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ABSTRACT

Pathfinder network scaling is a graph sparsification technique that
has been popularly used due to its efficacy of extracting the “im-
portant” structure of a graph. However, existing algorithms to
compute the pathfinder network (PFNET) of a graph have pro-
hibitively expensive time complexity for large graphs: O(n3) for
the general case and O(n2 logn) for a specific parameter setting,
PFNET(r = ∞, q = n− 1), which is considered in many applica-
tions. In this paper, we introduce the first distributed technique to
compute the pathfinder network with the specific parameters (r = ∞

and q = n−1) of a large graph with millions of edges. The results of
our experiments show our technique is scalable; it efficiently utilizes
a parallel distributed computing environment, reducing the running
times as more processing units are added.

1 INTRODUCTION

Graphs are versatile for representing complex data in many do-
mains [5, 15, 24]. Recently, the phenomena of Big Data led to an
explosive growth of data production that revealed many limitations
of traditional analysis and visualization techniques for large and
complex graphs in terms of scalability and effectiveness.

For a large graph, many practices often employ sparsification
(or simplification) techniques as a data reduction operation, which
makes faster to analyze and visualize a large graph. A key challenge
for sparsification techniques is removing some edges while maintain-
ing certain structural properties of the input graph. These structural
properties include shortest paths [14], community structure [17],
and spectral properties [7]. In other words, a “good” sparsification
technique reduces noise in the data and reveals “important” structure
of the graph for the given problem.

Pathfinder network scaling is one of the popularly used sparsifica-
tion techniques [40,41]. This technique has been extensively studied
due to its efficacy of extracting the “backbone” of a graph [13,45], al-
lowing the display of interrelationships and local structures explicitly
and more accurately [12]. It has been used in many different appli-
cations, such as visual navigation [9], data mining [10], author co-
citation analysis [8, 45], latent domain knowledge visualization [12],
communication networks design [42], mental models discovery and
evaluation [26], animated visualization of toxins [13], and automated
text summarization [35]. However, pathfinder networks (PFNETs)
have rarely been used on large graphs so far due to their remarkable
computation complexity of O(n3) or higher [21, 37, 38, 41]. That
bound was later lowered to O(n2 logn) by using specific parameter
settings (r = ∞ and q = n− 1), valid for the majority of PFNET
applications [37].

In this paper, we present a distributed algorithm for computing
the PFNET(r = ∞, q = n−1) of a graph called GRAPHRAY, that
is able to “X-Ray” large graphs. The fundamental idea of our dis-
tributed algorithm comes from a strong relationship between the
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minimum spanning tree (MST) problem and the PFNET problem.
[25]. We create a greedy, distributed algorithm capable of finding a
MST of a graph and we add a specific logic so that it would yield
the PFNET of the graph. We design and implement GRAPHRAY
in Apache Giraph [4]. Giraph is the open-source counterpart of
Google’s Pregel [29]. We adopt Giraph as our framework of choice
for two main reasons: first, it runs on top of Apache Hadoop1, a
popular BigData processing platform, and hence can be run on any
cluster running it. Given the popularity of such environments, this
means making our approach available to a broad audience. Second,
it gives us a powerful yet intuitive programming interface to write
iterative graph algorithms that harness the distributed environment
horsepower: the “think like a vertex” (TLAV) approach [30].

We test GRAPHRAY on modern platform-as-a-service environ-
ments with graphs with million of edges. The results of our ex-
periments show our technique is scalable efficiently utilizes the
distributed environment, reducing the running times as more ma-
chines are added to the cluster. In addition, our technique allows
to compute the PFNET of large graphs in reasonable time. To the
best of our knowledge, this is the first distributed algorithm for
calculating PFNETs.

2 BACKGROUND AND RELATED WORK

In this section, we first introduce the graph sparsification; we then
describe the pathfinder network scaling and finally the previous
attempts at finding an efficient algorithm to apply such technique.

2.1 Graph Sparsification

Graph sparsification algorithms aim at reducing a dense graph
(Θ(n2) edges, with n the number of vertices) to a sparser one (O(n)
edges) while maintaining its key structural properties [28].

A well known and studied approach that serves this purpose is
the MST [25]. Chen and Morris [13] directly compare to PFNETs
and MSTs for the analysis of dynamic graphs. Their goal was to
find out the strengths and weaknesses of the two methods when used
for the visualization of the evolution of networks. Their evaluation
concerned both their effectiveness and their computational cost. The
authors concluded that MSTs remove edges that may disrupt high-
order shortest paths, while PFNETs kept the “cohesiveness” of the
network, thus giving more interpretable growth patterns. On the
other hand, MSTs are more efficient to compute.

Fung et al. [18] present a general framework for graph sparsifi-
cation. The authors claim their approach is successful in reducing
the number of edges up to O(n logn/e2) in O(m)+ Õ(n/e2) time2

(weighted case).
Ahn et al. [1,2] deal with dynamic graph streams and the problem

of computing their properties (“sketches”) without storing the entire
graph. Purohit et al. [36] present the graph coarsening problem to
find a succinct representation of a network preserving its diffusion
characteristics.

Simmelian backbones [33] have been introduced by Nick et al.
to extract the essential relationships in networks representing social
interactions. Given an edge scoring method S (such as the number
of triangles an edge is contained in) and a node u, this technique

1http://apache.hadoop.org
2 f (n) = Õ(g(n)) is shorthand for f (n) = O(g(n) logk g(n)).
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introduces the notion of “reweighting” the edges by a rank-ordered
list of their neighborhood according to S(u, ·).

Brandes et al. [6] tackle the problem of untangling hairball draw-
ings produced by graphs with low variance in pairwise shortest
path distances by taking advantage of Simmelian backbones [33].
Given a graph G = (V,E), the edge weights are computed using
the technique described by Nick et al. [33]. Then, a union of all
the maximum spanning trees of the graph is created, whose edges
belong to set Eunion. Once done, the edges in E \Eunion with the
lowest weights are pruned, leaving the edges in set Ethreshold . A
drawing is then obtained from graph G′ = (V,Eunion ∪Ethreshold).
This approach keeps the graph connected while maintaning the local
variations into account.

Finally, Lindner et al. [28] present a survey about both sparsifi-
cation methods and node/edge sampling techniques, also proposing
metrics to evaluate the resulting pruned networks.

2.2 Pathfinder Network Scaling
The pathfinder network scaling is a structural and procedural model-
ing technique designed for extracting underlying patterns in graphs.

Given an undirected weighted graph G = (V,E) with edge weight
w(e), and two parameters r (real) and q (integer), the pathfinder
network scaling PFNET (G,r,q) = (V,E ′ ⊆ E), removes an edge e
between vertices u and v if and only if there exists a path P, between
the same vertices and with a length less or equal than q, that makes
that edge violate the triangle inequality:

W (Puv)≤ w(euv) (1)

The parameter r defines the metric to be used to weigh the paths. It
is known as Minkowski r-metric and is defined as follows:

W (P) =

(
∑
e∈P

w(e)r

)1/r

(2)

When r = 1, the weight of the path is the sum of the weights of its
edges; when r = 2, it resembles the Euclidean distance. When r goes
to ∞, W (P) is equal to the Chebyshev distance, meaning that the
distance between any two vertices is the maximum weight associated
with any link along the path. The original algorithm presented by
Schvaneveldt et al. [41] in 1989 was able to extract a PFNET from
a graph at the expense of a time complexity hitting a remarkable
O(n4).

2.3 Speeding Up PFNET Calculation
Many attempts have been made to lower the O(n4) bound. Guerrero-
Bote et al. [21] could lower the time complexity of the algorithm
to O(n3 logn). Later, Quirin et al. furtherly improved the algorithm
achieving O(n3) [38]. To the best of our knowledge, this is the best
result for the general case.

There is a very close relationship between MSTs and PFNETs:
PFNET (G,∞,n− 1) yields the union set of the edges of all the
possible MSTs of a network [13, 40]. It is worth remarking that
if all the edge weights in a graph are distinct, there exists one and
only one MST for that graph [25]. Following this important finding,
a new algorithm was introduced by Quirin et al. [37] capable of
extracting the pathfinder edges from a network in O(n2 logn) time,
parametrized to r = ∞ and q = n− 1. This means that given any
edge e ∈ E, if there’s a path whose cost is less than w then e won’t
be part of the PFNET. This approach is not feasible for the general
case, but extracts the PFNET with the least number of edges. It has
been used in the majority of PFNETs applications [13, 45] and for
visualization purposes [11]. This finding also yields an important
corollary: the pruned networks preserve the connectedness of the
original graph (PFNET extraction won’t disconnect the graph).

White et al. [45] explore a parallel approach to speed up the com-
putation of PFNETs. Their contribution include two algorithms: a

direct parallelization of the binary pathfinder algorithm [21] called
MT-PFN and a partition based PFNET algorithm (PB-PFN) which
sets the r and q parameters respectively to ∞ and n− 1. Both of
the two are optimized to leverage the multi-core architecture. The
authors state that PB-PFN performs well on sparse graphs, but for
denser graphs the MT-PFN alternative is advised; MT-PFN is able
to tackle the general problem, while the other cannot. Their ex-
periments showed a substantial increase in performance over the
serial implementation but the tests were limited to graphs with 2,000
vertices.

3 GRAPHRAY

In this section we discuss the GRAPHRAY algorithm. We first
describe the programming model, focusing on the challenges that a
distributed environment poses before discussing the details of our
approach.

3.1 Distributed Approach
In this section, we introduce the Giraph framework and discuss the
details of how we designed our distributed pathfinder algorithm.

3.1.1 Giraph Programming Model
By distributed algorithm we refer to an algorithm meant to be run on
a distributed system. By definition, a distributed system is made up
by several independent computing units (workers) that collaborate
to solve a problem and use messages to communicate with each
other [3]. Giraph follows follows the bulk-synchronous program-
ming model [43] and the “think like a vertex” (TLAV) approach. The
former means that the computation is synchronous and split into
steps (called supersteps). When the computation starts, the input
data is split into chunks and assigned to the workers. The comput-
ing units execute the same code simultaneously and independently
from the others, exchanging information with one another by using
messages. It is worth remarking that each machine of the distributed
system might host one or more workers at the same time. The TLAV
approach applies a user defined function iteratively over the vertices
of a graph. Instead of having a shared memory as in centralized
graph algorithms, this approach employs a local, vertex centric per-
spective. To perform its program, each vertex can access its state and
send messages to its neighbors; these messages will be delivered at
the beginning of the next superstep. This approach improves locality,
demonstrates linear scalability, and can be adopted to reinterpret
many centralized iterative graph algorithms [30].

To develop an efficient implementation of a distributed graph
algorithm, several challenges have to be faced. These include op-
timize communication load (C1), guarantee correctness (C2) and
limit the number of iterations (C3). Several choices made during
the implementation had these key principles in mind and will be
discussed in the following sections.

3.1.2 Notation
From now on, unless stated otherwise, we assume graphs to be
undirected and connected. Each vertex can be identified by its
unique numerical ID. The term fragment refers to a subset of the
graph vertices. One of the fragment’s vertices assumes the role
of root, whose ID is the index (or identity) of the fragment. The
function maxID(F) takes a set of fragments F as parameter and
returns highest ID between the fragments in F . Edges are weighted
and carry a label that identifies their state during the computation.
The function w(e ∈ E) returns the weight of the current edge. And
edge e adjacent to vertex u and v is referred to as e = (u,v).

3.1.3 GRAPHRAY Overview
As already stated, there’s a strong relationship between the MSTs
and PFNETs [13], the latter being a generalization of the former.
The MST problem is very well known in graph theory, and has been



Algorithm 1 GraphRay
Input: Weighted undirected graph G = (V,E)
Output: PFNET (G,∞,n−1)

1: F ←V . Set each vertex v as root of its own fragment set
2: while |F |> 1 do
3: for each fragment f ∈ F do
4: Floe← FINDLOEFRAGMENTS( f )
5: for each fragment fcandidate ∈ Floe do
6: if ¬ CONNECTIONTEST( fcandidate) then
7: Floe← Floe \ fcandidate
8: end if
9: end for

10: fmax← maxID(Floe)
11: if i( fmax)> i( f ) then
12: MERGEFRAGMENTS( f , fmax)
13: F ← F \ f
14: else
15: for each fragment fl ∈ Floe do
16: MERGEFRAGMENTS( f , fl)
17: F ← F \ fl
18: end for
19: end if
20: end for
21: end while

extensively studied also in distributed algorithms literature [19, 20,
34]. The existing literature provided useful insights and patterns that
we applied in the design of GRAPHRAY.

GRAPHRAY is a distributed greedy algorithm capable of find-
ing the PFNET of a undirected weighted graph with r = ∞ and
q = n− 1. It is inspired by the Boruvka algorithm [31], a greedy
approach for discovering an MST in a graph. We extend the Boru-
vka algorithm [31] to also include PFNET edges, expanding an idea
first described by Quirin et al. [37]. Algorithm 1 gives a general
overview of the procedure. The idea is to iteratively merge frag-
ments on their lightest edges until there is only one left, spanning
all the vertices. Such edges with minimum weight have the impor-
tant property of being part of some (or all) MSTs of the graph (if
edge weights are not distinct, then MST of the graph is not unique).
PFNET(r = ∞, q = n− 1) is the union set of all the edges of the
MSTs of a graph [13, 40]. Thus, our objective is to identify all of
them when combining the fragments, and removing from the output
the edges that are not part of any MST. The Boruvka algorithm fol-
lows a similar concept: merges fragments until all vertices are part
of the same one; and since it must yield a tree, edges connecting the
same fragments are deleted, so to avoid creating cycles. However,
the algorithm expects the input graph to have distinct weights [31]: if
this would not be the case, then the situation depicted in Fig. 1 might
present. Instead of merging the two fragments right away (thus
removing one of the edges), GRAPHRAY will merge the fragments
after finding all the possible MSTs edges.

The algorithm starts with each vertex being root (and the only
member) of its own fragment; all the edges are initialized with the
unassigned label. In the following, we will denote as Uv the set
of vertices adjacent to v connected to it by unassigned edges. At
the beginning of each iteration, FINDLOEFRAGMENTS procedure
is performed: its goal is to find, for each fragment, the adjacent
fragments connected by the Lightest Outgoing Edges (LOEs). The
LOEs of a vertex are the unassigned edges with lowest weight the
vertex is incident to; the LOEs of a fragment include the lightest
LOEs among all the vertices of the fragment. We define as active
a vertex incident to unassigned edges. Vertices also store an Active
Fragments Map, a data structure meant to keep track of the neigh-
boring fragments connected by the vertex LOEs. The map is cleared
at the beginning of every iteration.

(a) (b)

Figure 1: Boruvka algorithm iteration with non-distinct weights. The
vertices belong to two different fragments (circled with different colors);
the two edges shared by the two fragments have the same weight
(a). Both of the edges belong to two possible MSTs, but only one will
be arbitrarily chosen when computing the MST (b). The other edge,
since it connects vertices from the same fragment will be discarded.

FINDLOEFRAGMENTS procedure starts with vertices scanning
their unassigned edges; at the same time, edges adjacent to vertices
in the same fragment are discovered and deleted: it means that the
two vertices incident to it are connected by a path with lower weight
that does not include that edge, so it violates the triangle inequality.
If a vertex is able to find its LOE it stores the information in its active
fragments map and sends a message to its root containing LOE’s
weight and neighboring fragment. If there are no more unassigned
edges to consider the vertex deactivates (unless it’s the root of its
own fragment). At the following superstep, the roots will process the
information about the LOEs coming from of all the active vertices
of their fragment and compare them with their own (if any). At
the end of this process, each fragment will have found the IDs of
the neighboring fragments connected by the edges with minimum
weight.

Given the distributed nature of the environment, fragments will
only know the information about their own LOEs. They ignore
if their own LOEs are the same of their target, and merging if
possible only if the two fragments agree on the same LOEs (they
share the same LOEs). To test this condition, the fragments need to
communicate using the following protocol. Each root queries each
one of the vertices that reported the target fragments with a message.
The nodes receiving such message will repeatedly test the fragments
into their active fragments maps to find out if they share the same
LOE. Once done, they inform their respective roots of all successful
tests. Finally, the roots check the messages received and remove
from their active fragments map the failed tests (the ones they did
not receive a message for). If the map results to be empty at the
end of this procedure, the fragment will remain silent until a new

(a) Before merging (b) After merging

Figure 2: Merging fragment F1 (red stroked vertices) with vertex R1 as
root with fragment F2 (black stroked vertices) with R2 as root. Branch
edges are colored in black, dummy edges in red and the LOEs in blue.
One of the two blue edges will be marked as branch while the other
as pathfinder (shown as light gray in the picture). At the end of the
merging, all vertices belong to fragment F2.



iteration begins.
MERGEFRAGMENTS picks up from here. At this point roots sort

the remaining fragments stored into their maps by ID: if their own
is lower than the greatest one of the candidates, they will attempt
to merge with it. Otherwise if their ID is the greatest, they will
attempt merging with all the fragments in the map. When two or
more fragments are combined together, all of the lightest unassigned
edges connecting them are marked as pathfinder; the sole exception
regards an edge that is marked as branch (see Fig. 2). Marking edges
as branch is not strictly necessary for the discovery of pathfinder
networks (since all of them are branches of some or the same MST),
but in this way the output will carry also information about one
of the possible MSTs. To complete the procedure, the only thing
left to do is to deactivate one of the two roots. When a fragment
merges with another one with higher ID, its original root will lose
that status; before doing so, however, it informs the former members
of its fragments of their new identity. Vertices receiving a new
identity create a new edge towards the new root by means of a
dummy edge (see Fig. 2). Dummy edges will be removed at the end
of the computation.

The iteration is now complete: if there’s only one fragment left the
algorithm ends and the output is returned to the user; otherwise the
control is given once more to the FINDLOEFRAGMENTS procedure
for a new iteration.

3.1.4 Proof of Correctness
As stated in Sect. 3.1.2, we assume as input an undirected, weighted
graph G. To prove correctness, we assume that the edge set E ′
returned by GRAPHRAY does not correspond to PFNET (G,∞,n−
1): this can either mean that some edges are missing or that more
have been wrongly included. Let us start from the first case: this
means that there was at least one edge e(u,v) ∈ E in the PFNET but
not in E ′. For e(u,v) to be in the PFNET, by definition, it means
that in E there is another path connecting u,v with at least an edge
e(t,w) with greater weight. Since fragments always merge using
their lightest outgoing edge, and e(u,v) has a lower weight than
e(t,w), GRAPHRAY must include e(u,v) in E ′ before it evaluates
e(t,w). This proves that e(u,v) ∈ E ′.

Let us now assume that an edge e(u,v) ∈ E ′ does not show up
in the PFNET. This means that in the PFNET there’s another path
connecting the two vertices with a lower weight. Since, again,
fragments are connected each time by their lightest edge, this would
mean that if there were other edges with lower weight than e(u,v)
the algorithm would have already included them beforehand. For
this reason, e(u,v) would be excluded because its vertices would be
in the same fragment. We can conclude that e(u,v) /∈ E ′ .

3.2 Distributed Implementation
In this section we discuss the key aspects of the implementation.
We would like to remark that the pseudocode of the procedures
discussed in the following assumes a vertex centric perspective.

3.2.1 FINDLOEFRAGMENTS and CONNECTIONTEST

The procedure spans four supersteps. In the first one, each vertex
scans for the LOEs in its neighborhood and marks the edges with
the lowest weight; it also saves that weight into its state (Algorithm
2, superstep one, lines 2–8). At the end of the scan, if at least one
has been marked, a TEST message containing the vertex fragment
ID is sent on each of the marked edges (lines 11–12). At the next
superstep, each node examines the received messages: if the frag-
ment contained in the test message is different from its own then an
ACCEPT message is sent as a reply (Algorithm 2, superstep two, line
5). Otherwise, the edge between the two vertices is deleted (line 3).
On the third superstep, each vertex saves the fragment/neighbor pair
extracted from accepted messages (if any) into their active fragments
map (Algorithm 2, superstep three, line 2). If the vertex is not a

root, the active fragments are sent to it along with the corresponding
weight using REPORT messages (line 5). In the following superstep
the roots receive the reports. They store the vertices that reported
the fragments connected by the lightest edges into a temporary data
structure called selectedFragments (Algorithm 2, superstep four,
lines 3–11). At this point, each root compares the lowest weight
obtained by the other vertices of the fragment with the weight of
its LOEs: if it is less or equal, the data into selectedFragments is
copied into the active fragments map of the vertex; otherwise, it is
cleared and its contents replaced (lines 12–20). Finally, roots send a
TEST-CONNECT message to each one of the fragments stored into
their active fragments map. A connection test is needed to know
how many fragments share the same LOEs and takes place right
after FINDLOEFRAGMENTS.

The connection test procedure takes three supersteps. In each one,
the same code is executed and its pseudocode reported in Algorithm
4. Before the procedure begins:

• Roots initialize a temporary data structure called connection-
sAccepted to keep track of the fragments that succeeded in the
connection test.

• All vertices initialize a boolean variable called cleared with
false, used to distinguish vertices incident to the LOEs of their
own fragment and the others that don’t.

• Roots incident to their fragment LOEs initialize the cleared
variable to true.

Two more temporary data structures, cleared at the end of each
superstep, are used: fragmentsToAccept and receivedConnections.

Received messages are scanned first. Depending on the source of
each message, three scenarios might present:

• If a vertex receives a TEST-CONNECT message from its root,
it means that its LOEs are between the lightest of the fragment,
so the cleared variable is set to true. It forwards the message
just received from the root to all of the recipients in the active
fragments map (Algorithm 4, lines 11–15). If during the three
supersteps of the connection test a vertex does not receive any
message from its root it means that its LOEs were not the
lightest of the fragment, so clears its active fragments map and
remains silent until a new iteration begins.

• If the sender of the TEST-CONNECT message is another frag-
ment, its identity is saved into receivedConnections (lines
17–18).

• When a root receives CONNECTION-SUCCESS messages, it
stores the fragment into its state (line 4–7).

Once all the received messages have been scanned, the received
fragments not present in the active fragments map are discarded (line
22). Finally, roots save the connections from their active fragments
into connectionsAccepted (lines 23–24) and cleared vertices send
connection success messages for their fragmentsToAccept (lines
27–28).

For a certain vertex, more than one of the described scenarios
might present at the same time: in this case, the messages received
from its root are processed before the ones received by other vertices.
The reason why this procedure spans three supersteps is because,
given the design of the fragments, roots stand at a graph geometric
distance of at most three from each other, so for all the messages to
be delivered to each root at most three supersteps are needed.



Algorithm 2 FINDLOEFRAGMENTS

msgs: The list of messages received by v at the previous super-
step

SUPERSTEP ONE
1: v.LOEweight← ∞

2: for u ∈Uv do
3: e← (v,u)
4: if w(e)< v.LOEweight then
5: v.LOEweight← w(e)
6: Mark e
7: else if w(e) = v.LOEweight then
8: Mark e
9: end if

10: end for
11: if At least one edge is marked then
12: Send TEST message on marked edges
13: end if

SUPERSTEP TWO

1: for m ∈ msgs do
2: if Fragment in m matches my fragment then
3: Remove edge . There is another lighter path
4: else
5: Reply with an ACCEPT message
6: end if
7: end for

SUPERSTEP THREE

1: for m ∈ msgs do
2: v.activeFragments.add(m. f ragmentID,m.vertexID)
3: end for
4: if v is not root then
5: Send to my fragment root REPORT message
6: end if

SUPERSTEP FOUR

1: selectedLOEWeight← ∞

2: v.selectedFragments← /0
3: for m ∈ msgs do
4: if m.LOEweight ≤ selectedLOEWeight then
5: if m.LOEweight < selectedLOEWeight then
6: selectedLOEWeight← m.minLOE
7: v.selectedFragments← /0
8: end if
9: v.selectedFragments.add(m.activeFragments)

10: end if
11: end for
12: if v.LOEweight ≤ selectedLOEWeight then
13: if v.LOEweight < selectedLOEWeight then
14: v.selectedFragments← /0
15: selectedLOEWeight← v.LOEweight
16: end if
17: v.activeFragments.add(v.selectedFragments)
18: else
19: v.activeFragments← v.selectedFragments
20: end if
21: if v.activeFragments 6= /0 then
22: for f in v.activeFragments do
23: Send TEST-CONNECT to nodes that reported f
24: end for
25: end if

3.2.2 MERGEFRAGMENTS

This procedure merges the fragments that share the same LOE and
performs the update tasks to prepare for the new iteration. As
described in Section 3.1.3, the roots choose the fragments to merge
according to their ID. Differently from [19], in which fragments

Algorithm 3 MERGEFRAGMENTS

1: max← maxID(v.connectionsAccepted)
2: if max > v.ID then
3: candidates← v.connectionsAccepted.get(max)
4: for each v in candidates do
5: Send CONNECT-PATHFINDER to v
6: end for
7: else
8: for f in v.activeFragments do
9: messageRecipients← v.connectionsAccepted.get( f )

10: branch← messageRecipients.removeFirst()
11: Send CONNECT-BRANCH to branch
12: for v in messageRecipients do
13: Send CONNECT-PATHFINDER to v
14: end for
15: end for
16: end if

SUPERSTEP BARRIER

Algorithm 4 CONNECTIONTEST

msgs: The list of messages received by v at the previous super-
step
v.connectionsAccepted← /0 at first superstep
v.cleared = f alse

1: f ragmentsToAccept← /0
2: receivedConnections← /0
3: for m ∈ msgs do
4: if v.isRoot = true then
5: if m is a connection success message then
6: v.connectionsAccepted.put(m. f ragment,m.sender)
7: end if
8: end if
9: target← m.targetFragment

10: sender← m.senderFragment
11: if sender = v. f ragmentIdentity then
12: for v in v.activeFragments.get(m.target) do
13: Forward m to v
14: v.cleared = true
15: end for
16: else
17: if sender ∈ v.activeFragments then
18: receivedConnections.add(sender)
19: end if
20: end if
21: end for
22: f ragmentsToAccept← v.activeFragments.retain(receivedConnections)
23: if v.isRoot = true then
24: v.connectionsAccepted.add( f ragmentsToAccept)
25: else
26: if v.cleared is true then
27: for each fragment f in f ragmentsToAccept do
28: Send connection success message for f to root
29: end for
30: end if
31: end if

could only be merged in pairs, by allowing multiple merging we
considerably speed up the computation by reducing the number of
iterations (C3).

If a root chooses a single fragment to merge with, it sends a
CONNECT-PATHFINDER message to every vertex that reported the
fragments in the active fragments map (3, lines 3–6); if more than
one is chosen (or if its ID its the greatest between its active frag-
ments) the root also sends one CONNECT-BRANCH message (lines



Table 1: The graphs used for the scalability experiment [27,39].

Graph # nodes # edges
CA-GrQc 5,241 14,484
Grund 15,575 17,427
PGP 10,680 24,316
Gnutella04 10,876 39,994
CA-CondMat 23,133 93,439
Gnutella31 62,586 147,892
Email-EuAll 265,009 364,481
ASIC 320 321,523 515,300
Twitter 465,017 833,541
Amazon0302 262,111 899,792
Amazon 334,863 925,872
Dblp 317,080 1,049,866
NotreDame 325,729 1,090,198
StackExchange 545,196 1,301,966
Soc-Delicious 536,108 1,365,961
RoadNet-PA 1,087,562 1,541,514
Stanford 281,903 1,992,636
Youtube 1,134,890 2,987,624
Google 875,713 4,322,051
Wikitalk 2,394,385 4,659,565
Soc-Flixster 2,523,386 7,918,801
Socfb-A 3,971,865 23,667,394
Soc-livejournal 4,033,137 27,933,062

8–15). The subsequent three supersteps follow the same behavior
of the connection test procedure. The main difference is that in-
stead of sending connection success messages edges are labeled
as pathfinder or branch depending on the message they received
(CONNECT-BRANCH or CONNECT-PATHFINDER). Once the proce-
dure is completed, the roots of the fragments that will be merged (the
ones with the lower id) inform their former fragment vertices of their
new identity with a ROOT-UPDATE message to update their state.
Furthermore, if still incident to unassigned edges, a new dummy
edge is created between the old and the new root. The procedure,
and the algorithm iteration, ends at the following superstep, when
vertices receiving an update message add a dummy edge towards
the new root.

3.2.3 Fragment Design
As stated above, fragments are a key part of the algorithm. Our
implementation of the FINDLOEFRAGMENTS procedure is inspired
by [19]. In that paper, each fragment forms a rooted tree; each vertex
has a pointer to one of its neighbors which is the next node on the
path over the tree to the root. The root of a fragment is a pair of
adjacent vertices, the “core”. The diameter of a fragment grows as
more of them are merged together. Since there is no control over the
fragments’ growth patterns, this inevitably leads to long, undesirable
paths that cause increased communication costs and longer running
times [20].

To avoid this and cope with C1 we designed fragments as follows.
As stated above (see Sect. 3.1.2), a fragment is a subset of the graph’s
vertices, such that they are always connected by assigned edges. One
of the fragment’s vertices is elected as root and all the nodes of the
fragment not incident to it in the original graph will be connected
to it by dummy edges. This means that, at any stage, fragments will
have one root and a set of boundary vertices, that is nodes incident to
unassigned edges (active vertices, following the notation discussed
in Sect. 3.1.2). In this way, messages can be sent to the fragment
root in a single superstep no matter the diameter of the fragment.
To maintain this structure as more fragments are joined together,
we make use of dummy edges to connect the fragment’s vertices

Figure 3: The running times chart: runtimes (in seconds) are on the
Y-axis; the number of machines on the X-axis. Graphs have been
sorted by edge size in ascending order.

to its root if they are not adjacent in the input graph. An example
of their use is shown in Fig. 2. From then and onwards, vertices
contact the root via their dummy edge. When the algorithm ends,
before sending the output, all the dummy and still unassigned edges
are removed. The only evident drawback of this solution is the
increased memory requirements to store the extra edges. However,
there are two major advantages: in first place the number of messages
exchanged during the computation is greatly reduced. Secondly, to
deliver the messages we would need a number of iterations equal to
the diameter of the fragment, while in this case is at most two.

4 EXPERIMENTAL EVALUATION

In this section, we describe the tests for assessing the performance
of our algorithm. We want to verify:

• GraphRay scales to millions of edges in reasonable time, and

• GraphRay can utilize a distributed environment, i.e. reducing
running times as more machines are added.

For the tests, we select 23 real graphs, shown in Table 1, with sizes
varying from a few thousand up to 28 million edges. We weight
them randomly (the networks are originally unweighted) like in the
papers by Haguel et al. and Quirin et al. [22, 37].

The experiments have been conducted using the Amazon AWS
infrastructure3. In all the tests we used the same type of machine,
the “R3.xlarge” instance type, with four virtual CPUs and 30GB of
RAM, grouped in clusters with various sizes: 2, 5, 10, 15, and 20
instances. GraphRay was compiled against Giraph 1.2.0 for Hadoop
2.6.0; the runtimes are provided by Giraph counters at the end of
the computation. Finally, we tuned the Hadoop configuration so that
each machine could host only one worker.

3https://aws.amazon.com
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(a) The input graph G (b) A minimum spanning tree (MST) of G (c) Pathfinder network (PFNET) of G

Figure 4: The pathfinder network (c) of the C. Elegans neural network, with the vertices size corresponding to the vertex degree in the MST.
Highlighted in blue is the path between the nodes with the highest degree in the minimum spanning tree. It is easy to perceive the quantity of
information that the MST removes when confronted with the PFNET.

Results are shown in Fig. 3: we report on the x-axis the size of
the cluster (the number of workers) and on the y-axis a log scale of
the running times in seconds. The missing data points in the chart
refer to instances that could not be computed with the given number
of workers for lack of resources (e.g. memory). The smallest graphs
can be seen in the lowest part of the chart; in middle, we can find the
graphs ranging from Email-EuAll up to Soc-Delicious. The largest
graphs are shown in the upper part of the chart.

GraphRay is able to tackle graphs with more than one million
edges with as little as two machines (e.g. Soc-Delicious graph). As
more machines are added, our algorithm could tackle larger and
larger graphs up to 28 million edges. The running times are below
1,000 secs for graphs with less than 5M edges and below 1,400 secs
for graphs with 20M or more edges.

When increasing the size of the cluster to five machines, the
average decrease in running times is about 55% compared to the
2-worker case. From five to ten workers, the average decrease is less
noticeable, 45%, but still noteworthy. Increasing the cluster size to
15 leads to a 24% average reduction of the runtimes. Finally, with 20
workers, the average running times decrease by 11%. In some cases,
like Soc-Delicious, we can show that the decrease in the running
times is close to linear with the number of machines, going from
508 secs with 2 machines to 58 secs with 20.

For smaller graphs, such as the first six of Table 1, visible at
the bottom of the chart, the running times aren’t affected by the
size of the cluster. Instead, the running times tend to increase as
more machines are added. The reason of this behavior lies in the
distributed environment, rather than in our implementation. When
small graphs (few thousands of edges) are computed on a large
cluster, the input is split into very small chunks and distributed
over the workers. Larger clusters have higher costs in terms of
synchronization traffic and I/O operations. In general, with a small

(a) (b)

Figure 5: A comparison of the connections between a small group of
vertices in our C. Elegans [44] case study as visualized by the MST (a)
and our pruned graph (b). The second unveils an otherwise removed
structure difficult to spot into the original graph. The thickness of an
edge represents its relative weight.

portion of vertices on each machine, the overhead imposed by the
infrastructure will balance the benefits of the distributed environment.
It is possible to observe this behavior for the graphs ranging from
CA-GrQc to Gnutella31. This behavior tends to fade as the graph
size increases, but at the same time, we can see how the running
times tend to stabilize after 15 machines, suggesting that as the
balance point between costs and benefits for that range of graphs.
We can conclude that distributed environments are not suited for
small graphs, and, at the same time, to ensure maximum efficiency
the number of machines composing the cluster must be chosen based
on the size of the graph to compute.

Overall, our implementation is scalable and able to tackle large
graphs with reasonable running times. GraphRay also shows good
efficiency, requiring a small number of machines even for large
instances.

5 CASE STUDIES

To show how PFNETs impact on the visualization of real weighted
networks, we select three different real weighted undirected net-
works: for each one of them we extract the PFNET (r =∞,q= n−1)
using GraphRay. We visualize both the layout of the whole graph
and the one of its corresponding PFNET, computed by the ForceAtlas
2 algorithm [23] (unless differently stated), using the same visual-
ization technique. We then discuss how resultant visualizations are
changed.

Each dataset has been stripped of its smaller connected compo-
nents (if any), leaving only the largest one. All the graphs are freely
available on the internet4.

5.1 C. Elegans Neural Network
We applied our technique to the visualization of C. Elegans nematode
neural network (Fig. 4). This organism has been extensively studied
and is the first one whose neural connections were all mapped [46].
This dataset was collected by Watts and Strogatz [44] and counts
297 vertices and 2,148 edges. Its vertices represent the neurons of
the worm, and the edges its neural links. The corresponding PFNET
counts 947 edges (56% reduction from the original graph).

We compared our result with the full graph and its MST. It is
evident how the MST effectively shows a skeletal structure of the
graph, with its high degree vertices coloured in blue, with a preva-
lence of star nodes (high degree nodes with many one-degree vertex
neighbours). The visualization is less cluttered, but even though
it provides an insight of the most important neurons of the brain,
we find two major drawbacks: the first one is, given that we did
not assume the edge weights to be distinct, there can be multiple

4http://www-personal.umich.edu/˜mejn/netdata/
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(a) (b)

Figure 6: Rendering of Cond-Mat-2005 dataset [32] (a) and its corresponding PFNET (b) computed by LaGO [47]. The pruned network
visualization provides much more insight about the underlying co-citation structure than its full graph counterpart. A few authors in key spots have
been highlighted as reference points. The difference in the size of the label follows the change in the vertices degree.

spanning trees, with that one being only one of the possibile MSTs
of that network. Second, the loss of potential useful information:
even if we have a basic visualization of the brain connections, we
cannot infer if there are other paths connecting those edges or see
any other meaningful structure.

To ease the comparison, we coloured the path connecting the four
vertices with the highest degree in the MST in blue and highlighted
it in all the figures. The PFNET yields a reduced-clutter visualiza-
tion when compared to the layout of the full graph, while including
much more information than the MST. Other than the path found
in the MST, we can find several other paths connecting those ver-
tices. The abundance of paths between that set of neurons suggests

(a) (b)

Figure 7: Closeup of the LaGO rendering of the Havlin cluster in
condensed matter collaboration network: full graph (a) versus PFNET
(b).

the resilience by redundancy of that simple structure. This allows
primitive organisms, such as the C. Elegans nematode, to survive
even in the harshest conditions. Furthermore, our sparsified network
also conveys information about other structures and connections
otherwise hidden (see Fig. 5).

5.2 Condensed Matter Collaboration Network

The condensed matter collaboration network is a dataset consisting
of 36,458 vertices and 171,375 edges [32]. The graph represents the
coauthorships between researchers posting preprints on the “Con-
densed Matter E-Print archive5”. As reported by Newman [32], this
graph has a small-world structure, meaning that it presents a com-
bination of high clustering with short characteristic path length. A
layout of this kind of graphs usually results in a “hairball”, a dense,
ball-like drawing unable to convey any information whatsoever.

To visualize the network, we choose the “LArge Graph Observer”
(LaGO) software presented by Zinsmaier et al. [47]. This software
allows an interactive visualization of the graph, following a details
on-demand interaction. It combines edge cumulation with density-
based node aggregation. Our comparison is shown in Fig. 6a. The
different shades of blue represent the vertex density, with denser
areas coloured with a darker tone than the sparser ones. Edges are
bundled together and the size of each bundle is color-coded with
different shades of orange (lighter means fewer edges than the darker
ones). The extracted the PFNET of the network, totals 91,513 edges
(47% reduction) and its layout is shown in Fig. 6b.

To ease the comparison, we selected a few vertices (authors) with
the highest degree. The larger the label is, the higher degree of the
vertex. With a simple inspection, we immediately find the presence
of three major clusters, named after three researchers among the
ones with the highest degree: Sarrao for the top one, Scheffler for

5https://arxiv.org/archive/cond-mat
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(a) (b)

Figure 8: Comparison between the layout of the whole Astro-Ph dataset [32] (a) and the drawing of its PFNET. Both the drawings were computed
by the algorithm described by Didimo and Montecchiani [16]. Thanks to our sparsification, the connections between the clusters are now much
more easy to spot, and also the internal structure of each cluster is much more visible. The biggest 5 clusters are still visible and this proves how
this technique does not change the overall structure of the graph.

the middle one and Havlin for the bottom one.
The first remark we make is that in Fig. 6b the presence of Schef-

fler cluster appear to be more recognizable than in Fig. 6a. Secondly,
more details of Sarrao cluster can be observed in the PFNET render-
ing than in its full counterpart. Particular attention should be given
to the Havlin cluster, which can be seen in more detail in Fig. 7.
Fig. 7b is a clearer picture and gives a precise idea of how the three
authors are connected.

5.3 Astrophysics Collaboration Network
This dataset represents a co-authorship network of researchers post-
ing preprints on the Astrophysics E-Print archive6. It is a weighted
undirected network. It has 14,845 vertices and 119,652 edges [32].

We evaluate how the layout of the PFNET differs from the orig-
inal when using a drawing algorithm able to find and highlight
communities. We used a technique specifically designed to extract
the clusters of small-world networks. First described by Didimo and
Montecchiani [16], it combines a space-filling technique with a fast
force directed layout algorithm. The algorithm arranges each cluster
into a rectangular region with an area proportional to its number of
vertices. A treemap is used to assign each space to the corresponding
cluster, and its layout will be computed right afterwards; the area
of the drawing will be limited to the space assigned to the specific
cluster. The boundaries of the area of each cluster are stroked red in
the final layout. The result is an effective visualization of the set of
the clusters in the network.

The drawing computed by the algorithm on the astrophysics
collaboration network is shown in Fig. 8a. The picture reveals the
presence of 5 large clusters, placed on the corners of a polygon,
connected to each other by several edges; in between, the underlying
structure remains unknown for the most part.

The PFNET of this network has 62,325 edges (48% reduction)
and its layout is depicted in Fig. 8b. The two layouts appear to be

6http://arxiv.org/archive/astro-ph

similar, with the 5 clusters previously identified still visible. Given
the less cluttered visualization is possibile to distinguish more details
concerning the inter-cluster connections, previously hidden.

6 CONCLUSIONS AND FUTURE WORK

We have introduced the first distributed algorithm for network sparsi-
fication based on pathfinder network scaling. We have designed and
implemented the algorithm on Giraph, showing that our approach
is scalable and able to tackle large graphs efficiently using the re-
sources of the distributed environment. We show how our technique
can successfully sparsify networks with millions of nodes in minutes,
extending the use of this technology on large graphs.

We also apply our technique to different graphs and we showed
how the visual clutter can be reduced, unveiling hidden or hard to
spot structures. The software is open-source and freely available
online7. We plan to further improve the performance of GRAPHRAY
and expand the current experimentation. In particular, it would be
helpful to find out if this approach can also be used for speeding
up other graph related tasks, such as the computation of a layout or
the process of calculating metrics. We plan to investigate the use of
GraphRay on large dynamic graphs. Furthermore, we would like
to know if GraphRay could improve the user interaction with large
graphs, given its ability to tackle large instances quickly.
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