
Solving Maximum Flow Problems on Real World Bipartite Graphs

Cosmin Silvestru Negruşeri∗ Mircea Bogdan Paşoi† Barbara Stanley‡ Clifford Stein§

Cristian George Strat¶

Abstract

In this paper we present an experimental study of several maximum
flow algorithms in the context of unbalanced bipartite networks.
Our experiments are motivated by a real world problem of manag-
ing reservation-based inventory in Google content ad systems. We
are interested in observing the performance of several push-relabel
algorithms on our real world data sets and also on some generated
ones. Previous work suggested an important improvement for push-
relabel algorithms on unbalanced bipartite networks: the two-edge
push rule. We show how the two-edge push rule improves the run-
ning time. While no single algorithm dominates the results, we
show there is one that has very robust performance in practice.

1 Introduction

The maximum flow problem is a central problem in graph
algorithms and optimization. It models many interesting ap-
plications and it has been extensively studied from a theo-
retical and experimental point of view [1]. In particular, the
push-relabel family has been a real success, with both good
worst-case running time and efficient implementations [6].

An important special case of the maximum flow prob-
lem is the one of bipartite graphs, motivated by many nat-
ural flow problems (see [14] for a comprehensive list). For
over 20 years, it has been known that on unbalanced bipar-
tite graphs, the maximum flow problem has better worst-case
time bounds. Gusfield et.al. [14] showed that the standard
augmenting path algorithms are more efficient in unbalanced
bipartite graphs, while Ahuja et al. [3] showed small modi-
fications to existing push-relabel algorithms yielded better
time bounds. The improvement is roughly to replace the de-
pendency on n in the time bounds, with a dependence on n1,
the number of nodes on the smaller side of the bipartition.
For example, the FIFO push-relabel algorithm, which on a
graph with m edges runs in O(nm + n3) time, can be mod-

∗Google Inc., Mountain View, CA, cosmin@google.com
†University of Bucharest. All of the work was done while

working as an intern for Google Inc., Mountain View, CA,
mircea.pasoi@gmail.com

‡Google Inc., Mountain View, CA, bstanley@google.com
§Columbia University. Much of this work was done while the author was

visiting Google Inc., New York, NY, cliff@ieor.columbia.edu
¶University of Bucharest. All of the work was done while working as

an intern for Google Inc., Mountain View, CA and Zurich, Switzerland,
strat.cristian@gmail.com

ified to run in O(n1m + n3
1) time. In many practical appli-

cations n1 � n, e.g. n1 may be
√

n, so these improvements
yield significant advantages.

Although the improved algorithms for unbalanced bi-
partite graphs have been known for about 20 years, we are
unaware of any published work that implements and tests
the bipartite flow algorithms on either simulated data or data
from a real application. In this paper, we implement three
versions of the bipartite push-relabel algorithm: FIFO, Ex-
cess Scaling and Highest Level. We test them on generated
data, as well as data that comes from an advertising applica-
tion within Google.

1.1 Online Advertising Application Online publishers
typically have areas on their web pages, called ad slots,
where ads can be displayed. Advertisers can reserve a spe-
cific number of ad views, called impressions, for one or more
of these ad slots. Because a web page gets a limited amount
of traffic every day, publishers must verify that the impres-
sions are available before selling them to advertisers. Ac-
curacy is important in computing ad inventory availability.
Underbooking results in loss of sales and revenue, while
overbooking results in additional cost and potential adver-
tiser dissatisfaction. For many online publishers, these ad
sales constitute a critical component of the revenue.

Advertisers are selective about when and where their ads
should be displayed; they reserve a number of ad impressions
with a set of targeting constraints. These constraints often
overlap among reservations, making it difficult to calculate
how much available inventory is left to be sold without
overbooking. For example, booking a reservation for sports
pages impacts how many impressions are left to be sold
for a time-of-day constraint such as afternoon because some
of the sports impressions will occur in the afternoon. To
avoid overbooking, afternoon sports impressions must not
be counted twice.

Our interest in the unbalanced bipartite flow problem
stems from its application to the following availability query
problem which can be formulated as follows:
Given: a set of existing reservations, forecasts on how many
available ad impressions there are for any disjoint set of
targeting constraints, and a reservation r nominated as the
subject of our query.
Compute the number of impressions that can be additionally

14 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

booked for r such that all reservations remain feasible, i.e.,
impressions assigned to any set of targeting constraints do
not exceed the forecasts.

This availability query problem is the simplest to define
succinctly, but reservation-based inventory management sys-
tems allow additional functionality in their reservations (e.g.
limiting the number of impressions delivered to individual
users or spacing advertisements out over time), which are
beyond the scope of this paper. In Section 4 we show how
an availability query can be stated as a maximum flow prob-
lem [15].

2 Preliminaries

We assume some familiarity with push-relabel algorithms
and we omit many details, since they are straightforward
modifications of known results. The reader interested in
further details is urged to consult the appropriate paper
or papers discussing the corresponding result for general
networks or one or both of the survey papers [1, 13].

2.1 Network Definitions A network G = (V, E) is called
bipartite if its vertex set V can be partitioned into two
subsets V1 and V2 such that each edge has one endpoint
in V1 and the other in V2. Let n = |V |, n1 = |V1|,
n2 = |V2|, m = |E|, and assume without loss of generality
that n1 ≤ n2. We call a bipartite network unbalanced if
n1 � n2 and balanced otherwise. We associate with each
edge (v, w) in E a finite real-valued capacity u(v, w). Let
U = max {u(v, w) : (v, w) ∈ E}. Let source s and sink t
be the two distinguished vertexes in the network. We assume
that s ∈ V2 and t ∈ V1. We define the edge incidence list
I(v) of a vertex v ∈ V to be the set of edges directed out of
vertex v, i.e., I(v) = {(v, w) : (v, w) ∈ E}.

A flow is a function f : E → R satisfying a capacity
constraint and a constraint that flow in equals flow out at each
non-source, non-sink node:

0 ≤ f(v, w) ≤ u(v, w) , ∀(v, w) ∈ E(2.1)
∑

v∈V

f(v, w) − ∑

v∈V

f(w, v) = 0 , ∀w ∈ V − {s, t} .(2.2)

The value of a flow is the net flow into the sink,
i.e., |f | =

∑

v∈V

f(v, t). The maximum flow problem is to

determine a flow f for which |f | is maximum.
A preflow is a function f : E → R that satisfies condi-

tions (2.1) and a relaxation of condition (2.2),
∑

v∈V

f(v, w)−
∑

v∈V

f(w, v) ≥ 0 ∀w ∈ V − {s, t} , which allows flow to

accumulate at vertices. The maximum flow algorithms that
we study in this paper maintain a preflow during the com-
putation. For a given preflow f , we define, for each vertex
w ∈ V , the excess e(w) =

∑

v∈V

f(v, w) − ∑

v∈V

f(w, v). A

vertex other than t with strictly positive excess is called ac-
tive.

With respect to a preflow f , we define the residual
capacity uf(v, w) of an edge (v, w) to be uf(v, w) =
u(v, w)−f(v, w), and the residual capacity of (w, v), where
(w, v) is the reverse of edge (v, w), to be f(v, w). The
residual network induced by f is the network consisting only
of edges that have positive residual capacity.

A distance function d : V → N ∪ {∞} with respect
to the residual capacities uf(v, w) is a function mapping the
vertexes to the set of non-negative integers and infinity. We
say that a distance function in a bipartite graph is valid if
d(s) = 2n1, d(t) = 0, and d(v) ≤ d(w) + 1 for every edge
(v, w) in the residual network. We call a residual edge with
d(v) = d(w) + 1 eligible. The eligible edges are exactly the
edges on which we push flow. (In a non-bipartite graph, we
set d(s) = n.)

We refer to d(v) as the distance label of vertex v. It can
be shown that if the distance labels are valid, then each d(v)
is a lower bound on the length of the shortest path from v to
t in the residual network. If there is no directed path from
v to t, however, then d(v) is a lower bound on 2n1 plus the
length of the shortest path from v to s. If, for each vertex v,
the distance label d(v) equals the minimum of the length of
the shortest path from v to t in the residual network, if such
a path exists, or otherwise 2n1 plus the length of the shortest
path from v to s, then we call the distance labels exact.

2.2 Push-Relabel Algorithms All maximum flow algo-
rithms described in this paper are push-relabel algorithms,
i.e., algorithms that maintain a preflow at every stage. They
work by examining active vertexes and pushing excess from
these vertexes to vertexes estimated to be closer to t. If t is
not reachable, however, an attempt is made to push the ex-
cess back to s. Eventually, there will be no excess on any
vertex other than t. At this point the preflow is a flow, and
moreover it is a maximum flow [9, 11]. The algorithms use
distance labels to measure the closeness of a vertex to the
sink or the source.

Increasing the flow on an edge is called a push through
the edge. We refer to the process of increasing the distance
label of a vertex as a relabel operation. The purpose of the
relabel operation is to create at least one eligible edge on
which the algorithm can perform further pushes.

3 Flow in Bipartite Graphs

Gusfield et al. [14] showed that the time bounds of several
maximum flow algorithms automatically improve when the
algorithms are applied without modifications to unbalanced
networks. The worst-case bounds depend on the number
of edges in the longest vertex-simple path in the network.
Ahuja et al. [3] show how to modify some push-relabel al-
gorithms to obtain improved time bounds. The improvement
can be obtained by using a two-edge push rule. According
to this rule, we always push flow on two consecutive edges
at a time and always starting from a vertex in V1. This way,

15 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

procedure bipush-relabel(v)
if there is an eligible edge (v, w)
then select an eligible edge (v, w);

if there is an eligible edge (w, x)
then select an eligible edge (w, x);

push δ = min {e(v), uf (v, w), uf (w, x)}
units of flow along the path v − w − x

else replace d(w) by
min {d(x) + 1 : (w, x) ∈ I(w) and uf(w, x) > 0}

else replace d(v) by
min {d(w) + 1 : (v, w) ∈ I(v) and uf(v, w) > 0}

Figure 1: The procedure bipush-relabel.

no excess accumulates at vertexes in V2 and we can attribute
all computations to examinations of vertexes in V1 only. As
an outcome of this rule, the running times depend on n1

rather than n (plus an additive linear term in n to initial-
ize the graph, which is always dominated by other terms.)
The bipush idea combined with slight modifications in the
data structures used improves many algorithms for maxi-
mum flow, minimum-cost flow and parametric flow. (See [3]
for results and [2, 4, 8, 9, 11, 12] for background.) In this
paper, we focus only on maximum flow.

In Figure 1 we give the building block of the bipartite
flow algorithms, the bipush-relabel procedure. Note that it
is a modification of the original push-relabel procedure in
which we push over two edges at once.

Different algorithms arise from the rule used to choose
which vertex on which to execute the bipush-relabel proce-
dure. Each algorithm initializes with the same procedure
which sets d(t) = 0, d(s) = 2n1, and d(v) = 0 for all
other vertexes. It then saturates all edges out of the source
and updates distance labels accordingly.

The remainder of the algorithm consists of repeatedly
choosing an active vertex to apply the procedure bipush-
relabel. The algorithms we study in this paper select the
active vertex in one of three ways:

• First-In First-Out (FIFO) [9, 11] maintains a queue of
active vertexes.

• Highest Label (HL) [5] chooses the active vertex of
highest distance label.

• Excess Scaling (ES) [2] first employs a scaling regime
which gradually scales down the amount of excess
pushed then chooses the active vertex of minimum
distance label.

When optimized for bipartite networks, the worst case
running times of these algorithms are O(n1m + n3

1) ,

Reservations

Subspaces

Sports

sports & non-afternoon

sports & afternoon

Afternoon
non-sports & afternoon

Reservations

Subspaces

Source

Sports50

Afternoon

60

sports & non-afternoon
inf.

sports & afternoon

inf.

inf.

non-sports & afternoon

inf.

Sink

40

40

40

Reservations

Subspaces

Source

Sports60/inf.

Afternoon

60/60

sports & non-afternoon
40/inf.

sports & afternoon

20/inf.

20/inf.

non-sports & afternoon

40/inf.

Sink

40/40

40/40

40/40

Figure 2: Left: Simple example of two reservations with
overlapping constraints. Center: Simple graph initialized
for max-flow calculations; Source and Sink nodes have been
added and edge capacities have been initialized. Right: Sim-
ple graph after the max-flow calculations; all edge assign-
ments have been calculated for the query.

O(n1m + min
{
n3

1, n
2
1

√
m

}
) , and O(n1m + n2

1 log U) ,
respectively.

4 Solving Availability Queries with Maximum Flow
Algorithms

The availability query can be modeled as a network flow
problem. In particular, it can be modeled using a bipartite
network where the partition V1 includes the graph nodes
representing reservations and the other partition V2, typically
larger, includes the disjoint subspaces of the reservation
constraints. In the example of Section 1.1, V1 has two nodes
for the sports reservation and the afternoon reservation.
V2 contains three disjoint subspaces: sports pages in the
morning or evening, sports page in the afternoon, and non-
sports pages in the afternoon,

The following requirements must be satisfied when
computing the subspaces:

• The subspaces must be disjoint. No two subspaces may
include the same impression.

• The subspaces must provide full coverage for all of the
reservations’ restrictions.

We add edges between the reservation nodes and the
subspace nodes for each subspace that satisfy the constraints
of each reservation. This is shown in the leftmost graph in
Figure 2.

We add a source node that connects to all reservation
nodes, and we add a sink node that connects to all subspace
nodes. For the edges between the source node and the
reservation nodes, we set the capacity to the number of
impressions reserved for that reservation. For the edges
between the reservation nodes and the subspace nodes, we

16 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

set the capacity to infinity. And for the edges between the
subspace nodes and the sink node, we set the capacity to
the predicted number of impressions for the subspace. The
center graph in Figure 2 shows the state of the graph at
this stage, with edge labels representing the capacity for
the edges. As you can see in the example there are two
reservations: one for Sports with 50 impressions and one for
Afternoon with 60 impressions. The problem we’re trying to
solve is finding how many more impressions can we deliver
on the Sports section while keeping the number of Afternoon
impressions the same.

We then run the max-flow algorithm to load the existing
reservation into the graph. The allocation of impressions
between the subspaces and the reservations is stored on the
edges.

To calculate the availability of one reservation node, we
disconnect the source node from all of the reservation nodes
and attach the source node to only the node being queried.
We set the capacity of the edge between source and the
node to be infinity and run the max-flow algorithm again.
The resulting available number of impressions will be the
assignment on this edge. The rightmost diagram in Figure 2
shows the result of the availability query (i.e., the number of
available impressions) for the sports page to be 60. However,
we must subtract any reserved impressions for that node (i.e.,
50 as you can see in the middle diagram from Figure 2)
leaving a total of 10 impressions available. The edges are
labeled with the capacities in the denominator and the flow
assignments in the numerator.

5 Experimental Setup

5.1 Implementations We experimented with six variants
of the push-relabel method based on the three node selection
rules given in Section 3 and whether we use bi-pushes or
pushes. We call these BI-FIFO, BI-ES, BI-HL, GEN-FIFO,
GEN-ES, GEN-HL, where BI stands for bi-push version and
GEN stands for the general version. As mentioned earlier,
we run max-flow twice when solving the availability prob-
lem, once to load in the data corresponding to the reserva-
tions and once to find how much inventory is available for
a particular reservation. In our experiments we are measur-
ing how the algorithms perform in the loading data phase
since this corresponds to a full max-flow problem while in
the second we’re just augmenting an existing flow. All algo-
rithms were coded in C++ and implemented using the same
style. To maintain simplicity, we used STL data structures
extensively. The code includes extra checks and production
logging instructions that may slow it down slightly.

Each node contains a hash set data structure containing
outgoing edges. We used hash set to get a good insert and
delete performance (needed for the advertising application).
The hash set data structure provides an efficient iterator
over the adjacency list so all relevant operations still run in

expected O(1) time. It is possible that we could improve
cache performance by using linked lists or resizable vectors
which can provide faster access.

Our implementations maintain residual capacities in-
stead of flows, because the algorithms need the capacities,
not the flows, for internal operations. Arc capacities are
represented as 64-bit signed integers and the distance labels
are represented as 32-bit signed integers since they have the
same order of magnitude as the number of nodes.

The algorithms maintain a distance label for each node.
For efficiency HL and ES both require the maintenance
of a bucket for each possible distance label, each bucket
containing all active vertexes at that distance. However, for
FIFO we use a simple queue to determine which vertex to
scan next.

Heuristics It is by now well known that efficient im-
plementations of maximum flow use two heuristics, the gap
heuristic, and periodic global relabeling of the entire graph
via breadth first search [10]. We implemented these two
heuristics in our code. We did some initial tests to verify
that these heuristics are still helpful in the bipartite case, and
to pick the frequency with which to globally relabel. The
results of such tests are described in Section 6.4.

Computing Environment We have implemented the
algorithms in C++ using the GCC 4.2.2 compiler (optimiza-
tion level -O2). Our platform was an Intel R©Core TM2 Quad
CPU with four 2.40 GHz processors, each with a cache size
of 4 MB running the Ubuntu 6.06 distribution of Linux.

5.2 Data We used two different types of data sets:
real world anonymized data sets from Google, and data
sets that we generated ourselves. Data used in this pa-
per and generation scripts can be found in the directory
http://www.columbia.edu/˜cs2035/bpdata/
.

We characterize the graphs by several properties: num-
ber of nodes, number of edges, average degree, ratio of n1 to
n2, and values of edge capacities.

5.2.1 Real World Data from Advertising Application
We used 33 different ad inventory graphs that arose as
described in Section 4. We give the explicit parameters for
each graph in the first 5 columns of Tables 5 and 6. In these
graphs, the numbers of nodes range from 500 to 300000,
the numbers of edges from 40000 to 2.5 million, the n1/n2

ratios range from 1
5 and 1

1725 , and the average degrees are
between 1 and 17. These graphs fit well our definition for
unbalanced bipartite graphs.

When analyzing the graph capacities, we noticed the
graphs had many nodes from V2 where the capacity to sink
was 0. We compared the algorithms on these graphs to a
modified version of the graphs where the 0 capacity edges to
the sink were replaced by a randomly generated number with
mean 1 and deviation

√
2. We noticed that replacing the 0

17 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

nodes (x 1000) 10 25 50 75 100 150 200 250
ratio 1

5
1
10

1
100

1
1000

1
5000

edges 2n 3n 4n 5n 10n
capacities lo hi two

Table 1: Parameters for Generated Data Graphs.

capacity edges like this increases the running time by a factor
of up to 10, but doesn’t change the relative performance of
the algorithms, so we will only present the results for the
modified graphs.

5.2.2 Generated Data We generated graphs with parame-
ter ranges as given in Table 1. For an experiment, we took the
cross-product of all relevant parameter ranges. The values
for nodes, ratio and edges are self-explanatory, for capacity,
we have three types of capacity distributions: hi where the
capacities are random numbers between 0 and 224, lo where
the capacities are random numbers between 0 and 28 and two
where each capacity is either 102 or 107 chosen randomly
with equal probability.

For each class of graphs, unless otherwise stated, we
generated capacities from the sources and sinks to the nodes
in V1 and V2 by choosing random uniformly nonnegative
integers at most the total edge capacity incident to each node.

We have used four generating methods to create fami-
lies of unbalanced bipartite max flow instances: Uniform-
Random, Hi-Lo, Rope and ZipF. The latter three are inspired
by the generators with the same name from [7] which dealt
with solving bipartite matching problems or unit capacity
flow problems. For these generators, we did not notice a sig-
nificant impact from the type of edge capacity distribution
and therefore we only report our results for the hi type of
capacity distribution. We now describe each family in more
detail, using d to denote the average degree in the graph. We
created these graphs to understand how the algorithms per-
form outside our real-world application.

UniformRandom After choosing the values for n1, n2,
m, and a distribution for the capacities, we choose uniformly
at random m edges from the set of all possible edges between
the nodes in V1 and V2.

Hi-Lo This generator creates a graph with a unique max
flow. The nodes in V2 are split into groups so that each
group has n1 nodes except maybe the last group. We refer
to the ith node in the jth group by uj

i and to the nodes in
V1 by vi. Node uj

i has edges coming in from nodes vp where
max(1, i−d+1) ≤ p ≤ i. The capacities of the edge (s, vi)
is equal to

∑

j

c(vi, u
j
i). The capacity of the edge (uj

i , t) is

equal to c(vi, u
j
i). The maximum flow in the generated graph

will use the edges (vi, u
j
i). The rest of the edges, which are

d− 1 times as many, are there to make the solution harder to
find.

bi-fifo bi-hl bi-es gen-fifo gen-hl gen-es
14 4 15 0 0 0 Pushes
9 4 17 0 3 0 Relabels
13 8 12 0 0 0 Time

Table 2: Number of wins for real world data.

Rope The nodes in V1 and V2 are split in t = n1/d
groups. V1 is partitioned in groups X0, X1, ..., Xt−1 and V2

is partitioned in groups Y0, Y1, ..., Yt−1. We join groups of
nodes in two zig-zag patterns which meet at t−1. We use two
strategies of adding edges between groups. The groups are
Xi, Yi+1, Xi+1, Yi and also Xt−1, Yt−1. The first strategy is
to add edges from the nodes in Y to nodes in X and make
sure that the capacities from the flow to the nodes in V1 and
from the nodes in V2 are set up so that they allow as much
flow to go from X to Y . We use this strategy for groups
where i is even. Then the second strategy is to add, for each
node v in Y , d − 1 random edges that go from X and end in
v. These edges of the second type make finding the solution
harder.

ZipF We also added another class of graphs where the
edges follow a Zipfian distribution which is similar to the
distributions for real world and scale-free networks. We
added the edge (vi, uj) in this graph with a probability
proportional to 1/(ij). This generator makes the graph dense
near the nodes v1 and u1 while it’s pretty sparse near the
nodes vn1 and un2 .

5.3 Testing Methodology Tests were ran using a combi-
nation of bash and Python scripts and C++ code.

We report running times, pushes and relabels, the lat-
ter two being a machine-independent measure of each algo-
rithm. We ran each test three times to make sure the recorded
time is accurate. The running time is the CPU time in sec-
onds and excludes the input and output times.

6 Experimental Results

We addressed several questions in our experiments. First, we
wanted to verify that the bipartite algorithms do indeed per-
form better than the general algorithms. Second, we wanted
to understand the relative performance of the different bipar-
tite variants in terms of running time, pushes, and relabels.
After running these experiments on the real-world data, we
used generated data in order to further validate our conclu-
sions and to be able to control parameters of the input graphs
and measure the performance of the algorithms with respect
to these parameters. We also wanted to validate whether the
gap and global relabelling heuristics improve performance
on bipartite graphs.

6.1 Experiments on Real World Data We ran the six im-
plementations on all 33 real world data graphs and recorded
the number of pushes, number of relabels, and time. We then

18 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Figure 3: The number of pushes and running time for each
of the six algorithms on the 33 real world data sets. Small
and large are plotted separately using different scales.

sorted the graphs by the median number of pushes (taken
over all algorithms). We used this order to split the graphs
into two classes:

• small — the first 21 graphs having median number of
pushes below 50000

• large — the remaining 12 graphs

We plot the results separately for the small and large
graphs in Figure 3. We see that for both pushes and for time,
the bipartite algorithms all perform significantly better than
the non-bipartite ones, with the bipartite version typically
performing between 3 and 10 times better than the non-
bipartite ones.

As a further comparison of the algorithms, Table 2
shows, for each algorithm, the number of graphs it “wins”,
that is, has the lowest count of either pushes, relabels, and
time. From this table, we see that FIFO and Excess Scaling
perform the best, while Highest Level does not perform as
well. This conclusion is in contrast with the results for the
non-bipartite case which show that highest level performs
the best [6]. Tables 5 and 6, in the appendix, contain detailed
results.

We also tested the efficacy of the gap and global rela-
belling heuristics. For about half of the graphs, they didn’t
seem to have any significant effect. For the other half, the
number of pushes decreased up to a factor of 10 and the num-
ber of relabels decreased up to a factor of 60. For the global
relabeling heuristic we found that a global relabeling every
10n1 steps was the best heuristic. We omit the detailed data
in this extended abstract.

6.2 Experiments on Generated Data — UniformRan-
dom We ran our algorithms on the data generated from the
cross-product of all the parameters reported in Table 1. Be-
cause the results were very similar for different capacity fam-
ilies (hi, lo, and two) we only present here the results for hi.
All appear in tabular format in the appendix.

From this data, we look at the correlations of the algo-
rithm performance versus various graph parameters. In Fig-
ure 4, we see the correlation between pushes and number of
nodes. The shape of all curves is roughly the same, but we
see that the bipartite versions grow slower by a factor about
2 to 4. In the second two plots, we look at how the amount of
“imbalance” in the graph affects the number of pushes (and
thus the running time). The theory suggests that the more
imbalanced the graph is, the more the speedup should be. In
the second two plots, we see that this hypothesis is verified,
by graphing the pushes versus the ratio and then the pushes
divided by n1. We see that the pushes over n1 is linear in
the ratio in the log-log scale. Thus we can see that, having
more nodes in V2 leads to fewer pushes, although the de-
crease slows down as we have graphs with more nodes or
edges. If we plot pushes divided by n1 we observe an al-

19 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Figure 4: The number of pushes as a function of graph
parameters. The first figure plots pushes vs. number of
nodes; the second and third plot pushes as a function of the
ratio between the left and right sides. In the second, we plot
pushes vs. the ratio for a 10000 node graph. In the third, we
plot pushes/n1 vs. the ratio, on a log-log scale.

most linear behavior, meaning that the number of pushes is
roughly proportional with the ratio times the number of of
nodes on the smaller side of the bipartition.

We next compute the ratio between the number of bi-
pushes in the bipartite version of an algorithm and the
number of pushes in the general version. We compute the
average ratio by taking all the ratios for different number
of nodes. We plot this for each of the three selection rules
(FIFO, ES, HL) and for small and large ratios (5 and 1000)
and small and large densities (2 and 10). These results are in
Tables 3 and 4, where we see that the ratio tends to increase
as m/n increases but stays within a range of 0.25 to 0.5.

Finally, we compare the running time of the three bipar-
tite versions (BI-FIFO, BI-HL, BI-ES). BI-ES remains the
best for ratio 5, but for ratio 1000 we see Highest Label come
on top, followed closely by BI-FIFO, while BI-ES becomes
the worse of the three. The results appear in Figure 5 and 6.
This difference occurs because BI-ES minimizes the number
of pushes but, as the ratio increases the number of relabels
dominates. When bi-push is used, all the relabels are done
on nodes V1; increasing the n1/n2 ratio and keeping a fixed
number of edges increases the average degree for nodes in
V1, thereby making the relabel operations much more ex-
pensive. Since, in terms of relabels, Highest Label proves to
be the best algorithm, it also performs best in terms of time
for cases with ratio 1000.

6.3 Experiments on Generated Data — Hi-Lo, Rope,
ZipF For all three classes of graphs we plot the running
times in seconds, number of pushes and number of relabels
as the number of nodes increases up to 250000. We do
this for two different ratios (1/5 and 1/1000) and for two
different number of edges (2n and 10n). We found that
for all three classes the graph instances are harder than
UniformRandom on the same configuration.

Hi-Lo The graphs for Hi-Lo appear in Figure 8 in
the appendix. For 2n edges Hi-Lo seems to be similar to
UniformRandom being only up to 2 times bigger in terms
of time, pushes or relabels. Also, the relative ordering of
the algorithms matches the one for UniformRandom: Excess
Scaling is fastest, followed by FIFO and Highest Label.

As we increase the number of edges to 10n the instances
become much harder, being around 5 times harder in terms of
time and around 10 times harder in terms of relabels. While
for big ratios the number of pushes is smaller than for Uni-
formRandom cases, relabels become the dominant operation.
This is pretty intuitive as the idea behind this generator was
to make the right solution hard to find. We now see Highest
Label becoming the best performing algorithm, with FIFO
keeping its median position.

Rope Rope is particularly interesting as its perfor-
mance does not decrease as we increase the number of edges
from 2n to 10n. For time the results actually remain in the
same scale, while in terms of relabels the 10n instances are

20 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

n1/n2 5 5 5 5 5 10 10 10 10 10 100 100 100 100 100 1000 1000 1000 1000 1000 5000 5000 5000 5000 5000
m/n 2 3 4 5 10 2 3 4 5 10 2 3 4 5 10 2 3 4 5 10 2 3 4 5 10

FIFO 0.27 0.33 0.36 0.40 0.54 0.25 0.28 0.32 0.36 0.51 0.18 0.22 0.26 0.31 0.49 0.24 0.32 0.38 0.40 0.57 0.29 0.36 0.46 0.50 0.65
HL 0.28 0.32 0.36 0.37 0.46 0.25 0.29 0.32 0.35 0.44 0.25 0.28 0.30 0.33 0.43 0.27 0.30 0.33 0.36 0.44 0.28 0.30 0.34 0.36 0.42
ES 0.31 0.35 0.39 0.43 0.51 0.28 0.33 0.36 0.40 0.49 0.26 0.30 0.33 0.34 0.41 0.26 0.29 0.31 0.36 0.43 0.26 0.27 0.36 0.36 0.47

Table 3: The ratio of the number of pushes done in the bipartite vs. general version of each algorithm for different graph
parameters. Results are averaged over all number of nodes used for testing on UniformRandom.

Nodes 10000 25000 50000 75000
m/n 2 3 4 5 10 2 3 4 5 10 2 3 4 5 10 2 3 4 5 10

FIFO 0.28 0.35 0.40 0.40 0.53 0.26 0.31 0.39 0.46 0.57 0.25 0.29 0.39 0.39 0.63 0.25 0.32 0.36 0.40 0.58
HL 0.27 0.30 0.33 0.35 0.42 0.28 0.31 0.35 0.36 0.43 0.27 0.30 0.34 0.36 0.45 0.27 0.30 0.34 0.37 0.44
ES 0.27 0.32 0.34 0.40 0.44 0.30 0.31 0.39 0.42 0.48 0.29 0.31 0.35 0.39 0.49 0.28 0.30 0.35 0.39 0.47

Nodes 100000 150000 200000 250000
m/n 2 3 4 5 10 2 3 4 5 10 2 3 4 5 10 2 3 4 5 10

FIFO 0.25 0.30 0.35 0.38 0.56 0.24 0.28 0.35 0.37 0.53 0.23 0.28 0.32 0.38 0.52 0.22 0.27 0.30 0.38 0.51
HL 0.26 0.30 0.33 0.35 0.44 0.26 0.29 0.33 0.35 0.44 0.26 0.29 0.32 0.35 0.44 0.26 0.29 0.32 0.34 0.43
ES 0.26 0.33 0.34 0.38 0.46 0.27 0.29 0.36 0.36 0.46 0.26 0.30 0.34 0.35 0.46 0.26 0.30 0.34 0.35 0.44

Table 4: The ratio of the number of pushes done in the bipartite vs. general version of each algorithm for different graph
parameters. Results are averaged for all ratios used for testing on UniformRandom.

easier by a factor of 0.5. For this class of graphs the best
algorithm is FIFO, especially when the graph is not very un-
balanced. Details appear in Figure 9 in the appendix.

ZipF Graphs generated using ZipF can differ a lot in
difficulty for different number of nodes and different random
seeds so the results are not as monotone as for the previous
graph classes. The plots show that the algorithms behave
similarly on ZipF and UniformRandom, having the results
for running time, pushes and relabels in similar ranges. Thus,
it comes as no surprise that the conclusion is the same: for
small ratio Excess Scaling performs the best, while for larger
ratios Highest Label seems to be the best choice. Details
appear in Figure 10 in the appendix.

6.4 Evaluation of Heuristics
Gap Heuristic Our experimental results show that us-

ing the gap heuristic never significantly decreases perfor-
mance and sometimes drastically improves it. In Figure 7,
we present results for graphs up to 50000 nodes. We stop at
this value because the running time reaches the order of tens
of minutes when the algorithms are ran without any heuris-
tics. Thus, the importance of heuristics would appear even
more significant if we included these values. In the figure,
we plot the ratio between the times of the algorithms with-
out and with gap heuristic as the number of nodes increases.
We can see these vary linearly, a fact which is also consistent
for pushes and relabels. We choose to plot running time as
it seems to be a linear combination of both pushes and rela-

bels. We also see that the effect of gap heuristic dramatically
decreases as the n1/n2 ratio increases. This phenomenon
occurs because for each node in the graph the distance la-
bel has an upper bound of 4n1. As the graph becomes more
unbalanced (n1 � n2), we have fewer possible distances
for the nodes, thus making each distance label bucket more
dense and reducing the likelihood of having gaps. Given the
low overhead of the gap heuristic, we believe it should al-
ways be used, a conclusion consistent with all other work on
push-relabel implementations.

Global Relabeling Unlike the gap heuristic, the global
relabeling heuristic can have significant overhead. If global
relabelings are performed too often, they dominate the run-
ning time. If they are performed too rarely, the number of op-
erations performed by the algorithms doesn’t get improved.
One can perform a new global relabeling after the algorithm
did O(m) work since the last relabeling [6]. Our implemen-
tations perform a new global relabeling after the number of
relabel operations since the last global relabeling is O(n). In
particular, we tested 10n1, n/3, n/2, n, 2n and 3n.

While we get consistent performance gains using global
relabeling, choosing the right frequency proves to be very
difficult as the best frequency varies widely based on each
graph’s characteristics. For the same number of nodes we
get very different behaviors based on the number of edges in
the graph or the n1/n2 ratio. We found that for our data 10n1

for the real world graphs and n for the generated graphs were
a good compromise.

21 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Figure 5: Comparison of time, pushes and relabels versus
number of nodes for different values of ratio and the number

Figure 6: Comparison of time, pushes and relabels versus
number of nodes for different values of ratio and the number

22 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Figure 7: Graphs showing the improvement due to heuristics
from the gap relabeling heuristic.

7 Conclusions

The maximum flow problem on unbalanced bipartite graphs
is an important scenario in practice and one we encountered
in the online advertising industry.

After we run preflow push algorithms on several types of
unbalanced bipartite networks, we see that the performance
of the algorithms varies for different values of the number of
nodes, for different n1/n2 ratios and for different number of
edges. We conclude that the two-edge push rule improves all
the performance metrics we measured by a factor of two to
four.

Although no single algorithm is dominant in all cases,
we find the FIFO algorithm provides consistent performance
in practice. Ocasionally it provides the best performance of
all the algorithms tested, but never the worst performance.
Given that consistent performance is a critical requirement
in many real-world applications, our experimental evaluation
suggest that the FIFO algorithm should be the method of
choice.

In addition, the push-relabel algorithms improve by
a wide margin when both the gap relabeling and global
relabeling heuristics are used, although one may need to
tweak the global relabeling frequency for optimal results.

We have made our test data publicly available, including
the Google real-world data and the generated data. Having

benefited from others sharing test data and ideas, we wel-
come further research with our data.

8 Acknowledgements

We thank George Nachman, Jeffrey Oldham and Mihai
Pǎtraşcu for many helpful conversations and suggestions.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network
Flows : Theory, Algorithms, and Applications. Prentice Hall,
Englewood Cliffs, NJ, 1993.

[2] R. K. Ahuja and J. B. Orlin. A fast and simple algorithm for
the maximum flow problem. Operations Research, 37:748–
759, 1989.

[3] R. K. Ahuja, J. B. Orlin, C. Stein, and R. E. Tarjan. Improved
algorithms for bipartite network flow problems. To appear in
SIAM Journal on Computing.

[4] R. K. Ahuja, J. B. Orlin, and R. Tarjan. Improved time bounds
for the maximum flow problem. SIAM J. Comput., 18:939–
954, 1989.

[5] J. Cheriyan and S. N. Maheshwari. Analysis of preflow push
algorithms for maximum network flow. SIAM Journal on
Computing, 18:1057–1086, 1989.

[6] B. V. Cherkassky and A. V. Goldberg. On implementing push-
relabel method for the maximum flow problem. Algorithmica,
19:390–410, 1997.

[7] B. V. Cherkassky, A. V. Goldberg, P. Martin, J. C. Setubal,
and J. Stolfi. Augment or push: A computational study of
bipartite matching and unit-capacity flow algorithms. ACM J.
Exp. Algorithmics, 3:1998, 1998.

[8] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast
parametric maximum flow algorithm and applications. SIAM
Journal on Computing, 18:30–55, 1989.

[9] A. V. Goldberg. Efficient graph algorithms for sequential and
parallel computers. PhD thesis, MIT, Cambridge, MA, Jan.
1987.

[10] A. V. Goldberg and R. Kennedy. Global price updates help.
SIAM J. Discrete Math., 10(4):551–572, 1997.

[11] A. V. Goldberg and R. E. Tarjan. A new approach to the
maximum flow problem. Journal of the ACM, 35:921–940,
1988.

[12] A. V. Goldberg and R. E. Tarjan. Solving minimum-cost
flow problems by successive approximation. Mathematics of
Operations Research, 15(3):430–466, 1990.

[13] A. V. Goldberg, R. E. Tarjan, and E. Tardos. Network
flow algorithms. In B. Korte, L. Lovász, H. Prömel, and
A. Shriver, editors, Paths, Flows, and VLSI-Layout, pages
101–164. Springer-Verlag, Berlin, 1990.

[14] D. Gusfield, C. Martel, and D. Fernandez-Baca. Fast algo-
rithms for bipartite network flow. SIAM J. Comput., 16(2),
Apr. 1987.

[15] A. Nakamura. Improvements in practical aspects of optimally
scheduling web advertising. In WWW ’02: Proceedings of the
11th international conference on World Wide Web, pages 536–
541, New York, NY, USA, 2002. ACM.

Appendix

23 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

n1 n2 n1/n2 Edges bi-fifo bi-hl bi-es gen-fifo gen-hl gen-es
1 40 23847 1/596 37123 3408 2787 2774 6579 5963 6227 Pushes

32 9 10 24 22 26 Relabels
0.04 0.04 0.04 0.04 0.04 0.10 Time (sec)

2 40 25880 1/647 43629 3611 2959 3045 7053 6083 6507
50 15 15 35 24 30
0.04 0.04 0.04 0.04 0.05 0.11

3 40 23396 1/585 35759 3424 2803 2782 6657 5981 6237
51 15 15 35 25 30
0.04 0.04 0.04 0.04 0.04 0.10

4 85 462 1/5 9004 515 416 500 1467 3053 4467
309 221 313 228 350 358
0.00 0.00 0.00 0.00 0.00 0.00

5 85 462 1/5 8994 516 416 519 1540 2983 4768
310 218 323 251 337 394
0.00 0.00 0.00 0.00 0.00 0.00

6 85 468 1/5 9420 515 430 511 1624 3232 4788
319 235 326 261 368 382
0.00 0.00 0.00 0.00 0.00 0.00

7 40 5857 1/148 33252 3860 5113 3063 11244 13458 14927
725 830 489 2025 1940 1191
0.03 0.04 0.03 0.09 0.07 0.05

8 40 5851 1/146 33246 3860 5113 3063 11244 13458 14927
725 830 489 2025 1940 1191
0.03 0.04 0.03 0.08 0.07 0.05

9 40 5958 1/146 33609 3914 5164 3103 11380 13610 15078
725 830 488 2043 1958 1200
0.03 0.05 0.03 0.08 0.07 0.07

10 35 10998 1/314 21086 4388 5120 4479 11975 15162 16224
702 1050 1057 1402 1728 1217
0.07 0.08 0.09 0.11 0.11 0.13

11 35 11120 1/318 21788 4578 5423 4703 12353 15497 16936
702 1050 1054 1402 1719 1265
0.06 0.08 0.09 0.11 0.12 0.14

12 35 11293 1/323 22279 4705 5330 4675 12441 15599 17167
702 1050 1054 1402 1716 1268
0.06 0.08 0.09 0.11 0.12 0.14

13 289 5632 1/19 26398 4968 5496 4957 12247 14720 19875
1846 1963 2031 1766 1733 2424
0.02 0.02 0.02 0.02 0.02 0.03

14 289 5497 1/19 25532 4940 5454 4852 12048 14437 19367
1828 1966 1968 1744 1694 2352
0.02 0.02 0.02 0.02 0.02 0.03

15 289 6599 1/19 33051 5728 6338 5651 14903 16754 19500
2049 2217 2183 2236 1938 2306
0.02 0.02 0.02 0.02 0.02 0.04

16 934 8792 1/9 43429 6725 7126 7577 21099 25294 33166
2985 3500 4081 3221 3053 3797
0.03 0.04 0.05 0.03 0.05 0.08

17 934 8750 1/9 42711 6660 7086 7507 21643 25699 32807
2986 3511 4055 3277 3075 3688
0.03 0.04 0.05 0.03 0.05 0.08

18 136 16214 1/119 189121 10821 12080 10408 27672 38677 41638
2214 2567 2071 3562 4258 4007
0.13 0.13 0.13 0.19 0.26 0.24

19 136 16234 1/119 189897 10797 12006 10303 27672 38190 41568
2176 2561 2042 3565 4223 4011
0.13 0.13 0.12 0.19 0.27 0.25

Table 5: Results for real world data — small graphs. Each entry lists the number of pushes, the number of relabels and the
running time in seconds.

24 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

n1 n2 Edges bi-fifo bi-hl bi-es gen-fifo gen-hl gen-es
20 934 8804 1/9 43445 6805 7374 7564 21629 25694 32406

3022 3630 4102 3390 3136 3678
0.03 0.04 0.05 0.03 0.05 0.07

21 136 17994 1/132 222951 12779 13021 11628 30513 42618 47573
2375 2575 2369 3971 4722 4080
0.16 0.15 0.16 0.24 0.32 0.39

22 50 17484 1/350 61989 20953 22014 22397 70404 96921 124551
3084 3500 1970 14223 16529 5000
0.27 0.31 0.19 1.16 1.41 0.52

23 50 15636 1/313 56841 18043 22597 20586 66942 93976 119184
3579 2802 2505 14399 15172 5500
0.26 0.20 0.25 0.98 1.10 0.51

24 50 15900 1/318 56577 19285 19838 19658 65720 89089 126132
3645 3000 2006 13927 15108 5500
0.28 0.23 0.18 0.98 1.15 0.53

25 196 87138 1/444 1012334 21442 34702 24642 89491 167103 105681
2701 4717 3929 9819 14882 5884
0.72 1.10 1.13 2.32 3.10 1.88

26 196 90234 1/444 1081231 24124 35076 27230 97777 177120 114617
3689 4272 4161 10225 15692 5956
0.77 1.20 1.21 2.41 3.88 2.03

27 196 87144 1/460 1012256 23022 35342 25465 92986 175439 117342
3477 5078 3951 10107 15977 6282
0.72 1.12 1.12 2.24 3.50 1.84

28 125 54876 1/439 844598 80091 137927 74444 282921 581287 958992
11265 18247 10166 52697 66882 70000
2.87 4.18 2.66 12.25 15.60 18.73

29 125 56586 1/446 864780 81794 140523 77197 288733 587315 963152
11256 18136 10156 52854 67415 69000
2.99 4.45 2.70 12.75 16.30 19.16

30 125 55854 1/452 854585 80955 139933 75683 288948 586624 966479
11265 18264 10136 53056 67724 70000
2.91 4.34 2.66 12.23 16.15 19.91

31 164 282931 1/1725 2523313 410259 422564 417807 1109226 2341693 2645364
27221 28039 25500 162789 240403 93481
17.26 17.15 15.54 100.20 149.28 61.95

32 164 282931 1/1725 2523313 410259 422564 417807 1109226 2341693 2645364
27221 28039 25500 162789 240403 93481
17.32 17.11 15.64 100.39 150.17 62.00

33 164 282963 1/1725 2523477 410283 422588 417838 1109286 2341728 2645467
27221 28039 25505 162794 240411 93482
17.55 17.14 15.88 98.15 151.37 62.30

Table 6: Results for real world data — large graphs. Each entry lists the number of pushes, the number of relabels and the
running time in seconds.

25 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Figure 8: Comparison of time, pushes and relabels versus the number of nodes for different values of ratio and the number
of edges for Hi-Lo.

26 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Figure 9: Comparison of time, pushes and relabels versus the number of nodes for different values of ratio and the number
of edges for Rope.

Figure 10: Comparison of time, pushes and relabels versus the number of nodes for different values of ratio and the number
of edges for ZipF.

27 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Nodes 10000 25000
m/n 2 2 2 3 3 3 4 4 4 5 5 5 10 10 10 2 2 2 3 3

Capacity hi lo two hi lo two hi lo two hi lo two hi lo two hi lo two hi lo

FIFO 0.28 0.29 0.27 0.35 0.35 0.33 0.40 0.41 0.39 0.40 0.39 0.37 0.53 0.53 0.51 0.26 0.29 0.28 0.31 0.40
HL 0.27 0.27 0.29 0.30 0.31 0.32 0.33 0.33 0.34 0.35 0.35 0.36 0.42 0.42 0.43 0.28 0.27 0.29 0.31 0.31
ES 0.27 0.27 0.29 0.30 0.31 0.32 0.33 0.33 0.34 0.35 0.35 0.36 0.42 0.42 0.43 0.28 0.27 0.29 0.31 0.31

Nodes 25000 50000
m/n 3 4 4 4 5 5 5 10 10 10 2 2 2 3 3 3 4 4 4 5

Capacity two hi lo two hi lo two hi lo two hi lo two hi lo two hi lo two hi

FIFO 0.37 0.39 0.41 0.36 0.46 0.46 0.40 0.57 0.64 0.58 0.25 0.26 0.25 0.29 0.29 0.28 0.39 0.36 0.34 0.39
HL 0.32 0.35 0.35 0.36 0.36 0.37 0.38 0.43 0.42 0.43 0.27 0.26 0.28 0.30 0.30 0.32 0.34 0.34 0.35 0.36
ES 0.32 0.35 0.35 0.36 0.36 0.37 0.38 0.43 0.42 0.43 0.27 0.26 0.28 0.30 0.30 0.32 0.34 0.34 0.35 0.36

Nodes 50000 75000
m/n 5 5 10 10 10 2 2 2 3 3 3 4 4 4 5 5 5 10 10 10

Capacity lo two hi lo two hi lo two hi lo two hi lo two hi lo two hi lo two

FIFO 0.39 0.38 0.63 0.64 0.58 0.25 0.24 0.24 0.32 0.30 0.27 0.36 0.36 0.34 0.40 0.40 0.36 0.58 0.53 0.51
HL 0.36 0.37 0.45 0.44 0.46 0.27 0.26 0.28 0.30 0.31 0.31 0.34 0.33 0.34 0.37 0.36 0.38 0.44 0.44 0.47
ES 0.36 0.37 0.45 0.44 0.46 0.27 0.26 0.28 0.30 0.31 0.31 0.34 0.33 0.34 0.37 0.36 0.38 0.44 0.44 0.47

Nodes 100000 150000
m/n 2 2 2 3 3 3 4 4 4 5 5 5 10 10 10 2 2 2 3 3

Capacity hi lo two hi lo two hi lo two hi lo two hi lo two hi lo two hi lo

FIFO 0.25 0.25 0.23 0.30 0.30 0.29 0.35 0.35 0.33 0.38 0.37 0.36 0.56 0.56 0.53 0.24 0.24 0.23 0.28 0.28
HL 0.26 0.26 0.27 0.30 0.30 0.31 0.33 0.32 0.34 0.35 0.34 0.37 0.44 0.44 0.46 0.26 0.26 0.27 0.29 0.29
ES 0.26 0.26 0.27 0.30 0.30 0.31 0.33 0.32 0.34 0.35 0.34 0.37 0.44 0.44 0.46 0.26 0.26 0.27 0.29 0.29

Nodes 150000 200000
m/n 3 4 4 4 5 5 5 10 10 10 2 2 2 3 3 3 4 4 4 5

Capacity two hi lo two hi lo two hi lo two hi lo two hi lo two hi lo two hi

FIFO 0.28 0.35 0.36 0.33 0.37 0.38 0.35 0.53 0.55 0.51 0.23 0.23 0.23 0.28 0.27 0.27 0.32 0.31 0.30 0.38
HL 0.30 0.33 0.33 0.33 0.35 0.34 0.36 0.44 0.43 0.46 0.26 0.27 0.27 0.29 0.30 0.31 0.32 0.33 0.34 0.35
ES 0.30 0.33 0.33 0.33 0.35 0.34 0.36 0.44 0.43 0.46 0.26 0.27 0.27 0.29 0.30 0.31 0.32 0.33 0.34 0.35

Nodes 200000 250000
m/n 5 5 10 10 10 2 2 2 3 3 3 4 4 4 5 5 5 10 10 10

Capacity lo two hi lo two hi lo two hi lo two hi lo two hi lo two hi lo two

FIFO 0.37 0.34 0.52 0.52 0.49 0.22 0.23 0.21 0.27 0.26 0.26 0.30 0.31 0.30 0.38 0.38 0.36 0.51 0.51 0.49
HL 0.34 0.36 0.44 0.44 0.45 0.26 0.26 0.27 0.29 0.29 0.31 0.32 0.32 0.34 0.34 0.33 0.37 0.43 0.43 0.45
ES 0.34 0.36 0.44 0.44 0.45 0.26 0.26 0.27 0.29 0.29 0.31 0.32 0.32 0.34 0.34 0.33 0.37 0.43 0.43 0.45

Table 7: Improvement of bipartite versions for different
numbers of nodes and densities. Results are averaged over
all n1/n2 ratios used for testing on UniformRandom.

28 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

