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Abstract

In this paper, we propose a winner-take-all method for liegrhierarchical sparse
representations in an unsupervised fashion. We first intedully-connected
winner-take-all autoencoders which use mini-batch stegiso directly enforce a
lifetime sparsity in the activations of the hidden units. then propose the convo-
lutional winner-take-all autoencoder which combines thediits of convolutional
architectures and autoencoders for learning shift-iavdisparse representations.
We describe a way to train convolutional autoencoders laydayer, where in
addition to lifetime sparsity, a spatial sparsity withircedeature map is achieved
using winner-take-all activation functions. We will shokat winner-take-all au-
toencoders can be used to to learn deep sparse represenfatim the MNIST,
CIFAR-10, ImageNet, Street View House Numbers and ToromtreFdatasets,
and achieve competitive classification performance.

1 Introduction

Recently, supervised learning has been developed and useessfully to produce representations
that have enabled leaps forward in classification accuracydveral tasks [1]. However, the ques-
tion that has remained unanswered is whether it is possiiearn as “powerful” representations
from unlabeled data without any supervision. It is still eliglrecognized that unsupervised learning
algorithms that can extract useful features are needeafang problems with limited label infor-
mation. In this work, we exploit sparsity as a generic priottioe representations for unsupervised
feature learning. We first introduce the fully-connectedwér-take-all autoencoders that learn to
do sparse coding by directly enforcing a winner-takdiatime sparsity constraint. We then intro-
duce convolutional winner-take-all autoencoders thatléado shift-invariant/convolutional sparse
coding by directly enforcing winner-take-afbatialandlifetime sparsity constraints.

2 Fully-Connected Winner-Take-All Autoencoders

Training sparse autoencoders has been well studied inté¢natlire. For example, inl[2], a “lifetime
sparsity” penalty function proportional to the KL divergerbetween the hidden unit marginas$ (
and the target sparsity probability)(is added to the cost functionKL (p||5). A major drawback
of this approach is that it only works for certain target sgiges and is often very difficult to find
the right A parameter that results in a properly trained sparse auboenc Also KL divergence
was originally proposed for sigmoidal autoencoders, arigl itot clear how it can be applied to
ReLU autoencoders whefecould be larger than one (in which case the KL divergence caiba
evaluated). In this paper, we propose Fully-Connected @fiake-All (FC-WTA) autoencoders to
address these concerns. FC-WTA autoencoders can aim faaayst sparsity rate, train very fast
(marginally slower than a standard autoencoder), have periyarameter to be tuned (except the
target sparsity rate) and efficiently train all the dictipnatoms even when very aggressive sparsity
rates €.g, 1%) are enforced.
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(a) MNIST, 10% (b) MNIST, 5% (c) MNIST, 2%

Figure 1: Learnt dictionary (decoder) of FC-WTA with 100@t«&n units trained on MNIST

Sparse coding algorithms typically comprise two steps:ghllsinon-linear sparse encoding oper-
ation that finds the “right” atoms in the dictionary, and aeln decoding stage that reconstructs
the input with the selected atoms and update the dictionEing FC-WTA autoencoder is a non-
symmetric autoencoder where the encoding stage is typiaadtack of several ReLU layers and
the decoder is just a linear layer. In the feedforward phafer computing the hidden codes of
the last layer of the encoder, rather than reconstructiagrthut from all of the hidden units, for
each hidden unit, we impose a lifetime sparsity by keepimgitpercent largest activation of that
hidden unit across the mini-batch samples and setting 8teofeactivations of that hidden unit to
zero. In the backpropagation phase, we only backpropdgatrtor through thé percent non-zero
activations. In other words, we are using the min-batchssieg to approximate the statistics of
the activation of a particular hidden unit across all the @@y and finding a hard threshold value
for which we can achievi% lifetime sparsity rate. In this setting, the highly nonbm@ncoder of
the network (ReLUs followed by top-k sparsity) learns to garse encoding, and the decoder of
the network reconstructs the input linearly. At test time, twrn off the sparsity constraint and the
output of the deep ReLU network will be the final represeatatf the input. In order to train a
stacked FC-WTA autoencoder, we fix the weights and trainterdtC-WTA autoencoder on top of
the fixed representation of the previous network.

The learnt dictionary of a FC-WTA autoencoder trained on BNICIFAR-10 and Toronto Face
datasets are visualized in Figl 1 and Eig 2. For large spdesiels, the algorithm tends to learn
very local features that are too primitive to be used forsifamtion (Fig.[Ih). As we decrease
the sparsity level, the network learns more useful feat(loeger digit strokes) and achieves better
classification (Figl_Tb). Nevertheless, forcing too mucrsity results in features that are too global
and do not factor the input into parts (Figl 1c). Section ¢orts the classification results.

Winner-Take-All RBMs. Besides autoencoders, WTA activations can also be usedsinifted
Boltzmann Machines (RBM) to learn sparse representati®umgposé andv denote the hidden and
visible units of RBMs. For training WTA-RBMs, in the posiéyphase of the contrastive divergence,
instead of sampling fronP(h;|v), we first keep the:% largestP(h;|v) for eachh, across the
mini-batch dimension and set the restffh;|v) values to zero, and then samplgaccording to
the sparsified?(h;|v). Filters of a WTA-RBM trained on MNIST are visualized in Fif. We
can see WTA-RBMs learn longer digit strokes on MNIST, whishaall be shown in Sectioh 4.1,
improves the classification rate. Note that the sparsitysAWTA-RBMs (e.g, 30%) should not be
as aggressive as WTA autoencoderg(5%), since RBMs are already being regularized by having
binary hidden states.
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(a) Toronto Face Dataset{ x 48) (b) CIFAR-10 Patchesl( x 11)

Figure 2: Dictionaries (decoder) of FC-WTA autoencodehwit6 hidden units and sparsity of 5%



(a) Standard RBM (b) WTA-RBM (sparsity of 30%)

Figure 3: Features learned on MNIST by 256 hidden unit RBMs.

3 Convolutional Winner-Take-All Autoencoders

There are several problems with applying conventionalsgpaonding methods on large images.
First, it is not practical to directly apply a fully-connedtsparse coding algorithm on high-resolution
(e.g, 256 x 256) images. Second, even if we could do that, we would learn g retundant
dictionary whose atoms are just shifted copies of each otRer example, in Fig[2a, the FC-
WTA autoencoder has allocated differentfilters for the spatternsi(e., mouths/noses/glasses/face
borders) occurring at differentlocations. One way to adslthis problem is to extract random image
patches from input images and then train an unsupervisedihggalgorithm on these patches in
isolation [3]. Once training is complete, the filters can Bediin a convolutional fashion to obtain
representations of images. As discussedlin][3, 4], the nrainl@m with this approach is that if the
receptive field is small, this method will not capture relevizatures (imagine the extremelok 1
patches). Increasing the receptive field size is problemb#&cause then a very large number of
features are needed to account for all the position-speifiations within the receptive field. For
example, we see that in Fig.12b, the FC-WTA autoencoderatscdifferent filters to represent the
same horizontal edge appearing at different locationgmitte receptive field. As aresult, the learnt
features are essentially shifted versions of each othdghaesults in redundancy between filters.
Unsupervised methods that make use of convolutional aactoites can be used to address this
problem, including convolutional RBMs][5], convolutiodaBNs [6,5], deconvolutional networks
[7] and convolutional predictive sparse decompositiondP, [8]. These methods learn features
from the entire image in a convolutional fashion. In thigiagt the filters can focus on learning the
shapesi(e., “what”), because the location informatione(, “where”) is encoded into feature maps
and thus the redundancy among the filters is reduced.

In this section, we propose Convolutional Winner-Take{@IDNV-WTA) autoencoders that learn
to do shift-invariant/convolutional sparse coding by dihe enforcing winner-take-akpatial and
lifetime sparsity constraints. Our work is similar in spirit to degolutional networks[7] and convo-
lutional PSD [4[8], but whereas the approach in that work isreak apart the recognition pathway
and data generation pathway, but learn them so that theyoasistent, we describe a technique for
directly learning a sparse convolutional autoencoder.

A shallow convolutional autoencoder maps an input vecta set of feature maps in a convolu-
tional fashion. We assume that the boundaries of the inpagé@rare zero-padded, so that each
feature map has the same size as the input. The hidden refatse is then mapped linearly to the
output using a deconvolution operation (ApperidixIA.1). Paeameters are optimized to minimize
the mean square error. A non-regularized convolutionalendoder learns useless delta function
filters that copy the input image to the feature maps and cagk the feature maps to the output.
Interestingly, we have observed that even in the presendemdisind[9]/dropout[10] regulariza-
tions, convolutional autoencoders still learn uselestadahctions. Fig[4a depicts the filters of a
convolutional autoencoder with 16 maps, 20% input and 50%dm unit dropout trained on Street
View House Numbers dataséet [11]. We see that the 16 learta fleictions make 16 copies of the
input pixels, so even if half of the hidden units get droppedrd training, the network can still
rely on the non-dropped copies to reconstruct the inputs filghlights the need for new and more
aggressive regularization techniques for convolutiontd@ncoders.

The proposed architecture for CONV-WTA autoencoder is ctediin Fig.[4b. The CONV-WTA
autoencoder is a non-symmetric autoencoder where the entguically consists of a stack of
several ReLU convolutional layerse.@, 5 x 5 filters) and the decoder is a linear deconvolutional
layer of larger sized.g, 11 x 11 filters). We chose to use a deep encoder with smaller fileegg (

5 x 5) instead of a shallow one with larger filtes g, 11 x 11), because the former introduces more
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Figure 4: (a) Filters and feature maps of a denoising/dropoovolutional autoencoder, which
learns useless delta functions. (b) Proposed architefiu@®@ONV-WTA autoencoder with spatial
sparsity (128conv5-128conv5-128deconvll).

non-linearity and regularizes the network by forcing it vl a decomposition over large receptive
fields through smaller filters. The CONV-WTA autoencoden&@ned under two winner-take-all
sparsity constraintspatial sparsityandlifetime sparsity

3.1 Spatial Sparsity

In the feedforward phase, after computing the last featuapaf the encoder, rather than recon-
structing the input from all of the hidden units of the featunaps, we identify the single largest
hidden activity within each feature map, and set the resi@frctivities as well as their derivatives

to zero. This results in a sparse representation whoseitypakeel is the number of feature maps.

The decoder then reconstructs the output using only theedaiilden units in the feature maps and
the reconstruction error is only backpropagated throughdthidden units as well.

Consistent with other representation learning approashesas trianglé-means|[3] and deconvo-
lutional networks|([7,_12], we observed that using a softersity constraint at test time results in
a better classification performance. So, in the CONV-WTAoantoder, in order to find the final
representation of the input image, we simply turn off thersiparegularizer and use ReLU con-
volutions to compute the last layer feature maps of the esmcoaffter that, we apply max-pooling
(e.g, over4 x 4 regions) on these feature maps and use this representatiolagsification tasks

or in training stacked CONV-WTA as will be discussed in Sexfi8.3. Fig[b shows a CONV-WTA

autoencoder that was trained on MNIST.
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Figure 5: The CONV-WTA autoencoder with 16 first layer filtarsd 128 second layer filters trained
on MNIST: (a) Input image. (b) Learnt dictionary (deconu@a filters). (c) 16 feature maps while
training (spatial sparsity applied). (d) 16 feature mapsrdfaining (spatial sparsity turned off). (e)
16 feature maps of the first layer after applying local magtjmg. (f) 48 out of 128 feature maps of
the second layer after turning off the sparsity and applidegl max-pooling (final representation).




(a) Spatial sparsity only (b) Spatial & lifetime sparsity 20% (c) Spatial & lifetime sparsity 5%

Figure 6: Learnt dictionary (deconvolution filters) of CONVTA autoencoder trained on MNIST
(64conv5-64conv5-64convs-64deconvll).

3.2 Lifetime Sparsity

Although spatial sparsity is very effective in regulargithhe autoencoder, it requires all the dictio-
nary atoms to contribute in the reconstruction of every imagye can further increase the sparsity
by exploiting the winner-take-difetimesparsity as follows. Suppose we have 128 feature maps and
the mini-batch size is 100. After applying spatial spargiy each filter we will have 100 “winner”
hidden units corresponding to the 100 mini-batch imagesirigdeedforward phase, for each filter,
we only keep the&% largest of these 100 values and set the rest of activationertn Note that
despite this aggressive sparsity, every filter is forcedetougdated upon visiting every mini-batch,
which is crucial for avoiding the dead filter problem thatofioccurs in sparse coding.

Fig. [@ and Fig.[ 7 show the effect of the lifetime sparsity oa thctionaries trained on MNIST
and Toronto Face dataset. We see that similar to the FC-W1deauoders, by tuning the lifetime
sparsity of CONV-WTA autoencoders, we can aim for differgdrsity rates. If no lifetime sparsity
is enforced, we learn local filters that contribute to eveajning point (Fig.[6a and Ta). As we
increase the lifetime sparsity, we can learn rare but useftires that result in better classification
(Fig.[6h). Nevertheless, forcing too much lifetime spagrsitll result in features that are too diverse
and rare and do not properly factor the input into parts (Edand 7b).

3.3 Stacked CONV-WTA Autoencoders

The CONV-WTA autoencoder can be used as a building blockrim fphierarchy. In order to train
the hierarchical model, we first train a CONV-WTA autoenauaatethe input images. Then we pass
all the training examples through the network and obtaiir tiepresentations (last layer of the en-
coder after turning off sparsity and applying local max-pug). Now we treat these representations
as a new dataset and train another CONV-WTA autoencodertiinothe stacked representations.
Fig.[H(f) shows the deep feature maps of a stacked CONV-W#&awlas trained on MNIST.

3.4 Scaling CONV-WTA Autoencodersto Large I mages

The goal of convolutional sparse coding is to leahift-invariantdictionary atoms and encoding
filters. Once the filters are learnt, they can be applied dotiemally to any image of any size,
and produce a spatial map corresponding to different looatat the input. We can use this idea
to efficiently train CONV-WTA autoencoders on datasets awniig large images. Suppose we
want to train an AlexNet [1] architecture in an unsupervitaeshion on ImageNet, ILSVRC-2012

=]
-
(a) Spatial sparsity only (b) Spatial and lifetime sparsity of 10%

Figure 7: Learnt dictionary (deconvolution filters) of CONVTA autoencoder trained on the
Toronto Face dataset (64conv7-64conv7-64conv7-64dé&ynv
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(a) Spatial sparsity (b) Spatial and lifetime sparsity of 10%

Figure 8: Learnt dictionary (deconvolution filters) of CONVTA autoencoder trained on ImageNet
48 x 48 whitened patches. (64conv5-64conv5-64conv5-64decgnvll

(224x224). In order to learn the first layet x 11 shift-invariant filters, we can extract medium-
size image patches of si28 x 48 and train a CONV-WTA autoencoder with 64 dictionary atoms
of size 11 on these patches. This will result in 64 shift-imasat filters of sizell x 11 that can
efficiently capture the statistics @8 x 48 patches. Once the filters are learnt, we can apply them in
a convolutional fashion with the stride éto the entire images and after max-pooling we will have
a64 x 27 x 27 representation of the images. Now we can train another C@NY: autoencoder

on top of these feature maps to capture the statistics ofyadaeceptive field at different location
of the input image. This process could be repeated for meltiyers. Fig[B shows the dictionary
learnt on the ImageNet using this approach. We can see thaigmnsing lifetime sparsity, we could
learn very diverse filters such as corner, circular and bktbaors.

4 Experiments

In all the experiments of this section, we evaluate the tpali unsupervised features of WTA
autoencoders by training a naive linear classifier,(SVM) on top them. We did not fine-tune the
filters in any of the experiments. The implementation dstaflall the experiments are provided in
AppendiXA (n the supplementary materialsThe open source code will be publicly available.

4.1 Winner-Take-All Autoencoderson MNIST

The MNIST dataset has 60K training points and 10K test poifabldl compares the performance
of FC-WTA autoencoder and WTA-RBMs with other permutationariant architectures. Tallel2a
compares the performance of CONV-WTA autoencoder withrotbavolutional architectures. In
these experiments, we have used all the available traialvgd (V = 60000 points) to train a linear
SVM on top of the unsupervised features.

An advantage of unsupervised learning algorithms is thigyatn use them in semi-supervised sce-
narios where labeled data is limited. Tablé 2b shows the-sepervised performance of a CONV-
WTA where we have assumed on\ylabels are available. In this case, the unsupervised featue
still trained on the whole dataset (60K points), but the S\éNrained only on theéV labeled points
whereN varies from 300 to 60K. We compare this with the performarfcesupervised deep con-
vnet (CNN) [17] trained only on th& labeled training points. We can see supervised deep learnin
techniques fail to learn good representations when latdéalis limited, whereas our WTA algo-
rithm can extract useful features from the unlabeled dadzaahieve a better classification. We also
compare our method with some of the best semi-superviseditgaresults recently obtained by
convolutional kernel networks (CKN) 6] and convolutibseattering networks (SC) [15]. We see
CONV-WTA outperforms both these methods when very few lsbet availableN < 1K).

Error Rate
Shallow Denoising/Dropout Autoencoder (20% input and 5086ién units dropout)] 1.60%
Stacked Denoising Autoencoder (3 layefs) [9] 1.28%
Deep Boltzmann Machines [113] 0.95%
k-Sparse Autoencoder [14] 1.35%
Shallow FC-WTA Autoencoder, 2000 units, 5% sparsity 1.20%
Stacked FC-WTA Autoencoder, 5% and 2% sparsity 1.11%
Restricted Boltzmann Machines 1.60%
Winner-Take-All Restricted Boltzmann M achines (30% spar sity) 1.38%

Table 1: Classification performance of FC-WTA autoencodatires + SVM on MNIST.



Error N CNN[L7] || ckN[i6] | SC[15] | CONV-WTA
Deep Deconvolutional Network [[7, 12]| 0.84% | | 300 | 7.18% 4.15% | 4.70% 3.47%
Convolutional Deep Belief Network 5] 0.82% | | 600 || 5.28% - - 2.37%
Scattering Convolution Network [15] | 0.43% 1K 3.21% 2.05% | 2.30% 1.92%
Convolutional Kernel Network [16] 0.39% 2K 2.53% 1.51% | 1.30% 1.45%
CONV-WTA Autoencoder, 16 maps 1.02% 5K 1.52% 1.21% | 1.03% 1.07%
CONV-WTA Autoencoder, 128 maps | 0.64% | | 10K || 0.85% 0.88% | 0.88 % 0.91%
Stacked CONV-WTA, 128 & 2048 maps | 0.48% | [ 60K || 0.53% || 0.39% | 0.43% 0.48%

(a) Unsupervised features + SVM trained on (b) Unsupervised features + SVM trained on few
N = 60000 labels (no fine-tuning) labelsN. (semi-supervised)

Table 2: Classification performance of CONV-WTA autoencdcined on MNIST.

4.2 CONV-WTA Autoencoder on Street View House Numbers

The SVHN dataset has about 600K training points and 26K st Tabld B reports the classi-
fication results of CONV-WTA autoencoder on this dataset.fiWge trained a shallow and stacked
CONV-WTA on all 600K training cases to learn the unsupenifeatures, and then performed two
sets of experiments. In the first experiment, we used all h@J0K available labels to train an SVM
on top of the CONV-WTA features, and compared the result wathvolutionalk-means|[[11]. We
see that the stacked CONV-WTA achieves a dramatic improaemer the shallow CONV-WTA
as well ask-means. In the second experiment, we trained an SVM by usihg® = 1000 la-
beled data points and compared the result with deep varitautoencoders [18] trained in a same
semi-supervised fashion. Fig. 9 shows the learnt dictippBCONV-WTA on this dataset.

Accuracy
Convolutional Triangl&k-means|[11] 90.6%
CONV-WTA Autoencoder, 256 maps (N=600K) 88.5%
Stacked CONV-WTA Autoencoder, 256 and 1024 maps (N=600K) 93.1%
Deep Variational Autoencoders (non-convolutional) [183+(000) 63.9%
Stacked CONV-WTA Autoencoder, 256 and 1024 maps (N=1000) 76.2%
Supervisedaxout Network|[19] (N=600K) 97.5%

Table 3: CONV-WTA unsupervised features + SVM traineddilabeled points of SVHN dataset.
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(a) Contrast Normalized SVHN (b) Learnt Dictionary (64conv5-64conv5-64conv5-64deddr)

Figure 9: CONV-WTA autoencoder trained on the Street ViewstoNumbers (SVHN) dataset.

4.3 CONV-WTA Autoencoder on CIFAR-10

Fig.[104 reports the classification results of CONV-WTA off&R-10. We see when a small num-
ber of feature maps< 256) are used, considerable improvements dw@neans can be achieved.
This is because our method can learn a shift-invariantatietiy as opposed to the redundant dictio-
naries learnt by patch-based methods suchramans. In the largest deep network that we trained,
we used 256, 1024, 4096 maps and achieved the classificatierot 80.1% without using fine-
tuning, model averaging or data augmentation. It was showWgd] that the NOMP-20 algorithm
can achieve classification rate of 82.9%. However, it rexguR0 costly OMP operations in every
iteration and uses model averaging over 7 different dietii@s trained with much larger number of
feature maps (3200, 6400, 6400 maps). Also, it was showrljtfiat trianglek-means can achieve
82.0% accuracy by learning the connectivity between laysirsg a similarity metric on the feature
maps. We only used full-connectivity between layers andnditileverage this idea in this work.
Also, it is shown in[[22] that the Exemplar CNN algorithm casheve 82.0% accuracy, but it has
to rely on a heavy data augmentation (up to 300 transformsfiimage patch) in order to do so.



Accuracy

Shallow Convolutional Triangle-means (64 maps) [[3] 62.3%
Shallow CONV-WTA Autoencoder (64 maps) 68.9%
Shallow Convolutional Trianglke-means (256 map<)|[3] 70.2%
Shallow CONV-WTA Autoencoder (256 maps) 72.3%
Shallow Convolutional Triangl&-means (4000 maps<)|[3] | 79.6%
Deep Trianglék-means (1600, 3200, 3200 maps)|[21] 82.0%
Convolutional Deep Belief Net (2 layers) [6] 78.9%
Exemplar CNN (300x Data Augmentation) [22] 82.0%
NOMP (3200,6400,6400 maps + Averaging 7 Modéls) [20]82.9%
Stacked CONV-WTA (256, 1024 maps) 77.9%
Stacked CONV-WTA (256, 1024, 4096 maps) 80.1%
SupervisedVlaxout Network[[19] 88.3%

(@) Unsupervised features + SVM (without fine-tuning)  (b) Learnt dictionary (deconv-filters)
64conv5-64conv5-64convs-64deconv?

Figure 10: CONV-WTA autoencoder trained on the CIFAR-1(adat.

Fig. shows the learnt dictionary on the CIFAR-10 data¥ét can see that the network has
learnt diverse shift-invariant filters such as point/combetectors as opposed to Fig.] 2b that shows
the position-specific filters of patch-based methods.

5 Discussion

Relationship of FC-WTA to k-spar seautoencoder s. k-sparse autoencoders impose sparsity across
different channels (population sparsity), whereas FC-WalAoencoder imposes sparsity across
training examples (lifetime sparsity). When aiming for lgparsity levelsk-sparse autoencoders
use a scheduling technique to avoid the dead dictionary ptoblem. WTA autoencoders, however,
do not have this problem since all the hidden units get upldap®n visiting every mini-batch no
matter how aggressive the sparsity rate is (no schedulognedd). As a result, we can train larger
networks and achieve better classification rates.

Relationship of CONV-WTA to deconvolutional networ ks and convolutional PSD. Deconvolu-
tional networks([7], 12] are top down models with no direcklirom the image to the feature maps.
The inference of the sparse maps requires solving theiitert8TA algorithm, which is costly.
Convolutional PSDI[4] addresses this problem by trainingaeameterized encoder separately to
explicitly predict the sparse codes using a soft threshgldperator. Deconvolutional networks and
convolutional PSD can be viewed as the generative decodkecoder paths of a convolutional
autoencoder. Our contribution is to propose a specific witalee-all approach for training a convo-
lutional autoencoder, in which both paths are trained fpinsing direct backpropagation yielding
an algorithm that is much faster, easier to implement andre@mmuch larger networks.

Relationship to maxout networks. Maxout networks[[19] take the max across different channels
whereas our method takes the max across space and minidiaiehsions. Also the winner-take-all
feature maps retain the location information of the “wirgiavithin each feature map and different
locations have different connectivity on the subsequesrs whereas the maxout activity is passed
to the next layer using weights that are the same regardiegsich unit gave the maximum.

6 Conclusion

We proposed the winner-take-all spatial and lifetime sparsethods to train autoencoders that
learn to do fully-connected and convolutional sparse apdifle observed that CONV-WTA autoen-
coders learn shift-invariant and diverse dictionary atasmepposed to position-specific Gabor-like
atoms that are typically learnt by conventional sparserapdiethods. Unlike related approaches,
such as deconvolutional networks and convolutional PSBrrathod jointly trains the encoder and
decoder paths by direct back-propagation, and does notrecgn iterative EM-like optimization
technique during training. We described how our method @sdaled to large datasets such as
ImageNet and showed the necessity of the deep architectadhteve better results. We performed
experiments on the MNIST, SVHN and CIFAR-10 datasets and/etidhat the classification rates
of winner-take-all autoencoders are competitive with tiagesof-the-art. We showed our method is
particularly effective in the semi-supervised settingerelimited labeled data is available.
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Appendix A Implementation Details

In this section, we describe the network architectures gmehparameters that were used in the
experiments. While most of the conventional sparse codiggrishms require complex matrix
operations such as matrix inversion or SVD decompositiolA\&utoencoders only require tsert
operation in addition to matrix multiplication and convtitun which are all efficiently implemented
in most GPU libraries. We used Alex Krizhevskgada-convnetonvolution kernels[1] for this
work.

A.1 Deconvolution Kernels

At the decoder of a convolutional autoencoder, deconvarhati layers are used. The deconvolu-
tion operation is exactly the reverse of convolutior.( its forward pass is the backward pass of
convolution). For example, whereas a strided convolutecreases the feature map size, a strided
deconvolution increases the map size. We implemented tt@ngelution kernels by minor modifi-
cations of current available GPU kernels for the convolutiperation.

A.2 Effect of Tied Weights

We found that tying the encoder and decoder of FC-WTA autoéers helps the generalization
performance of them. But tying the convolution and decomioh weights of WTA-CONV autoen-
coders hurts the generalization performance (data notshdie think this is because the CONV-
WTA autoencoder is already very regularized by the aggresgarsity constraints and tying the
weights results in too much regularization.

A.3 WTA-CONV Autoencoder on MNIST

On the MNIST dataset, we trained two networks:

Shallow CONV-WTA Autoencoder (128 maps). In the shallow architecture, we useéds filters
with a7 x 7 receptive field applied at strides bfpixel. After training, we used max-pooling over
5 x 5 regions at strides df pixels to obtain the final28 x 10 x 10 representation. SVM was then
applied to this representation for classification.

Stacked CONV-WTA Autoencoder (128, 2048 maps). In the deep architecture, we trained another
2048 feature maps on top of the pooled feature maps of the firstorktwith a filter width of3
applied at strides of pixel. After training, we used max pooling ov&rx 3 regions at strides df
pixels to obtain the fina2048 x 5 x 5 representation. SVM was then applied to this represemtatio
for classification.

Semi-Supervised CONV-WTA Autoencoder. In the semi-supervised setup, the amount of labeled
data was varied fromV = 300 to N = 60000. We ensured the dataset is balanced and each
class has the same number of labeled points in all the expatim We used the stacked CONV-
WTA autoencoder (128, 2048 maps) trained in the previous pad trained an SVM on top of the
unsupervised features using orlylabeled data.

A4 WTA-CONV Autoencoder on SVHN

The Street View House Numbers (SVHN) dataset consists afits#@0,000 images (both the dif-
ficult and the simple sets) and 26,000 test images. We firdy ghpbal contrast normalization to
the images and then used local contrast normalization wsi@gussian kernel to preprocess each
channel of the images. This is the same preprocessing thaédsin[19]. The contrast normalized
SVHN images are shown in Fig.19b. We trained two networks endhtaset.

CONV-WTA Autoencoder (256 maps). The architecture used for this network is 256conv3-
256co0nv3-256conv3-256deconv?. After training, we useg-poling on the las256 feature maps
of the encoder, ovet x 6 regions at strides of pixels to obtain the fina56 x 8 x 8 representation.
SVM was then applied to this representation for classificatMe observed that having a stack of
conv3 layers instead of a 256conv7 encoder, significanthrawved the classification rate.
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Stacked CONV-WTA Autoencoder (256, 1024 maps). In the stacked architecture, we trained
another1 024 feature maps on top of the pooled feature maps of the firstorkfwith a filter width

of 3 applied at strides of pixel. After training, we used max pooling ov&i 3 regions at strides of

2 pixels to obtain the final024 x 4 x 4 representation. SVM was then applied to this represemtatio
for classification.

Semi-Supervised CONV-WTA Autoencoder. In the semi-supervised setup, we assumed only
N=1000 labeled data is available. We used the stacked CON®¥-&toencoder (256, 1024 maps)
trained in the previous part, and trained an SVM on top of theupervised features using only
N = 1000 labeled data.

A5 WTA-CONV Autoencoder on CIFAR-10

On the CIFAR-10 dataset, we used global contrast normalizébllowed by ZCA whitening with
the regularization bias of 0.1 to preprocess the datases. i3 the same preprocessing that is used
in [3]]. We trained three networks on CIFAR-10.

CONV-WTA Autoencoder (256 maps). The architecture used for this network is 256conv3-
256co0nv3-256conv3-256deconv?. After training, we useg-poling on the las256 feature maps
of the encoder, ovet x 6 regions at strides of pixels to obtain the find}56 x 8 x 8 representation.
SVM was then applied to this representation for classificati

Stacked CONV-WTA Autoencoder (256, 1024 maps). For this network, we trained anoth&d24
feature maps on top of the pooled feature maps of the firstarkfwith a filter width of3 applied
at strides ofl pixel. After training, we used max pooling ov&rx 3 regions at strides df pixels
to obtain the finall024 x 4 x 4 representation. SVM was then applied to this represemtétio
classification.

Stacked CONV-WTA Autoencoder (256, 1024, 4096 maps). For this model, we first trained a
CONV-WTA network with the architecture of 256conv3-256e8+256conv3-256deconv?. After
training, we used max pooling on the 128t feature maps of the encoder, ok 3 regions at
strides of2 pixels to obtain &56 x 16 x 16 representation. We then trained anoth@24 feature
maps with filter width of3 and stride ofl on top of the pooled feature maps of the first layer. We
then obtained the second layer representation by max ppilal 024 feature maps with a pooling
stride of2 and width of3 to obtain al024 x 8 x 8 representation. We then trained anoth@96
feature maps with filter width of and the stride of on top of the pooled feature maps of the second
layer. Then we used max-pooling on th@)6 feature maps with a pooling width &fapplied at
strides of2 pixels to obtain the finad096 x 4 x 4 representation. An SVM was trained on top of
the final representation for classification.
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