JAPANESE AND KOREAN VOICE SEARCH

Mike Schuster and Kaisuke Nakajima

Google Inc., USA

{schuster, kaisuke}@google .com

ABSTRACT

This paper describes challenges and solutions for building a success-
ful voice search system as applied to Japanese and Korean at Google.
We describe the techniques used to deal with an infinite vocabulary,
how modeling completely in the written domain for language model
and dictionary can avoid some system complexity, and how we built
dictionaries, language and acoustic models in this framework. We
show how to deal with the difficulty of scoring results for multiple
script languages because of ambiguities. The development of voice
search for these languages led to a significant simplification of the
original process to build a system for any new language which in
in parts became our default process for internationalization of voice
search.

Index Terms— Speech recognition, voice search, Japanese, Ko-
rean

1. INTRODUCTION

Voice search, the ability to perform web searches simply by
speaking them to your mobile phone, first appeared around 2008 on
iPhone and Android phones in US English [1]. Soon after it was
obvious that developing voice search for other languages, especially
ones where keyboard input is more difficult, provided even greater
benefits than for English.

While speech recognition systems are very similar across lan-
guages in terms of basic technology, especially many Asian lan-
guages pose new problems that weren’t easily solved by porting tra-
ditional techniques available from English. Many Asian languages
have vastly larger basic character inventories (Japanese, Korean,
Chinese among others), some have several alphabets mixed (Hira-
gana, Katakana, Kanji and ASCII for Japanese, Hangul and ASCII
for Korean), often even in a single query or sentence. This compli-
cates generation of the pronunciation dictionary and adds confusion
during decoding because of the large number of homonyms. Some
parts of the basic character sets exist in multiple formats (multiple
width etc.) and numbers can often be written in multiple ways, which
requires appropriate normalization in some cases.

The concept of spaces between words exists not at all or only
partially depending on the language (traditionally Japanese and Chi-
nese do not have spaces between characters but Korean has some),
but depends in practice on the application as well (search keywords
typed into search engines in Japanese or Korean are usually but not
always separated by spaces, and ASCII keywords are always sepa-
rated). Segmenters have to be used to come up with basic word units
that can be used in the dictionary and language model and spaces be-
tween these units may have to be added or removed for display after
decoding. We developed a segmenter described in section 3 that is
purely data driven and can be used for any language without modifi-
cation. Additional problems were how to deal with the many words

978-1-4673-0046-9/12/$26.00 ©2012 IEEE

5149

of English origin as well as URLs, numbers, dates, names, E-Mail
addresses, abbreviations, punctuation and other special cases which
mostly exist in English as well but became even more complicated
with the mixture of multiple character sets.

At Google the Japanese voice search system was among the first
developed after US English and led to a significant simplification
and speed-up of the process to deal with new languages in general
—in large parts the process described below became the standard to
build and maintain any new language and was first applied to Ko-
rean without any modifications shortly after Japanese was launched
in November 2009. Japanese and Korean are in terms of usage cur-
rently (9/2011) our largest international languages after US English.
Voice search for Mandarin Chinese and Cantonese as launched by
Google in 2009 and 2010 are described in [2] and [3].

2. ACOUSTIC DATA COLLECTION

Acoustic data is necessary to build initial acoustic models and
test sets to measure performance. Publicly available databases in
Japanese/Korean were either severely restricted to be used for com-
mercial applications or the domain of the data was too different from
avoice search application to be used over the data channel of a smart-
phone. We decided to collect data ourselves.

After several attempts with a voice recorder, Blackberry as well
as iPhone-based data collection applications we converged eventu-
ally on the client/server architecture for data collection described
in [4] using paid speakers.

It took a few weeks to collect 250k read utterances with 500
speakers of all ages, dialects, regions and for as many real noise con-
ditions as possible, which was contracted out to local companies. To
match the domain we used randomly sampled queries out of the top N
queries from anonymized logs from the local Google search domains
(google.co.jp, google.co.kr).

A decision that we made early on was to leave all data as much
as possible in the original written domain and model it there as well
(as opposed to converting it to the spoken domain for modeling and
back to the written domain for display as we had done this for En-
glish). This had the advantage that it was not necessary to manually
transcribe the collected data or to convert the language model data —
we could use it as is. However, this meant also that long sequences of
Japanese/Korean characters forming several words, numbers, URLSs,
E-Mail addresses etc. were now left in their written original form
and somehow had to be modeled in the language model (LM) and
recognition process efficiently as discussed in the next sections.

3. SEGMENTATION AND WORD INVENTORY
As mentioned above, many Asian languages have often no or few

spaces between words. Since the whole speech recognition system is
based on having some kind of word inventory the original Japanese

ICASSP 2012

text has be segmented. One choice is to use the Unicode characters
themselves but in experiments we found that for Japanese there are
too many pronunciations per character on average to be able to run
an efficient and accurate enough search. Other segmenters we tried
had problems segmenting arbitrary sequences of characters as often
found in web text data (resulting in many out-of-vocabulary words
(OOVs)) and also were often language-dependent and complex be-
cause they typically use semantic information as well — we wanted to
use a technique that depends only on the data and preferably does not
produce any OOVs. We developed a technique (WordPieceModel)
to learn word units from large amounts of text automatically and in-
crementally by running a greedy algorithm as described below. This
gives us a user-specified number of word units (we often use 200k)
which are chosen in a greedy way without focusing on semantics to
maximize likelihood on the language model training data — inciden-
tally the same metric that we use during decoding. The algorithm
to find the automatically learned word inventory efficiently works in
summary as follows:

1. Initialize the word unit inventory with the basic Unicode char-
acters (Kanji, Hiragana, Katakana for Japanese, Hangul for
Korean) and including all ASCII, ending up with about 22000
total for Japanese and 11000 for Korean.

2. Build a language model on the training data using the inven-
tory from 1.

3. Generate a new word unit by combining two units out of the
current word inventory to increment the word unit inventory
by one. Choose the new word unit out of all possible ones that
increases the likelihood on the training data the most when
added to the model.

4. Goto 2 until a predefined limit of word units is reached or the
likelihood increase falls below a certain threshold.

Training of the segmenter is a computationally expensive proce-
dure if done brute-force as for each iteration (addition of a new word
piece unit by combining two existing ones), as all possible pair com-
binations need to be tested and a new language model needs to be
built. This would be of computational complexity O(K?) per iter-
ation with K being the number of current word units. The training
algorithm can be sped up significantly by a) testing only the pairs that
actually exist in the training data, b) testing only pairs, with a signif-
icant chance of being the best (for example high priors), ¢) combin-
ing several clustering steps into a single iteration which is possible
for groups of pairs that don’t affect each other and d) to only mod-
ify the language model counts for the affected entries. Using these
greedy speed-ups we can build a 200k word piece inventory out of a
frequency-weighted query list in a few hours on a single machine.

This inventory is then used for language modeling, dictionary
and decoding. As the segmentation algorithm builds an inverse bi-
nary tree of pairs starting from the basic character symbols the seg-
mentation itself does not need any Dynamic Programming or other
search procedures and is hence computationally very efficient — iso-
lating the basic characters and combining them as going down the
tree will give a deterministic segmentation in linear time with respect
to the length of the sentence. Since the word inventory is limited to
200k units that can model every possible character sequence and does
not produce any OOVs it simplifies somewhat the generation of the
dictionary — in our case roughly only 4% of the words have more than
one pronunciation. As described in more detail below we found that
adding too many pronunciations hurts performance, likely because
of the increased number of similar hypotheses during the alignment
for training and decoding.

5150

While normal Japanese text does not have spaces between words
there are cases where some spaces are used in other languages (Ko-
rean for example), and also sometimes in Japanese. For example
search keywords are normally separated by spaces (“JL#f 7 — 4
>) as are words with ASCII characters (English words, abbrevia-
tions, numbers etc.) when embedded in Japanese text. Initially we
ran the production system without the ability to glue word pieces to-
gether again — this didn’t matter for popular words and short queries
as those became complete units but was annoying for longer and rare
queries as spaces appeared where they shouldn’t have been. Initially
we experimented with a bigram-based technique run on the hypothe-
ses to decide where to put spaces but abandoned this after finding that
it is much more efficient and elegant to deal with this problem right
during decoding. To be able to learn where to put spaces from the
data and make it part of the decoding strategy we use the following
technique:

1. The original language model data is used “as written”, mean-
ing some data with, some without spaces.

2. When segmenting the LM data with WordPieceModel attach
a space marker (we use an underscore or a tilde) before and
after each unit when you see a space, otherwise don’t attach.
Each word unit can hence appear in four different forms, with
underscore on both sides (there was a space originally on both
sides in the data), with a space marker only on the left or only
on the right, and without space markers at all. The word in-
ventory is now larger, possibly up to four times the original
size if every combination exists.

3. Build LM and dictionary based on this new inventory.

4. During decoding the best path according to the model will
be chosen, which preserves where to put spaces and where
not. The attached space markers obviously have to be filtered
out from the decoding output for correct display. Assuming
the common scenario where the decoder puts automatically
a space between each unit in the output string this procedure
then is:

33 93 5599
->

(a) Remove all spaces (
(b) Replace double space marker by space (" " ->"")

2 9 999
->

(c) Remove remaining single space markers (

The last step could potentially be also a replacement by space
as this is the rare case when the decoder hypothesizes a word
unit with space followed by one without space or vice versa.

Below we show an example of the segmentation and gluing proce-
dure (note that original text and final result contain a space): Japanese
original unsegmented text (1), after segmentation (2), the addition of
underscores to retain location of spaces (3), a possible raw decoder
result (4) with the final result after removing underscores (5):

1. ” RH E/KSF DS E” (original text)

2. ” RH JE/KSF D EE” (after segmentation)

3.7 RH_ _ JEKSF DEHE_ 7 (after addition of under-

scores, used for LM training, dictionary etc.)

4.7 _H_ _JEKSF OEE_” (decoder result)

5.7 R JE/KSF D 5 E” (displayed output)
The data-driven, language-independent techniques described above
with a minimum of rule-based processing are successfully used for
some of our Asian languages (Japanese, Korean, Mandarin) across

multiple applications, Voice Search, dictation as well as YouTube
caption generation.

Test Set Nunits Nwords Perplexity Cost/Sent.
rand250k 50k 1423357 341.08 33.40
rand250k 100k 1244490 732.81 33.03
rand250k 200k 1148840 1251.66 32.96
top10k 50k 337611 55.67 13.58
top10k 100k 278800 123.92 13.45
top10k 200k 237835 281.35 13.42
Table 1. Number of words, word perplexity and average

cost/sentence for several sizes of segmenter inventory.

4. LANGUAGE MODELING

Making the assumption that people say what they type we used
local web queries from anonymized logs as our LM data. Once the
word inventory is decided it is straight-forward to estimate LMs, in
our case usually entropy-pruned 3- to 5-grams with Katz back-off
after removing unwanted symbols etc. as much as possible similar
to what is described in [5]. For Japanese and Korean we made no
distinction between native and English loan words (about 25% of the
dictionary for Japanese and 40% for Korean are ASCII words, most
of them English) — we simply treated all of them as words of the
native vocabulary modeled with the native phoneme set.

We used a year of data to cover all seasons and holidays as usage
of some words peaks only around certain times. Typical perplexities
for several sizes of the basic word inventory (50k, 100k, 200k) for
the final Japanese LMs are shown in table 1, here for a 250k random
set and for the top 10k queries. As the word definition is different
for each inventory size the word perplexities cannot be compared be-
tween these, but average cost/sentence (log-likelihood we use during
decoding) can be used.

5. DICTIONARY

Good quality pronunciation dictionaries are relatively easy to ob-
tain for frequent English words but there is very little available for
languages like Japanese or Korean. Pronunciation of Japanese char-
acter sequences is in general quite ambiguous as most Kanji have
at least two readings and also we found that many high-frequency
words as used in web queries are often hard to pronounce using au-
tomatic tools (for example popular Japanese pop groups “AKB48”,
“W-INDS”, “Kis-My-Ft2” or mixed character words like <% + L
Q” (three character sets mixed in a single word!) or “ffi#%.com™).
Japanese place names and family names are even for native Japanese
speakers sometimes hard to pronounce. Native Korean (Hangul) has
a more regular structure than Japanese but for both languages abbre-
viations, TV shows, radio stations, product numbers etc. are often
difficult to pronounce automatically.

Building dictionaries for a large number of words (in our
case 200k word units consisting of sequences of characters of the
Japanese/Korean character sets including ASCII etc. as discussed
above) is always a semi-automatic process requiring at least some
human intervention to end up with a high-quality dictionary which
is essential for good recognition rates. We used the following pro-
cess: Our Japanese/Korean dictionary is based on 33/32 phonemes,
respectively. We found that the selection of the phonemes is not
critical as we had to add and remove phones a few times during the
development process which did not make a significant difference in
recognition rates. After generating an initial dictionary using various
techniques and sources, among them internal IME (Input Method
Editor) data (partially using MeCab [6] and “Google Japanese Input”

5151

Pronunciations added Accuracy
0 68.2
100 67.8
200 67.7
500 67.4
750 67.4
1000 67.2

Table 2. Number of pronunciations added for names and resulting
sentence accuracy on a Japanese test set.

which is now a publicly available tool [7]), extraction of readings
from the web, an internal transliterator for ASCII words as well as
simple rule-based approaches we reviewed by hand the for speech
recognition most important groups of pronunciations: a) the top 10k
words as occurring in the LM data, b) all single character (Kanji)
words, c) all words with single phoneme pronunciations, d) all ASCII
words with 1, 2, or 3 letters (many of those being abbreviations).
Frequent numbers, ordinals, dates, alpha-digit combinations etc.
were also reviewed carefully. Since our vocabulary is closed (any
possible Japanese/Korean word can be represented by the units in
the dictionary if the pronunciation matches) we only have to do this
once (with possible fixes later on).

While trying to increase pronunciation coverage we found that
adding pronunciations can be beneficial up to a point but adding
very rare pronunciations will decrease average recognition rate. It
is essential to measure the impact of any substantial changes to the
dictionary, sometimes even requiring acoustic retraining. Especially
adding pronunciations for high-frequency short words (single Kanji
and short ASCII words) can lower recognition rates substantially. As
a rule of thumb we found that pronunciations should only be added
if they are substantially different from the ones already available and
not too infrequent. Table 2 shows typical effects on accuracy when
explicitly adding more pronunciations for Japanese names (one ex-
periment out of many to increase pronunciation coverage for certain
groups of words in the dictionary).

6. ACOUSTIC MODELING AND QUALITY MEASURES

The acoustic models are standard 3-state HMMs with decision-
tree clustered context-dependent states representing Gaussian mix-
tures with a variable number of diagonal Gaussians. Feature vectors
are 39-dimensional consisting of PLP cepstral coefficients with cep-
stral mean subtraction and their 1st and 2nd order derivatives. Lin-
ear Discriminant Analysis (LDA) and Semi-Tied Covariance model-
ing (STC) [8] is used in the later training iterations. The models are
gender-independent Maximum-Likelihood trained followed by some
boosted MMI (Maximum-Mutual-Information) iterations [9]. De-
coding is a standard Finite-State-Transducer (FST)-based [10] time-
synchronous beam search.

We used 250k utterances collected as described above to build
the initial models, which had a total of about 100k Gaussians.

To measure quality we used WebScore, a technique developed by
us [1] to give an estimate of whether the user found the correct web
page given a spoken query. To calculate WebScore@N (WSC@N)
we test if the search URL of'the top hypothesis is in the first NV search
URLSs of the reference — in this case it is reasonable to assume that
the correct web page was found (given the search engine). Web-
Score@]1 therefore simply tests if the top hypothesis URL and the
top reference URL are equal. This measure had two advantages over
regular word error rate: 1) As our word definition is defined by the

Time Test Set WSC@1 Training
before launch initial (read) 73.3 250k (read)
before launch internal (real) 63.8 250k (read)
before launch internal (real) 69.8 250k (read)

launch internal (real) 66.0 250k (read)

after launch internal (real) 69.2 1.2M (prod)
after launch prod A (real) 71.7 3M (prod)
after launch prod B (real) 70.1 6.6M (prod)

Table 3. Typical time-line of results depending on test set and
amount/type of training data, here for Japanese voice search for the
first few months.

segmenter a change in word inventory will lead to different word er-
ror rates (smaller inventory results in smaller word error rate (WER))
and can therefore not be used to compare against other languages or
other word inventories for the same language. 2) Many queries in
Japanese/Korean can be written in multiple ways (different scripts,
with or without spaces etc.) depending on context or user preference
but mean the exact same thing. For example “[ERE”, “= > 7 »

K2 “iCATAE S, “nintendo” are all valid ways to search for
the Japanese game company (all are pronounced the same and have
the same meaning) — the result URL should be the same for any of
these. WebScore takes care of these ambiguities (the reference will
contain only one of the above) and hence gives a better estimate for
the true error rate than for example sentence error rate.

7. MAINTENANCE AND UPDATES

After initial models are launched it is critical to retrain acous-
tic models with production data to adapt to new acoustic conditions,
to retrain language models to include recent terms and to fix prob-
lems in the dictionary as they are noticed. We did this several times
for Japanese/Korean using first a test set from the initial data collec-
tion and later new test sets drawn from anonymized production data.
As transcribing acoustic data is a very time-extensive and expensive
process we used data without human-transcribed results, simply se-
lected by using data above a certain confidence threshold (unsuper-
vised data), for retraining the acoustic models. Although this data
contains recognition errors (we found less than 5% for Japanese) the
results were very promising as they improved final recognition rates
and therefore user satisfaction without a lengthy transcription pro-
cess. Table 3 shows a typical progression for quality from initial
launch with small models trained on 250k read data to training on
>6M utterances from anonymized production logs months later and
models with 300k Gaussians, obviously with many improvements
on acoustic model, language model and dictionary on the way. Note
that recognition rates are measured on different test sets starting from
an initial read data test set to test sets drawn from production data,
which are much harder to recognize.

8. CONCLUSIONS AND DISCUSSION

We described how we built Google’s Japanese and Korean voice
search systems. While developing these systems we found that the
simplified process described above based on modeling in the written
domain with a closed dictionary but infinite vocabulary based on the
WordPieceModel segmenter resulted in relatively low-complexity
systems to maintain and update. Using unsupervised data for initial
training and subsequent updates of the acoustic models has cut down
our development time for new languages significantly. Many of the

5152

techniques described in this paper may seem obvious to use now but
weren’t at the time of development.

Over time we found that while for most spoken queries and text
the techniques described above work well and on average quality of
the system improves with every update, there are still some prob-
lematic corner cases which can only be addressed by adding more
complexity to the system. For example rare (longer) numbers are
often not recognized correctly because the combined pronunciations
of their segmentation will not match the actual pronunciation (exam-
ple in English: “1234567” said as “one million two hundred thirty
four thousand five hundred and sixty seven” — the pronunciations
of a possible segmentation of “123 4567 will likely not cover the
original pronunciation). In general, similar is true for any character
sequences whose pronunciation depends on a wider context (think
prices (“$104” -> “one hundred and four dollars™), dates etc. — any
language has a significant number of high-frequency exceptions like
this). However, overall these cases are relatively rare for the aver-
age user. We are committed to improving recognition for the corner
cases as well in the near future.

9. ACKNOWLEDGEMENTS

We want to thank Martin Jansche for providing tools to generate
pronunciations for parts of early versions of the dictionaries and the
rest of the Google speech group for providing the training tools as
well as many fruitful discussions and inputs.

10. REFERENCES

[1] Johan Schalkwyk, Doug Beeferman, Francoise Beaufays, Bill
Byrne, Ciprian Chelba, Mike Cohen, Maryam Garrett, and
Brian Strope, “Google Search by Voice: A Case Study,”
in Advances in Speech Recognition: Mobile Environments,
Call Centers, and Clinics, Amy Neustein, Ed. Springer-Verlag,
2010.

[2] Jiulong Shan, Genging Wu, Zhihong Hu, Xiliu Tang, Martin
Jansche, and Pedro Moreno, “Search by Voice in Mandarin
Chinese,” in Proceedings of Interspeech, 2010.

[3] Yun-Hsuan Sung, Martin Jansche, and Pedro Moreno, “De-
ploying Search by Voice in Cantonese,” in Proceedings of In-
terspeech, 2011.

[4] Thad Hughes, Kaisuke Nakajima, Linne Ha, Atul Vasu, Pedro
Moreno, and Mike LeBeau, “Building transcribed speech cor-
pora quickly and cheaply for many languages,” in Proceedings
of Interspeech, 2010.

[5] Ciprian Chelba, Johan Schalkwyk, Thorsten Brants, Vida Ha,
Boulos Harb, Will Neveitt, Carolina Parada, and Peng Xu,
“Query language model for voice search,” in Proceedings of the
2010 IEEE Workshop on Spoken Language Technology, 2010.

[6] Mecab, “http://mecab.sourceforge.net,” .

[7] “http://tools.google.com/dIpage/japaneseinput/eula.html,” .

[8] Mark Gales, “Semi-tied covariance matrices for Hidden
Markov Models,” in IEEE Transactions on Speech and Audio
Processing, 1999.

[9] Daniel Povey, Dimitri Kanevsky, Brian Kingsbury, Bhu-
vana Ramabhadran, George Saon, and Karthik Visweswariah,
“Boosted MMI for model and feature space discriminative
training,” in /CASSP, 2008.

[10] OpenFST, “http://www.openfst.org,” .

