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ABSTRACT

Beta Regression, an extension of generalized linear models, can estimate the effect of explanatory
variables on data falling within the (0,1) interval. Recent developments in Beta Regression theory extend
the support interval to now include 0 and 1. The %Beta_Regression macro is updated to now allow for
Zero-One Inflated Beta Regression.
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INTRODUCTION

Beta Regression, an extension of generalized linear model (GLM) theory, primary assumption holds that
a continuous, percentage-scaled dependent variable (i.e. ranging from 0 to 1, non-inclusive) can be
characterized by the Beta distribution [1-4]. Unimodal and bimodal densities with varying severity of
skewness can be characterized by the Beta distribution, a fact that gives Beta Regression incredible
flexibility in modeling dependent variables for which normalizing transformations are impossible. Beta
Regression further assumes that changes in the dependent variable’s mean, precision (scaling factor
related to variance), or both can be associated with changes in explanatory variables.

While Beta Regression is a very flexible and useful regression model, one limitation of the regression
model is that true observations existing at either 0 or 1 must be scaled away from these values. Recent
theoretical work on Beta Regression now incorporates a mixture model to estimate observations existing
at either 0 or 1 [5], and through a slight modification, we introduce a general model of Beta Regression
that simultaneously estimates probability masses at both 0 and 1. Inflated Beta Regression incorporates
the existing Beta distribution with degenerate distributions to model the extreme values, thereby allowing
for complete modeling of the entire continuous percentage space.

Based upon the existing Beta Regression macro[6], we introduce Zero-Inflated, One-Inflated and Zero-
One-Inflated Beta Regression macros using SAS® PROC NLMIXED. Moreover, we further develop the
macro call to execute the appropriate Beta Regression model based upon the parameterization
submitted. For each new inflated class, an example of the macro usage and brief description of the data
analysis is presented.

REGRESSION ON A BETA DISTRIBUTED DEPENDENT VARIABLE

Beta Regression assumes the dependent variable can be assumed to follow a Beta distribution with two
parametersyand ¢:
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where 0< 4 <1, ¢ >0 and TI'is the gamma function[5-6]. This parameterization dictates that E(y) = u
and Var(y) = u(L— 1) / (¢ +1) , in which the variance of the dependent variable is defined as a function of
the distribution mean g and the precision parameter ¢ . Extending GLM theory to accommodate this
distribution, parameter estimates obtained in Beta Regression associate changes in the dependent
variable’s mean and/or precision as a function of explanatory variables [1,5-6].

Inflated beta distributions incorporate degenerate probability statements producing a mixture density. For
Zero-Inflation, a new parameter 7 is added to account for the probability of observations at zero. The
subsequent mixture density is:

7y, ify=0

f(Y;ﬂo,ﬂ'(é)={(1_”O)f(y;ﬂ,¢), if0<y<1

One-Inflation follows the same logical though, although here the new parameter 7 is added to account
for the probability of observations at one. The subsequent mixture density is:

Q—7z)f(y;u,0), iIfO<y<l
f(y;ﬂl,ﬂ,¢)={ ' T
7, ify=1
Finally, Zero-One-Inflated Beta Regression combines the two prior inflated densities into one density:
7o if y= 0
(Vi ) ={ U-7) A=) F (Y p9),  ifO<y<l
7, ify=1

It is important to note that this Zero-One-Inflated Beta Regression model differs slightly from previously
published models [5]. However, our inflated density allows for distinct covariate and parameter estimate
design matrices to be linked to each of the four parameters.

DEFINING THE MACRO CALL

4 N
%Macro Beta_Regression(Dataset,tech,details,mu_vars,phi_vars,zero_vars,one_vars,

depvar);
%if &zero_vars ne and &one_vars ne %then
%Beta_Regression_Zero_One(&Dataset,&tech,&details,&mu_vars,&phi_vars,
&zero_vars,&one_vars,&depvar);
%else %if &zero_vars ne %then
%Beta_Regression_Zero(&Dataset,&tech,&details,&mu_vars,&phi_vars,
&zero_vars,&depvar);
%else %if &one_vars ne %then
%Beta_Regression_One(&Dataset,&tech,&details,&mu_vars,&phi_vars,
&one_vars,&depvar);
%else
%Beta_Regression_Only(&Dataset,&tech,&details,&mu_vars,&phi_vars,&depvar);

%mend;
\§
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The macro Beta_Regression is specified in the following manner:

Dataset — the LIBNAME.DATA file

tech — allows for different optimization schemes to be used
details — allows for other options to be specified

mu_vars — variables modeling changes in mean

phi_vars — variables modeling changes in precision
zero_vars — variables predicting a response of zero
one_vars — variables predicting a response of one

depvar — the dependent variable scaled to a [0,1] interval

CREATING LABELS FOR PREDICTOR VARIABLES

f %Macro Preprocessing(Vars,b0,xb2,b); \

data HPG;
%global &xb2;
length &xb2 $200.;
&xb2=&b0;

%if &vars ne "" %then %do;

%let n=1;

var&n="%scan(&vars,&n," ")";

%do %while( %scan(&Vvars,&n,” ") ne );
%let n=%eval (&n+1);
var&n="%scan(&vars,&n," ")';

%end;

%let n_1=%eval(&n-1);

array xbv {*} $ varl--varé&n_1;

%do j=1 %to &n_1;
&b&j= "&b&j";
%end;
%let one=1;
array &b{*} $8 &b&one--&b&n_1 ;
array p{1} $ 8 ("+7);
array m{1} $ 8 (**");

do i=1 to dim(xbv) while (xbv{i} ne "*);
&xb2= cats(of &xb2 p{1} &b{i} m{1} xbv{i});

end;
%end;
call symput(''&xb2™,&xb2);
run;

\\‘ %mend ; 4//

PROC NLMIXED requires the specification of parameter estimate labels for each variable regressed on
the dependent variable. For example, “b1 *gender” identifies the parameter estimate “b1” quantifying the
effect of “gender” in the model. For ease of use, a nested macro Preprocessing creates labels for the
intercept and each predictor variable; this macro is unchanged from our previous publication [6].
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If no variables are specified, the Preprocessing macro will return intercept labels. Mean covariates are
specified as “b” parameter estimates, precision covariates are specified as “d” parameter estimates, zero-
inflated covariates are specified as “zero” parameter estimates and one-inflated covarates are specified
as “one” parameter estimates. . Each parameter estimate is labeled in ascending order corresponding to
the listing order of the variables in the macro statement.

CREATION OF MODEL PREDICTION DATASET

p
%Macro Postprocessing(hat, predict, depvar);
data &predict;
retain record &depvar &hat;
set &predict;
if &depvar = . then &hat = .;
else &hat = pred;
record=_n_;
keep record &depvar &hat;
run;
%mend;
-

PROC NLMIXED utilizes the PREDICT statement to output the estimated linear prediction. However,
prediction must be performed for each parameter specified in the model; for example, a Zero-Inflated
model produces linear prediction estimates for the probability of zero, the mean and the precision
parameters. For ease of use, each Beta Regression macro automatically predicts linear fits for each
parameter and a nested macro Postprocessing creates one combined temporary datasets of all
predictions.

IMPLEMENTATION OF ZERO-INFLATED BETA REGRESSION

%Macro Beta_Regression_Zero(Dataset,tech,details,mu_vars,phi_vars,zero_vars,depvar);

%Preprocessing(&mu_vars, 'b0',xb,b);
%Preprocessing(&phi_vars, 'do’',wd,d);
%Preprocessing(&zero_vars, 'zerod',zeroxb,zero);

proc nlmixed data = &Dataset tech = &tech &details;
pizero = exp(&zeroxb)/(1 + exp(&zeroxb));
mu = exp(&xb)/(1 + exp(&xb));
phi = exp(&wd);
W = mu*phi;
t = phi - mu*phi;
if (&depvar = @) then
11 = log(pizero);
else 11 = lgamma(w+t) - lgamma(w) - lgamma(t) + ((w-1)*log(&depvar)) +
((t-1)*log(1 - &depvar)) + log(l-pizero);
model &depvar ~ general(ll);
predict mu out=mu_results (keep=&depvar pred);
predict phi out=phi_results (keep=&depvar pred);
predict pizero out=pizero_results (keep=&depvar pred);
run;

- J
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%Postprocessing(mu_hat,mu_results,&depvar);
%Postprocessing(phi_hat,phi_results,&depvar);
%Postprocessing(pizero_hat,pizero_results,&depvar);

data prediction;
merge mu_results phi_results pizero_results;
by record;
run;

%mend;

Since PROC NLMIXED can maximize any programmable likelihood, the Zero-Inflated Beta Regression
model is programmed exactly as the density function would suggest. Once called, the macro passes
covariates to the Preprocessing macro for labeling. The dependent variable is subsequently modeled as a
degenerate function of the constructed design matrices through the usage of the canonical link functions
for each parameter. Once maximized, the linear prediction for each parameter is passed to the
Postprocessing macro and then merged into the model’'s Prediction dataset.

EXAMPLE — ANALYSIS OF BRAZILIAN TRAFFIC ACCIDENT MORTALITY

%Beta_Regression(zoib.traffic,trureg, ,lnpop prop2029 idhe,lnpop prop2029 idhe, lnpop
prop2029 idhe,, proeo);

Ospina and Ferrari illustrate the utility of Zero-Inflated Beta Regression in an analysis of traffic accident
mortality from 200 randomly selected cities in Brazil [5]. The dependent variable is the proportion of
deaths caused in 2002 by traffic accidents (pro00); 39% of reported deaths were not caused by traffic
accidents (i.e. zero percent). Explanatory variables used to predict the percentage of traffic accident
mortality included log-transformed population (Inpop), proportion of residents between 20 and 29 years of
age (prop2029), and an index measure of education within each city (idhe).

Table 1. Results of Brazilian Traffic Accident Mortality by Software Package

Results from Ospina & Ferrari [5] SAS v9.3 %Beta Regression Macro
Estimate Standard Error P Estimate  Standard Error P
intercept 21.27 4.63 1.73e-08 zeroQ 27.27 435 <.0001
P Inpop -1.17 0.27 2.07e-05 zerol -1.17 0.26 <.0001
0 prop2029 -48.06 17.46 6.49e-03 zero2 -48.06 17.20 0.0057
idhe -11.34 4,01 5.13e-03 zero3 -11.35 3.93 0.0043
Estimate Standard Error P Estimate  Standard Error P
intercept -4.72 1.20 1.11e-04 b0 -4.73 1.20 0.0001
Inpop -0.53 0.05 7.14e-17 bl -0.53 0.06 <.0001
H prop2029 27.68 6.37 2.33e-05 b2 27.73 6.38 <.0001
idhe 3.1 1.44 3.28e-02 h3 3.10 1.44 0.0332
Estimate Standard Error P Estimate  Standard Error P
intercept 9.46 3.25 4.08e-03 do 9.48 3.27 0.0042
Inpop 0.47 0.10 8.54e-06 di 0.48 0.10 <.0001
¢ prop2029 -28.34 16.63 9.01e-02 d2 -28.46 16.60 0.0880
idhe -6.70 3.90 8.78e-02 d3 -6.69 3.91 0.0883
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As can be seen in the macro call above, all three design matrices contain the same explanatory variables.
Published results from Ospina and Ferrari’s R function are summarized next to the SAS results (Table 1),
indicating that the same inference can be made using the %Beta_Regression macro in SAS.

IMPLEMENTATION OF ONE-INFLATED BETA REGRESSION

4 )
%Macro Beta_Regression_One(Dataset,tech,details,mu_vars,phi_vars,one_vars,depvar);

%Preprocessing(&mu_vars, 'bo',xb,b);
%Preprocessing(&phi_vars, 'de’',wd,d);
%Preprocessing(&one_vars, 'oned',onexb,one);

proc nlmixed data = &ataset tech = &tech &details;
pione = exp(&onexb)/(1 + exp(&onexb));
mu = exp(&xb)/(1 + exp(&xb));
phi = exp(&wd);
w = mu*phi;
t = phi - mu*phi;
if (&depvar = 1) then
11 = log(pione);
else 11 = 1lgamma(w+t) - lgamma(w) - lgamma(t) + ((w-1)*log(&depvar)) +
((t-1)*log(1 - &depvar)) + log(l-pione);
model &depvar ~ general(ll);
predict mu out=mu_results (keep=&depvar pred);
predict phi out=phi_results (keep=&depvar pred);
predict pione out=pione_results (keep=&depvar pred);
run;

%Postprocessing(mu_hat,mu_results,&depvar);
%Postprocessing(phi_hat,phi_results,&depvar);
%Postprocessing(pione_hat,pione_results,&depvar);

data prediction;
merge mu_results phi_results pione_results;
by record;
run;

%mend ;
g J

One-Inflated Beta Regression differs from Zero-Inflated Beta Regression only in the partitioning of the
degenerate probability mass.

EXAMPLE — ANALYSIS OF BARTHEL INDEX IN NINDS RT-PA CLINICAL TRIAL

%Beta_Regression(zoib.tpa_data,trureg, ,tpa decade,decade, ,tpa decade,
oi_barthell2);

As detailed in our previous paper [6], our data example comes from the two National Institute of
Neurological Diseases and Stroke (NINDS) “recombinant tissue-type plasminogen activator” (rt-PA) trials
[7]. The primary aim of the double-blind trials was to assess the effectiveness of in treating cerebral stroke
secondary to artery thrombosis (clot restricting or stopping blood flow) within three hours of symptom
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onset. The trials were designed to collect the same data using the same procedures, but each was
powered to test a different primary endpoint. Additional details of the NINDS rt-PA clinical trials are
available [7].

The “Part 2" trial assessed the combined functional outcomes at three months as measured by the
Barthel Index [8], a clinical outcome scale ranging from [0-100] that assesses various activities of daily
living achieved by an individual post-stroke, as well as three clinical outcomes [7]. Data was also
collected at twelve months post-stroke, in which a majority of study participants achieved functional
independence as measured by the raw Barthel Index scores (Figure 1). The resulting distribution is
severely negatively skewed with signficant mass at the maximum score.
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Figure 1. Histogram of Barthel Index Outcome at Twelve Months by Treatment Group.

Dividing the raw Barthel Index scores by 100 would result in a distribution that could be supported by the
Beta domain. The standard transformation Z = [Y'(N-1) + 0.5]/ N where Y'=[Y - Minimum(Y)]/
[Maximum(Y) - Minimum(Y)], N is the number of total observations and Y is the original scale
measurement [9] was used for all responses less than 100; responses that were 100 were scaled to 1.

Results from the analysis are summarized in Table 2. Examining first the one inflated results, the
parameter estimate “onel” relates to the indicator variable for treatment group (rt-PA = 1, placebo = 0).
These results indicate that the odds of achieving a Barthel Index score of 100 in rt-PA group was 106
times more than the odds of the placebo group (OR = exp(0.72) = 2.06, 95% CI (1.39, 3.04), p < 0.001).
The treatment group is not associated with any further significant findings when examining the mean or
precision results, although age is significantly associated with all three parameters. In terms of the mean
and probability parameters, increasing age is associated with decreased likelihood of successful
treatment. In terms of precision, increasing age is associated with decreased precision (i.e. increased
variability).

Statistics and Data Analysis
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Table 2. Barthel Index Analysis using One-Inflated Beta Regression

Estimate Standard Error P

one0 1.85 0.60 0.0021

7T, onel 0.72 0.20 0.0003

one2 -0.30 0.09 0.0010
Estimate Standard Error P

b0 3.10 0.53 <.0001

M bl 0.17 0.17 0.3355

b2 -0.44 0.08 <.0001
Estimate Standard Error P

do 2.42 0.64 0.0002

¢ di -0.29 0.09 0.0018

IMPLEMENTATION OF ZERO-ONE INFLATED BETA REGRESSION

f )
%Macro Beta_Regression_Zero_One(Dataset,tech,details,mu_vars,phi_vars,zero_vars,

one_vars,depvar);

%Preprocessing(&mu_vars, 'b0',xb,b);
%Preprocessing(&phi_vars, 'de’' ,wd,d);
%Preprocessing(&zero_vars, 'zero@',zeroxb,zero);
%Preprocessing(&one_vars, 'oned',onexb,one);

proc nlmixed data = &Dataset tech = &tech &details;
pizero = exp(&zeroxb)/(1 + exp(&zeroxb));
pione = exp(&onexb)/(1 + exp(&onexb));
mu = exp(&xb)/(1 + exp(&xb));
phi = exp(&wd);
W = mu*phi;
t = phi - mu*phi;
if (&depvar = 0) then
11 = log(pizero);
else if (&depvar = 1) then
11 = log(pione);
else 11 = lgamma(w+t) - lgamma(w) - lgamma(t) + ((w-1)*log(&depvar)) +
((t-1)*log(1 - &depvar)) + log(l-pizero) + log(l-pione);
model &depvar ~ general(ll);
predict mu out=mu_results (keep=&depvar pred);
predict phi out=phi_results (keep=&depvar pred);
predict pizero out=pizero_results (keep=&depvar pred);
predict pione out=pione_results (keep=&depvar pred);
run;

%Postprocessing(mu_hat,mu_results,&depvar);
%Postprocessing(phi_hat,phi_results,&depvar);
%Postprocessing(pizero_hat,pizero_results,&depvar);
%Postprocessing(pione_hat,pione_results,&depvar);
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data prediction;
merge mu_results phi_results pizero_results pione_results;
by record;
run;

%mend ;

Zero-One-Inflated Beta Regression combines the probability mass estimation for both zero and one into
one likelihood.

EXAMPLE — ANALYSIS OF BARTHEL INDEX IN NINDS RT-PA CLINICAL TRIAL

%Beta_Regression(zoib.tpa_data,trureg, ,tpa decade,decade,tpa decade,tpa decade
,z0i_barthell2);

It should be noted that all analysis of the rt-PA trial present to date has only examined the “per protocol”
observations; those study participants that died prior to the twelve month observation are not included in
the analysis. An “intention-to-treat” analysis was also performed, imputing the worst observation (i.e.
zero) for those participants who died during the trial [7]. Subsequently, this imputation led to the Barthel
Index having two separate probability masses as zero and one (Figure 2). Fortunately, a simple
transformation (dividing by 100) yields a dependent variable supported by the zero-one-inflated Beta.

Placebo rt-PA

40 50
1

30

Percent

10

0 50 100 0

Intention-to-Treat Twelve-Month Barthel Index [0-100]
Graphs by Group Assignment

50

100

Figure 2. Histogram of Intention-to-Treat Barthel Index Outcome at Twelve Months by
Treatment Group.
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Table 3. Intention-to-Treat Barthel Index Analysis using Zero-One-Inflated Beta Regression

Estimate Standard Error P
zero0 -2.67 0.70 0.0001
zerol 0.16 0.22 0.4483
zero2 0.41 0.10 <.0001
Estimate Standard Error P
one0 1.48 0.61 0.0147
onel 0.72 0.21 0.0005
one2 -0.23 0.09 0.0145
Estimate Standard Error P
b0 2.96 0.54 <.0001
bl 0.17 0.17 0.3098
h2 -0.36 0.08 <.0001
Estimate Standard Error P
do 2.8262 0.80 0.0004
dl -0.2805 0.12 0.0170

Results from the intention-to-treat analysis are summarized in Table 3. As was seen in the previous
analysis, age is significantly associated with each estimated parameter. Here, however, the inference is
different for the zero-inflated parameter, as increasing age (zero2) is associated with increased odds of
death. Specifically, for every unit increase in a participant’s age (in decades), the odds of death increase
50% (OR = exp(0.41) = 1.50, 95% CI (1.23, 1.83), p<0.001). Inference for the other parameters remains
the same.

The only treatment parameter estimate significantly associated with the outcome is again in the one-
inflation part of the model. These results are very similar to the one-inflated model of the per-protocol
analysis, indicating that the odds of achieving a Barthel Index score of 100 in rt-PA group was 105 times
more than the odds of the placebo group (OR = exp(0.72) = 2.05, 95% CI (1.37, 3.07), p < 0.001).

CONCLUSION

It has been shown how Beta Regression can provide utility in modeling continuous percentage dependent
variables. Current development in Beta Regression now allows for the accounting of observations
existing at zero or one. PROC NLMIXED can be utilized to the degenerate inflated functions, and the
%Beta_Regression macro has been updated to implement all of the inflated Beta Regression models in a
straightforward, easy-to-use manner..

10
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