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Abstract— The processes of optimization of oil wells involve an 

objective function that maximizes the production and minimizes 

the energy of lift. For the solution of this type of multi-objective 

problem, in the last decade the evolutionary technologies have 

demonstrated to be an effective and efficient tool. In this work is 

presented an evolutionary approach, in order to improve the 

performance of the Industrial Production in petroleum wells 

based on electro submersible pumps (ESP). The production is 

modeled using Numerical Methods based on Ordinary 

Differential Equations (ODE). 

 

Keywords—evolutionary computation, multi-objective problem, 

production of well. 

I. INTRODUCTION 

The electric submersible pump (ESP), a tried and true 
workhorse of artificial lift systems, has a long track record for 
improving production and recovery rates in oil fields 
worldwide. As the industry has moved into more challenging 
frontiers and pushed to boost production from brownfields, 
ESP technology has evolved with the development of  
increasingly robust mixed flow systems that can handle varied 
flow rates and provide expanded operating ranges for a wide 
variety of hydrocarbon environments [1]. 

The decline of “easy” oil, however, has raised the bar even 
higher for artificial lift, including ESP performance.  Many 
production companies are finding that the typical for ESP is a 
limitation, especially in complex, remote locations where 
intervention costs are high and lead to poor field economics. In 
these intervention constrained markets, the expense of ESP 
replacement, including workover costs and deferred 
production. The risks of early ESP failure and inconsistent 
performance in high intervention cost environments in 
challenging  fields are the reasons many producers often 
choose alternative mechanism such as gas lift for artificially 
lifting their wells that typically do not deliver the highest 
recovery rates. That conundrum has led operators to put the 

need for a consistently reliable, longer lasting ESP systems at 
the top of their wish lists as they strive to maximize efficiency 
and reduce their total cost of ownership [2]. 

In response to that, this article presents the design and 
implementation of a computational tool for the optimization of 
systems lift of oil. Particularly, the oil and gas companies carry 
out constant efforts to optimize their systems of production. 
These efforts are directed to maximize the total daily 
production of hydrocarbons, minimizing the environmental 
costs, between others aspects, that extends the run life over 
conventional ESPs. 

On the other hand, the Evolutionary Algorithms (EA) are 
technologies of optimization and search inspired by the natural 
evolution. There are other techniques in the literature that can 
be compared with EA [12], [13]. These algorithms define a 
population of individuals, each of them representing a possible 
solution to the proposed problem. Every individual of the 
population is defined genetically, this way, the best individuals 
are those that possess better genes. The best individuals are 
combined between them so that they form new solutions that 
possess better genes that their antecessors [3]. These new 
solutions generate a new population of individuals replacing 
the previous one ([3], [4], [11]).  

The Evolutionary Algorithms (EA) is robust and effective 
methods for the resolution of problems of optimization. In [4]  
is presented an example of application in the petroleum 
industry, for the development of the concept “intelligent 
fields“, in which it is used for the analysis and interpretation of 
a great quantity of information, combined with neural 
networks.  So, A concept of industrial automation for control 
and optimization of the production of hydrocarbon based on 
genetic algorithms is presented [4].  

So, in this work we propose a system for the optimization 
of wells using the Evolutionary Algorithms, specifically for 
wells based on electro submersible pumps (ESP). In this case, 
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we have determined two objectives to optimize: maximize the 
production of hydrocarbons and minimize the energy lift, 
which generates a zone of negotiation that allows finding the 
ideal production. The optimization system is composed of one 
first phase (component) of well model generation (using 
techniques of mass and energy balance), and one second phase 
(component) of optimization of the productive process for the 
identified scenario [5]. This paper is structured as follows: 
Theoretical aspects about Evolutionary Algorithms and the 
Production Process of well are presented in Section 2. The 
design of the Evolutionary Optimization System and the Model 
of the Well is presented in Section 3, while the results are 
shown in Section 4. The paper ends with conclusions. 

II.   THEORETICAL FRAMEWORK 

A. Evolutionary Algorithms 

 The Evolutionary Algorithms (EA) simulates the process 
of natural evolution [4]. They consist of an iterative technology 
that applies operators over a set of individuals of the population 
with the intention of improving their "fitness", a measure 
related to the objective function of the problem in question. 
Every individual of the population represents a potential 
solution of the problem. Initially, the population is generated 
randomly, and then it evolves by means of operators', which 
include recombination of individuals, crossover and mutations. 
This evolution is guided by a strategy of selection of the 
individuals most adapted to the resolution of the problem, 
according to their values of fitness. The Figure 1 presents a 
generic scheme of an EA. The intention of the Selection is to 
emphasize in the most capable individuals of the population, 
hoping that their children have fitness better than that of the 
parents. The crossover operator combines several individuals to 
generate new individuals, and the mutation is a random process 
where a gene is replaced by other for producing a new genetic 
structure. The Replacement is a process that substitutes 
individuals of the population (normally the worst) for the new 
individuals created (normally the best). As soon as a new 
population has been produced, the "fitness" of the individuals 
in the new population can be determined and restarts the 
process ([3], [4], [11]). 

 

Begin (P(0)) 

generation=0 

Test (P(0)) 

While  (no CriterionStop) do 

   Father = Selection (P(generation)) 

   Sons = Operators of Reproduction (Father)  

   NewPop = Replacement (Suns, P(generation)) 

   generation ++ 

   P(generation) = NewPop 

Figure 1. Scheme of an AE 

 

B. Electrical Submersible Pump Method 

ESPs are turbo machines that transfer energy to fluids by 
means of stages conformed by one impeller and one diffuser. 
These devices, as any centrifugal devices, are highly affected 
by changes in the viscosity of the fluid that is being pumped. 
For a centrifugal pump, as the viscosity of the fluid increases, 
the required brake horsepower increases as well; whereas, head 
capacity and efficiency decrease. There are tools that allow 

engineers to evaluate the effects of viscosity of fluids in the 
pump with a reasonable accuracy. The pump of an ESP system 
may have a significant number of stages spinning at high 
velocities. As a result, a volume of fluid is exposed to a 
considerable amount of shear force that induces increments on 
the fluid temperature. Consequently, and according to the 
liquids that are being pumped, there might be a considerable 
difference between the viscosity of the fluid at the inlet of the 
pump and viscosity of the fluid at the outlet of the pump. 
Therefore, the stages of pumps should not have the same 
performance, resulting in an increase of the capacity to 
generate pressure in the upper section of the system ([1], [2], 
[10]). 

So, the ESP process of transforming mechanical energy 
into hydraulic energy is characterized by the pump 
performance curves Figure 2, given at a operational speed that 
is often expressed in terms of frequency (f). The hydraulic 
energy that an ESP system is able to deliver is expressed in 
Height (ft) and Flow Rate(Q); The Energy that a pump 
demands of the motor is represented by the Brake Horsepower 
Curve (Potency,Hp), and the Curve of Efficiency (η,%) is a 
representation of how much efficient this energy 
transformation. 

 

 

 

 

 

 

 

 

 
Figure 2. Curve of Performance of Pump a One Stage in 3600 RPM (60 Hz) 

III.  DESIGN   OF   THE   EVOLUTIONARY   OPTIMIZATION   

SYSTEM 

A. First Phase: Generation of the Well Production Model 

  The mathematical models presented in this work are 
inspired on ([5], [6], [10]), and basically consist of checking 
the pressure profile from the head (Pwh) to the bottom (Pbh) of 
the well, to determine the current production capacity (Q), 
which exhibits the well through the pumping system. For this 
purpose, the method called nodal analysis is used  ([5], [6], 
[7]). Thus, a simple model of production by artificial lifting by 
electric submergible pump is proposed: the inflow of crude oil 
and gas of the reservoir is modeled by the use of the 
productivity index (relationship between the production rate 
(Q) and the differential Between the reservoir pressure (Pr) and 
the flowing pressure at the bottom of the well (Pbh), using 
Equation 1, which determines the capacity of the oil reservoir. 
It is normal for this capacity to decrease over time, for the 
reduction of the permeability in the vicinity of the well, and for 
the increase in the viscosity of the well. This Equation 1 is 
inflow referred to as the energy supply curve, or flow of fluids, 
that the reservoir delivers to the well (Pbh vs q). 
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As for the outflow, described by Equation 2, the pump 

transfers kinetic energy to the fluid, reducing the weight of the 
column, increasing the head pressure in the well, allowing to 
establish a certain production rate in which the fluid supply 
capacity of the reservoir equals the fluid extraction capacity of 
the well. 
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Thus, the production of the system responds to a balance of 
energy in the form of pressure, between the capacity of energy 
reservoir and the lifting system, expressed in Equation 3 ([2], 
[5]). 
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1

2211 fpwhbh PPghghPP
Mdt

dq
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Where: 

Pbh = Bottom Pressure 

Pwh = Head Pressure 

β1, β2 = Volumetric Module 

V1, V2 = Volume Multiphase 

qr = Input Flow 

q = Flow of well 

qc = Flow of Valve 

ρ1, ρ2 = Density of flow 

g = gravity 

h1, h2 = Vertical Distances  

ΔPp = Differential of Pressures 

ΔPf  = Total Pressure Loss in the Well 
 

So, in the case of the pump, the production curve is used in 
function of the  efficiency indicated by the manufacturer, to 
which a polynomial adjustment is applied, to determine the 
Differential equation (ED), which describes the production 
curve in terms of [6]: the efficiency of the pump to proper 
operating conditions of the well (variables surface and bottom), 
API grades (measure of how heavy or light a petroleum liquid 
is compared to water) and kinetic viscosity (ν, is the ratio of the 
dynamic viscosity μ to the density of the fluid ρ). Thus, API 
and ν are data obtained in crude sample at the laboratory level, 
Equation 4. 

feqdqcqbqaqqH  2345

0 )(  

 

Where a, b, c, d, e and f are constants characterized for a 
specific pump. 

So, to model the production lift system according to the 
above (Equations 2, 3, 4), we will use numerical methods 
based on Adams - Bashfort of fourth order predictor and 
Adams - Moulton corrector, with initial values obtained with 
the Runge - Kutta method of the fourth order [8]. 

 

B. Second Phase: Optimization of the Production Process 

The optimization problem of ESP wells consists of 
increasing the production of  oil and minimizing the energy, 
based on three variables: Height (H,ft), Production (Q,BPD) 
and Efficiency (η,%). This optimization problem is described 
by the objective function of the Equation 5, with the respective 
restrictions of the process. The production pipe is modeled with 
the pressure gradients “Pressure Drop in the Reservoir” and 
“Pressure Drop in the Production Pipe”, through the well 
model presented in the first phase. The union of the pressure 
gradients is modeled as a “Node at pumping of the bottom 
well”, as it was previously explained. 

The restrictions are contextualized in the operational 
scenarios and the reservoir conditions. We assume that: ρ, g are 
constant, due to the slow dynamics of the reservoir. From the 
well model, we establish the maximum production capacity 
that a reservoir can contribute, Qmax. Below, we present the 
objective function with its respective restrictions: 

 

    W/KW1,000*pumptheforpowerPotency
(%)

gQH
 

            



Where: 

Hmin < H< Hmax      →   10.000(ft)<H<14.000 (ft). 

Potencymin < Potency <Potencymax  → 20(Hp) < Potency 
 < 40(Hp). 

Qprod min < Qprod < Qprod max → 6000(BPD) < Qprod 
 < 8000(BPD). 

The intervals regarding the restrictions in, Equations 4 and 
5, depend on the identified operational scenario, which are 
characterized in the Equation 6. These ranges will be used by 
the optimization technique. In order to solve that problem, a 
genetic algorithm is used, which presents the following 
components. 

Structure of individuals: is coded in real numbers composed 
of two fields, H and Hp, Equation 6. These variables are used, 
because they are related to the bottom behavior and surface 
level production, and they can be manipulated at an operational 
level with a field instrumentation arrangement. This is 
important, can be adjusted in terms of the optimum values 
recommended by the genetic algorithm, and thus achieve the 
best performances of the producing well. 

Number of  individuals: random between 2 and 10. Number 
of generations: 99, Objective function: Equations 4 and 5, 
including its respective restrictions. Crossover operator: single 
point cross with 0.7 probabilities. Mutation operator 30%: 
random with 100 probabilities. Space for search: a population 
of individuals was gathered with the set of values allowed to 
variables H and  Hp, according to the operational scenario 
identified in the restrictions of the Equation 6. 

That means, the population of individuals will be specific to 
the operational scenario identified in the previous phase, so that 
the genetic algorithm may establish the optimum value of the 
Equation 5 for that operational scenario. 

125

 
Sesión de Tecnologías y Herramientas Computacionales - Artículos



 
 
 

 

 

 

IV. RESULTS 

A. First Phase: Generation of the Well Production Model 

This section presents the first result, which describes the 
effectiveness of the tool developed to determine the 
performance curve of an electric submergible pump (flow vs. 
efficiency) [6], that will generate the polynomial of the pump 
under study, following the same behavior of the Curve of the 
Fabricant, as well as the Curves of the Potency and Height, as a 
function of the flow rate (see Figure 3). So, the polynomial 
characteristic of the pump corresponding to the study is (see 
Equation 6) 

fqqqqqeqH 054.0150.0
2

004.0
3

0005.0
4

7302.4
5

113072.9)(

0

          (6) 

 

Figure 3. Experimental Curve of the Performance of the Electric Submergible 

Pump 

 

B. Second Phase: Optimization of the Production Process 

This section presents initially an inference of the 
operational parameters of the bottom (Pbh), head (Pwh) 
pressures and of the production rate (Q), as a function of the 
measured variables with instrumentation of field (frequency,f) 
and pressure in the (production line, Pts), Thus, f and Pt, are 
real conditions of the well to study object, taking a history of 
6900 instances, evaluated in the system developed based on 
Adams - Bashfort of fourth order predictor and Adams - 
Moulton corrector, with initial values obtained with the Runge 
- Kutta method of the fourth order [8]. 

Thus, the Figure 4 represent the behavior of the classic 
systems of an artificial lift system. So, for example when the 
bottom pressure decreases (Pbh) the rate of production (Q) 
must increase, likewise when the bottom pressure (Pbh) 
increases there is a significant drop in production. 

 

 

 

 

 

 

 

 
Figure 4. Modeling the Well to Study Object 

 

Following, the Genetic Algorithm was applied for one of 
the operational scenarios identified in the first phase (see 
Equation 6). The final population given by the Genetic 

Algorithm for that operational scenario is shown in Equation 5, 
which objective is the value of  η(%). According to the results 
of the Figures 3 and 4, the production system presents an 
optimum behavior at a height 5000 to 6000 ft, Potency 35 to 45 
Hp with an associated production of 7000 to 8000 BPD. So, 
according to Figure 3, the maximum production of the well is 
approximately 7500 BPD, with an efficiency level of the order 
of 70%. Thus, the genetic algorithm obtains a maximum 
efficiency value of 67%, in 55 generations,  the Figure 5, which 
represents a production values of 7700 BPD (see Figure 6). 

The second experiment is performed. Thus, the genetic 
algorithm obtains a maximum efficiency value of 68%, in 88 
generations, Figure 7, which represents a production value of 
3500 BPD. This result represents the effectiveness of the 
implemented algorithms (see Figure 8). 

 

 

 

 

 

 

 

 

 
Figure 5. Performance Genetic Algorithm, First Experiment 

 

 

Figure 6. Modeling the Well to Study Object with Genetic Algorithm,       

First Experiment 

 

 
Figure 7. Performance Genetic Algorithm, Second Experiments 
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Figure 8. Modeling The Well to Study Object with Genetic Algorithm, 

Second Experiments 

V. CONCLUSION 

The production model obtained by using the 
characterization of the ESP Process using Nodal Analysis 
allows the prediction of the production rate that the well can 
produce. These models show the behavior from the “inflow” 
variables of the reservoir and surface pipe flow for any fluid. In 
our case, the Intelligent System allows obtaining similar results 
at reservoir and wellhead levels, in field operational.  

The  production of the ESP method was optimized in terms 
of the integrated subsoil and surface information, which will 
allow guaranteeing the best distribution of the energy in 
maximizing the production of oil. The subsoil-surface 
integrated approach is innovative in the sense that it integrates 
the reservoir/wellhead infrastructure behavior. This is done 
through an objective function, with the respective restrictions 
of the process, which allows contextualizing such objective 
function in the operational scenario and the reservoir 
conditions identified in the supervision scheme. The genetic 
algorithm establishes the optimum production and efficiency 
value for the identified operational scenario from the 
relationship of the two productive processes: reduce the energy 
and optimize the efficiency and maximize of productions. 

Finally, our multiobjective optimization model system must 
be proved using other method of lift, compared with other 
intelligent techniques [9], [12], [13] and parallelized [11], in 

order to analyze and improve its system performance (at level 
of the results quality and execution time). 
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