Calciomics: integrative studies of Ca2+-binding proteins and their interactomes in biological systems

Metallomics. 2013 Jan;5(1):29-42. doi: 10.1039/c2mt20009k.

Abstract

Calcium ion (Ca(2+)), the fifth most common chemical element in the earth's crust, represents the most abundant mineral in the human body. By binding to a myriad of proteins distributed in different cellular organelles, Ca(2+) impacts nearly every aspect of cellular life. In prokaryotes, Ca(2+) plays an important role in bacterial movement, chemotaxis, survival reactions and sporulation. In eukaryotes, Ca(2+) has been chosen through evolution to function as a universal and versatile intracellular signal. Viruses, as obligate intracellular parasites, also develop smart strategies to manipulate the host Ca(2+) signaling machinery to benefit their own life cycles. This review focuses on recent advances in applying both bioinformatic and experimental approaches to predict and validate Ca(2+)-binding proteins and their interactomes in biological systems on a genome-wide scale (termed "calciomics"). Calmodulin is used as an example of Ca(2+)-binding protein (CaBP) to demonstrate the role of CaBPs on the regulation of biological functions. This review is anticipated to rekindle interest in investigating Ca(2+)-binding proteins and Ca(2+)-modulated functions at the systems level in the post-genomic era.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Calcium / metabolism*
  • Calcium-Binding Proteins / chemistry
  • Calcium-Binding Proteins / metabolism*
  • Humans
  • Models, Molecular
  • Molecular Sequence Data
  • Protein Interaction Maps
  • Proteomics / methods*

Substances

  • Calcium-Binding Proteins
  • Calcium