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What is Percolation?

1.1 Modelling a Random Medium

Suppose we immerse a large porous stone in a bucket of water. What is the
probability that the centre of the stoneiswetted? Informulating asimplestochastic
model for such a situation, Broadbent and Hammerdey (1957) gave birth to the
‘percolation model’. In two dimensions their model amounts to the following.
Let Z2 bethe plane squarelattice and let p be anumber satisfying0 < p < 1. We
examineeach edgeof Z2inturn, and declarethisedgeto be openwith probability p
and closed otherwise, independéntly'of.all other edges. The edges of Z2 represent
the inner passageways of jthe stone, and.the parameter p.is the proportion of
passages which are broad enough to allow water to pass along them. We think of
the stone as being modeélled by a large, finite subsection’of Z2 (see Figure 1.1),
perhaps those vertices and edges of Z2 contained in some specified connected
subgraph of Z2. On immersion of the stone in water, a vertex x inside the stone
is wetted if and only if there exists'a path in Z2 from x to some vertex on the
boundary of the stone, using open edges only. Percolation theory is concerned
primarily with the existence of ‘such ‘open paths'.

If we delete the closed edges, we are left with a random subgraph of Z2; we
shall study the structure of this:subgraph, particularly with regard to the way in
which this structure depends on the numerical value of p. It is not unreasonable
to postulaté that the fine structure of the interior passageways of the stoneison a
scalewhichis negligiblewhen compared with the overall size of the stone. Insuch
circumstances, the probability that a vertex near the centre of the stone is wetted
by water permeating into the stone fromits surface will behave rather similarly to
the probability that this vertex is the endvertex of an infinite path of open edges
in Z2. That isto say, thelarge-scale penetration of the stone by water isrelated to
the existence of infinite connected clusters of open edges.
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Figure 1.1. A sketch of the structure of a two=dimensional,porous stone. The lines indicate
the open edges; closed edges have been omitted. On immersion of the stone in water, vertex
x will be wetted by the invasion of water, but vertex y will remain dry.

When can such infinite clusters exist? “Simulations are handy indicators of
the likely structure of the lattice, and Figure 1.2 contains such pictures for four
different values of p. When p = 0.25, the connected clusters of open edges are
isolated and rather small. As«p increases, the sizes of clusters increase aso, and
there is a critical value of /p at which there forms a cluster which pervades the
entire picture. In loose terms, as we throw in more and more open edges, there
comes a moment when large-scal e connectionsareformed across the lattice. The
picturesin Figure 1.2 are of course finite. If we were able to observe the whole
of the infinite lattice Z2, then we would see that all open clusters are finite when
p is small, but that.there exists an infinite open cluster for large values of p. In
other words, there exists a critical/'value p. for the edge-density p such that all
open clustersarefinitewhen p < pe, butthere existsaninfinite open cluster when
p > pc (such remarks should be interpreted‘with probability 1'). Drinkers of
Pernod are familiar with this.type of phenomenon—the transparence of a glass
of Pernod is undisturbed by the addition of a small amount of water, but in the
process of adding the water drop by drop, there arrives an instant at which the
mixture bécomes opaque.

Theoccurrenceof a“ critical phenomenon’ iscentral totheappeal of percolation.
In physical terms, we might say that the wetting of the stoneis a ‘ surface effect’
when'the proportion p of open edgesis small, and a ‘volume effect’ when p is
large.

The above processis called.' bond percolation on the square lattice’, and it is
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the most studied to date of all percolation processes. It isavery special process,
largely because the square | attice has a certain property of self-duality which turns
out to be extremely valuable. More generally, we begin with some periodic lattice
in, say, d dimensions together with a number p satisfying/0 < p <»1, and we
declare each edge of thelattice to be open with probability p and closed otherwise.
Theresulting processis called a‘bond’ model since the random blockagesin the
lattice are associated with the edges. Another type of percolation process is the
‘site’ percolation model, in which the vertices rather than the edges are declared
to be open or closed at random, the closed vertices being thought of as junctions
which are blocked to the passage of fluid. It iswell known that every bond model
may be reformulated as a site model on a different lattice, but that the converse
is false (see Section 1.6). Thus site models are more general than bond models.
They areillustrated in Figure 1.9.

We may continueto generalizein several directionssuch.as(i) ‘mixed’ models,
in which both edges and vertices may be blocked, (ii) inhomogeneous models, in
which different edges may have different probabilities of being openy(iii) long-
range models, in which direct flow is possible between pairs of verticeswhich are
very distant (in the above formulation, this may require agraph with large or even
infinite vertex degrees), (iv) dependent percolation, in which the states of different
edgesarenot independent, and so on. Mathematicianshaveaconsiderabletalent in
theart of generalization, and this hasnot been wasted on percolationtheory. Such
generalizations are often of considerable mathematical and physical interest; we
shall however take the opposite routein this book. With few exceptions, we shall
restrict ourselvesto bond percolation on thed-dimensional cubic lattice Z4 where
d > 2, andthemainreasonsfor thisareasfollows. Asthelevel of generality rises,
the accessibility of resultsin percolation theory is often diminished. Arguments
which are relatively simpleto explain in a special case can become concealed in
morasses of geometrical and analytical detail when appliedto somegeneral model.
Thisisnot awaysthe case, asillustrated by the proofs of exponential decay when
p < pc (see Chapter 5) and of the unigueness of the infinite open cluster when
it exists (see Chapter/8). It is of course important to understand the limitations
of an argument, but'there. may also be virtue in trying to describe something of
the theory when stripped of peéripheral detail. Bond percolation onZ isindeed a
specia case, but probably it exhibits the majority of properties expected of more
general finite-range percolation-type models:

1.2 Why Percolation?

Asamodel for adisordered medium, percolation isone of thesimplest, incorporat-
ing asit does a minimum of statistical dependence. Its attractions are manyfold.
First, it'is easy to.formulate but not unrealistic in its qualitative predictions for
random media.- Secondly, for those with a greater interest in more complicated
processes, it is a playground for. devel oping mathematical techniquesand insight.
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Figure 1.2, Redlizations of bond percolation on a 50 x 60 section of the square lattice for
dorandom numbers, withtheresultthat each graph isasubgraph of thenext. Readerswith good
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p = 0.51 but notwhen p =.0.49. The (random) value of p at which such paths appear for

eyesight may care torcheck that there exist open paths joining the |eft to the right side when
thisrealization is 0.5059....
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Thirdly, it iswell endowed with beautiful conjectures which are easy to state but
apparently rather hard to settle.

There is a fourth reason of significance. A great amount of effort has been
invested in recent years towards an understanding of complex interacting,random
systems, including disordered media and other physical models. Such processes
typically involve families of dependent random variables which are indexed by
79 for somed > 2. To develop a full theory of such.a system is often beyond
the current methodology. Instead, one may sometimes obtain partial results by
making a comparison with another process which is better understood. It is often
possible to make such a comparison with a percolation model. In thisway, one
may derive valuable results for the more complex system; these results may not
be the best possible, but they may be compellingiindicators of the directionsto be
pursued.

Here is an example. Consider a physical model having.a parameter T called
‘temperature’. 1t may be suspected that there exists a critical value T, marking
a phase transition. While this fact may itself be unproven, it may be poessible to
prove by comparison that the behaviour of the processfor small T isqualitatively
different from that for large T .

It has been claimed that percolation.theory.is a cornerstone of the theory of
disordered media. As evidence to support this claim, we make brief reference to
four types of disordered physical systems, emphasizing the role of percolation for
each.

A. Disordered electrical networks. It may not be too difficult to calculate the
effective electrical resistance of a block of either material A or of material B,
but what is the effective resistance of a mixture of these two materials? If the
mixture is disordered, then it may be reasonable to assumethat each component
of the block is chosen at/random to be of type A or of type B, independently of
the types of all other components. The resulting effective resistance is arandom
variable whose distribution depends on the proportion p of components of type
A. It seems to be difficult to say much of interest about the way in which this
distribution depends on the:numerical value of p. An extreme example arises
when material B is a perfect insulator, and this is a case for which percolation
comesto the fore. We illustrate thisin aspecial example.

Let Uy bethesquaresection {0, 1, ..., n} x {0, 1, ..., n} of thesquarelattice,
and let S, and Ti be the bottom.and top sides of Uy,

S ={(mM0):0<m=<n}, Th={(mn):0<m<n}.

Weturn'Up into an electrical network as follows. We examine each edge of Uy, in
turn, and replace it by awire of resistance 1 Ohm with probability p, otherwise
removingtheconnection entirely; thisisdoneindependently of all other edges. We
now replace Sy and Ty by silver bars and we apply a potentia difference between
these bars; see Figure 1.3. What is the effective resistance R, of the network?
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Figure 1.3. A redization of a random electrical network. Each remaining edge has unit
resistance.

The value of R, depends on the density and geometry of the set of edges having
unit resistance, and such mattersliein thedomain of percolation theory. We shall
seein Section 13.2 that R, = oo for al largen (almaost surely) if p < % whereas
Rn is bounded uniformly away from 0 and oo if p > 3.

B. Ferromagnetism. One of the most studied critical phenomena of theoretical
physicsis that of the ferromagnet. We position a lump of an appropriate metal
in a magnetic field and we observe the way in which the magnetization of the
metal varies according to imposed oscillationsin the external field. Suppose that
we increase the external field from 0o some given value, and then decrease it
back to 0. If the temperature is sufficiently large, the metal retains no residual
magnetization, whereas at |ow.temperatures the metal keeps some of its induced
magnetization. There exists a critical value T; of the temperature, called the
Curie point, marking the borderline between the existence and non-existence of
so called ‘ spontaneous magnetization’. A standard mathematical model for this
phenomenon isthe ‘Ising model’. We give no definition of the Ising model here,
but make instéad some general remarks. In the|sing model on thelattice Z9, each
vertex of Z9 may be in either of two states labelled 0 and 1. A configuration is
an assignment w = (w(X) : X € 7% of 0 or 1 to each vertex of the lattice. We
consider probability measures on the set ©2 of configurationstaken in conjunction
with somesuitable o -field of subsetsof ©2; in particular, we are concerned with a
class of measures having a type of /spatial Markov’ property: conditional on the
states of all vertices outside any fifite connected subgraph G of Z¢9, the states of
vertices of G depend only onithose of verticesin its ‘external boundary’. Taken
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in conjunction with certain other conditions (positivity and tranglation invariance
of the conditional probabilities, and positive correlation of increasing events), this
property characterizes the class of measures of interest for the model. It turns
out that there are two parameters which specify the conditional probabilities: the
‘external magneticfield' h, and the strength J of interaction between neighbours.
If J = 0 then the states of different vertices are independent, and the processis
equivalent to site percolation (see Section 1.6).

Therelationship between thelsing model and bond percolationisrather strong.
It turns out that they are linked via a type of ‘generalized percolation’ called
the ‘random-cluster model’. Through studying the random-cluster model, one
obtains conclusions valid simultaneously for percolation and the Ising model.
This important discovery was made around 1970 by Fortuin and Kasteleyn, and
it has greatly influenced part of the current view of,disordered physical systems.
See Section 13.6 for an account of the random-cluster model.

C. Epidemics and firesin orchards. In an early review of percolation and.related
topics, Frisch and Hammersl ey (1963) proposed theuse of percolationinmodelling
the spread of blight in alarge orchard. The problem is as follows. Hypothetical
trees are grown at the vertices of a sguare lattice. We suppose that there is a
probability p that a healthy tree will/be infected by a neighbouring blighted tree,
where p is a known function of the distance between'neighbouring trees. To
prevent a single blighted tree from endangering a significant proportion of the
wholeorchard, it is necessary to choose thelattice spacing to be large enough that
p is smaller than the critical probability of bond percolation on Z2.

Inaforest fire, treeswhich are compl etely destroyedby fire cannot threaten their
neighbours. Similarly, trees which haverecovered from measles presumably gain
protection from recurrenceof the disease. Such observationsmay beincorporated
into a more complicated model which takes into account the passage of time.
Suppose that each tree/may be in any of threestates: 1 (live and not on fire),
0 (burning), and —1 (burned). We suppose that the tree at vertex x burns for a
randomtime Ty after catching fire, where(Ty : x € Z2) isafamily of independent,
identically distributed random variables. A burning treeemitssparksinthe manner
of aPoisson processwith rate a, and each spark hits one of the neighbouring trees
chosen at random; the spark sets fire torthat tree so long asiit is neither burned
nor already on fire. At time 0, an arsonist sets light to the tree at the origin.
It turns out thatthe set C oftrees which are ultimately burned in the ensuing
conflagrationimay be i dentified asthe set of vertices reachable from the origin by
open pathsof acertain percol ation-typeprocess; thisprocessdiffersfromordinary
bond percolation in that the states of two different edges may be dependent if the
edges have a vertex in common. See Section 13.5, as well as Cox and Durrett
(1988), van den Berg, Grimmett, and Schinazi (1998), and the referencestherein.

D. Wafer-scale integration. In the manufacture of microchips, silicon wafers
are engraved with copies of the required circuitry, these copies being laid out
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in a square grid. The wafer is then broken up into the individual chips, many
of which are usually found to be faulty. After elimination of the faulty chips,
the remaining non-defective chips are used to build processors. There are sound
engineering and computing reasonsfor preferringto leave thewafer intact, making
use of the non-defective chipsin the positionsin which they occurredin the wafer.
I nterconnections may be made between functioning units by using channels built
between the rows and columns of the grid of chips. Such questions arise as the
following:

(i) How long is the longest linear chain of functioning units which may be
created using interconnections each of length not exceeding § lattice units
and laid in such away that each channel of thewafer containsno more than
two such interconnections?

(if) Find the minimal interconnection length'in awiring pattern which creates
asquare grid of size k x k of functioning chips out.of & wafer containing
n x nunitsinall.

Greene and El Gamal (1984) answer such questions under the hypothesi s that
each chip is non-defective with probability p, independently of all other chips.
Under thisassumption, the set of functioning chips may beidentified as the set of
open verticesin asite percol ation processonZ?2, and thusthe theory of percolation
isimportant.

1.3 Bond Percolation

In this section we shall establishithebasi c definitionsand notation of bond perco-
lationonZ9. We beginwith§omegraphtheory. Throughout most of thisbook, the
letter d stands for the dimension of the process; generaly d > 2, but we assume
for the moment only thatd > 1. Wewrite Z = {...-=1,0,1, ...} for the set
of all integers, and Z9 for the set of all vectorsx = (X1, X2, . . ., Xg) with integral
coordinates. For x /Z% we generally write x; for the i th coordinate of x. The
(graph-theoretic) distance é (x, y) from X to y is defined by

d
(L) 506y =D lxi — vil,

=1

and wewrite | x| for thedistances(0, x) from the origin to x. We shall sometimes
have use for/another distance function on Z9, and shall write

(12 Xl = max{|xi| : 1 <i =<d},

noting that
X1 = IX] < diix]|.

We may turn Z9 into'agraph, called the d-dimensional cubic lattice, by adding
edges between all pairs x, yof points of Z4 with §(x, y) = 1. We denote this
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lattice by L9, and we write Z9 for the set of vertices of L9, andEY for the set of
itsedges. In graph-theoreticterms, wewrite L9 = (29, EY). Weshall often think
of L9 asagraph embedded in RY, the edges being straight liné segments between
their endvertices. If 5(x, y) = 1, then we say that x and y'are adjacent; in this
case, we write x ~ y and we represent the edge from x to'y as (X, y). Theedge
eisincident to the vertex x if x isan endvertex of e. Letterssuch asu, v, w, X, y
usually represent vertices, and letters such as e, f usually represent edges. We
denote the origin of Z4 by 0.

Next we introduce probability. Let p and g satisfy 0 < p <. 1and p +
q = 1. We declare each edge of LY to be open with probability p and closed
otherwise, independently of all other edges. More formally, we consider the
following probability space. As sample space wetake Q@ = [ [o£zd {0, 1}, points
of which are represented as w = (w(e) : eje EY) and called configurations;
the value w(e) = 0 corresponds to e being closed, and'w(e) = 1 corresponds
to e being open. We take F to be the o-field of subsets of €2 generated by the
finite-dimensional cylinders. Finally, we take product measure with density p on
(2, F); thisisthe measure

Pp= 1_[ He

eckd

where ue is Bernoulli measure on {0, 1}, given by
pe(w(@© =0)=q, pe(w© =1)=p.

We write Py, for this product measure, and Ep for the corresponding expectation
operator. We shall occasionally need a more general construction in which dif-
ferent edges may have different probabilities of being open. Such a construction
begins with a family p =Ap(e) : e € BY) with0 < p(e) < 1 for al e. The
appropriate probability spaceis now (€2, #, Pp) where Py = [ [ocpd e and

pe(w(€@)'=0) =1—p@), ue(wl® =1)=pe

for eache.

We write A (or occasionally AS) for the complement of an event A, and | A for
theindicator function of A:
1 ifweA,

IM@Z{OHw¢A

The expression Ep(X; A) denotesthe mean of X on the event A; that is to say,
Ep(X; A) = Ep(Xla).

Thefollowing notation will be of valuelater. Let f beanedgeof L9. Wewrite
pr forBernoulli product measureon [ .. 1 {0, 1}, the set of configurationsof al
edges of the lattice other.than f. Wethink of pr as being the measure associated
with percolation on L9 with the edge f deleted.
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Thereisanatural partial order onthe set © of configurations, givenby w1 < w2
if and only if w1(€) < wa(e) forall e e EY.

There is a one—one correspondence between €2 and the set of subsets of EY.
For w € Q, we define

(1.3) K(w)={ecEY: w(e) = 1};

thus K (w) is the set of open edges of the lattice when the configuration is w.
Clearly, w1 < wp if and only if K(w1) € K (wy).

The following device can be useful. Supposethét (X (e) : e € E9) isafamily
of independent random variables indexed by the/edge set EY, where each X (e)
is uniformly distributed on [0, 1]. We may couple together all bond percolation
processes on LY as p ranges over the interval [0, 1}.in the following way. Let p
setisfy 0 < p < 1 and definenp (€ Q) by

1 if X(e) < p,

(1.4 p(€) = { 0 if X(e) > p.

We say that the edge e is p-open if np(€) = 1. The random vector n, has
independent components and marginal distributions given.by.

P(np(e) = 0) =1—p, » P(np(e) =1) = p.

We may think of np asbeing the random outcome of the bond percolation process
on L9 with edge-probability p. It is clear that npi < np, Whenever pp < pz,
which is to say that we may couple together the two percolation processes with
edge-probabilities p; and padh such away that the set of open edges of the first
process is a subset of the set of open edges of the second. More generaly, as p
increases from O to 1, the configuration iy runs through typical configurations of
percolation processes with all edge-probabilities:

A path of L9 is an dlternating sequence Xo, €p, X1, €1, . . . , en—1, Xn Of distinct
verticesxj andedgesg = (Xi, Xjr1); suchapath haslength n andissaidto connect
XotoXn. A circuit of L isan alternating sequence xo, €p, X1, €1, ... , €1—1, Xn, €n,
Xo of verticesand edges suchthat Xp, €, . . . , en—1, Xn isapathand e, = (xn, Xo);
such acircuit has length n 4+ 1."We call apath or circuit open if al of its edges
are open, and closed if all of its edges are closed: Two subgraphsof L9 are called
edge-digoint if they have no edges in common, and digoint if they have neither
edges nor verticesin common.

Consider the random subgraphof IL9 containing the vertex set Z4 and the open
edges only. The connected componentsof this graph are called open clusters. We
write C(X) for the open cluster containing the vertex x, and we call C(x) the open
cluster at x.. The vertex set of C(x)/isthe set of all vertices of the lattice which
are connected tox. by open paths, and the edges of C(x) are the open edges of L.
whichjoin pairsof suchwertices. By thetranslation invariance of thelattice and of
the probability measure Pp, the distribution of C(x) isindependent of the choice
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of Xx. The open cluster C(0) at the origin is therefore typical of such clusters, and
we represent this cluster by thesingle letter C. Occasionally weshall usetheterm
C(x) torepresent the set of verticesjoined to x by open paths, rather than the graph
of this open cluster. We shall be interested in the size of C(x), and we denote by
|C(x)| the number of verticesin C(x). We note that C(x) = {x} wheneverx.is
incident to no open edge.

If Aand B are sets of vertices of L9, we shall write*A < B’ if there exists
an open path joining some vertex in A to some vertex in B; if AN B # & then
A < B trivialy. Thus, for example, C(x) = {y € Z9 ; x < y}. We shall write
‘A <4 B’ if there exists no open path from any vertex of A to any vertex of B,
and ‘A < B off D’ if there exists an open path joining some vertex in A to some
vertex in B which uses no vertex in the set D.

If Alisaset of vertices of the lattice, we write A for the surface of A, being
the set of verticesin A which are adjacent to somevertex netin A.

Our notation for boxes is the following. A box is a subset of 4 of the form
B(a,b)={xez%:a <x <hbjforali}, wherea and b lie in Z9; Wwe some-
timeswrite

d
B(a,b) =[] lai, bi]
i=1

as a convenient shorthand. We often think of B(a, b) as a subgraph of the lattice
L9 suitably endowed with the edges which itinherits from the |attice. We denote
by B(n) the box with side-length 2n and centre at the origin:

(1.5) B(n) = [—-ngn]d = {x € 2% *|x]p< n}.

We may turn B(n) into agfaph by adding the edgeswhichitinheritsfrom L. If x
isavertex of thelattice, wewrite B(n, x) for thebox x +.B(n) having side-length
2n and centre at x.

We write |a| and/fa] for the integer part of the real number a, and the least
integer not lessthan a, respectively. If (a, : n > 1) and (b, : n > 1) aresequences
of real numbers, we write a, ~. by if ay/bp — lasn — oo, and a, ~ by, if
logan/logby, — 1asn — oo. Similarly, we write f (p) ~ g(p) (respectively
f(p) ~ g(p)) asp — = if f(p)/g(P) — L(respectively log f (p)/logg(p) —
1) as p — n. Findlyywewrite f (p) < g(p)asp — = if f(p)/g(p) isbounded
away from 0 and co on aneighbourhood of .

1.4 The Critical Phenomenon

A principal gquantity of interest is/the percolation probability 6(p), being the
probability thatagivenvertex belongsto aninfinite open cluster. By thetranslation
invariance of the lattice and prebability measure, we lose no generality by taking
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6(p) A
1— @D

-
——

pe(d) L4 p

Figure 1.4. It is believed that the percolation probability 6 (p) behaves roughly as indicated.
It is known, for example, that 6 is a continuous function of p except possibly at the critical
probability pc(d). The possibility of a jump discontinuity at pc(d) has not been ruled out
when3 <d < 19.

this vertex to be the origin, and thus we define
(1.6) 0(p) = Pp(IC| = e0).

Alternatively, we may write

(17) 9(py=1-Y Pp(C|=n).

n=1

It is easy to see that |C| = oo if and only if there exists an infinite sequence
X0, X1, X2, ... of distinct vertices such that xo = 0, X; ~ Xj+1, and (X;, Xj+1) IS
open for al i. Clearly 6 is.a non-decreasing function of p with #(0) = 0 and
6(1) = 1. (Probably the most transparent proof of this monotonicity makes use
of the coupling introduced around (1.4):See a so Section 2.1.)

It is fundamental to percolation theory that there exists a critical value pc =

pc(d) of p such.that
=0 if p<pc

0

(p){ >0 if p> pc;

pc(d) iscalled the critical probability and is defined formally by
(1.8) pe(d) = sup{p : 6(p) = 0}.

The case of onedimension is of no interest since, if p < 1, there exist infinitely
many closed edges of L to'the left and to the right of the origin amost surely,
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implyingthat6(p) = Oif p < 1;thus p;(1) = 1. Thesituationisquitedifferentin
two and more dimensions, and we shall seein Theorem (1.10) that 0 < pc(d) < 1
if d > 2. We shall assume henceforth that, in the absence of an indication to the
contrary, d isat least 2. See Figure 1.4 for a sketch of the function 8.

Thed-dimensional lattice L9 may be embedded in L9t ¥inanatural way asthe
projection of L9t onto the subspace generated by thefirst d coordinates; withthis
embedding, the origin of 1.9+1 belongs to an infinite open cluster for a particular
value of p whenever it belongs to an infinite open cluster of the sublattice L9,
Thus6(p) = 64(p) isnon-decreasingin d, which implies that

(1.9 pc(d + 1) < pe(d) ford > 1.

Itisnot very difficult to show that strict inequality isvalid here, inthat pc(d+1) <
pc(d) foral d > 1; see Sections 1.7 and 3.3.

The following theorem amounts to the statement that there exists a non-trivial
critical phenomenon in dimensions two and more.

(2.10) Theorem. Ifd > 2then0 < pc(d) < 1.

The nub of thistheorem isthat in twe.or.more dimensionsthere are two phases
of the process. In the subcritical phase when p < pc(d), every vertex is amost
surely in a finite open cluster, so that all open clusters are amost surely finite.
In the supercritical phase when p > pe(d); each vertex has a strictly positive
probability of being in an infinite open cluster, so that/there exists almost surely at
least oneinfinite open cluster. These phases are now reasonably well understood,
which is more than can be said about theintermediatecritical percolation process
with p = pc(d), to which weshall return in more detail.in Chapter 9. We make
more concrete the above remarks about the subcritical and supercritical phases.

(1.11) Theorem. The probability v (p) that there existsan infinite open cluster
satisfies

0 ifp<pcd),

1 if p> pe(d).

Thistheorem says nothing about the existence or non-existence of infinite open
clusters when p = pc(d). It turns out that no infinite open cluster exists when
either d = 2 ord > 19, but it is an open question to determine whether or not
there exists suchia cluster for'general d (including the physically important case
d = 3); it is expected that no such cluster exists. Theorem (1.11) is proved by an
application‘of the zero—one law, and this tells us nothing about the actual number
of infinite open clusterswhen p > pe(d); we shall however seein Section 8.2 that
the infinite open cluster is (almost surely) unique whenever it exists.

Before proving these two theorems, we mention some associated results and
open problems. First, what is the numerical value of pc(d)? We know only the
values pc(1) =1 andpe(2) = % The latter value is far from trivial to show,
and this was the prize whichattracted many people to the field in the 1970s. It

wp):{
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is highly unlikely that there exists a useful representation of pg(d) for any other
value of d, although such values may be calculated with increasing degrees of
accuracy with the aid of larger and faster computers. Exact values are known for
the critical probabilities of certain other two-dimensional |attices (for.example,
pc = 2sin(;r/18) for bond percolation on the triangular lattice); see Sections3.1
and 11.9. It isthe case that the value of the critical probability depends on both
the dimension and the lattice structure, in contrast to certain asymptotic properties
of 6(p) when pisnear pc: it isthought that, when p/~ pc is small and positive,
then 6 (p) behavesin away which depends, to adegree, on the dimensiond aone
and isindependent of the particular lattice structurel We return to thispoint in the
next section and in Chapter 9.

Secondly, it isnot difficult to find non-trivial upper and lower boundsfor pc(d)
when d > 2. We shall seein the proof of Theorem(1.10) that

1
(1.12) "2 <pc(2<1- 2

and more generally

1
(1.13) ) < p¢(d) ford > 3;

here, A(d) is the connective constant of LY, given by

(1.14) ad) = lim om0},

where o (n) is the number,of paths (or ‘self-avoiding walks') of L9 having length
n and beginning at the origin. The exact value of A(d) is unknownfor d > 2, but
it is obvious that A(d) < 2d — 1; to see this; note that each new step in a self-
avoiding walk has at most 2d — 1 choicessince it must avoid the current position,
and thereforeo (n) < 2d(2d — 1)L

Thirdly, how does pc(d) behave when d is large? Inequality (1.13) implies
that (2d — 1) pe(d) > 1, and it is known further that pc(d) ~ (2d)~1 asd — oo.
Thisamountsto saying that, for larged, bond percolation on 1.9 behavessimilarly
to bond percolation.en.a.regular tree in-which each vertex has 2d(1 + o(1))
descendants.

Proof of Theorem (1.10) and Equation (1.12). The existence of a critical
phenomenon was shown by Broadbent and Hammerdey (1957) and Hammersley
(19573,1959).

We'saw.in (1.9) that pc(d + 1) /< pe(d), and it suffices therefore to show
that pc(d) > Ofor d > 2, and that pc(2) < 1. We provefirst that pe(d) > O
for d > 2. Consider bond percolation on L¢ when d > 2. We shall show that
0 (p) = O0whenever pissufficiently closeto 0. Let o (n) bethe number of paths of
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Figure 1.5. Part of the square lattice 1.2 together with its dual

1.9 which have length n and which begin at the origin, and let N (n) be thenumber
of such paths which are open. Any such path is open with probability p7, so that

Ep(N(M)=-p"a(n).

Now, if the origin belongs to an infinite open cluster then there exist open paths
of all lengths beginning at the origin, so that

(1.15) 6(p) < Pp(N(n) > 1)
< Ep(N(n)) = p"o(n) for al n.

By the definition of the connective constant A.(d) given at\(1.14), we have that
o(n) = {A(d) +0o(1)}" asnh — oo; we substitute this into (1.15) to obtain

(1.16) 6(p) < {pr(d) +0(D)}"
-0 if pp(d) <1

asn — oo. Thuswehaveshownthat p.(d) > A(d)~Lwherei(d) < 2d—1 < oo.

Secondly, weshow that pc(2) < 1, andwe usean approachwhichiscommonly
called a‘Peierlsargument’ in honour of Rudolf Peierls and his 1936 article on the
Ising model. Consider bond percolation on 1% we shall show that 6(p) > Oif p
issufficiently closeto 1. Itisherethat planar duality isuseful. Let G be a planar
graph, drawn in the planein such-away that edgesintersect at verticesonly. The
planar dual of G isthe graph obtained from G in the following way. We place a
vertex ineach faceof G (including any infinitefaceswhich may exist) andjointwo
such vertices by an edge whenever the corresponding faces of G share aboundary
edgein G. Itiseasy to see(especially with theaid of Figure1.5) that thedual of 1.2
isisomorphictolL?; thisself -duality is not in itself important at this stage, but will
be crucial to our forthcomingproof in Chapter 11 that pc(2) = % For the sake of
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Figure 1.6. A finite open cluster at the origin, surrounded by aclosed circuit in thedual lattice.

definiteness, we take as vertices of this dual lattice the set{x - (%, %) X € 72
and wejoin two such neighbouring verticesby astraight linesegment of R2. There
is a one-one correspondence between the edges of 1.2 and the edges of the dual,
since each edge of 1.2 is crossed by a unique edge of the dual. We declare an
edge of the dual to be open or closed depending respectively on whether it crosses
an open or closed edge of 1.2. This assignment gives rise to a bond percolation
process on the dual lattice with.the:same edge-probability p. We shall return to
such mattersin Chapter 11,

Supposenow that the open cluster at theorigin of 1.2 isfinite, and see Figure 1.6
for asketch of the situation. We see that the origindssurrounded by a necklace of
closed edges which are blocking off all/possible routesfrom the origin to infinity.
We may satisfy ourselvesthat the corrésponding edges of the dual contain aclosed
circuit in the dual havingithe origin of L2 in its interior. This is best seen by
ingpecting Figure 1.6 again. It is.somewhat tedious to formulate and prove such
a statement with complete rigour, and we shall not do so here; see Kesten (1982,
p. 386) for a more careful treatment. The converse holds similarly: if the origin
lies in the interior-of ‘a closed. circuit of thedual lattice, then the open cluster at
the origin is finite. We summarize these remarks by saying that |C| < oo if and
only if the arigin of 1.2 lies in theinterior of some closed circuit of the dual.

We now proceed as in the first part of the proof, by counting the number of
such clased circuits in the dual. Let p(n) be the number of circuits in the dual
which have length n and which contain in their interiors the origin of 1.2. We
may estimate pi(n) as follows. Each such circuit passes through some vertex of
theform (k + % %) for.somek satisfying 0 < k < n since: first, it surroundsthe
origin and therefore passes through (k + % %) for some k > 0 and, secondly, it
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cannot pass through (k + % %) where k > n since then it would have length at
least 2n. Thussuch acircuit containsaself-avoiding walk of length n — 1 starting
from a vertex of the form (k + 3, 3) where 0 < k < n. The number of such
self-avoiding walksis at most no (n — 1), giving that

(1.17) p(N) < no(n—1).

Let y beacircuit of the dual containing the origin®©f IL? in its interior, and let
M (n) be the number of such closed circuits having length n. By (1.17),

(118) ) Py(yisclosed) <) "q"no(n — 1)
14

n=1

=" an{gr@ + o) |" " asin(L.16)
n=1
<00 if g.(2) <1,

whereq = 1 — p and the summation isover al such y. Furthermore,

> Pp(yisclosed) » 0, asq=1~p|0,
Y

so that we may find 7 satisfying 0 < 7 < 1 such that

> Po(yisclosed) < 3 ifp>.
Y

It follows from the previous remarks that

Pp(IC| = o0) = Pp(M(n) = Ofor &l n)
=1~ Pp(M(n) > 1for somen)

>1— Z Py (y isclosed)
Y
Z% if p>um,

giving that/pe(2) < .

We need to work slightly harderin order to deducethat pe(2) < 1 — A(2)~ L,
as required for (1.12). The usua proof of this makes use of a certain correlation
inequality known as the FK G inequality, which will be presented in Section 2.2.
Rather than follow this usual route, we use a more elementary method which
requires no extratechnology. Let m be apositiveinteger. Let Fy, bethe event that
there existsaclosed dual circuit.containing thebox B(m) initsinterior, and let Gy,
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Figure 1.7. If there exists no closed dual circuit surrounding B(m), then some vertex on the
surface of B(m) liesin an infinite open path.

be the event that all edges of B(m) are open. These two events are independent,
since they are defined in terms of digjoint sets of edges. Now, similarly'to (1.18),

Po(Fm) < Pp<z M(n) = 1) < Z q"no(n —1).

n=4m n=4m

Much as before, if q < A(2)~1, we may find m such that Po(Fm) < % and we
choosem accordingly. Assume now that G, oceursbut Fr, doesnot. Asindicated
in Figure 1.7, the non-occurrence of Fy, impliesthat some vertex of B(m) liesin
an infinite open path. Combined with the occurrence of Gy, this implies that
|C| = oco. Therefore, using theiindependence of Fy andGpy,,

6(p) = Pp(Fry Gm) = Pp(Fm) Pp(Gm) = 3Pp(Gm) > 0
ifqg<r@2L O
Proof of Theorem/(1.11). Thisisstraightforward. First, we note that the event
{LL9 contains an infinite open.cluster} does not depend upon the states of any finite

collection of edges. By the usual'zero—one law (see, for example, Grimmett and
Stirzaker (1992, p. 290)), v takesthe values 0 and 1 only. If 6(p) = 0 then

Y(pr= > Po(ICO| = o0) =0.

xezd

On the other hand, if 6(p) > Othen
¥ (p) = Bp(|C| = 00) > 0
so that ¥ (p).= 1 by the zero—onelaw, as required. a
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1.5 The Main Questions

Consider bond percolation on LY whered > 2. We are interested in the sizes
and shapes of typical open clusters as the edge-probability’ p varies from.0 to 1,
and we are particularly interested in large-scal e phenomenasuch as the existence
of infinite open clusters. We saw in the last section that ‘macroscopic’ quantities
suchasé(p) and v (p) have qualitatively different behaviour for small p thanthey
have for large p. In addition to the probability that an'open cluster isinfinite, we
may be interested in the mean size of an open clustef, and we write

(119) x(p) = EplC|

for the mean number of verticesin the open cluster atthe origin. By thetrandation
invariance of the process, we have that x (p) = Ep|C(X)for/@l vertices x. The
functions 6 and x are two of the principal characters in percolation theory. We
may express x interms of the distribution of |C|, just aswe didfor 6 in(1.7):

(1.20) X(p) =00 Py(IC| = 00) + Y " nPy(IC| =n)

n=1

=00-0(p) + Y NR(IC| =n);
n=1

S0 that

(1.21) x(p) =00 if p> pe

The converseis not at all' obvious: isitithe case that x (p) < oo if p < pc? We
answer this question affirmatively in Chapter.5(asketch of the function x appears
in Figure 1.8). Thisindicates that the ‘macroscopic’ quantitiesd and y manifest
critical behaviour at the same value of p. Indeed, most ‘ reasonable’ macroscopic
functions, such as 6 and x, are smooth functions of p except at the critical value
pc. Itiscommonly said that there exists a unique phase transition for percolation.
More precisely, there are exactly two phases in the model—the subcritical phase
(p < pc) and the supercritical phase (p > pe)—together with the process at
the critical point(when p = pg). We shall study these phases in some detail in
Chapters 5-10, but we present here a brief preview of some of the main results
and open problems.

Subcritical phase. When p < pe, al open clusters are finite ailmost surely. We
shall seein.Chapter 6 that |C| has atail which decreases exponentialy, which is
to say that thereexists «(p) such that

(1.22) Po(ICl=n)~ e ™P  asn— oo,
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x(p)

pe(d) 1 p

Figure 1.8. The left-hand curve is a sketch of the mean cluster size x(p). Theright-hand
curve is a sketch of the mean size xf(p) of a finite open cluster when p > pc. Note that
x(P) = x"(Pif p < pe(@).

and a(p) > Owhen p < pc. It followsthat |C| has finite moments of all orders
when p < pe.

Supercritical phase. When p > pc, thereexistinfiniteopen clustersalmost surely,
but how many? We shall seein Section 8.2 that the infinite open cluster is unique
amost surely. If |C| < oo thenshow.fast does thetail of |C| decay? It is known
that there exist B1(p) and Ba(p), satisfying 0 < B2(p) < B1(p) < oo, such that

(123)  ep(-pupaE) < Py(Cl =n)
< exp(=B2(pn@=D"%) for dl n,

and it is believed that the limit
(1.24) 5(p) = lim {=n==2/¢log Py(iC| = )|
n—o0

exists and is strictly positivewhen p > pc.- The basic reason for the power
n@-1/d jsthat thisisthe order of the surface area of the spherein RY with volume
n. Theexistence of the limit in (1.24) has been proved whend = 2 by Alexander,
Chayes, and Chayes (1990), and when d = 3 by Cerf (1998b).

Since x(p) = oo when p > pg, the function y is of little interest in the
supercritical. phase. Instead, we concentrate on the related ‘truncated’ function
given by

(1.25) x'tp).= Ep(ICl; IC| < o),
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the mean of |C| on the event that |C| < oco. The function x[ is probably not
dissimilar in general form to the sketch in Figure 1.8. The superscript ‘f' refersto
the condition that C befinite.

At the critical point. It is hereabouts that we find major/open problems. First,
does there exist an infinite open cluster when p = pc? /The answer is known to
be negativewhend = 2 ord > 19, and isgenerally believed to be negativefor all
d > 2. Assumingthat 6 (pc) = 0, whichisto say that there exists no infinite open
cluster when p = pc, at what rate does Py, (|C| = n) decay? It is believed that

(1.26) Pp.(ICl=m~n~Y  asn— oo

for some s = &§(d) > 0; the quantity § is an example of a ‘critical exponent’.
Lower bounds for Py(JC| > n) of this general “power’ form are known for all
dimensionsd > 2, and also upper bounds when d = 2. Some have asked the
provocativequestion “isit truethat § = %l whend = 2, and § =2whend.> 67’;
see Newman (1987a), for example.

Mgajor progress has been madetowardsan understanding of critical percolation,
but only under the assumption that d issufficiently-large. Currently the condition
d > 19 suffices. When this holds, we know that 6(pc) = 0, together with exact
calculations of certain critical exponents.

Near thecritical point. As p approaches p. fromabove (or beneath), how do such
quantitiesasé(p) (or x (p)) behave? Itiscommonly believed that such quantities
behave as powersof | p — pc|, and.amajor open problem of percolationisto prove
this. That isto say, we conjecture that the limits

log x (p)
1.27 - | LAl
(1.27) v Pt logip = pcl
(1.28) - M
plpslog|p — pel

exist, and that the limit

(1.29) b _ |im 09FRUCI= M)
n— o0 |ogn

exists, in agreement with (1.26). The quantitiesy, 8, § are called ‘critica expo-
nents'. There are physical reasons for believing the hypothesis of ‘ universality’:
the numerical values of critical exponents may depend only on the dimension d
and not onythe structure of the particular lattice. We return to such questionsin
Chapters9 and 10, where we include a summary of progress towards answers to
such questions. Asremarked above, substantial progress has been made under the
assumption that d is sufficiently large, currently that d > 19.
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We close this section with a review of some of the principal characters in
percolation. Accordingto one method of counting, there are four such characters:

(a) the percolation probability
0(p) = Pp(IC| = 00);
(b) the mean size of the open cluster at the origin
x(p) = Ep[CJ;
(c) the mean size of the finite open cluster at the origin
x'(p) = Ep(ICI; IC] < o0).

(d) The fourth such principal character isthe number of open clusters per vertex,
defined by

(1.30) k(p) = Ep(ICITY),

with the convention that 1/0o0 = 0. Thatisto.say,

o]

1
k(P =D~ Po(ICl=M).

n=1

We study the function « in more detail in Chapter 4.
We note that

(1.31) x'(p) = x(p) / whenever6(p) = 0.

There are many useful analogies between the percolation model and the Ising
model, and we note that 6 correspondsto magnetization, x to susceptibility, and
K to free energy pervertex:

Thequantities x, x, and« aremoments of the number of verticesin C. There
are good reasons to define these quantiti esinstead in terms of the number of edges
of C, principally since such a definition would enable a unified approach to both
bond and site percolation. For bond percolation on L9 it matterslittle which route
we adopt, and we have chosen that which leads to fewest technical complications
later.
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1.6 Site Percolation

Therearewaysof impeding flow through amedium other than blocking the edges,
and anatura aternativeisto block the verticesinstead. Thecorresponding model
istermed ‘site percolation’, and it is defined as follows. We designate each vertex
of thelattice .9 open with probability p, and closed othérwise; different vertices
receiveindependent designations. A pathiscalled openifal itsverticesare open.
The open cluster C(x) at the vertex x is defined as the set of all vertices which
may be attained by following open paths from x (if X is closed, then C(x) is
empty). Asbefore, wewrite C = C(0), and we definethe percolation probability
6(p) = Pp(|C| = 00), together with the critical probability

Pc = sup{p : 6(p)/= 0}.

When we wish to emphasize the type of percolation model.under study, we shall
write §5€ or 9”Md (and pSt€ or p2°d) as appropriate.

Figure 1.9 contains four snapshots of site percolation on the square lattice for
different values of p. The critical probability of this process is unknown, but is
believed to be around 0.59; see Section 3.1.

Most arguments available for percolationmedels may.be adapted to both bond
and sitemodels, and for that reason we pay only littleattentionto site percolationin
thisbook. Indeed, thereisasenseinwhichevery bond model may bereformulated
asasitemodel (onadifferent graph); theconverseisfal se, and thereforesitemodels
are more general than bond models. We amplify. this remark next. The covering
graph (or line graph) of a graph G is the graph G¢ defined as follows. To each
edge of G there corresponds a distinct vertex of Ge,»and two such vertices are
deemed adjacent if and only._if the corresponding edges of G share an endvertex.
Suppose we are provided with a bond percolation processon G. We call avertex
of G¢ openif and only if the corresponding edge of G isopen. Thisinducesasite
percolation processon G¢. Furthermoreg, it is.clear that every path of open edges
in G correspondsto a path of open verticesin G¢ (and vice versa). [We may note
that there exist site model s which cannot be obtained from any bond model in the
above way.]

Let us now consider an arbitrary infinite connected graph G = (V, E). Let
0 denote a specified vertex of G whichwe call the ‘origin’. We define °°"(p)
(respectively 69'€(p)) to be the probability that:0 lies in an infinite open cluster
of G in a bond-percolation (respectively site percolation) process on G having
parameter p Clearly 62°"(p) and 65t(p) are non-decreasing functions of p,
and the bond and site critical probabilities are given by

p([:)gnd — pgond(G) — &Jp{p : ebOnd(p) = 0}’
p*® = p3*®(G) = sup(p : 65*%(p) = 0O}.
We have from the.above considerations that
(1.32) pe(G) = p(Ge).



[1.6] Site Percolation 25

It is natural to ask whether there exists a relationship between the two critical
points of agiven graph G.

(1.33) Theorem. Let G = (V, E) be an infinite connected graphwith origin O
and maximum vertex degree A (< o0o). Thecritical probabilitiesof G satisfy

i A
(1.34) < pond < pste < 1 (1 phond)®,

A—17"

Oneconsequenceof thistheoremisthat pf°"d(G) < 1if and only if.pSt&(G) <
1. Thethird inequality of (1.34) may be improved by replacing the exponent A
by A — 1, but we do not prove this here. Also, the strict inequality p2°"d(G) <
pg“e(e) isvalid for abroad family of graphs G; see Section 3.4

Proof. The first inequality of (1.34) follows by counting,paths, as in (1.15)—
(1.16). Thereforeweturnimmediately to the remaining two inequalities. In order
to obtain these, we shall prove a certain stochastic inequality. Given two,random
subsets X, Y of V with associated expectation operator E, wewrite X' <g Y, and
say that X is stochastically dominated by Y, if

E(f (X)) = E(f(Y))

for al bounded, measurablefunctions f satisfying f (A) < f(B)if AC B C V.
A more systematic discussion of stochastic dominationis providedin Section 7.4.

Let CPd(p) be arandom subset of V having the law of the cluster of bond
percolation at the origin; let CSt(p) be a random subset having the law of the
cluster of site percolation at the originconditional on 0 being an open vertex. We
claim that

(1.35) CS™(p) <g C*"p)

and that

(1.36) cPod(p) <¢ C¥ )  wherep’ =1— (1 - p)~.
Since

9PN py = P, (IC*M(p)| = o0),
p~165%(p) = Py(IC*(p)| = ),

the remaining claims of (1.34) will follow from (1.35)—(1.36). Indeed, (1.35)—
(1.36)imply. that

(1.37) < 6%d(p) <

site site/ v/
Lp(p) "T(p) where p' = 1— (1— p)*,
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Figure 1.9. Realizations of site percolation on a50 x 60 section of the square lattice for four
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different values of ‘p. The critical value of this processis believed to be near 0.59.
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which is dightly stronger that the remaining parts of (1.34).

We construct appropriate couplings of the bond and site models in order to
prove (1.35)—(1.36); this is a common technique when studying.two processes
simultaneously, and will beused later inthisbook. Letw € {0, 1} bearealization
of a bond percolation processon G = (V, E) having density p. We may build
the cluster at the origin in the following standard manner. Let e, e, ... bea
fixed ordering of E. At each stage k of the inductive construction, we shall have
apar (A, Bx) where Ax C V, Bx € E. Initidly weset Ag = {0}, Bp = 2.
Having found (Ak, Bk) for some k, we define (Ax+1, Bk+1) asfollows. We find
the earliest edge e in the ordering of E having the following properties: e ¢ By,
and e isincident with exactly one vertex of Ay, say the vertex x. \We now set

Ax if eisclosed,
(1.38) Axt1 = w

Ac U {y} if'eisopen;

Bk U {e} if eisclosed,
(1.39) Bkr1 = { o

Bk if eisopen,

wheree = (X, y). If no such edge e exists, we declare (Ax+1, Bk+1) = (A, Bk).
The sets Ay, Bk are non-decreasing, and the open cluster at the originis given by
Aso = limk_s o0 Ax.

We now augment the above construction in the following way. We colour the
vertex 0 red. Furthermore, on obtaining the edge e given above, we colour the
vertex y red if e is open, and black otherwise. We specify that each vertex is
coloured at most once in the construction, in the sense that any vertex y which
is obtained at two or more stages is coloured in perpetuity according to the first
colour it receives.

Let Ax(red) be the set of points connected to the origin by red paths of G
(that is, by paths al of whose verticesarered). We make two claims concerning
Ao (red):

(i) itisthecasethat Ax(red) C As,/andall neighboursof verticesin A, (red)

which do not liein Ax (red) areblack;
(i) Ao (red) has the same distribution as CSt¢(p);
and inequality (1.35) followsimmediately from these claims.

Claim (i) is straightforward. In orderte.be coloured red, avertex is necessarily
connected to the origin by a path of open edges:Furthermore, since all edgeswith
exactly oneendvertexin A are closed, all neighboursof A (red) are necessarily
black.

We sketch an explanation of claim.(ii). Whenever a vertex is coloured either
red or black, it is coloured red with probability p, independently of al earlier
colourings. Thisis not a full proofiof (ii) but will satisfy many readers. More
detailsare provided by Grimmett and Stacey (1998); see also the proof of Lemma
(3.29).

The derivation of (£.36) is similar. We start with a directed version of G,
namely the directed graph G'=_(V, E) obtained from G by replacing each edge
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e = (X, y) by two directed edges, one in each direction, and denoted respectively
by [x, y) and[y, x). Wenow let» € {0, 1}F bearealization of/an (oriented) bond
percolation process on G having density p.

We colour the origin green. We colour a vertex x (# 0) green if at least one
edge f of theform|[y, x) satisfies &( f) = 1; otherwise we colour x black. Then

(1.40) Po(xisgreen) = 1— (1 — p)*® <141 - p)2,

where p(X) isthe degree of x, and A = maxy p(X).

We now build a copy A, of CP"d(p) more or less as described in (1.38)—
(1.39). The only difference is that, on considering the edge e = (X, y) where
X € Ac, ¥ ¢ Ax, we declare e to be open for the purpose/of (1.38)—(1.39)
if and only if &([x,y)) = 1. Finally, we let Ax(green) be the set of points
connected to the origin by green paths. It may be seen that /A (green) 2 Axc.
Furthermore, by (1.40), A (green) isstochastically dominated by €3'¢(p’) where
p'=1—(1- p). Inequality (1.36) follows. O

1.7 Notes

Section 1.1. Theoriginsof the mathematical theory/of percolation may befound
in the work of Flory (1941), Broadbent (1954), and Broadbent and Hammersley
(1957). Hammerdley (1983) and Grimmett (1999a) have described something of
the history of the subject. Weknow of four booksto date, the serious mathematical
text of Kesten (1982), the gentle account by. Efros (1986), and the books of Stauffer
and Aharony (1991) and Hughes(1996). Of the many reviews, we mention Chayes
and Chayes (1986a), Menshikov, Molchanov;-andrSidorenko (1986), Aizenman
(1987), Grimmett (1987b, 1997), Kesten (1987¢), and Newman (1987a).

For general discussions of periodic lattices in d dimensions, see Grimmett
(19784, b), Godsil and McKay.(1980), and Kesten (1982, Chapters 2, 3). Follow-
ing Grimmett and Newman (1990), there has been serious study of percolation
on graphs whose growth functions grow faster than any polynomia. Many such
graphs arise as Cayley graphs of groups, and asystematic study of such systems
has been initiated: See Benjamini and Schramm (1996), Benjamini, Lyons, Peres,
and Schramm (1997), and the references therein.

Thereader isreferred to Chapter 12 for references appropriate to mixed, inho-
mogeneous, long-range, oriented, and first-passage percolation. The relationship
between percolation and other models of statistical physics has been explored by
Essam (1972, 1980); see also Section 13.6. Wierman (1987b) has studied ‘ high
density" percolation in two dimensions; in this percolation-type process, one is
interested only-in those vertices which are incident to at least k open edges, for
some specified value of k.
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Section 1.3. The device for defining all percolation processes on the same
probability space seemsto have appeared for thefirst timein Hammersley (1963).

Section 1.4. Theexistenceof acritical phenomenonwas observed by Broadbent
and Hammerdey (1957) and Hammersley (1957a, 1959). /Some people say. that
‘percolation occurs’ when there exists an infinite open cluster.

Bond percolation on the line Z is essentially the problem of ‘runs'; see Feller
(1968). The proof that pc(2) = % was performed by /Kesten (1980a), who built
upon earlier arguments of Harris (1960), Russo (1978), and Seymour and Welsh
(1978). Wierman (1981) adapted Kesten's proof /o calculate exactwalues for
critical probabilitiesfor bond percolation on thetriangular and hexagonal |attices.

Kesten (1982) proved that pc(3) < pc(2); see aso the related work of Men-
shikov, Molchanov, and Sidorenko (1986, Section.4). J. van den Berg (unpub-
lished) and A. Frieze (unpublished) have pointed out a:simple argument which
leadsto the strict inequality pc(d + 1) < pc(d) ford >"1. Theargument amounts
to the following for d = 2. Each edge of L2 may be thought of as the bottom of
two infinite ladders of L3, By subdividing the ‘vertical’ edges insuch ladders,
we may construct digoint ladders above different edges. By choosing the edge-
probabilities for the subdivided edges with care, we arrive at the conclusion that
pe(3) < 0.4798, whereas pc(2) = 3.

Menshikov (1987a) has provided a more general argument (see also Zuev
(1987)), showing that pc(L1) < pc(L2) Whenever £2 Is a strict sublattice of
L1 satisfying certain conditions; heis ableto find non‘trivial lower boundsfor the
difference pc(L2) — pe(-L1). Hisargument may be adapted to obtain a canonical
approach to proving strict inequalities for general processes and enhancements
thereof. See Aizenman and Grimmiett.(1991) and Sections 3.2—3.3 of the present
book.

Kesten (1990) has proved that pe(d) ~ (2d)~1 asd — oo; see also Gordon
(1991), Kesten (1991), and Kesten and Schonmann(1990). The detailed asymp-
totics of the forthcoming equation (3.2) were presented by Haraand Slade (1995).
See also Hughes (1996).

The duality of planar lattices was explored by Hammersley (1959) and Harris
(1960), and | ater by Fisher (1961):/For an account of self-avoiding walks and the
connectiveconstant, see Hammersley (1957b); arecent account has been provided
by Madras and Slade (1993).

Section 1.5.<We defer the list of references until the appropriate forthcoming
chapters.

Section/1.6. It wasremarked by Fisher (1961) and Fisher and Essam (1961) that
abond model may betransformed intoasite model ; see al so Kesten (1982, Chapter
3). We'shall.see at Theorem (2.8) that the definitionsof p°™(G) and pS'®(G) are
independent of the choice of origin, whenever the graph G isconnected. Theorem
(1.33) appeared in Grimmett (1997). The exponent A in the fina inequality
of (1.34) has been improvedito /A — 1 by Grimmett and Stacey (1998), where
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one may find also the strict inequality p2™4(G) < pge(G) broad class
of graphs G including all finite-dimensional lattices in two or,
Further information concerning strict inequalitiesmay be fo

particularly in Section 3.4.




