Skip to main content
Log in

Low-frequency rhythmic electrocutaneous hand stimulation during slow-wave night sleep: Physiological and therapeutic effects

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Neocortical EEG slow wave activity (SWA) in the delta frequency band (0.5–4.0 Hz) is a hallmark of slow wave sleep (SWS) and its power is a function of prior wake duration and an indicator of a sleep need. SWS is considered the most important stage for realization of recovery functions of sleep. Possibility of impact on characteristics of a night sleep by rhythmic (0.8–1.2 Hz) subthreshold electocutaneous stimulation of a hand during SWS is shown: 1st night—adaptation, 2nd night—control, 3d and 4th nights—with stimulation during SWA stages of a SWS. Stimulation caused significant increase in average duration of SWS and EEG SWA power (in 11 of 16 subjects), and also well-being and mood improvement in subjects with lowered emotional tone. It is supposed that the received result is caused by functioning of a hypothetical mechanism directed on maintenance and deepening of SWS and counteracting activating, awakening influences of the afferent stimulation. The results can be of value both for understanding the physiological mechanisms of sleep homeostasis and for development of non-pharmacological therapy of sleep disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rechtshaffen, A. and Kales, A., A Manual of Standardized Terminology Techniques and Scoring System for Sleep States of Human Subjects, Washington, Government Printing Office, 1968.

    Google Scholar 

  2. Iber, C., Ancoli-Israel, S., Chesson, A., and Quan, S.F., The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications, Westchester: American Academy of Sleep Medicine, 2007.

    Google Scholar 

  3. Borbely, A.A., A two process model of sleep regulation, Hum. Neurobio.l, 1982, vol. 1, no. 3, p. 195.

    CAS  Google Scholar 

  4. Esser, S.K., Hill, S.L., and Tononi, G., Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves, Sleep, 2007, vol. 30, p. 1617.

    PubMed  Google Scholar 

  5. Kovalzon, V.M., Osnovy somnologii (Principles of Somnology), Moscow: BINOM, 2011.

    Google Scholar 

  6. Cajochen, C., Foy, R., and Dijk, D.J., Frontal predominance of a relative increase in sleep Delta and theta EEG activity after sleep loss in humans, Sleep Res./Online, 1999, vol. 2, p. 65.

    CAS  Google Scholar 

  7. Finelli, L.A., Borbely, A.A., and Acherman, P., Functional topography of the human non-REM sleep electroencephalogram, Eur. J. Neurosci., 2001, vol. 13, p. 2282.

    Article  PubMed  CAS  Google Scholar 

  8. Shepoval’nikov, A.N., Tsitseroshin, M.N., Rozhkov, V.P., et al., Characteristics of interregional interactions of cortical fields at different stages of normal and hypnotic sleep (according to EEG data), Hum. Pysiol., 2005, vol. 31, no. 2, p. 150.

    Article  Google Scholar 

  9. Kattler, H., Dijk, D.J., and Borbely, A.A., Effect of unilateral somatosensory stimulation prior to sleep on the sleep EEG in humans, J. Sleep Res., 1994, vol. 3, p. 159.

    Article  PubMed  Google Scholar 

  10. Huber, R., Ghilardi, M.F., Massimini, M., et al., Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity, Nat. Neurosci., 2006, vol. 9, p. 1169.

    Article  PubMed  CAS  Google Scholar 

  11. Dijk, D.J. and Czeisler, C.A., Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans, J. Neurosci., 1995, vol. 15, p. 3526.

    PubMed  CAS  Google Scholar 

  12. Brandenberger, G., Ehrhart, J., Piquard, F., and Simon, C., Inverse coupling between ultradian oscillation in Delta wave activity and heart rate variability during sleep, Clin. Neurophysiol, 2001, vol. 112, no. 6, p. 992.

    Article  PubMed  CAS  Google Scholar 

  13. Dijk, D.J., Regulation and functional correlates of slow wave, Sleep. J. Clin. Sleep Med, 2009, vol. 15,suppl. 2, p. S6.

    Google Scholar 

  14. Van Cauter, E., Latta, F., Nedeltcheva, A., et al., Reciprocal interactions between the GH axis and sleep, Growth Horn IGF Res., 2004, vol. 14, suppl. A, p. S10.

    Article  Google Scholar 

  15. Viola, A.U., James, L.M., Archer, S.N., and Dijk, D.J., PER3 polymorphism and cardiac autonomic control: effects of sleep debt and circadian phase, Am. J. Physiol. Heart Circ. Physiol., 2008, vol. 295, no. 5, p. 156.

    Google Scholar 

  16. Pigarev, I.N., Visceral sleep theory, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2005, vol. 55, no. 1, p. 86.

    Google Scholar 

  17. Saletin, J.M. and Walker, M.P., Nocturnal mnemonics: sleep and hippocampal memory processing, Front. Neurol 2012, vol. 3, p. 59.

    PubMed  Google Scholar 

  18. Ukraintseva, Yu.V. and Dorokhov, V.B., Effect of daytime nap on consolidation of declarative memory in humans, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2011, vol. 61, no. 2, p. 161.

    Google Scholar 

  19. Tononi, G. and Cirelli, C., Sleep function and synaptic homeostasis, Sleep Med. Rev., 2006, vol. 10, p. 49.

    Article  PubMed  Google Scholar 

  20. Kovrov, G.V. and Vein, A.M., Stress i son u cheloveka (Human Stress and Sleep), Moscow: Neiromedia, 2004.

    Google Scholar 

  21. Rotenberg, V.S. and Arshavskii, V.V., Poiskovaya aktivnost’ i adaptatsiya (Search Activity and Adaptation), Moscow: Nauka, 1984.

    Google Scholar 

  22. Greene, R.W. and Frank, M.G., Slow wave activity during sleep: functional and therapeutic implications, Neuroscientist, 2010, vol. 16, no. (6), p. 618.

    Article  PubMed  Google Scholar 

  23. Dorokhov, V.B., Somnology and Occupational Safety, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2013, vol. 63, no. 1, p. 33.

    CAS  Google Scholar 

  24. Morgenthaler, T., Kramer, M., Alessi, C., et al., American academy of sleep medicine. Practice parameters for the psychological and behavioral treatment of insomnia: an update. An american academy of sleep medicine report, Sleep, 2006, vol. 29, no. 11, p. 1415.

    PubMed  Google Scholar 

  25. Morin, C.M., Hauri, P.J., Espie, C.A., et al., Nonpharmacologic treatment of chronic insomnia. An American academy of sleep medicine review, Sleep, 1999, vol. 22, no. 8, p. 1134.

    PubMed  CAS  Google Scholar 

  26. Reite, M., Higgs, L., Lebet, J.P., et al., Sleep inducing effect of low energy emission therapy, Bioelectromagnetics, 1994, vol. 15, no. 1, p. 67.

    Article  PubMed  CAS  Google Scholar 

  27. Fedotchev, A.I., Modern non-drug methods of human sleep regulation, Hum. Physiol., 2011, vol. 37, no. 1, p. 113.

    Article  Google Scholar 

  28. Hoedlmoser, K., Dang-Vu, T.T., Desseilles, M., and Schabus, M., Non-pharmacological alternatives for the treatment of insomnia—Instrumental EEG conditioning, a new alternative?, in Melatonin, Sleep and Insomnia, Soriento, Y.E., Ed., New York: Nova Science, 2011, p. 69.

    Google Scholar 

  29. Levin, Ya.I., “Brain music” for treatment of patients with insomnia, Zh. Nevrol. Psikhiatr., 1997, no. 4, p. 39.

    Google Scholar 

  30. Lazic, S.E. and Ogilvie, R.D., Lack of efficacy of music to improve sleep: a polysomnographic and quantitative EEG analysis, Int. J. Psychophysiol., 2007, vol. 63, no. 3, p. 232.

    Article  PubMed  Google Scholar 

  31. Massimini, M., Ferrareli, F., Esser, S.K., et al., Triggering sleep slow waves by transcranial magnetic stimulation, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, p. 496.

    Google Scholar 

  32. Marshall, L., Molle, M., Hallschmid, M., and Born, J., Transcranial direct current stimulation during sleep improves declarative memory, J. Neurosci., 2004, vol. 24, no. 44, p. 9985.

    Article  PubMed  CAS  Google Scholar 

  33. Antonenko, D., Diekelmann, S., Olsen, C., et al., Napping to renew learning capacity: enhanced encoding after stimulation of sleep slow oscillations, Eur. J. Neurosci., 2013, vol. 37, no. 7, p. 1142.

    Article  PubMed  Google Scholar 

  34. Marshall, L., Helgdottir, H., Molle, M., and Born, J., Boosting slow oscillations during sleep potentiates memory, Nature, 2006, vol. 444, p. 610.

    Article  PubMed  CAS  Google Scholar 

  35. Vyazovskiy, V.V., Faraguna, U., Cirelli, G., and Tononi, G., Triggering slow waves during non-REM sleep in the rat by intracortical electrical stimulation: effects of sleep/wake history and background activity, J. Neurophysiol., 2009, vol. 101, p. 1921.

    Article  PubMed  Google Scholar 

  36. Ngo, H.V., Claussen, J.C., Born, J., and Mölle, M., Induction of slow oscillations by rhythmic acoustic stimulation, J. Sleep Res., 2013, vol. 22, no. 1, p. 22.

    Article  PubMed  Google Scholar 

  37. Ngo, H.V., Martinetz, T., Born, J., and Mölle, M., Auditory closed-loop stimulation of the sleep slow oscillation enhances memory, Neuron, 2013, vol. 78, no. 3, p. 545.

    Article  PubMed  CAS  Google Scholar 

  38. Van Der Werf, Y.D., Altena, E., Schoonheim, M.M., et al., Sleep benefits subsequent hippocampal functioning, Nat. Neurosci., 2009, vol. 12, p. 122.

    Article  Google Scholar 

  39. Indursky, P. and Rotenberg, V.S., The change of mood during sleep and REM sleep variables, Int. J. Psychiatry Clin. Pract., 1998, vol. 2-1, p. 47.

    Article  Google Scholar 

  40. Indursky, P., A new applications of rTMS: the sleeping brain and depression, Med. Hypoth., 2001, vol. 57, no. 1, p. 91.

    Article  CAS  Google Scholar 

  41. Indursky, P.A., Markelov, V.V., Shakhnarovich, V.M., and Dorokhov, V.B., The effect of sleep on delta rhythm of the rhythmic subthreshold electrocutaneous hand stimulation during the slow-wave sleep stage, in Trudy XXII sëzda Fiziologicheskogo obshchestva im. I.P. Pavlova, (Proc. XXII Conf. of Physiol. Pavlov Society), Volgograd, 2013, p. 202.

    Google Scholar 

  42. Doskin, V.A., Lavrent’eva, N.A., Miroshnikov, M.P., and Sharai, V.B., A test for differential self-estimation of the functional state, Vopr. Psikhol., 1973, no. 6, p. 141.

    Google Scholar 

  43. Rotenberg, V.S., in Sleep and Sleep Disorders: A Neuropsychopharmacological Approach, Lader, M., Cardinali, D.P., Pandi-Perumal, S.R., Eds., Springer, 2006.

  44. Rotenberg, V.S., Search activity concept: relationship between behavior, health and brain functions, Act. Nerv. Super., 2009, vol. 51, p. 12.

    Google Scholar 

  45. Indursky, P., Correlation between SWS duration and intensity eye movements in sleep cycles at the depression patients, Neurobiol. Sleep-Wakefulness Cycles, 2002, vol. 2, no. 2, p. 56.

    Google Scholar 

  46. Rotenberg, V.S., Kayumov, L., Indursky, P., et al., Slow wave sleep redistribution and REM sleep eye movement density in depression: toward the adaptive function of REM sleep, Homeost. Health Dis., 1999, vol. 39, p. 81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © P.A. Indursky, V.V. Markelov, V.M. Shakhnarovich, V.B. Dorokhov, 2013, published in Fiziologiya Cheloveka, 2013, Vol. 39, No. 6, pp. 91–105.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Indursky, P.A., Markelov, V.V., Shakhnarovich, V.M. et al. Low-frequency rhythmic electrocutaneous hand stimulation during slow-wave night sleep: Physiological and therapeutic effects. Hum Physiol 39, 642–654 (2013). https://doi.org/10.1134/S0362119713060054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119713060054

Keywords

Navigation