of wada are equal to
each other. But for a new data point, xtest, the only features that are nonzero in both xtest and wada

are the first three. In particular, we have

〈wada, xtest〉 = τ(y(test) + 2) > 0 .

Therefore, the AdaGrad solution will label all unseen data as a positive example!

Now, we turn to the minimum 2-norm solution. Let P and N denote the set of positive and negative
examples respectively. Let n+ = |P| and n− = |N |. Assuming αi = α+ when yi = 1 and αi = α−
when yi = −1, we have that the minimum norm solution will have the form wSGD = XTα =∑

i∈P α+xi +
∑
j∈N α−xj . These scalars can be found by solving XXTα = y. In closed form we

have

α+ =
4n− + 3

9n+ + 3n− + 8n+n− + 3
and α− =

4n+ + 1

9n+ + 3n− + 8n+n− + 3
. (3.2)

The algebra required to compute these coefficients can be found in the Appendix. For a new data
point, xtest, again the only features that are nonzero in both xtest and wSGD are the first three. Thus
we have

〈wSGD, xtest〉 = ytest(n+α+ − n−α−) + 2(n+α+ + n−α−) .

Using (3.2), we see that whenever n+ > n−/3, the SGD solution makes no errors.

A formal construction of this example using a data-generating distribution can be found in Appendix C.
Though this generative model was chosen to illustrate extreme behavior, it shares salient features
with many common machine learning instances. There are a few frequent features, where some
predictor based on them is a good predictor, though these might not be easy to identify from first
inspection. Additionally, there are many other features which are sparse. On finite training data
it looks like such features are good for prediction, since each such feature is discriminatory for a
particular training example, but this is over-fitting and an artifact of having fewer training examples
than features. Moreover, we will see shortly that adaptive methods typically generalize worse than
their non-adaptive counterparts on real datasets.

4 Deep Learning Experiments

Having established that adaptive and non-adaptive methods can find different solutions in the convex
setting, we now turn to an empirical study of deep neural networks to see whether we observe a
similar discrepancy in generalization. We compare two non-adaptive methods – SGD and the heavy
ball method (HB) – to three popular adaptive methods – AdaGrad, RMSProp and Adam. We study
performance on four deep learning problems: (C1) the CIFAR-10 image classification task, (L1)

5



Name Network type Architecture Dataset Framework
C1 Deep Convolutional cifar.torch CIFAR-10 Torch
L1 2-Layer LSTM torch-rnn War & Peace Torch
L2 2-Layer LSTM + Feedforward span-parser Penn Treebank DyNet
L3 3-Layer LSTM emnlp2016 Penn Treebank Tensorflow

Table 2: Summaries of the models we use for our experiments.2

character-level language modeling on the novel War and Peace, and (L2) discriminative parsing
and (L3) generative parsing on Penn Treebank. In the interest of reproducibility, we use a network
architecture for each problem that is either easily found online (C1, L1, L2, and L3) or produces
state-of-the-art results (L2 and L3). Table 2 summarizes the setup for each application. We take care
to make minimal changes to the architectures and their data pre-processing pipelines in order to best
isolate the effect of each optimization algorithm.

We conduct each experiment 5 times from randomly initialized starting points, using the initialization
scheme specified in each code repository. We allocate a pre-specified budget on the number of epochs
used for training each model. When a development set was available, we chose the settings that
achieved the best peak performance on the development set by the end of the fixed epoch budget.
CIFAR-10 did not have an explicit development set, so we chose the settings that achieved the lowest
training loss at the end of the fixed epoch budget.

Our experiments show the following primary findings: (i) Adaptive methods find solutions that gener-
alize worse than those found by non-adaptive methods. (ii) Even when the adaptive methods achieve
the same training loss or lower than non-adaptive methods, the development or test performance
is worse. (iii) Adaptive methods often display faster initial progress on the training set, but their
performance quickly plateaus on the development set. (iv) Though conventional wisdom suggests
that Adam does not require tuning, we find that tuning the initial learning rate and decay scheme for
Adam yields significant improvements over its default settings in all cases.

4.1 Hyperparameter Tuning

Optimization hyperparameters have a large influence on the quality of solutions found by optimization
algorithms for deep neural networks. The algorithms under consideration have many hyperparameters:
the initial step size α0, the step decay scheme, the momentum value β0, the momentum schedule
βk, the smoothing term ε, the initialization scheme for the gradient accumulator, and the parameter
controlling how to combine gradient outer products, to name a few. A grid search on a large space
of hyperparameters is infeasible even with substantial industrial resources, and we found that the
parameters that impacted performance the most were the initial step size and the step decay scheme.
We left the remaining parameters with their default settings. We describe the differences between the
default settings of Torch, DyNet, and Tensorflow in Appendix B for completeness.

To tune the step sizes, we evaluated a logarithmically-spaced grid of five step sizes. If the best
performance was ever at one of the extremes of the grid, we would try new grid points so that the
best performance was contained in the middle of the parameters. For example, if we initially tried
step sizes 2, 1, 0.5, 0.25, and 0.125 and found that 2 was the best performing, we would have tried
the step size 4 to see if performance was improved. If performance improved, we would have tried 8
and so on. We list the initial step sizes we tried in Appendix D.

For step size decay, we explored two separate schemes, a development-based decay scheme (dev-
decay) and a fixed frequency decay scheme (fixed-decay). For dev-decay, we keep track of the best
validation performance so far, and at each epoch decay the learning rate by a constant factor δ if the
model does not attain a new best value. For fixed-decay, we decay the learning rate by a constant
factor δ every k epochs. We recommend the dev-decay scheme when a development set is available;

2Architectures can be found at the following links: (1) cifar.torch: https://github.
com/szagoruyko/cifar.torch; (2) torch-rnn: https://github.com/jcjohnson/torch-rnn; (3)
span-parser: https://github.com/jhcross/span-parser; (4) emnlp2016: https://github.com/
cdg720/emnlp2016.
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(a) CIFAR-10 (Train)
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SGD: 7.65±0.14

HB: 7.74±0.25

AdaGrad: 11.34±0.46

RMSProp: 9.60±0.19

Adam: 9.78±0.25
Adam (Default): 12.02±0.16

(b) CIFAR-10 (Test)

Figure 1: Training (left) and top-1 test error (right) on CIFAR-10. The annotations indicate where the
best performance is attained for each method. The shading represents ± one standard deviation computed
across five runs from random initial starting points. In all cases, adaptive methods are performing worse on
both train and test than non-adaptive methods.

not only does it have fewer hyperparameters than the fixed frequency scheme, but our experiments
also show that it produces results comparable to, or better than, the fixed-decay scheme.

4.2 Convolutional Neural Network

We used the VGG+BN+Dropout network for CIFAR-10 from the Torch blog [23], which in prior
work achieves a baseline test error of 7.55%. Figure 1 shows the learning curve for each algorithm
on both the training and test dataset.

We observe that the solutions found by SGD and HB do indeed generalize better than those found
by adaptive methods. The best overall test error found by a non-adaptive algorithm, SGD, was
7.65± 0.14%, whereas the best adaptive method, RMSProp, achieved a test error of 9.60± 0.19%.

Early on in training, the adaptive methods appear to be performing better than the non-adaptive
methods, but starting at epoch 50, even though the training error of the adaptive methods is still lower,
SGD and HB begin to outperform adaptive methods on the test error. By epoch 100, the performance
of SGD and HB surpass all adaptive methods on both train and test. Among all adaptive methods,
AdaGrad’s rate of improvement flatlines the earliest. We also found that by increasing the step size,
we could drive the performance of the adaptive methods down in the first 50 or so epochs, but the
aggressive step size made the flatlining behavior worse, and no step decay scheme could fix the
behavior.

4.3 Character-Level Language Modeling

Using the torch-rnn library, we train a character-level language model on the text of the novel War
and Peace, running for a fixed budget of 200 epochs. Our results are shown in Figures 2(a) and 2(b).

Under the fixed-decay scheme, the best configuration for all algorithms except AdaGrad was to decay
relatively late with regards to the total number of epochs, either 60 or 80% through the total number
of epochs and by a large amount, dividing the step size by 10. The dev-decay scheme paralleled
(within the same standard deviation) the results of the exhaustive search over the decay frequency
and amount; we report the curves from the fixed policy.

Overall, SGD achieved the lowest test loss at 1.212± 0.001. AdaGrad has fast initial progress, but
flatlines. The adaptive methods appear more sensitive to the initialization scheme than non-adaptive
methods, displaying a higher variance on both train and test. Surprisingly, RMSProp closely trails
SGD on test loss, confirming that it is not impossible for adaptive methods to find solutions that
generalize well. We note that there are step configurations for RMSProp that drive the training loss
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below that of SGD, but these configurations cause erratic behavior on test, driving the test error of
RMSProp above Adam.

4.4 Constituency Parsing

A constituency parser is used to predict the hierarchical structure of a sentence, breaking it down into
nested clause-level, phrase-level, and word-level units. We carry out experiments using two state-
of-the-art parsers: the stand-alone discriminative parser of Cross and Huang [2], and the generative
reranking parser of Choe and Charniak [1]. In both cases, we use the dev-decay scheme with δ = 0.9
for learning rate decay.

Discriminative Model. Cross and Huang [2] develop a transition-based framework that reduces
constituency parsing to a sequence prediction problem, giving a one-to-one correspondence between
parse trees and sequences of structural and labeling actions. Using their code with the default settings,
we trained for 50 epochs on the Penn Treebank [11], comparing labeled F1 scores on the training and
development data over time. RMSProp was not implemented in the used version of DyNet, and we
omit it from our experiments. Results are shown in Figures 2(c) and 2(d).

We find that SGD obtained the best overall performance on the development set, followed closely
by HB and Adam, with AdaGrad trailing far behind. The default configuration of Adam without
learning rate decay actually achieved the best overall training performance by the end of the run, but
was notably worse than tuned Adam on the development set.

Interestingly, Adam achieved its best development F1 of 91.11 quite early, after just 6 epochs,
whereas SGD took 18 epochs to reach this value and didn’t reach its best F1 of 91.24 until epoch 31.
On the other hand, Adam continued to improve on the training set well after its best development
performance was obtained, while the peaks for SGD were more closely aligned.

Generative Model. Choe and Charniak [1] show that constituency parsing can be cast as a language
modeling problem, with trees being represented by their depth-first traversals. This formulation
requires a separate base system to produce candidate parse trees, which are then rescored by the
generative model. Using an adapted version of their code base,3 we retrained their model for 100
epochs on the Penn Treebank. However, to reduce computational costs, we made two minor changes:
(a) we used a smaller LSTM hidden dimension of 500 instead of 1500, finding that performance
decreased only slightly; and (b) we accordingly lowered the dropout ratio from 0.7 to 0.5. Since they
demonstrated a high correlation between perplexity (the exponential of the average loss) and labeled
F1 on the development set, we explored the relation between training and development perplexity to
avoid any conflation with the performance of a base parser.

Our results are shown in Figures 2(e) and 2(f). On development set performance, SGD and HB
obtained the best perplexities, with SGD slightly ahead. Despite having one of the best performance
curves on the training dataset, Adam achieves the worst development perplexities.

5 Conclusion

Despite the fact that our experimental evidence demonstrates that adaptive methods are not advan-
tageous for machine learning, the Adam algorithm remains incredibly popular. We are not sure
exactly as to why, but hope that our step-size tuning suggestions make it easier for practitioners to use
standard stochastic gradient methods in their research. In our conversations with other researchers,
we have surmised that adaptive gradient methods are particularly popular for training GANs [18, 5]
and Q-learning with function approximation [13, 9]. Both of these applications stand out because
they are not solving optimization problems. It is possible that the dynamics of Adam are accidentally
well matched to these sorts of optimization-free iterative search procedures. It is also possible that
carefully tuned stochastic gradient methods may work as well or better in both of these applications.

3While the code of Choe and Charniak treats the entire corpus as a single long example, relying on the
network to reset itself upon encountering an end-of-sentence token, we use the more conventional approach of
resetting the network for each example. This reduces training efficiency slightly when batches contain examples
of different lengths, but removes a potential confounding factor from our experiments.
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It is an exciting direction of future work to determine which of these possibilities is true and to
understand better as to why.
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Figure 2: Performance curves on the training data (left) and the development/test data (right) for three
experiments on natural language tasks. The annotations indicate where the best performance is attained for
each method. The shading represents one standard deviation computed across five runs from random initial
starting points.
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A Full details of the minimum norm solution from Section 3.3

Full Details. The simplest derivation of the minimum norm solution uses the kernel trick. We know
that the optimal solution has the form wSGD = XTα where α = K−1y and K = XXT . Note that

Kij =


4 if i = j and yi = 1

8 if i = j and yi = −1
3 if i 6= j and yiyj = 1

1 if i 6= j and yiyj = −1

Positing that αi = α+ if yi = 1 and αi = α− if yi = −1 leaves us with the equations

(3n+ + 1)α+ + n−α− = 1,

n+α+ + (3n− + 3)α− = −1.

Solving this system of equations yields (3.2).

B Differences between Torch, DyNet, and Tensorflow

Torch Tensorflow DyNet
SGD Momentum 0 No default 0.9
AdaGrad Initial Mean 0 0.1 0
AdaGrad ε 1e-10 Not used 1e-20
RMSProp Initial Mean 0 1.0 –
RMSProp β 0.99 0.9 –
RMSProp ε 1e-8 1e-10 –
Adam β1 0.9 0.9 0.9
Adam β2 0.999 0.999 0.999

Table 3: Default hyperparameters for algorithms in deep learning frameworks.

Table 3 lists the default values of the parameters for the various deep learning packages used
in our experiments. In Torch, the Heavy Ball algorithm is callable simply by changing default
momentum away from 0 with nesterov=False. In Tensorflow and DyNet, SGD with momentum
is implemented separately from ordinary SGD. For our Heavy Ball experiments we use a constant
momentum of β = 0.9.

C Data-generating distribution

We sketch here how the example from Section 3.3 can be modified to use a data-generating distribution.
To start, let D be a uniform distribution over N examples constructed as before, and let D =
{(x1, y1), . . . , (xn, yn)} be a training set consisting of n i.i.d. draws from D. We will ultimately
want to take N to be large enough so that the probability of a repeated training example is small.

Let E be the event that there is a repeated training example. We have by a simple union bound that

P [E ] = P

 n⋃
i=1

n⋃
j=i+1

{xi = xj}

 ≤ n∑
i=1

n∑
j=i+1

P [xi = xj ] =
n (n− 1)

2
· 1
N
≤ n2

2N
.

If the training set has no repeats, the result from Section 3.3 tells us that SGD will learn a perfect
classifier, while AdaGrad will find a solution that correctly classifies the training examples but
predicts ŷ = 1 for all unseen data points. Hence, conditioned on ¬E , the error for SGD is

P(x,y)∼D
[
sign

〈
wSGD, x

〉
6= y | ¬E

]
= 0,
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while the error for AdaGrad is
P(x,y)∼D

[
sign

〈
wada, x

〉
6= y | ¬E

]
= P(x,y)∼D

[
sign

〈
wada, x

〉
6= y | (x, y) ∈ D,¬E

]
P(x,y)∼D [(x, y) ∈ D | ¬E ]

+ P(x,y)∼D
[
sign

〈
wada, x

〉
6= y | (x, y) /∈ D,¬E

]
P(x,y)∼D [(x, y) /∈ D | ¬E ]

= 0 · n
N

+ (1− p) · N − n
N

= (1− p)
(
1− n

N

)
.

Otherwise, if there is a repeat, we have trivial bounds of 0 and 1 for the conditional error in each case:

0 ≤ P(x,y)∼D
[
sign

〈
wSGD, x

〉
6= y | E

]
≤ 1,

0 ≤ P(x,y)∼D
[
sign

〈
wada, x

〉
6= y | E

]
≤ 1.

Putting these together, we find that the unconditional error for SGD is bounded above by

P(x,y)∼D
[
sign

〈
wSGD, x

〉
6= y
]

= P(x,y)∼D
[
sign

〈
wSGD, x

〉
6= y | ¬E

]
P [¬E ] + P(x,y)∼D

[
sign

〈
wSGD, x

〉
6= y | E

]
P [E ]

= 0 · P [¬E ] + P(x,y)∼D
[
sign

〈
wSGD, x

〉
6= y | E

]
P [E ]

≤ 0 · P [¬E ] + 1 · P [E ]

≤ n2

2N
,

while the unconditional error for AdaGrad is bounded below by

P(x,y)∼D
[
sign

〈
wada, x

〉
6= y
]

= P(x,y)∼D
[
sign

〈
wada, x

〉
6= y | ¬E

]
P [¬E ] + P(x,y)∼D

[
sign

〈
wada, x

〉
6= y | E

]
P [E ]

= (1− p)
(
1− n

N

)
· P [¬E ] + P(x,y)∼D

[
sign

〈
wada, x

〉
6= y | E

]
P [E ]

≥ (1− p)
(
1− n

N

)
· P [¬E ] + 0 · P [E ]

≥ (1− p)
(
1− n

N

)(
1− n2

2N

)
.

Let ε > 0 be a tolerance. For the error of SGD to be at most ε, it suffices to take N ≥ n2

2ε , in which
case we have

P(x,y)∼D
[
sign

〈
wSGD, x

〉
6= y
]
≤ n2

2N
≤ ε.

For the error of AdaGrad to be at least (1− p) (1− ε), it suffices to take N ≥ n2

ε assuming n ≥ 2,
in which case we have

P(x,y)∼D
[
sign

〈
wada, x

〉
6= y
]
≥ (1− p)

(
1− n

N

)(
1− n2

2N

)
≥ (1− p)

(
1− ε

n

)(
1− ε

2

)
≥ (1− p)

(
1− ε

2

)(
1− ε

2

)
= (1− p)

(
1− ε+ ε2

4

)
≥ (1− p) (1− ε) .

Both of these conditions will be satisfied by taking N ≥ max
{
n2

2ε ,
n2

ε

}
= n2

ε .

Since the choice of ε was arbitrary, taking ε→ 0 drives the SGD error to 0 and the AdaGrad error to
1− p, matching the original result in the non-i.i.d. setting.
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D Step sizes used for parameter tuning

Cifar-10

• SGD: {2, 1, 0.5 (best), 0.25, 0.05, 0.01}

• HB: {2, 1, 0.5 (best), 0.25, 0.05, 0.01}

• AdaGrad: {0.1, 0.05, 0.01 (best, def.), 0.0075, 0.005}

• RMSProp: {0.005, 0.001, 0.0005, 0.0003 (best), 0.0001}

• Adam: {0.005, 0.001 (default), 0.0005, 0.0003 (best), 0.0001, 0.00005}

The default Torch step sizes for SGD (0.001) , HB (0.001), and RMSProp (0.01) were outside the range we
tested.

War & Peace

• SGD: {2, 1 (best), 0.5, 0.25, 0.125}

• HB: {2, 1 (best), 0.5, 0.25, 0.125}

• AdaGrad: {0.4, 0.2, 0.1, 0.05 (best), 0.025}

• RMSProp: {0.02, 0.01, 0.005, 0.0025, 0.00125, 0.000625, 0.0005 (best), 0.0001}

• Adam: {0.005, 0.0025, 0.00125, 0.000625 (best), 0.0003125, 0.00015625}

Under the fixed-decay scheme, we selected learning rate decay frequencies from the set
{10, 20, 40, 80, 120, 160,∞} and learning rate decay amounts from the set {0.1, 0.5, 0.8, 0.9}.

Discriminative Parsing

• SGD: {1.0, 0.5, 0.2, 0.1 (best), 0.05, 0.02, 0.01}

• HB: {1.0, 0.5, 0.2, 0.1, 0.05 (best), 0.02, 0.01, 0.005, 0.002}

• AdaGrad: {1.0, 0.5, 0.2, 0.1, 0.05, 0.02 (best), 0.01, 0.005, 0.002, 0.001, 0.0005, 0.0002, 0.0001}

• RMSProp: Not implemented in DyNet at the time of writing.

• Adam: {0.01, 0.005, 0.002 (best), 0.001 (default), 0.0005, 0.0002, 0.0001}

Generative Parsing

• SGD: {1.0, 0.5 (best), 0.25, 0.1, 0.05, 0.025, 0.01}

• HB: {0.25, 0.1, 0.05, 0.02, 0.01 (best), 0.005, 0.002, 0.001}

• AdaGrad: {5.0, 2.5, 1.0, 0.5, 0.25 (best), 0.1, 0.05, 0.02, 0.01}

• RMSProp: {0.05, 0.02, 0.01, 0.005, 0.002 (best), 0.001, 0.0005, 0.0002, 0.0001}

• Adam: {0.005, 0.002, 0.001 (default), 0.0005 (best), 0.0002, 0.0001}
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