Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulatory immune cells in transplantation

Key Points

  • The presence of regulatory immune cells in transplant recipients can shift the balance away from rejection and towards immune regulation.

  • Different populations of T cells with regulatory activity have a role in promoting transplant tolerance. These populations include CD4+ regulatory T (TReg) cells, CD8+ TReg cells, CD4CD8 T cells, natural killer T (NKT) cells and γδ T cells.

  • Control of allograft rejection and graft-versus-host disease (GVHD) can also be enhanced by various non-T cell leukocytes, including regulatory B cells, tolerogenic dendritic cells (DCs), regulatory macrophages, myeloid-derived suppressor cells (MDSCs) and mesenchymal stromal cells (MSCs).

  • Distinct regulatory cell populations are present in the draining lymphoid tissue and in the peripheral blood. These cells migrate to the allograft, where they modulate immune responses by inhibiting effector cells and by inducing other regulatory cells. Early after transplantation, MDSCs and MSCs can migrate to the site of an inflammatory response and promote the development of tolerogenic DCs and macrophages that induce peripheral TReg cell development.

  • Cellular therapies using TReg cells, regulatory macrophages and MSCs are being developed for clinical application to control rejection or GVHD in transplant recipients.

Abstract

Immune regulation is fundamental to any immune response to ensure that it is appropriate for the perceived threat to the host. Following cell and organ transplantation, it is essential to control both the innate immune response triggered by the injured tissue and the adaptive immune response stimulated by mismatched donor and recipient histocompatibility antigens to enable the transplant to survive and function. Here, we discuss the leukocyte populations that can promote immune tolerance after cell or solid-organ transplantation. Such populations include regulatory T cells, B cells and macrophages, as well as myeloid-derived suppressor cells, dendritic cells and mesenchymal stromal cells. We consider the potential of these regulatory immune cells to develop and function in transplant recipients and their potential use as cellular therapies to promote long-term graft function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms used by adaptive regulatory immune cells in transplantation.
Figure 2: Mechanisms used by regulatory populations of innate immune cells in transplantation.
Figure 3: Potential clinical applications of therapies based on regulatory immune cells.

Similar content being viewed by others

References

  1. Wood, K. J. & Goto, R. Mechanisms of rejection: current perspectives. Transplantation 93, 1–10 (2012).

    Article  PubMed  Google Scholar 

  2. Billingham, R. E., Brent, L. & Medawar, P. B. Actively acquired tolerance of foreign cells. Nature 172, 603–606 (1953).

    Article  CAS  PubMed  Google Scholar 

  3. Hall, B. M., Jelbart, M. E. & Dorsch, S. E. Suppressor T cells in rats with prolonged cardiac allograft survival after treatment with cyclosporine. Transplantation 37, 595–600 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. Hall, B., Jelbart, M., Gurley, K. & Dorsch, S. Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine. Mediation of specific suppression by T helper/inducer cells. J. Exp. Med. 162, 1683–1694 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Quigley, R. L., Wood, K. J. & Morris, P. J. Mediation of the induction of immunologic unresponsiveness following antigen pretreatment by a CD4 (W3/25+) T cell appearing transiently in the splenic compartment and subsequently in the TDL. Transplantation 47, 689–696 (1989). References 4 and 5 demonstrated that CD4+CD25+ T cells mediate suppression to allografts in transplant models. In addition, reference 5 demonstrated the role of IL-10 in maintaining T Reg cell-mediated tolerance in vivo.

    Article  CAS  PubMed  Google Scholar 

  6. Hara, M. et al. IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J. Immunol. 166, 3789–3796 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Taylor, P. A., Lees, C. J. & Blazar, B. R. The infusion of ex vivo activated and expanded CD4+CD25+ immune regulatory cells inhibits graft-versus-host disease lethality. Blood 99, 3493–3499 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self tolerance maintained by activated T cells expressing IL-2 receptor α chains (CD25). Breakdown of a single mechanism of self tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  9. Alexander, S. I. et al. Chimerism and tolerance in a recipient of a deceased-donor liver transplant. N. Engl. J. Med. 358, 369–374 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. West, L. et al. ABO-incompatible heart transplantation in infants. N. Engl. J. Med. 344, 793–800 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Takatsuki, M. et al. Weaning of immunosuppression in living donor liver transplant recipients. Transplantation 72, 449–454 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Scandling, J. D. et al. Tolerance and chimerism after renal and hematopoietic-cell transplantation. N. Engl. J. Med. 358, 362–368 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Kawai, T. et al. HLA-mismatched renal transplantation without maintenance immunosuppression. N. Engl. J. Med. 358, 353–361 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Leventhal, J. et al. Chimerism and tolerance without GVHD or engraftment syndrome in HLA-mismatched combined kidney and hematopoietic stem cell transplantation. Sci. Transl. Med. 4, 124ra128 (2012).

    Article  Google Scholar 

  15. Strober, S. et al. Acquired immune tolerance to cadaveric renal allografts: a study of three patients treated with total lymphoid irradiation. N. Engl. J. Med. 321, 28–33 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Li, Y. et al. Analyses of peripheral blood mononuclear cells in operational tolerance after pediatric living donor liver transplantation. Am. J. Transplant. 4, 2118–2125 (2004).

    Article  PubMed  Google Scholar 

  17. Martinez-Llordella, M. et al. Multiparameter immune profiling of operational tolerance in liver transplantation. Am. J. Transplant. 7, 309–319 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Sagoo, P. et al. Development of a cross-platform biomarker signature to detect renal transplant tolerance in humans. J. Clin. Invest. 120, 1848–1861 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Newell, K. A. et al. Identification of a B cell signature associated with renal transplant tolerance in humans. J. Clin. Invest. 120, 1836–1847 (2010). References 18 and 19 link a B cell signature with operational tolerance in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brouard, S. et al. Identification of a peripheral blood transcriptional biomarker panel associated with operational renal allograft tolerance. Proc. Natl Acad. Sci. USA 104, 15448–15453 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pallier, A. et al. Patients with drug-free long-term graft function display increased numbers of peripheral B cells with a memory and inhibitory phenotype. Kidney Int. 78, 503–513 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Wood, K. J. & Sakaguchi, S. Regulatory T cells in transplantation tolerance. Nature Rev. Immunol. 3, 199–210 (2003).

    Article  CAS  Google Scholar 

  23. Sakaguchi, S., Miyara, M., Costantino, C. M. & Hafler, D. A. FOXP3+ regulatory T cells in the human immune system. Nature Rev. Immunol. 10, 490–500 (2010).

    Article  CAS  Google Scholar 

  24. Edinger, M. et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nature Med. 9, 1144–1150 (2003). This study demonstrated the ability of adoptively transferred T Reg cells to suppress GVHD without affecting the graft-versus-leukaemia response, indicating that T Reg cell cellular therapy does not induce global immunosuppression.

    Article  CAS  PubMed  Google Scholar 

  25. Clark, F. J. et al. Chronic graft-versus-host disease is associated with increased numbers of peripheral blood CD4+CD25high regulatory T cells. Blood 103, 2410–2416 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Reibke, R. et al. CD8+ regulatory T cells generated by neonatal recognition of peripheral self-antigen. Proc. Natl Acad. Sci. USA 103, 15142–15147 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vlad, G., Cortesini, R. & Suciu-Foca, N. CD8+ T suppressor cells and the ILT3 master switch. Hum. Immunol. 69, 681–686 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Li, X. L. et al. Mechanism and localization of CD8 regulatory T cells in a heart transplant model of tolerance. J. Immunol. 185, 823–833 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Kim, H.-J. & Cantor, H. Regulation of self-tolerance by Qa-1-restricted CD8+ regulatory T cells. Semin. Immunol. 23, 446–452 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thomson, C., Lee, B. & Zhang, L. Double-negative regulatory T cells. Immunol. Res. 35, 163–177 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Monteiro, M. et al. Identification of regulatory Foxp3+ invariant NKT cells induced by TGF-β. J. Immunol. 185, 2157–2163 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Zeng, D. et al. Bone marrow NK1.1 and NK 1.1+ T cells reciprocally regulate acute graft versus host disease. Blood 99, 1449–1457 (1999).

    Article  Google Scholar 

  33. Hayday, A. & Tigelaar, R. Immunoregulation in the tissues by γδ T cells. Nature Rev. Immunol. 3, 233–242 (2003).

    Article  CAS  Google Scholar 

  34. Josefowicz, S. Z. & Rudensky, A. Control of regulatory T cell lineage commitment and maintenance. Immunity 30, 616–625 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang, J. et al. Allograft rejection mediated by memory T cells is resistant to regulation. Proc. Natl Acad. Sci. USA 104, 19954–19959 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hamano, K., Rawsthorne, M., Bushell, A., Morris, P. & Wood, K. Evidence that the continued presence of the organ graft and not peripheral donor microchimerism is essential for the maintenance of tolerance to alloantigen in anti-CD4 treated recipients. Transplantation 62, 856–860 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Tullius, S. et al. Chronically rejected rat kidney allografts induce donor-specific tolerance. Transplantation 64, 158–161 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Steger, U., Kingsley, C. I., Karim, M., Bushell, A. R. & Wood, K. J. CD25+CD4+ regulatory T cells develop in mice not only during spontaneous acceptance of liver allografts but also after acute allograft rejection. Transplantation 82, 1202–1209 (2006).

    Article  PubMed  Google Scholar 

  39. Francis, R. S. et al. Induction of transplantation tolerance converts potential effector T cells into graft-protective regulatory T cells. Eur. J. Immunol. 41, 726–738 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Wood, K. J., Bushell, A. & Jones, N. D. Immunologic unresponsiveness to alloantigen in vivo: a role for regulatory T cells. Immunol. Rev. 241, 119–132 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Graca, L. et al. Both CD4+CD25+ and CD4+CD25 regulatory cells mediate dominant transplantation tolerance. J. Immunol. 168, 5558–5565 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Feng, G. et al. Functional regulatory T cells produced by inhibiting cyclic nucleotide phosphodiesterase type 3 prevent allograft rejection. Sci. Transl. Med. 3, 83ra40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Feng, G., Wood, K. & Bushell, A. Interferon-γ conditioning ex vivo generates CD25+CD62L+Foxp3+ regulatory T cells that prevent allograft rejection: potential avenues for cellular therapy. Transplantation 86, 578–589 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Hester, J., Schiopu, A., Nadig, S. N. & Wood, K. J. Low dose rapamycin treatment increases the ability of human regulatory T cells to inhibit transplant arteriosclerosis in vivo. Am. J. Transplant. 14 Apr 2012 (doi:10.1111/j.1600-6143.2012.04065.x).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kingsley, C. I., Karim, M., Bushell, A. R. & Wood, K. J. CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4- and IL-10-dependent immunoregulation of alloresponses. J. Immunol. 168, 1080–1086 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. McMurchy, A. N., Bushell, A., Levings, M. K. & Wood, K. J. Moving to tolerance: clinical application of T regulatory cells. Semin. Immunol. 23, 304–313 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Shevach, E. M. Mechanisms of Foxp3+ T regulatory cell-mediated suppression. Immunity 30, 636–645 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Yamaguchi, T., Wing, J. B. & Sakaguchi, S. Two modes of immune suppression by Foxp3+ regulatory T cells under inflammatory or non-inflammatory conditions. Semin. Immunol. 23, 424–430 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Grohmann, U. et al. CTLA-4Ig regulates tryptophan catabolism in vivo. Nature Immunol. 3, 1097–1101 (2002).

    Article  CAS  Google Scholar 

  50. Rubtsov, Y. P. et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28, 546–558 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Chaturvedi, V., Collison, L. W., Guy, C. S., Workman, C. J. & Vignali, D. A. A. Cutting edge: human regulatory T cells require IL-35 to mediate suppression and infectious tolerance. J. Immunol. 186, 6661–6666 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Andersson, J. et al. CD4+FoxP3+ regulatory T cells confer infectious tolerance in a TGF-β-dependent manner. J. Exp. Med. 205, 1975–1981 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Collison, L. W. et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450, 566–569 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Siegmund, K. et al. Migration matters: regulatory T-cell compartmentalization determines suppressive activity in vivo. Blood 106, 3097–3104 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Carvalho-Gaspar, M. et al. Location and time-dependent control of rejection by regulatory T cells culminates in a failure to generate memory T cells. J. Immunol. 180, 6640–6648 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Gandolfo, M. T. et al. Foxp3+ regulatory T cells participate in repair of ischemic acute kidney injury. Kidney Int. 76, 717–729 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Rosenblum, M. D. et al. Response to self antigen imprints regulatory memory in tissues. Nature 480, 538–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Graca, L., Cobbold, S. P. & Waldmann, H. Identification of regulatory T cells in tolerated allografts. J. Exp. Med. 195, 1641–1646 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kendal, A. R. et al. Sustained suppression by Foxp3+ regulatory T cells is vital for infectious transplantation tolerance. J. Exp. Med. 26 Aug 2011 (doi:10.1084/jem.20110767).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Groux, H., Bigler, M., de Vries, J. E. & Roncarolo, M. G. Interleukin-10 induces a long-term antigen specific anergic state in human CD4+ T cells. J. Exp. Med. 184, 19–29 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Roncarolo, M.-G., Gregori, S., Lucarelli, B., Ciceri, F. & Bacchetta, R. Clinical tolerance in allogeneic hematopoietic stem cell transplantation. Immunol. Rev. 241, 145–163 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Lider, O., Reshef, T., Beraud, E., Ben-Nun, A. & Cohen, I. Anti-idiotypic network induced by T cell vaccination against experimental autoimmune encephalomyelitis. Science 239, 181–183 (1988).

    Article  CAS  PubMed  Google Scholar 

  64. Hutchinson, I. V. Suppressor T cells in allogeneic models. Transplantation 41, 547–555 (1986). References 63 and 64 include descriptions of early studies demonstrating the regulatory role of CD8+ T cells.

    Article  CAS  PubMed  Google Scholar 

  65. Dorf, M., Kuchroo, V. & Collins, M. Suppressor T cells: some answers but more questions. Immunol. Today 13, 241–243 (1992).

    Article  CAS  PubMed  Google Scholar 

  66. Dorf, M. E. & Benacerraf, B. Suppressor cells and immunoregulation. Annu. Rev. Immunol. 2, 127–157 (1984).

    Article  CAS  PubMed  Google Scholar 

  67. Liu, Z., Tugulea, S., Cortesini, R., Lederman, S. & Suciu-Foca, N. Inhibition of CD40 signaling pathway in antigen presenting cells by T suppressor cells. Hum. Immunol. 60, 568–574 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Trzonkowski, P., Zilvetti, M., Friend, P. & Wood, K. J. Recipient memory-like lymphocytes remain unresponsive to graft antigens after CAMPATH-1H induction with reduced maintenance immunosuppression. Transplantation 82, 1342–1351 (2006).

    Article  PubMed  Google Scholar 

  69. Trzonkowski, P. et al. Homeostatic repopulation by CD28CD8+ T cells in alemtuzumab-depleted kidney transplant recipients treated with reduced immunosuppression. Am. J. Transplant. 8, 338–347 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Cai, J. et al. Minor H antigen HA-1-specific regulator and effector CD8+ T cells, and HA-1 microchimerism, in allograft tolerance. J. Exp. Med. 199, 1017–1023 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang, Z., Yang, L., Young, K., DuTemple, B. & Zhang, L. Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression. Nature Med. 6, 782–789 (2000). This study identifies CD4CD8 (double-negative) T cells as a novel immunosuppressive population and describes a unique mechanism of suppression in which trogocytosis and the presentation of allogeneic MHC–peptide complexes are used to target and kill CD8+ T cells with the same specificity.

    Article  CAS  PubMed  Google Scholar 

  72. Ford, M. S., Young, K. J., Zhang, Z., Ohashi, P. S. & Zhang, L. The immune regulatory function of lymphoproliferative double negative T cells in vitro and in vivo. J. Exp. Med. 196, 261–267 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Young, K. J., DuTemple, B., Phillips, M. J. & Zhang, L. Inhibition of graft-versus-host disease by double-negative regulatory T cells. J. Immunol. 171, 134–141 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Ford, M. S. et al. Peptide-activated double-negative T cells can prevent autoimmune type-1 diabetes development. Eur. J. Immunol. 37, 2234–2241 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Hill, M. et al. Cell therapy with autologous tolerogenic dendritic cells induces allograft tolerance through interferon-γ and Epstein-Barr virus-induced gene 3. Am. J. Transplant. 11, 2036–2045 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Fischer, K. et al. Isolation and characterization of human antigen-specific TCRαβ+ CD4CD8 double-negative regulatory T cells. Blood 105, 2828–2835 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. McIver, Z. et al. Double-negative regulatory T cells induce allotolerance when expanded after allogeneic haematopoietic stem cell transplantation. Br. J. Haematol. 141, 170–178 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Jukes, J.-P., Wood, K. J. & Jones, N. D. Natural killer T cells: a bridge to tolerance or a pathway to rejection? Transplantation 84, 679–681 (2007).

    Article  PubMed  Google Scholar 

  79. Palathumpat, V., Dejbakhsh-Jones, S., Holm, B. & Strober, S. Different subsets of T cells in the adult mouse bone marrow and spleen induce or suppress acute graft-versus-host disease. J. Immunol. 149, 808–817 (1992).

    CAS  PubMed  Google Scholar 

  80. Pillai, A. B., George, T. I., Dutt, S. & Strober, S. Host natural killer T cells induce an interleukin-4-dependent expansion of donor CD4+CD25+Foxp3+ T regulatory cells that protects against graft-versus-host disease. Blood 113, 4458–4467 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Leveson-Gower, D. B. et al. Low doses of natural killer T cells provide protection from acute graft-versus-host disease via an IL-4-dependent mechanism. Blood 117, 3220–3229 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Martinez-Llordella, M. et al. Using transcriptional profiling to develop a diagnostic test of operational tolerance in liver transplant recipients. J. Clin. Invest. 118, 2845–2857 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Girardi, M. et al. Resident skin-specific γδ T cells provide local, nonredundant regulation of cutaneous inflammation. J. Exp. Med. 195, 855–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mauri, C. & Blair, P. A. Regulatory B cells in autoimmunity: developments and controversies. Nature Rev. Rheumatol. 6, 636–643 (2010).

    Article  CAS  Google Scholar 

  85. Fillatreau, S., Gray, D. & Anderton, S. M. Not always the bad guys: B cells as regulators of autoimmune pathology. Nature Rev. Immunol. 8, 391–397 (2008).

    Article  CAS  Google Scholar 

  86. Fillatreau, S., Sweenie, C. H., McGeachy, M. J., Gray, D. & Anderton, S. M. B cells regulate autoimmunity by provision of IL-10. Nature Immunol. 3, 944–950 (2002).

    Article  CAS  Google Scholar 

  87. Mauri, C., Gray, D., Mushtaq, N. & Londei, M. Prevention of arthritis by interleukin 10-producing B cells. J. Exp. Med. 197, 489–501 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Blair, P. A. et al. CD19+CD24hiCD38hi B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity 32, 129–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Tu, W. et al. Efficient generation of human alloantigen-specific CD4+ regulatory T cells from naive precursors by CD40-activated B cells. Blood 112, 2554–2562 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zheng, J., Liu, Y., Lau, Y.-L. & Tu, W. CD40-activated B cells are more potent than immature dendritic cells to induce and expand CD4+ regulatory T cells. Cell. Mol. Immunol. 7, 44–50 ().

  91. Ding, Q. et al. Regulatory B cells are identified by expression of TIM-1 and can be induced through TIM-1 ligation to promote tolerance in mice. J. Clin. Invest. 121, 3645–3656 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Le Texier, L. et al. Long-term allograft tolerance is characterized by the accumulation of B cells exhibiting an inhibited profile. Am. J. Transplant. 11, 429–438 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Heidt, S., Hester, J., Shankar, S., Friend, P. & Wood, K. J. B cell repopulation after alemtuzumab induction — transient increase in transitional B cells and long term dominance of naive B cells. Am. J. Transplant. 15 Mar 2012 (doi:10.1111/j.1600-6143.2012.04012.x).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hester, J. et al. Th17 cells in alemtuzumab-treated patients. The effect of long-term maintenance immunosuppressive therapy. Transplantation 91, 744–750 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Bloom, D. D. et al. CD4+CD25+FOXP3+ regulatory T cells increase de novo in kidney transplant patients after immunodepletion with campath-1H. Am. J. Transplant. 8, 793–802 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Chung, J. B. et al. Incomplete activation of CD4 T cells by antigen-presenting transitional immature B cells: implications for peripheral B and T cell responsiveness. J. Immunol. 171, 1758–1767 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Niimi, M. et al. The role of the CD40 pathway in alloantigen induced hyporesponsiveness in vivo. J. Immunol. 161, 5331–5337 (1998).

    CAS  PubMed  Google Scholar 

  98. Murray, P. J. & Wynn, T. A. Protective and pathogenic functions of macrophage subsets. Nature Rev. Immunol. 11, 723–737 (2011).

    Article  CAS  Google Scholar 

  99. Li, X. C. The significance of non-T-cell pathways in graft rejection: implications for transplant tolerance. Transplantation 90, 1043–1047 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fleming, B. D. & Mosser, D. M. Regulatory macrophages: setting the threshold for therapy. Eur. J. Immunol. 41, 2498–2502 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tiemessen, M. M. et al. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc. Natl Acad. Sci. USA 104, 19446–19451 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wong, S.-C. et al. Macrophage polarization to a unique phenotype driven by B cells. Eur. J. Immunol. 40, 2296–2307 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Hutchinson, J. A. et al. Cutting edge: immunological consequences and trafficking of human regulatory macrophages administered to renal transplant recipients. J. Immunol. 187, 2072–2078 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Hashimoto, D. et al. Pretransplant CSF-1 therapy expands recipient macrophages and ameliorates GVHD after allogeneic hematopoietic cell transplantation. J. Exp. Med. 208, 1069–1082 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Steiman, R. & Witmer, M. Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice. Proc. Natl Acad. Sci. USA 75, 5132–5136 (1978).

    Article  Google Scholar 

  106. Morelli, A. E. & Thomson, A. W. Tolerogenic dendritic cells and the quest for transplant tolerance. Nature Rev. Immunol. 7, 610–621 (2007).

    Article  CAS  Google Scholar 

  107. van Kooten, C. et al. Dendritic cells as a tool to induce transplantation tolerance: obstacles and opportunities. Transplantation 91, 2–7 (2011).

    Article  PubMed  Google Scholar 

  108. Steinman, R. M., Hawiger, D. & Nussenzweig, M. C. Tolerogenic dendritic cells*. Annu. Rev. Immunol. 21, 685–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Lu, L., McCaslin, D., Starzl, T. E. & Thomson, A. W. Bone marrow-derived dendritic cell progenitors (NLDC 145+, MHC class II+, B7-1dim, B7-2) induce alloantigen-specific hyporesponsiveness in murine T lymphocytes. Transplantation 60, 1539–1545 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Fu, F. et al. Costimulatory molecule-deficient dendritic cell progenitors (MHC class II+, CD80dim, CD86) prolong cardiac allograft survival in nonimmunosupressed recipients. Transplantation 62, 659–665 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lutz, M. et al. Immature dendritic cells generated with low doses of GM-CSF in the absence of IL-4 are maturation resistant and prolong allograft survival in vivo. Eur. J. Immunol. 30, 1813–1822 (2000). References 110 and 111 provide evidence that immature myeloid DCs can promote tolerance to solid-organ allografts.

    Article  CAS  PubMed  Google Scholar 

  112. Roelen, D. et al. Prolongation of skin graft survival by modulation of the alloimmune response with alternatively activated dendritic cells. Transplantation 76, 1608–1615 (2003).

    Article  PubMed  Google Scholar 

  113. Sato, K., Yamashita, N., Yamashita, N., Baba, M. & Matsuyama, T. Regulatory dendritic cells protect mice from murine acute graft-versus-host disease and leukemia relapse. Immunity 18, 367–379 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Lu, L. et al. Blockade of the CD40–CD40 ligand pathway potentiates the capacity of donor-derived dendritic cell progenitors to induce long-term cardiac allograft survival. Transplantation 64, 1808–1815 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Swiecki, M. & Colonna, M. Unraveling the functions of plasmacytoid dendritic cells during viral infections, autoimmunity, and tolerance. Immunol. Rev. 234, 142–162 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ochando, J. C. et al. Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nature Immunol. 7, 652–662 (2006). This manuscript describes pDCs as antigen-presenting cells that are essential for tolerance to cardiac allografts and discusses the role of pDCs in the generation of alloantigen-specific T Reg cells.

    Article  CAS  Google Scholar 

  117. Gilliet, M. & Liu, Y.-J. Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J. Exp. Med. 195, 695–704 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mazariegos, G. V. et al. Dendritic cell subset ratio in tolerant, weaning and non-tolerant liver recipients is not affected by extent of immunosuppression. Am. J. Transplant. 5, 314–322 (2005).

    Article  PubMed  Google Scholar 

  119. Tokita, D. et al. High PD-L1/CD86 ratio on plasmacytoid dendritic cells correlates with elevated T-regulatory cells in liver transplant tolerance. Transplantation 85, 369–377 (2008).

    Article  PubMed  Google Scholar 

  120. Matta, B. M., Castellaneta, A. & Thomson, A. W. Tolerogenic plasmacytoid DC. Eur. J. Immunol. 40, 2667–2676 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Boros, P., Ochando, J. C., Chen, S.-H. & Bromberg, J. S. Myeloid-derived suppressor cells: natural regulators for transplant tolerance. Hum. Immunol. 71, 1061–1066 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Haile, L. A. et al. Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology 135, 871–881 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Gallina, G. et al. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J. Clin. Invest. 116, 2777–2790 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Garcia, M. R. et al. Monocytic suppressive cells mediate cardiovascular transplantation tolerance in mice. J. Clin. Invest. 120, 2486–2496 (2010). This study demonstrates the tolerogenic role of MDSCs in solid-organ transplantation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chou, H.-S. et al. Myeloid-derived suppressor cells protect islet transplants by B7-H1 mediated enhancement of T regulatory cells. Transplantation 93, 272–282 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Dugast, A.-S. et al. Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion. J. Immunol. 180, 7898–7906 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. De Wilde, V. et al. Endotoxin-induced myeloid-derived suppressor cells inhibit alloimmune responses via heme oxygenase-1. Am. J. Transplant. 9, 2034–2047 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. English, K., French, A. & Wood, K. J. Mesenchymal stromal cells: facilitators of successful transplantation? Cell Stem Cell 7, 431–442 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Ding, Y. et al. Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9. Diabetes 58, 1797–1806 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. English, K. et al. Cell contact, prostaglandin E2 and transforming growth factor β1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25High forkhead box P3+ regulatory T cells. Clin. Exp. Immunol. 156, 149–160 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Casiraghi, F. et al. Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells. J. Immunol. 181, 3933–3946 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Zhang, B. et al. Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2-dependent regulatory dendritic cell population. Blood 113, 46–57 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Ge, W. et al. Infusion of mesenchymal stem cells and rapamycin synergize to attenuate alloimmune responses and promote cardiac allograft tolerance. Am. J. Transplant. 9, 1760–1772 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Larsen, C., Morris, P. & Austyn, J. Migration of dendritic leukocytes form cardiac allografts into host spleens: a novel pathway for initiation of rejection. J. Exp. Med. 171, 307–314 (1990).

    Article  CAS  PubMed  Google Scholar 

  135. Lakkis, F., Arakelov, A., Konienczny, B. & Inoue, Y. Immunologic 'ignorance' of vascularised organ transplants in the absence of secondary lymphoid tissue. Nature Med. 6, 686–688 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Pearl, J. P. et al. Immunocompetent T-cells with a memory-like phenotype are the dominant cell type following antibody-mediated T-cell depletion. Am. J. Transplant. 5, 465–474 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Lopez, M., Clarkson, M. R., Albin, M., Sayegh, M. H. & Najafian, N. A novel mechanism of action for anti-thymocyte globulin: induction of CD4+CD25+Foxp3+ regulatory T cells. J. Am. Soc. Nephrol. 17, 2844–2853 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Salama, A. D., Najafian, N., Clarkson, M. R., Harmon, W. E. & Sayegh, M. H. Regulatory CD25+ T cells in human kidney transplant recipients. J. Am. Soc. Nephrol. 14, 1643–1651 (2003).

    Article  PubMed  Google Scholar 

  139. Akl, A. et al. An investigation to assess the potential of CD25highCD4+ T cells to regulate responses to donor alloantigens in clinically stable renal transplant recipients. Transpl. Int. 21, 65–73 (2008).

    PubMed  Google Scholar 

  140. Battaglia, M. et al. Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J. Immunol. 177, 8338–8347 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Bushell, A. & Wood, K. GITR ligation blocks allograft protection by induced CD25+CD4+ regulatory T cells without enhancing effector T-cell function. Am. J. Transplant. 7, 759–768 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Nadig, S. N. et al. In vivo prevention of transplant arteriosclerosis by ex vivo-expanded human regulatory T cells. Nature Med. 16, 809–813 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Sagoo, P. et al. Human regulatory T cells with alloantigen specificity are more potent inhibitors of alloimmune skin graft damage than polyclonal regulatory T cells. Sci. Transl. Med. 3, 83ra42 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Issa, F. et al. Ex vivo-expanded human regulatory T cells prevent the rejection of skin allografts in a humanised mouse model. Transplantation 90, 1321–1327 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Warnecke, G., Bushell, A., Nadig, S. & Wood, K. J. Regulation of transplant arteriosclerosis by CD25+CD4+ T cells generated to alloantigen in vivo. Transplantation 83, 1459–1465 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Ermann, J. et al. Only the CD62L+ subpopulation of CD4+CD25+ regulatory T cells protects from lethal acute GVHD. Blood 105, 2220–2226 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Trzonkowski, P. et al. First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+CD25+CD127 T regulatory cells. Clin. Immunol. 133, 22–26 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Brunstein, C. G. et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood 117, 1061–1070 (2011). This study was the first clinical study to evaluate the safety and efficacy of expanded populations of cord blood-derived T Reg cells after umbilical cord blood transplantation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Di Ianni, M. et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood 117, 3921–3928 (2011). This clinical trial demonstrates the efficacy of donor-derived T Reg cells in preventing GVHD after haploidentical HSCT.

    Article  CAS  PubMed  Google Scholar 

  150. Shin, H.-J. et al. Rapamycin and IL-2 reduce lethal acute graft-versus-host disease associated with increased expansion of donor type CD4+CD25+Foxp3+ regulatory T cells. Blood 118, 2342–2350 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Koreth, J. et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N. Engl. J. Med. 365, 2055–2066 (2011). In this study, low-dose IL-2 treatment in patients with chronic GVHD was associated with preferential T Reg cell expansion and amelioration of disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Nguyen, V. H. et al. The impact of regulatory T cells on T-cell immunity following hematopoietic cell transplantation. Blood 111, 945–953 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bushell, A., Jones, E., Gallimore, A. & Wood, K. J. The generation of CD25+CD4+ regulatory cells that prevent allograft rejection does not compromise immunity to a viral protein. J. Immunol. 174, 3290–3297 (2005). References 152 and 153 demonstrate that T Reg cells effective at controlling alloantigen-driven responses (GVHD and heart rejection, respectively) do not compromise effector viral responses, providing evidence that T Reg cell-dependent tolerance does not attenuate responses to pathogens.

    Article  CAS  PubMed  Google Scholar 

  154. LeBlanc, K. et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371, 1579–1586 (2008). This clinical study demonstrated the efficacy of in vitro -expanded MSC populations in patients with steroid-refractory acute GVHD.

    Article  CAS  Google Scholar 

  155. MacMillan, M. L., Blazer, B. R., DeFor, T. E. & Wagner, J. E. Transplantation of ex-vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I-II clinical trial. Bone Marrow Transplant. 43, 447–454 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. Mills, C. R. Press release: Osiris Therapeutics announces preliminary results for Prochymal Phase III GvHD trials. Osiris [online], (2009).

    Google Scholar 

  157. Tan, J. et al. Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants. J. Am. Med. Assoc. 307, 1169–1177 (2012).

    Article  CAS  Google Scholar 

  158. Giannoukakis, N., Phillips, B., Finegold, D., Harnaha, J. & Trucco, M. Phase I (safety) study of autologous tolerogenic dendritic cells in type 1 diabetic patients. Diabetes Care 34, 2026–2032 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Naranjo-Gomez, M. et al. Comparative study of clinical grade human tolerogenic dendritic cells. J. Transl. Med. 9, 89 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Edinger, M. & Hoffmann, P. Regulatory T cells in stem cell transplantation: strategies and first clinical experiences. Curr. Opin. Immunol. 23, 679–684 (2011).

    Article  CAS  PubMed  Google Scholar 

  161. Battaglia, M. & Roncarolo, M.-G. Immune intervention with T regulatory cells: past lessons and future perspectives for type 1 diabetes. Semin. Immunol. 23, 182–194 (2011).

    Article  CAS  PubMed  Google Scholar 

  162. Koyama, I. et al. Abstract #154: Induction of donor specific hyporesponsiveness by adoptive transfer of ex vivo expanded anergic cells. Am. J. Transplant. 11 (Suppl. S2), 77 (2011).

    Google Scholar 

  163. Hutchinson, J. A. et al. Transplant acceptance-inducing cells as an immune-conditioning therapy in renal transplantation. Transpl. Int. 21, 728–741 (2008).

    Article  PubMed  Google Scholar 

  164. Hutchinson, J. A. et al. A cell-based approach to the minimization of immunosuppression in renal transplantation. Transpl. Int. 21, 742–754 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work from the authors' own laboratory described in this Review was supported by grants from the Wellcome Trust, the UK Medical Research Council, the British Heart Foundation, the Roche Organ Transplant Research Foundation and the European Union (through the Indices of Tolerance, RISET, ONE Study and OptiStem projects). The authors would like to thank all members of the Transplantation Research Immunology Group past and present for their valuable contributions to the data reviewed herein, and particularly R. Goto for help with the figure outlines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn J. Wood.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Authors' homepage

ClinicalTrials.gov

The ONE Study

Glossary

Graft-versus-host disease

(GVHD). Tissue damage that occurs in a recipient of allogeneic transplanted tissue (usually a bone marrow transplant) as a result of the activity of donor cytotoxic T lymphocytes that recognize the tissue of the recipient as foreign. GVHD varies markedly in severity, but can be life threatening in severe cases. Typically, damage to the skin and gut mucosa leads to clinical manifestations.

Mixed chimerism

A state of coexistence of host and allogeneic donor haematopoietic cells.

Natural killer T cells

(NKT cells). A subset of T cells expressing both NK cell and T cell markers. In mice, NKT cells were first identified by their expression of the alloantigen NK1.1 (NK cell-associated antigen 1.1) in addition to CD3. Some mouse NKT cells express an invariant T cell receptor (TCR) containing the Vα14 variable region of the TCR α-chain and recognize antigens presented on CD1d. Similarly, human NKT cells express an invariant Vα24-containing TCR. NKT cells are characterized functionally by cytolytic activity and the rapid production of cytokines, including IFNγ and IL-4.

Ischaemia–reperfusion injury

An injury in which the tissue first suffers from hypoxia as a result of severely decreased, or completely arrested, blood flow. The restoration of normal blood flow then triggers inflammation, which exacerbates the tissue damage.

Induction therapy

A therapy given before transplantation to promote graft acceptance.

Trogocytosis

A process whereby lymphocytes that are interacting with an antigen-presenting cell (APC) can extract cell-surface molecules expressed by the APC and display them on their own surface.

Graft-versus-tumour response

An immune response mounted against host tumour cells by donor T cells (mainly cytotoxic CD8+ T cells) that are derived from an allogeneic bone marrow transplant.

Plasmacytoid DC

(pDC). An immature dendritic cell (DC) with a morphology that resembles that of a plasma cell. pDCs produce large amounts of type I interferons in response to viral infection.

Transitional B cells

Transitional B cells are short-lived immature B cells, typically found in the spleen, that either die or are selected into the peripheral mature B cell repertoire. Transitional B cells can be subdivided into three subsets (T1, T2 and T3 cells) based on different phenotypical and functional characteristics.

Alternatively activated macrophages

Macrophages that are induced by TH2-type cytokines, such as IL-4 and IL-3, and that are associated with immune responses to parasites and tissue-repair programmes.

B-1 cells

IgMhiIgDlowMAC1+B220lowCD23 cells that are predominantly found in the peritoneal and pleural cavities. The size of the B-1 cell population is kept constant owing to the self-renewing capacity of these cells. B-1 cells recognize self components, as well as common bacterial antigens, and they secrete IgM antibodies that tend to be of low affinity and broad specificity.

Anti-thymocyte globulin

Polyclonal antibodies specific for human T cells that are produced by immunizing rabbits or horses.

Calcineurin inhibitor

An immunosuppressive drug that blocks calcineurin (a phosphatase that is necessary for the nuclear translocation of the transcription factor NFAT) and thus restricts T cell activation.

Graft-versus-leukaemia effect

The antitumour activity of donor T cells against residual leukaemic cells of the graft recipient following allogeneic bone marrow transplantation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, K., Bushell, A. & Hester, J. Regulatory immune cells in transplantation. Nat Rev Immunol 12, 417–430 (2012). https://doi.org/10.1038/nri3227

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3227

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing