2016 School Year

Graduate School Entrance Examination Problem Booklet

Mathematics

Examination Time: 10:00 to 12:30

Instructions

- 1. Do not open this problem booklet until the start of the examination is announced.
- 2. If you find missing, misplaced, and/or unclearly printed pages in the problem booklet, ask the examiner.
- 3. Answer all of three problems appearing in this booklet, in Japanese or English.
- 4. You are given three answer sheets. You must use a separate answer sheet for each problem. You may continue to write your answer on the back of the answer sheet if you cannot conclude it on the front.
- 5. Fill the designated blanks at the top of each answer sheet with your examinee's number and the problem number you are to answer.
- 6. The blank pages are provided for rough work. Do not detach them from this problem booklet.
- 7. An answer sheet is regarded as invalid if you write marks and/or symbols and/or words unrelated to the answer on it.
- 8. Do not take either the answer sheets or the problem booklet out of the examination room.

Examinee's number	No.
-------------------	-----

Fill this box with your examinee's number.

(blank page for rough work)

Problem 1

The tribonacci numbers $\{T_n\}$ are defined for non-negative integers n as follows.

$$\begin{cases} T_0 = T_1 = 0 \\ T_2 = 1 \\ T_{n+3} = T_{n+2} + T_{n+1} + T_n & (n \ge 0). \end{cases}$$

Answer the following questions.

(1) Find the matrix A that satisfies Eq. (1.1) for all non-negative integers n.

$$\begin{pmatrix} T_{n+3} \\ T_{n+2} \\ T_{n+1} \end{pmatrix} = A \begin{pmatrix} T_{n+2} \\ T_{n+1} \\ T_n \end{pmatrix}. \tag{1.1}$$

- (2) Find the rank and the characteristic equation, i.e., the equation that eigenvalues satisfy, of the matrix A.
- (3) Let $\lambda_1, \lambda_2, \lambda_3$ denote the eigenvalues of the matrix A. Express an eigenvector corresponding to each of the eigenvalues using $\lambda_1, \lambda_2, \lambda_3$.
- (4) Prove that the matrix A has only one real number eigenvalue. Letting λ_1 correspond to this eigenvalue, prove that $1 < \lambda_1 < 2$.
- (5) Prove that T_n can be expressed as $T_n = c_1 \lambda_1^n + c_2 \lambda_2^n + c_3 \lambda_3^n$ using constant complex numbers c_1, c_2, c_3 . You do not need to find values of c_1, c_2, c_3 explicitly.
- (6) Prove $\lim_{n\to\infty} \frac{T_{n+1}}{T_n} = \lambda_1$.

Problem 2

Consider a twice differentiable function y(x) in an xy plane which connects two points A(-1,2) and B(1,2). Let S be outer surface area of the cylindrical object created by rotation of the curve y(x) about the x axis. Answer the following questions.

(1) Prove that the surface area S is given by

$$S = 2\pi \int_{-1}^{1} F(y, y') dx,$$
 (2.1)

$$F(y,y') = y\sqrt{1 + (y')^2},$$
(2.2)

where $y' = \frac{\mathrm{d}y}{\mathrm{d}x}$.

(2) Let the curve y(x) satisfy the following Euler-Lagrange equation for arbitrary x:

$$\frac{\partial F}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial F}{\partial y'} = 0. \tag{2.3}$$

Considering Eq. (2.3) along with $\frac{dF}{dx}$, prove that the following relation holds:

$$F - y' \frac{\partial F}{\partial y'} = c. {(2.4)}$$

Here c is a constant.

- (3) Express a differential equation satisfied by the curve y(x) using y, y', c.
- (4) Represent the curve y(x) as a function of x and c. Obtain an equation which should be satisfied by the constant c.

Problem 3

Answer the following questions.

(1) Calculate the number of possible ways to distribute n equivalent balls to r distinguishable boxes such that each box contains at least one ball, where $n \ge 1$ and $1 \le r \le n$.

Next, consider to place n black balls and m white balls in a line uniformly at random. A run is defined to be a succession of the same color. Let r be the number of runs of black balls and s be the number of runs of white balls. Assume that $n \ge 1$, $m \ge 1$, $1 \le r \le n$, and $1 \le s \le m$. For example, the sequence

corresponds to r = 3 and s = 2.

- (2) Calculate the total number of arrangements when we do not distinguish among balls of the same color.
- (3) Calculate the probability P(r, s) that the number of runs of black balls is r and the number of runs of white balls is s.
- (4) Calculate the probability P(r) that the number of runs of black balls is r.
- (5) Using $(1+x)^n(1+x)^m = (1+x)^{n+m}$, show that the following equations hold.

$$\sum_{\ell=0}^{\min\{n,m\}} \binom{n}{\ell} \binom{m}{\ell} = \binom{n+m}{m}$$
 (3.1)

$$\sum_{\ell=0}^{\min\{n-1,m\}} \binom{n}{\ell+1} \binom{m}{\ell} = \binom{n+m}{m+1}$$
 (3.2)

(6) Calculate the expected value E(r) and the variance V(r) of r.

Calculate $\lim_{N\to\infty}\frac{E(r)}{N}$ and $\lim_{N\to\infty}\frac{V(r)}{N}$ supposing that N=n+m and $\lim_{N\to\infty}\frac{n}{N}=\lambda$, where λ is a real constant.

(blank page for rough work)

(blank page for rough work)