We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 240))

Abstract

There are a number of mechanisms by which alkylmercury compounds cause toxic action in the body. Collectively, published studies reveal that there are some similarities between the mechanisms of the toxic action of the mono-alkyl mercury compounds methylmercury (MeHg) and ethylmercury (EtHg). This paper represents a summary of some of the studies regarding these mechanisms of action in order to facilitate the understanding of the many varied effects of alkylmercurials in the human body. The similarities in mechanisms of toxicity for MeHg and EtHg are presented and compared. The difference in manifested toxicity of MeHg and EtHg are likely the result of the differences in exposure, metabolism, and elimination from the body, rather than differences in mechanisms of action between the two.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aschner M, Aschner JL (1990) Mercury neurotoxicity: mechanisms of blood-brain barrier transport. Neurosci Biobehav Rev 14(2):169–176

    CAS  Google Scholar 

  • Atchison WD, Hare MF (1994) Mechanisms of methylmercury-induced neurotoxicity. FASEB J 8:622–629

    CAS  Google Scholar 

  • Bahia MO, De Amorim MI, Burbano RR, Vincent S, Dubeau H (1999) Genotoxic effects of mercury on in vitro cultures of human cells. An Acad Bras Cienc 71:437–443

    Google Scholar 

  • Bakir F, Damluji SF, Amin-Zaki, Murtadha M, Khalidi A, al-Rawi NY, Tikriti S, Dahahir HI, Clarkson TW, Smith JC, Doherty RA (1973) Methylmercury poisoning in Iraq. Science 181:230–241

    CAS  Google Scholar 

  • Basu N, Scheuhammer AM, Rouvinen-Watt K, Evans RD, Grochowina N, Chan LHM (2008) The effects of mercury on muscarinic cholinergic receptor subtypes (M1 and M2) in captive mink. Neurotoxicology 29:328–334

    CAS  Google Scholar 

  • Bearss JJ, Limke TL, Atchison WD (2001) Methylmercury (MeHg) causes calcium release from smooth endoplasmic reticulum (SER) inositol-1,4,5-triphosphate receptors in rat cerebellar granule neurons. Toxicology 60:184

    Google Scholar 

  • Bernardi P, Petronilli V (1996) The permeability transition pore as a mitochondrial calcium release channel: a critical appraisal. J Bioenerg Biomembr 28:131–138

    CAS  Google Scholar 

  • Bernardi P, Veronese P, Petronilli V (1993) Modulation of the mitochondrial cyclosporine A-sensitive permeability transition pore. I. Evidence for two separate Me2+ binding sites with opposing effects on the pore opening probability. J Biol Chem 268:1005–1010

    CAS  Google Scholar 

  • Bernardi P, Vassanelli S, Veronese P, Colonna R, Szabo I, Zorati M (1992) Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations. J Biol Chem 267:2934–2939

    CAS  Google Scholar 

  • Budd SL, Nicholls DG (1996) A reevaluation of the role of mitochondrial in neuronal Ca2+ homeostasis. J Neurochem 66:403–411

    CAS  Google Scholar 

  • Bultynck G, Szlufcik K, Nadif Kasri N, Assefa Z, Callewaert G, Missiaen L, Parys JB, De Smedt H (2004) Thimerosal stimulates Ca2+ flux through inositol 1,4,5-trisphosphate receptor type 1 but not type 3 via modulation of an isoform-specific Ca2+-dependent intramolecular interaction. Biochem J (published 11 Mar 2004 as ms BJ20040072):1–37

    Google Scholar 

  • Burke K, Cheng Y, Li B, Petrov A, Joshi P, Bermqn R, Reuhl K, DiCicco-Bloom E (2006) Methylmercury elicits rapid inhibition of cell proliferation in the developing brain and decreases cell cycle regulator, cyclin e. Neurotoxicology 27(6):970–981

    CAS  Google Scholar 

  • Carocci A, Rovito N, Sinicropi MS, Gehchi G (2014) Mercury toxicity and neurodegenerative effects. Rev Environ Contam Toxicol 229:1–18

    CAS  Google Scholar 

  • Castoldi AF, Barni S, Turin I, Gandini C, Manzo L (2000) Early acute necrosis, delayed apoptosis and cytoskeletal breakdown in cultured cerebellar granule neurons exposed to methylmercury. J Neurosci Res 59:775–787

    CAS  Google Scholar 

  • CDC (2015) Centers for Disease Control and Prevention. Vaccines do not cause autism. http://www.cdc.gov/vaccinesafety/concerns/autism.html

  • Chen YJ, Jiang H, Quilley J (2003) The nitric oxide- and prostaglandin-independent component of the renal vasodilator effect of thimerosal is mediated by epoxyeicosatrienoic acids. J Pharmacol Exp Ther 304(3):1292–1298

    CAS  Google Scholar 

  • Chilton FH, Fonteh AN, Surette ME, Triggiani M, Winklaer JD (1996) Control of arachidonate levels within inflammatory cells. Biochim Biophys Acta 1299:1–15

    Google Scholar 

  • Choi BH, Yee S, Robles M (1996) The effects of glutathione glycoside in methylmercury poisoning. Toxicol Appl Pharmacol 141(2):357–364

    CAS  Google Scholar 

  • Chuu J-J, Hsu C-J, Lin-Shiau S-Y (2001) Abnormal auditory brainstem responses for mice treated with mercurial compounds: involvement of excessive nitric oxide. Toxicology 162:11–22

    CAS  Google Scholar 

  • Clarkson TW (1995) Environmental contaminants in the food chain. Am J Clin Nutr 61(3):682s–686s

    CAS  Google Scholar 

  • Clarkson TW (1992) Mercury: major issues in environmental health. Environ Health Perspect 100:31–38

    Google Scholar 

  • Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36(8):609–662

    CAS  Google Scholar 

  • Clarkson TW, Vyas JB, Ballatori N (2007) Mechanisms of mercury disposition in the body. Am J Ind Med 50:757–764 (Review article)

    CAS  Google Scholar 

  • Coccini T, Randine G, Candura SM, Nappi RE, Prockop LD, Manzo L (2000) Low-level exposure to methylmercury modifies muscarinic cholinergic receptor binding characteristics in rat brain and lymphocytes: physiologic implications and new opportunities in biologic monitoring. Environ Health Perspect 108(10):29–33

    CAS  Google Scholar 

  • Cooper JR, Bloom FE, Roth RH (eds) (2003) The biochemical basis of neuropharmacology, 8th edn. Oxford University Press, Oxford

    Google Scholar 

  • Cossaboon JM, Ganguli PM, Flegal AR (2015) Mercury offloaded in Northern elephant seal hair affects coastal seawater surrounding rookery. Proc Natl Acad Sci U S A 112(39):12058–12052

    CAS  Google Scholar 

  • Dey PM, Gochfeld M, Reuhl KR (1999) Developmental methylmercury administration alters cerebellar PSA-NCAM expression and Golgi sialyltransferase activity. Brain Res 845:139–151

    CAS  Google Scholar 

  • Dreiem A, Seegal RF (2007) Methylmercury-induced changes in mitochondrial function in striatal synaptosomes are calcium-dependent and ROS-independent. Neurotoxicology 28:720–726

    CAS  Google Scholar 

  • Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pironne N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47:4967–4983

    CAS  Google Scholar 

  • Eager KR, Dulhunty AF (1999) Cardiac ryanodine receptor activity is altered by oxidizing reagents in either luminal or cytoplasmic solution. J Membr Biol 167:205–214

    CAS  Google Scholar 

  • Elferink JGR (1999) Thimerosal: a versatile sulfhydryl reagent, calcium mobilize, and cell function-modulating agent. Gen Pharmacol 33:1–6

    CAS  Google Scholar 

  • Eskes C, Honegger P, Juillerat-Jeanneret L, Monett-Tschudi F (2002) Microglial reaction induced by noncytotoxic methylmercury treatment leads to neuroprotein via interactions with astrocytes and IL-6 release. Glia 37:43–52

    Google Scholar 

  • Farina M, Frizzo MES, Soares FAA, Schwalm FD, Detrich MO, Zeni G, Rocha JBT, Souza DO (2003a) Ebselen protects against methylmercury-induced inhibition of glutamate uptake by cortical slices from adult mice. Toxicol Lett 144:351–357

    CAS  Google Scholar 

  • Farina M, Dahm KCS, Schwalm FD, Brusque AM, Frizzo MES, Zeni G, Souza DO, Rocha JBT (2003b) Methylmercury increases glutamate release from brain synaptosomes and glutamate uptake by cortical slices from suckling rat pups: modulatory effect of ebselen. Toxicol Sci 73:135–140

    CAS  Google Scholar 

  • Faro LRF, do Nascimento JLM, Campos F, Vidal L, Alfonso M, Duran R (2005) Protective effects of glutathione and cysteine on the methylmercury-induced striatal dopamine release in vivo. Life Sci 77:444–451

    CAS  Google Scholar 

  • Faro LRF, do Nascimento JLM, Alfonso M, Duran R (2002) Mechanism of action of methylmercury on in vivo striatal dopamine release: possible involvement of dopamine transporter. Neurochem Int 40:455–465

    CAS  Google Scholar 

  • Faro LR, do Nascimento JL, San Jose JM, Alfonso M, Durán R (2000) Intrastriatal administration of methylmercury increases in vivo dopamine release. Neurochem Res 25:225–229

    CAS  Google Scholar 

  • Faustman EM, Ponce RA, Ou YC, Mendoza MAC, Lewandowski TL, Kavanagh T (2002) Investigations of methylmercury-induced alterations in neurogenesis. Environ Health Perspect 110(Suppl 5):859–864

    CAS  Google Scholar 

  • Fonfria E, Rodrigues-Farre E, Sunol C (2001) Mercury interaction with the GABAA receptor modulates the benzodiazepine binding site in primary cultures of mouse cerebellar granule cells. Neuropharmacology 41:819–833

    CAS  Google Scholar 

  • Franco JL, Teixeira A, Meotti FC, Ribas CM, Stringari J, Pomblum SCG, Moro AM, Bohrer D, Bairos AV, Dafre AL, Santos ARS, Farina M (2006) Cerebellar thiol status and motor deficit after lactational exposure to methylmercury. Environ Res 102:22–28

    CAS  Google Scholar 

  • Gao Y, Ding W, Shi R, Tian Y (2008) Effects of methylmercury on postnatal neurobehavioral development in mice. Neurotoxicol Teratol 30(6):462–467

    CAS  Google Scholar 

  • Gardner PR, Nguyen DD, White CW (1994) Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungs. Proc Natl Acad Sci U S A 91:12248–12252

    CAS  Google Scholar 

  • Garg TK, Chang IY (2006) Methylmercury causes oxidative stress and cytotoxicity in microglia: attenuation by 15-deoxy-delat 12, 14-prostaglandin J2. J Neuroimmunol 171(1–2):17–28

    CAS  Google Scholar 

  • Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The caplain system. Physiol Rev 83(3):731–801

    CAS  Google Scholar 

  • Green AK, Cobbold PH, Dixon CJ (1999) Thimerosal enhances agonist-specific differences between [Ca2+]i oscillations induced by phenylephrine and ATP in single rat hepatocytes. Cell Calcium 25:173178

    Google Scholar 

  • Gribble EJ, Hong S-W, Faustman EM (2005) The magnitude of methylmercury-induce cytotoxicity and cell arrest is p53-dependent. Birth Def Res A Clin Mol Teratol 73(1):29–38

    CAS  Google Scholar 

  • Guroff G (1963) A neutral calcium-activated proteinase from the soluble fraction of rat brain. J Biol Chem 239:149–155

    Google Scholar 

  • Haldane H, Sullivan DM (2001) DNA topoisomerase II-catalyzed DNA decantation. In: Osheroff N, Bjornsti M-A (eds) Methods of molecular biology 95: DNA topoisomerase protocols: enzymology and drugs. Humana Press Inc., Totowa, NJ

    Google Scholar 

  • Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59(5):16091623

    Google Scholar 

  • Hardin JG, Limbird LE (2001) In: Hardin JG, Limbird LE (eds) Goodman and Gilman’s the pharmacological basis of therapeutics, 10th edn. McGraw-Hill Medical Publishing Division, New York

    Google Scholar 

  • Hare MF, McGinnis KM, Atchison WD (1993) Methylmercury increases intracellular concentrations of Ca++ and heavy metals in NG108-15 cells. J Pharmacol Exp Ther 266(3):1626–1635

    CAS  Google Scholar 

  • Hasinoff BB, Wu X, Yalowich JC, Goodfellow B, Laufer RS, Adedayo O, Dmitrienko GI (2006) Kinamycins A and C, bacterial metabolites that contain an unusual diazo group, as potential new anticancer agents: antiproliferative and cell effects. Anticancer Drugs 17:825–837

    CAS  Google Scholar 

  • Hatzelmann A, Haurand M, Ullrich V (1990) Involvement of calcium in the thimerosal-stimulated formation of leukotriene by fMLP in human polymorphonuclear leukocytes. Biochem Pharmacol 39(3):559–567

    CAS  Google Scholar 

  • Hughes WL (1957) A physiochemical rationale for the biologic activity of mercury and its compounds. Ann N Y Acad Sci 65:454–460

    CAS  Google Scholar 

  • Ida-Eto M, Oyabu A, Ohkawara T, Tashiro Y, Narita N, Narita M (2013) Prenatal exposure to organomercury, thimerosal, persistently impairs the serotonergic and dopaminergic systems in the rat brain: Implications for association with developmental disorders. Brain Dev 35:261–264

    Google Scholar 

  • Ida-Eto M, Oyabu A, Ohkawara T, Tashiro Y, Narita N, Narita M (2011) Embryonic exposure to thimerosal, an organomercury compound, causes abnormal early development of serotonergic neurons. Neurosci Lett 505:61–64

    CAS  Google Scholar 

  • Jalili HA, Abbasi AH (1961) Poisoning by ethyl mercury toluene sulfonanilide. Br J Ind Med 18:303–308

    CAS  Google Scholar 

  • Kaever V, Goppelt-Strube M, Resch K (1988) Enhancement of eicosanoid synthesis in mouse peritoneal macrophages by the organic mercury compound thimerosal. Prostaglandins 35(6):885–902

    CAS  Google Scholar 

  • Kang MS, Jeong JY, Seo JH, Jeon HJ, Jung KM, Chin M-R, Moon C-K, Bonventre JV, Jung SY, Kim DK (2006) Methylmercury-induced toxicity is mediated by enhanced intracellular calcium through activation of phosphatidylcholine-specific phospholipase C. Toxicol Appl Pharmacol 216:206–215

    CAS  Google Scholar 

  • Kim Y-J, Kim Y-S, Kim M-S, Ryu J-C (2007) The inhibitory mechanism of methylmercury on differentiation of human neuroblastoma cells. Toxicology 234(1–2):1–9

    CAS  Google Scholar 

  • Kinoshita Y, Ohnishi A, Kohaki K, Yokota A (1999) Apparent diffusion coefficient on rat brain and nerves intoxicated with methylmercury. Environ Res 80:348–354

    CAS  Google Scholar 

  • Kutsuna M (ed) (1968) Minamata disease. Study group of Minamata disease. Kumamatio University, Japan, pp 1–4

    Google Scholar 

  • Lee MS, Kwon YT, Li M, Peng J, Friedlander RM, Tsai LH (2000) Neurotoxicity induces cleavage of p35 to p25 by caplain. Nature 405:360–364

    CAS  Google Scholar 

  • Limke TL, Heidemann SR, Atchison WD (2004a) Disruption of intraneuronal divalent cation regulation by methylmercury: Are specific targets involved in altered neuronal development and cytotoxicity in methylmercury poisoning? Neurotoxicology 25:741–760

    CAS  Google Scholar 

  • Limke TL, Bearss JJ, Atchison WD (2004b) Acute exposure to methylmercury causes Ca2+ dysregulation and neuronal death in rat cerebellar granule cells through an M3 muscarinic receptor linked pathway. Toxicol Sci 80:60–68

    CAS  Google Scholar 

  • Limke TL, Otero-Montanez JK, Atchison WD (2003) Evidence for interactions between intracellular calcium stores during methylmercury-induced intracellular calcium dysregulation in rat cerebellar granule neurons. J Pharmacol Exp Ther 304:949–958

    CAS  Google Scholar 

  • Limke TL, Atchison WD (2002) Acute exposure to methylmercury opens the mitochondrial permeability transition pore in rat cerebellar granule cells. Toxicol Appl Pharmacol 178:52–61

    CAS  Google Scholar 

  • Machaty Z, Wang WH, Day BN, Prather RS (1999) Calcium release and subsequent development induced by modification of sulfhydryl groups in porcine oocytes. Biol Reprod 61:1384–1391

    Google Scholar 

  • Maden M, Holder N (1992) Retinoic acid and development of central nervous system. Bioessays 14:431–438

    CAS  Google Scholar 

  • Maden M, Holder N (1991) The involvement of retinoic acid in the development of the vertebrate central nervous system. Development Suppl. 2:87–94

    Google Scholar 

  • Maden M, Ong DE, Chytil F (1990) Retinoid-binding protein distribution in the developing mammalian nervous system. Development 109(1):75–80

    CAS  Google Scholar 

  • Makino K, Okuda K, Sugino E, Nishiya T, Toyama T, Iwawaki T, Fujimura M, Kumagai Y, Uchara T (2014) Correlation between attenuation of protein disulfide isomerase activity through S-mercuration and neurotoxicity induced by methylmercury. Neurotox Res 27:99–105. doi:10.1007/s12640-014-9494-8

    Article  CAS  Google Scholar 

  • Manfroi CB, Schwalm FD, Cereser V, Abreu F, Oliveira A, Bizarro L, Rocha JBT, Frizzo MES, Souza DO, Faroma M (2004) Maternal milk as methylmercury source for suckling mice: neurotoxic effects involved with the cerebellar glutamatergic system. Toxicol Sci 81:172–178

    CAS  Google Scholar 

  • Marty MS, Atchison WD (1997) Pathways mediating Ca2+ entry in rat cerebellar granule cells following in vitro exposure to methyl mercury. Toxicol Appl Pharmacol 147:319–330

    CAS  Google Scholar 

  • Mash DC, Flynn DD, Polter LT (1985) Loss of M2 muscarinic receptors in the cerebral cortex in Alzheimer’s disease and experimental cholinergic denervation. Science 228:1115–1117

    CAS  Google Scholar 

  • Mason MJ, Mahaut-Smith MP (2001) Voltage-dependent Ca 2+ release in rat megakaryocytes requires functional IP3 receptors. J Physiol 533:175–183

    CAS  Google Scholar 

  • Minnema DJ, Cooper GP, Greenland RD (1987) Effects of methylmercury on neuro-transmitter release from rat brain synaptosomes. Toxicol Appl Pharmacol 99(3):510–521

    Google Scholar 

  • Miura K, Koide N, Himeno S, Nakagawa I, Imura N (1999) The involvement of microtubular disruption in methylmercury-induced apoptosis in neuronal and nonneuronal cell lines. Toxicol Appl Pharmacol 160:279–288

    CAS  Google Scholar 

  • Miyamoto K, Nakanishi H, Moriguchi S, Fukuyama N, Eto K, Wakammiya J, Murao K, Arimura K, Osame M (2001) Involvement of enhanced sensitivity of N-methyl-D-aspartate receptors in vulnerability of developing cortical neurons to methylmercury neurotoxicity. Brain Res 901:252–258

    CAS  Google Scholar 

  • Mori N, Yasutake A, Hirayama K (2007) Comparative study of activities in reactive oxygen species production/defense system in mitochondria of rat brain and liver, and their susceptibility to methylmercury toxicity. Arch Toxicol 81(11):769–778

    CAS  Google Scholar 

  • Muller M, Westphal G, Vesper A, Bunger J, Hallier E (2001) Inhibition of the human erythrocytic glutathione-S-transferase T1 (GST T1) by thimerosal. Int J Hyg Environ Health 203(5-6):479–481

    CAS  Google Scholar 

  • Mutkus L, Aschnr JL, Syversen T, Shanker G, Sonnewald U, Aschner M (2005) In vitro uptake of glutamate in GLAST- and GLT-1-transfected mutant CHO-K1 cells is inhibited by the ethylmercury-containing preservative thimerosal. Biol Trace Elem Res 105(1–3):71–86

    CAS  Google Scholar 

  • Myhre O, Andersen JM, Aarnes H, Fonnum F (2003) Evaluation of the probes 2′7′-dichlorofluoresein diacetate, luminal, and lucigenin as indicators of reactive species formation. Biochem Pharmacol 65(10):1575–1582

    CAS  Google Scholar 

  • Nath R, Davis M, Probert AW, Kupina NC, Ren X, Schielke GP, Wang KW (2000) Processing of cdk5 activator p35 to its truncated form (p25) by calpain in acutely injured neuronal cells. Biochem Biophys Res Commun 274:16–21

    CAS  Google Scholar 

  • Ndountse LT, Chan HM (2008) Methylmercury increases N-methyl-D-aspartate receptors on human SH-SY 5Y neuroblastoma cells leading to neurotoxicity. Toxicology 249:251–255

    CAS  Google Scholar 

  • Oppedisano F, Pochini L, Broer S, Indiveri C (2011) The BoAT1 amino acid transporter from rat kidney reconstituted in liposomes: kinetics and inactivation by methylmercury. Biochim Biophys Acta 1808:2551–2558

    CAS  Google Scholar 

  • Oppedisano F, Galluccio M, Indiveri C (2010) Inactivation by Hg2+ and methylmercury of the glutamine/amino acid transporter (ASCT2) reconstituted in liposomes: prediction of the involvement of a CXXC motif by homology modeling. Biochem Pharmacol 80:1266–1273

    CAS  Google Scholar 

  • Oslowski CM, Urano F (2011) Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol 490:71–92

    CAS  Google Scholar 

  • Ou YC, White CC, Krejsa CM, Ponce RA, Kavanagh TJ, Faustman EM (1999a) The role of intracellular glutathione in methylmercury-induced toxicity in embryonic neural cells. Neurotoxicology 20:793–804

    CAS  Google Scholar 

  • Ou YC, Thompson SA, Ponce RA, Schroeder J, Kavanagh TJ, Faustman EM (1999b) Induction of the cell cycle regulatory gene p21 (WAF1, C1P1) following methylmercury exposure in vitro and in vivo. Toxicol Appl Pharmacol 157(3):203–212

    CAS  Google Scholar 

  • Palacin M, Estevez R, Bertran J, Zorzano A (1998) Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 78:969–1054

    CAS  Google Scholar 

  • Paemeleire K, de Hemptinne A, Leybaert L (1999) Chemically, mechanically, and hyperosmolarity induced calcium responses of rat cortical capillary endothelial cells in culture. Exp Brain Res 126:473–481

    CAS  Google Scholar 

  • Peng S, Hajela RK, Atchison WD (2002) Effects of methylmercury on human neuronal L-type calcium channels transiently expressed in human embryonic kidney cells (HEK-293). J Pharmacol Exp Ther 302(2):424–432

    CAS  Google Scholar 

  • Perez-Castro AV, Toth-Rogler LE, Wei L-N, Nguyen-Huu MC (1989) Spatial and temporal pattern of expression of the cellular retinol-binding protein during mouse embryogenesis. Proc Natl Acad Sci U S A 86(22):8813–8817

    CAS  Google Scholar 

  • Pochini L, Peta V, Indiveri C (2013) Inhibition of the OCTN2 carnitine transporter by HgCl(2) and methylmercury in the proteoliposome experimental model: insights in the mechanism of toxicity. Toxicol Mech Methods 23(2):68–76

    CAS  Google Scholar 

  • Randall A, Tsien RW (1995) Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons. J Neurosci 15:2995–3012

    CAS  Google Scholar 

  • Rodier PM, Aschner M, Sager PR (1984) Mitotic arrest in the developing CNS after prenatal exposure to methylmercury. Neurobehav Toxicol Teratol 6:379–385

    CAS  Google Scholar 

  • Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529

    CAS  Google Scholar 

  • Ruberte E, Friederich V, Chambon P, Morriss-Kay G (1993) Retinoic acid receptors and cellular retinoid binding proteins. III. Their differential transcript distribution during mouse nervous system development. Development 118(1):267–282

    CAS  Google Scholar 

  • Sakaue M, Okazaki M, Hara S (2005) Very low levels of methylmercury induce cell death of cultured rat cerebellar neurons via calpain activation. Toxicology 213:97–106

    CAS  Google Scholar 

  • Samuelsson B (1982) From studies of biochemical mechanisms to novel biological mediators: prostaglandin endoperoxides, thromboxanes and leukotrienes. Nobel Lecture, December 8, 1982. Department of Physiological Chemistry, Karolinska Institutet, S-104 01 Stockholm, Sweden

    Google Scholar 

  • Samuelsson B (1983) Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science 220:568–575

    CAS  Google Scholar 

  • Samuelsson B, Dahlen S-E, Lindgren JA, Rouzer CA, Serhan CN (1987) Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 237:1171–1176

    CAS  Google Scholar 

  • Sayers LG, Brown GR, Michell RH, Michelangeli F (1993) The effects of thimerosal on calcium uptake and inositol 1,4,5-trisphosphate-induced calcium release in cerebellar microsomes. Biochem J 289:883887

    Google Scholar 

  • Seewagen CL (2010) Threats of environmental mercury to birds: knowledge gaps and priorities for future research. Bird Conserv Int 20:112–123

    Google Scholar 

  • Shanker G, Matkus LS, Walker SJ, Aschner M (2002) Methylmercury enhances arachidonic acid release and cytosolic phospholipase A2 expression in primary cultures of neonatal astrocytes. Mol Brain Res 106:1–11

    CAS  Google Scholar 

  • Sharpe MA, Livingston AD, Baskin DS (2012) Thimerosal-derived ethylmercury is a mitochondrial toxin in human astrocytes: possible role of Fenton chemistry in the oxidation and breakage of mtDNA. J Toxicol 2012: Article ID 373678

    Google Scholar 

  • Shinyashiki M, Kumagai Y, Nakajima H, Nagafune J, Homma-Takeda S, Sagai M, Shimojo N (1998) Differential changes in rat brain nitric oxide synthase in vivo and in vitro by methylmercury. Brain Res 798:147–155

    CAS  Google Scholar 

  • Simmons-Willis TA, Koh AS, Clarkson TW, Ballatori N (2002) Transport of a neurotoxicant by molecular mimicry: the methylmercury-L-cysteine complex is a substrate for human L-type large neutral amino acid transporter (LAT) 1 and LAT2. Biochem J 367:239–246

    CAS  Google Scholar 

  • Sirois JE, Atchison WD (2000) Methylmercury affects multiple subtypes of calcium channels in rat cerebellar granule cells. Toxicol Appl Pharmacol 167:1–11

    CAS  Google Scholar 

  • Sitsapesan R, Williams AJ (2000) Do inactivation mechanisms rather than adaptation hold the key to understanding ryanodine receptor channel gating? J Gen Physiol 116:867–872

    CAS  Google Scholar 

  • Song J, Jang YY, Shin YK, Lee MY, Lee C-S (2000) Inhibitory action of thimerosal, a sulfhydryl oxidant, on sodium channels in rat sensory neurons. Brain Res 864(1):105–113

    CAS  Google Scholar 

  • Stuning M, Brom J, Konig W (1988) Multiple effects of ethylmercurithiosalicylate on the metabolization of arachidonic acid by human neutrophils. Prostaglandins Leukot Essent Fatty Acids 32:1–7

    CAS  Google Scholar 

  • Szalai G, Krishnamurthy R, Hajnoczky G (1999) Apoptosis driven by IP3-linked mitochondrial calcium signals. EMBO J 18(22):6349–6361

    CAS  Google Scholar 

  • Tornquist K, Vainio P, Titievsky A (1999) Redox modulation of intracellular free calcium concentration in thyroid FRTL-5 cells; evidence for an enhanced extrusion of calcium. Biochem J 339:621–628

    CAS  Google Scholar 

  • Vanlingen S, Sipma H, Missianen L, De Smedt H, De Smet P, Casteels R, Parys JB (1999) Modulation of type 1, 2, and 3 inositol 1,4,5-trisphosphate receptors by cyclic ADP-ribose and thimerosal. Cell Calcium 25:107–114

    CAS  Google Scholar 

  • Verity MA, Sarafian T, Pacifici EHK, Sevanian A (1994) Phospholipase A2 stimulation by MeHg in neuron culture. J Neurochem 62(2):705–714

    CAS  Google Scholar 

  • Verrey F, Meier C, Rossier G, Kuhn LC (2000) Glycoprotein-associated amino acid exchangers: broadening the range of transport specificity. Plfugers Arch 440:503–512

    CAS  Google Scholar 

  • Wall SJ, Yasuda RP, Li M, Ciesla W, Wolf BB (1992) Differential regulation of subtypes M1-M5 of muscarinic receptors in forebrain by chronic atropine administration. J Pharmacol Exp Ther 262(2):584–588

    CAS  Google Scholar 

  • Wang WH, Machaty Z, Abeydeera LF, Prather RS, Day BN (1999) Time course of cortical and zona reactions of pig oocytes upon intracellular calcium increase induced by thimerosal. Zygote 7:79–86

    CAS  Google Scholar 

  • Weihe P, Grandjean P, Debes F, White R (1996) Health implications for Faroe Islanders of heavy metals and PCBs from pilot whales. Sci Total Environ 186:141–148

    CAS  Google Scholar 

  • Wu X, Liang H, O’Hara KA, Yalowich JC, Hasinoff BB (2008) Thiol-modulated mechanisms of the cytotoxicity of thimerosal and inhibition of DNA topoisomerase H alpha. Chem Res Toxicol 21(2):483–493

    CAS  Google Scholar 

  • Yates DE, Mayack DT, Munney K, Evers DC, Major A, Kaur T, Taylor RJ (2005) Mercury levels in mink (Mustels vison) and river otter (Lontra canadensis) from northeastern North America. Ecotoxicology 14:263–274

    CAS  Google Scholar 

  • Yin Z, Milatovic D, Aschner JL, Syversen T, Rocha JBT, Souza DO, Sidoryk M, Albrecht J, Aschner M (2007) Methylmercury induces oxidative injury, alterations in permeability and glutamine transport in cultured astrocytes. Brain Res 1131(1):1–10

    CAS  Google Scholar 

  • Yuan Y, Atchison WD (2003) Methylmercury differentially affects GABAA receptor-mediated spontaneous IPSCs in Purkinje and granule cells of rat cerebellar slices. J Physiol 550(1):191–204

    CAS  Google Scholar 

  • Zarini S, Gijon MA, Folco G, Murphy RC (2006) Effect of arachidonic acid reacylation on leukotriene biosynthesis in human neutrophils stimulated with granulocyte-macrophage colony stimulating factor and formyl-methionyl-leucyl-phenylalanine. J Biol Chem 281(15):10134–10142

    CAS  Google Scholar 

  • Zhang J (1984) Clinical observations in ethyl mercury chloride poisoning. Am J Ind Med 8:251–258

    Google Scholar 

Download references

Disclaimer

The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Agency for Toxic Substances and Disease Registry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Risher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Risher, J.F., Tucker, P. (2016). Alkyl Mercury-Induced Toxicity: Multiple Mechanisms of Action. In: de Voogt, P. (eds) Reviews of Environmental Contamination and Toxicology Volume 240. Reviews of Environmental Contamination and Toxicology, vol 240. Springer, Cham. https://doi.org/10.1007/398_2016_1

Download citation

Publish with us

Policies and ethics