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Abstract. This document presents theoretical considerations about the solution of dynamic optimization
problems integrating the Benders Theory, the Dynamic Programming approach and the concepts of Control
Theory. The so called Generalized Dual Dynamic Programming Theory (GDDP) can be considered as an
extension of two previous approaches known as Dual Dynamic Programming (DDP): The first is the work
developed by Pereira and Pinto [3–5], which was revised by Velásquez and others [8,9]. The second is the
work developed by Read and others [2,6,7].
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1. Introduction

This paper analyzes the theory developed by Benders (BT) [1] applied to the solution of
dynamic problems using the Dynamic Programming and the Control Theory approaches.
We call this methodology Generalized Dual Dynamic Programming (GDDP) which is
based on the chained application of BT to a multi-period optimization problem. Two pre-
vious works must be kept in mind as an initial reference, both were called Dual Dynamic
Programming (DDP).

First, in a series of papers published starting in 1985 Pereira and Pinto [3–5] intro-
duced a technique that made it possible to apply the methodology of Dynamic Program-
ming (DP) to problems with multiple state variables without running into the “curse of
dimensionality problem”. Pereira and Pinto extended Benders’ partition technique to the
multiple-stage problem, which allowed the replacement of the discretization of the future
cost function in the classic DP approach by a series of hyperplanes generated using BT.
Velásquez and others [8,9] revised and adjusted the equations of the methodology pro-
posed by Pereira. We call this final methodology DDP-P. The main difference between
DDP-P and GDDP is that in the conceptual formulation DDP-P considers all the vari-
ables of the problem as state variables, while the GDDP makes a distinction between
state variables and control variables. This distinction permits a more detailed algorithm
in which the sub-problems are smaller than in the DDP-P.

Read and others developed the second work [2,6,7], which we call DDP-R. The
conceptual formulation of the DDP-R makes the distinction between production (con-
trol) variables and stocks (state) variables. The DDP-R may be seen as dual to the
classic DP approach in the sense that DP chooses an arbitrary grid of primal state vari-
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22 VELÁSQUEZ BERMÚDEZ

ables (stocks) and for each one finds the optimal decision and the implied shadow price
(the marginal costs of stocks). DDP-R chooses a special grid of dual variables, values
of the marginal costs of stocks in which the production decision changes and for each
one finds the corresponding stock level in the primal space. The DDP-R solves para-
metrically a sub-problem in each period to produce points of the “supply function” for
that period and, using backward recursion, combines these supply functions with the
end-of-period function value to define an optimal strategy. The DDP-R has the “curse of
dimensionality problem”. The conceptual approach of the GDDP is similar to the DDP-R
approach, in the sense that it maintains the difference between control variables and state
variables; the fundamental difference is the form of evaluating the supply functions. In
the GDDP the supply functions are built based on a set of hyperplanes generated using
BT, the same way DDP-P does for the future cost functions.

The GDDP considers the solution of a general dynamic problem of the form:

GDP: min z =
∑
t∈�(T )

cT
t xt + dT

t ut

subject to Atx t = bt − Et−1x t−1 − B tut ∀t ∈ �(T ),
Gtut = gt ∀t ∈ �(T ),
ut ∈ R+ ∀t ∈ �(T ),
x t ∈ R+ ∀t ∈ �(T ),

(1)

where the vector xt represents the state variables and ut the control variables. At , Et ,
B t and Gt are coefficients matrices, bt and gt are resources vectors, ct and d t are cost
vectors, and �(T ) the set of periods of the planning horizon composed of T time inter-
vals.

The previous formulation may be appropriate for industrial linear systems in which
the state variables vector is associated with the amount of stock held and the level of
resources in the facilities, and the control vector is associated with the production and
distribution of products through the supply-chain. The GDP family of optimization prob-
lems is used in the modeling of large supply-chains to support decision making at the
tactical level in which the nonlinear characteristics can be linearized. The application of
GDDP theory solves GDP as a coordinated sum of very simple problems. Initially, we
present a summary of BT and DDP-P.

2. Previous mathematical formulations

2.1. Benders’ partition theory

BT considers the problem P composed by two types of variables: y, the coordination
variables, and x, the coordinates:



© K
LU

W
ER

 A
CA

DE
MIC

 P
UB

LI
SH

ER
S

VTEX() PIPS No:5101697 artty:res (Kluwer BO v.2002/10/03)

a5101697.tex; 29/10/2002; 9:57; p. 3

GDDP 23

P: min z = cTx + f (y)
subject to F 0(y) = b0,

Ax + F (y) = b,
x ∈ R+, y ∈ S.

(2)

BT restricts the model on x to be a linear problem, while imposing no conditions on y.
The S space to which y belongs may be continuous or discrete. Additionally, the func-
tions f (y) and F (y) may be nonlinear. The P problem may be decomposed in two
coordinated problems: one, CY, on y and another, SP(y), on x.

Benders proposes a solution of P by a hierarchical algorithm that works on two lev-
els: the coordination level solves the problem CY and generates a sequence of yk values;
on the second level, yk is used as a parameter of the sub-problem SP(y) to generate a
sequence of feasible extreme points, πk, and extreme rays, ωk, of the dual feasible zone
of SP(y) that are used to build in CY cutting planes.

Let us define the sub-problem SP(y) on x for a given value of y

SP(y): minQ(y) = cTx
subject to Ax = b − F (y), x ∈ R+. (3)

The coordinator CY on y can be formulated as:

CY: min z = f (y)+Q(y)
subject to F 0(y) = b0, y ∈ S,

Q(y) �
(
πk

)T[
b − F (y)

] ∀k ∈ IT,

0 �
(
ωk

)T[
b − F (y)

] ∀k ∈ IN,

(4)

where π represents the vector of dual variables of the restrictions Ax = b−F (y), IT the
set of iterations, ω an extreme ray on the π feasibility region and IN the set of iterations
on which no feasibility was obtained.

CY includes two types of cuts. The first type, that we call optimality cutting planes
(OCP), restricts the feasible zone of y in order to obtain the optimal y; it has the follow-
ing structure:

Q(y) �
(
πk

)T[
b − F (y)

] ∀k ∈ IT. (5)

The second type, that we call feasibility cutting planes (FCP), restricts the feasible zone
of y in order to maintain feasible x in SP(y) and has the following structure

0 �
(
ωk

)T[
b − F (y)

] ∀k ∈ IN. (6)

For simplicity, in the following sections the mathematical formulation ignores the
cuts FCP. This implies that it is only valid for problems where it is assured that a feasible
x exists for any feasible y. This is not a limitation of the theory. If it is necessary to
include FCP, they may be included in a similar way as is done with the OCP cuts.
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2.2. Dual Dynamic Programming (DDP-P)

Now, we describe the revised concepts of DDP-P that consider the following problem:

DP: min z =
∑
t∈�(T )

cT
t xt

subject to Atx t + Et−1x t−1 = bt ∀t ∈ �(T ), x t ∈ R+.
(7)

This structure corresponds to a problem of dynamic programming that includes
only state variables (x t ), with x0 as initial condition.

As a starting point the variables must be divided in two groups: a group of coordi-
nation variables (type y) associated with stages between 1 and T−1, {x1, x2, . . . , xT−1},
and the coordinated variables (type x) associated with stage T , {xT }.

Based on the direct application of BT the coordinator model for the period
{1, T − 1} is

CDT−1: min z =
∑

t∈�(T−1)

cT
t x t + αT (xT−1)

subject to Atx t = bt − Et−1xt−1 ∀t ∈ �(T − 1),
xt ∈ R+ ∀t ∈ �(T − 1),
αT (xT−1)+ πkTET−1xT−1 � πkT TbT ∀k ∈ IT(T − 1),

(8)

where αt(x t−1) represents the future cost function considering that the system is on state
x t−1 at the beginning of period t , IT(t) the number of cuts included in the coordinator
CDt , and πkt corresponds to the vector of dual variables of the restrictions Atx t = bt −
Et−1x

k
t−1 obtained as a solution of the sub-problem SDt (xkt−1). For the stage T the

sub-problem SDT (xkT−1) is defined as

SDT
(
xkT−1

)
: minαT

(
xkT−1

) = cT
T xT

subject to AT xT = bT − ET−1x
k
T−1, xT ∈ R+.

(9)

Using a recursive approach, by induction [8,9] it can be demonstrated that the coordina-
tor for each intermediate stage t (less than T ) is

CDt : min z =
∑
τ∈�(t)

cT
τ xτ + αt+1(xt )

subject to Aτxτ = bτ − Eτ−1xτ−1 ∀τ ∈ �(t),
xτ ∈ R+ ∀τ ∈ �(t),
αt+1(xt )+ πjt+1

TEtxt � σ jt+1 ∀j ∈ IT(t),

(10)

and the sub-problem for each intermediate stage t is

SDt
(
x
j

t−1

)
: minαt (x

j

t−1) = cT
t xt + αt+1(x t )

subject to Atx t = bt − Et−1x
j

t−1, xt ∈ R+,
αt+1(x t )+ πkt+1

TEtx t � σ kt+1 ∀k ∈ IJ(t, j),
(11)
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where IJ(t, j) represents the number of cuts included in the coordinator CDt : when we
solve the sub-problem SDt (x

j

t−1). σ
j
t is a constant value calculated as

σ
j
t =




π
j

T
TbT , t = T ,

π
j
t

Tbt +
∑

k=1,IJ(t,j)

λ
k,j
t σ

k
t+1, t = 1, T − 1, (12)

where λk,jt represents the dual variable of the kth Benders cut in the sub-problem
SDt (x

j

t−1). The index j represents the iteration of the coordinator of SDt (x
j

t−1) and

the index k the cuts that have been included in the process of solution of SDt (x
j

t−1). The
original problem DP corresponds to CD1, the coordinator for the first stage.

The DDP-P approach implies the multilevel decomposition (in the time domain) of
multiple problems that are decomposed using BT, generating new problems that again
are decomposed using BT. This implies the nested use of BT.

3. Generalized Dual Dynamic Programming

The problem studied in DDP-P only considers state variables (x t ). The problem GDP,
presented in (1), considers a more detailed formulation in which the variables that couple
two consecutive periods, related to the stock level, correspond to the state variables (x t ),
while the production and distribution variables in the period t , not involved directly in
the dynamic relationship, may be thought as the control variables (ut ).

The solution of GDP using BT considers a two-stage process. First, we define
the state variable x t as the coordination variables to go on to decouple the problem at
a temporary level that refers to the control variable ut . In the second stage the DDP-P
principles are used to solve the coordinator problem for x t

CX: min z =
∑
t∈�(T )

cT
t xt +�t(x t−1, x t )

subject to min�t(x t−1, x t ) = dT
t ut

subject to B t ut = bt − Et−1x t−1 − Atx t ,
Gtut = gt ,
ut ∈ R+

∀t ∈ �(T ),
x t ∈ R+ ∀t ∈ �(T ),

(13)

where �t(x t−1,xt ) represents the optimum operation costs in the period t as a conse-
quence of the border condition starting in the state xt−1 and finishing in the x t and it
corresponds to the objective function of the static operation sub-problems SUt (xt−1,x t )

defined as
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SUt (xt−1, x t ): min�t(x t−1, x t ) = dT
t ut

subject to B tut = bt −Et−1x t−1 −Atx t ,Gtut = gt ,ut ∈ R+. (14)

The dual problem of SUt (xt−1,x t ) is

DSUt (x t−1, x t ): max�t(x t−1, x t ) = πT
t [bt − Et−1x t−1 − Atx t ] + δT

t gt

subject to πT
t B t + δT

t Gt � dT
t ,

(15)

where πt represents the dual variables vector of the restrictions B tut = bt −Et−1x t−1 −
Atx t and δt is the dual variables vector of Gtut = gt .

Considering the decoupled cuts generated by each sub-problem SUt (xt−1, x t ) the
coordinator CX is

CX: min z =
∑
t∈�(T )

cT
t xt +�t(x t−1, x t )

subject to �t(xt−1,x t )+
(
πkt

)T
Et−1x t−1 + (

πkt
)T

Atxt � θt
(
πkt , δ

k
t

)

∀t ∈ �(T ) ∀k ∈ IU,

(16)

where IU represents the number of cuts generated for each sub-problem SUt (x t−1, x t )
and θt (π, δ) is a two argument t-index function that define a constant value

θt (π, δ) = πTbt + δTgt . (17)

The coordinator CX is only integrated by Benders cuts and has a dynamic structure
similar to the problem DP. We may solve it by using the DDP-P theory. The cuts that
integrated the coordinator CX

�t(xt−1,x t )+
(
πkt

)T
Et−1x t−1 + (

πkt
)T

Atxt � θt
(
πkt , δ

k
t

) ∀t ∈ �(T ) ∀k ∈ IU (18)

will be called type 1 Benders cuts.
Following the backward approach we can apply BT for the last stage of the coor-

dinator CX. The coordinator model CGT−1 for the period {1, T − 1} is

CGT−1: min z =
∑

t∈�(T−1)

[
cT
t x t +�t(xt−1, x t )

] + αT (xT−1)

subject to �t(xt−1, x t )+
(
πkt

)T
Et−1xt−1 + (

πkt
)T

Atx t

� θt
(
πkt , δ

k
t

) ∀t ∈ �(T − 1) ∀k ∈ IU,

x t ∈ R+ ∀t ∈ �(T − 1),

αT (xT−1)+
∑

k∈I1(T ,j)

ψ
k,j

T

(
πkT

)T
ET−1xT−1

�
∑

k∈I1(T ,j)

ψ
k,j

T θT
(
πkT , δ

k
T

) ∀j ∈ IJ(T − 1),

(19)

where αt+1(xt ) is the same future cost function defined in the DDP-P theory, ψk,jt the
dual variable of the kth type 1 Benders cut for the period t obtained in the solution
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of the sub-problem SGt (x
j

t−1), IJ(t) the number of cuts generated for the sub-problem

SGt (x
j

t−1) and I1(t, j) the number of Benders cuts type 1 included in the sub-problem

SGt (x
j

t−1).

The sub-problem SGt (x
j

t−1) for stage T is

SGT
(
x
j

T−1

)
: minαT

(
x
j

T−1

) = cT
T xT +�T (xT−1,xT )

subject to �T (xT−1, xT )+
(
πkT

)T
AT xT

� θT
(
πkT , δ

k
T

) − (
πkT

)T
ET−1x

j

T−1

∀k ∈ IU(T , j), xT ∈ R+.

(20)

The new type of cut included in CGT−1

αT (xT−1)+
∑

k∈I1(T ,j)

ψ
k,j

T

(
πkT

)T
ET−1xT−1 �

∑
k∈I1(T ,j)

ψ
k,j

T θT
(
πkT , δ

k
T

)
(21)

will be called type 2 Benders cuts.
Applying BT to partition the coordinator CGT−1 we obtain a new coordinator

CGT−2.

CGT−2: min z =
∑

t∈�(T−2)

[
cT
t x t +�t(x t−1, x t )

] + αT−1(xT−2)

subject to �t(xt−1, x t )+
(
πkt

)T
Et−1x t−1 + (

πkt
)T

Atx t

� θt
(
πkt , δ

k
t

) ∀t ∈ �(T − 2) ∀k ∈ IU,

x t ∈ R+ ∀t ∈ �(T − 2),

αT−1(xT−2)+
∑

k∈I1(T−1,j)

ψ
k,j

T−1

(
πkT−1

)T
ET−2xT−2

�
∑

k∈I1(T−1,j)

ψ
k,j

T−1θT−1
(
πkT−1, δ

k
T−1

)

+
∑

m=1,IJ(T−1,j)

γ
m,j

T−1

∑
k∈I1(T ,j)

ψ
k,j

T θT
(
πkT , δ

k
T

)

∀j ∈ IJ(T − 2),

(22)

where γ m,jt represents the dual variable of the mth type 2 Benders cut for period t ob-
tained in the solution of the sub-problem SGt (x

j

t−1) defined for stage T − 1 as
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SGT−1
(
x
j

T−2

)
: minαT

(
x
j

T−2

) = cT
T−1xT−1 +�T−1(xT−2, xT−1)+ αT (xT−1)

subject to �T−1(xT−2, xT−1)+
(
πkT−1

)T
AT−1xT−1

� θT
(
πkT−1, δ

k
T−1

) − (
πkT−1

)T
ET−2x

j

T−2

∀k ∈ IU(T − 1, j),

xT−1 ∈ R+,

αT (xT−1)+
∑

k∈I1(T ,j)

ψ
k,j

T

(
πkT

)T
ET−1xT−1

�
∑

k∈I1(T ,j)

ψ
k,j

T θT
(
πkT , δ

k
T

) ∀j ∈ IJ(T − 1).

(23)

It can be demonstrated that the coordinator sub-problem for each intermediate
stage t (less than T ) is

CGt : min z =
∑
τ∈�(t)

[
cT
τxτ +�τ(xτ−1, xτ )

] + αt+1(x t )

subject to �τ(xτ−1, xτ )+
(
πkτ

)T
Eτ−1xτ−1 + (

πkτ
)T

Aτxτ

� θτ
(
πkτ , δ

k
τ

) ∀τ ∈ �(t) ∀k ∈ IU,

xτ ∈ R+ ∀τ ∈ �(t),
αt+1(xt )+

∑
k∈I1(t+1,j)

ψ
k,j

t+1

(
πkt+1

)T
Etx t � φjt

∀j ∈ IJ(t)

(24)

and the sub-problem for each intermediate stage t is

SGt
(
x
j

t−1

)
: minαT

(
x
j

t−1

) = cT
t xt +�t(x t−1, x t )+ αt+1(x t )

subject to �t(x t−1, x t )+
(
πkt

)T
Atx t

� θT
(
πkt , δ

k
t

) − (
πkt

)T
Et−1x

j

t−1 ∀k ∈ IU(t, j),

x t ∈ R+,
αt+1(x t )+

∑
k∈I1(t+1,j)

ψ
k,j

t+1

(
πkt+1

)T
Etx t � φjt

∀j ∈ IJ(t),

(25)

where φjt is a constant value calculated as

φ
j
t =




∑
k∈I1(T ,j)

ψ
k,j

T θT
(
πkT , δ

k
T

)
, t = T ,

∑
k∈I1(t,j)

ψ
k,j
t θt

(
πkt , δ

k
t

) +
∑

m=1,IJ(t,j)

γ
m,j
t φmt+1, t = 1, T − 1.

(26)
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The original problem GDP corresponds to CG1, the coordinator for the first stage.
The functions �t(x t−1, x t ) corresponds to the supply functions that Read considers in
the DDP-R approach.

4. Special cases

4.1. B t , Gt and d t time independent

Now we consider the special case when the dual feasibility zone of the problems
SUt (xt−1, xt ) is static, which implies that the matrices B t and Gt and the vector d t
are time independent; then, the dual problem is:

DSUt (x t−1, x t ): max�t(x t−1, x t ) = πT
t [bt − Et−1x t−1 − Atx t ] + δT

t gt

subject to πT
t B + δT

t G � dT.
(27)

In this case, a feasible vector of dual variables {πt, δt } for any DSUt (x t−1, x t ) is feasible
for all DSUt (x t−1, x t ) independent of the value of t ; when we solve SUt (x t−1, x t ) for a
specific value of t we can generate type 1 Benders cuts for all periods and the coordinator
CX can be expressed as

CX: min
∑
t∈�(T )

cT
t x t +�t(xt−1, xt )

subject to �t(x t−1,xt )+
(
πk

)T
E t−1xt−1 + (

πk
)T

Atx t

� θt
(
πk, δk

) ∀t ∈ �(T ) ∀k ∈ IT,

(28)

where the dual variables vector {π, δ} is time independent; then, for each iteration of the
coordinator-sub-problems we need to solve only one problem SUt (xt−1, xt ).

This situation is very common for matrices Gt and B t because they are related with
the technology and with the topology of the modeled system, which for the short term,
is normally time independent. The vector d t is related with the costs and, in many cases,
it is time dependent, but often the time variation of d t is expressed as

d t = βtd, (29)

where β is a discount factor and d is a constant vector reference price. In this case, we
can express the sub-problems as

SUt (x t−1, x t ): min�t(xt−1, x t ) = dTut

subject to But = bt − E t−1xt−1 − Atxt ,Gut = gt ,ut ∈ R+ (30)

and the coordinator CX as

CX: min
∑
t∈�(T )

cT
t x t + βt�t (xt−1,x t )

subject to �t(xt−1,x t )+
(
πk

)T
Et−1x t−1 + (πk)TAtx t

� θt
(
πk, δk

) ∀t ∈ �(T ) ∀k ∈ IT

(31)
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and we need to solve only one problem in the sub-problem level, independently of the
numbers of periods. This fact is very important when the number periods is very large,
such as in the case of the control problems, that require many short periods to represent
adequately continuous movement and constraints of the state variables.

From an economic point of view, �t(x t−1, x t ) represents the optimum operation
costs in the period t as a consequence of the boundary conditions (x t−1 and x t ). Fre-
quently, �t(x t−1, x t ) is time independent in the short and the medium term planning
horizons, due to the fact that in the planning horizon the technology, the topology and
the price index do not change.

Other special cases can be considered when the vector reference price d is time
dependent and has seasonal variations. In this case we can define families of functions
�et (x t−1, x t ), where the index e represents the seasonal variation of d , that is de. Each
period t belongs to a “season” and we must solve sub-problems for each type of season.

4.2. At = I and E t = −I

Another special case may be considered when At is equal to the identity matrix and Et

to the negative identity matrix, then the definition of x t is expressed as

xt = x t−1 + bt − B tut ∀t ∈ �(T ). (32)

This is a very common case for stock equations, in which the storage level x t is a
function of the storage level in t − 1 plus an external input and plus a linear combination
of the production and the distribution variables.

Under this condition the function �t(x t−1,xt ) can be stated as �t( xt ) since the
sub-problem may be expressed as

SUt ( x t ): min�t( x t ) = dT
t ut

subject to B tut = bt − xt ,Gtut = gt ,ut ∈ R+.
(33)

The advantage of this structure is that the optimum operation cost function �t(x t−1, x t )
only depends on the variation of the state variables x t , but is independent of its absolute
level. The coordinator CX may be expressed in terms of  x t as

CX: min
∑
t∈�(T )

cT
t

∑
τ=1,t

 xτ + βt�t ( xt )

subject to �t( x t )+
(
πk

)T
 x t � θt

(
πk, δk

) ∀t ∈ �(T ) ∀k ∈ IT.
(34)

5. Conclusions

The conceptual formulation of the GDDP problem enables development of efficient al-
gorithms based on the partition and the decomposition of the original problem using
Benders’ theory. The solution of the original problem is found by the coordinated solu-
tion of multiple problems of smaller dimension. In some cases, it is possible to visualize
special matrix structures to generate Benders’ cuts for all periods and eliminates the need
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to solve a problem for each period. This is of special importance when the number of
periods is very large, as in the case of optimal control problems.

The next step in the development of the GDDP theory is its extension to include
stochastic optimization problems.

References

[1] J.F. Benders, Partitioning procedures for solving mixed variables programming problems, Numerische
Mathematik 4 (1962) 238–252.

[2] P.D. Casseboom and E.G. Read, Dual dynamic programming for coal stockpiling, Proc. Operations
Research Society of New Zealand (1987) 15–18.

[3] M.V.F. Pereira, Stochastic operation scheduling of large hydroelectric systems, Electric Power and
Energy Systems 11(3) (1989) 161–169.

[4] M.V.F. Pereira and L.M.G. Pinto, Stochastic optimization of a multi-reservoir hydroelectric system:
A decomposition approach, Water Resources Research 21 (1985) 779–792.

[5] M.V.F. Pereira and L.M.G. Pinto, Multi-stage stochastic optimization applied to energy planning, Math-
ematical Programming 52 (1991) 359–375.

[6] E.G. Read, A dual approach to stochastic dynamic programming for reservoir scheduling, in: Dynamic
Programming for Optimal Water Resources Systems Analysis, ed. A.O. Esogbue (Prentice-Hall, Engle-
wood Cliffs, NJ, 1989) pp. 361–372.

[7] E.G. Read and J.A. George, Dual dynamic programming for linear production/inventory systems, Com-
puters & Mathematics with Applications 19(11) (1990) 29–42.

[8] J.M. Velásquez, Objeciones a la programación dinámica dual, Mundo Eléctrico Colombiano, No. 30
(1997).

[9] J.M. Velásquez, P.J. Restrepo and R. Campo, Dual dynamic programming: A note on implementation,
Water Resources Research 35(7) (1999) 2269–2271.


