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What is Percolation?

1.1 Modelling a Random Medium

Suppose we immerse a large porous stone in a bucket of water. What is the
probability that the centre of the stone is wetted? In formulating a simple stochastic
model for such a situation, Broadbent and Hammersley (1957) gave birth to the
‘percolation model’. In two dimensions their model amounts to the following.
Let Z2 be the plane square lattice and let p be a number satisfying 0 ≤ p ≤ 1. We
examine each edge ofZ2 in turn, and declare this edge to be open with probability p
and closed otherwise, independently of all other edges. The edges of Z2 represent
the inner passageways of the stone, and the parameter p is the proportion of
passages which are broad enough to allow water to pass along them. We think of
the stone as being modelled by a large, finite subsection of Z2 (see Figure 1.1),
perhaps those vertices and edges of Z2 contained in some specified connected
subgraph of Z2. On immersion of the stone in water, a vertex x inside the stone
is wetted if and only if there exists a path in Z2 from x to some vertex on the
boundary of the stone, using open edges only. Percolation theory is concerned
primarily with the existence of such ‘open paths’.

If we delete the closed edges, we are left with a random subgraph of Z2; we
shall study the structure of this subgraph, particularly with regard to the way in
which this structure depends on the numerical value of p. It is not unreasonable
to postulate that the fine structure of the interior passageways of the stone is on a
scale which is negligible when compared with the overall size of the stone. In such
circumstances, the probability that a vertex near the centre of the stone is wetted
by water permeating into the stone from its surface will behave rather similarly to
the probability that this vertex is the endvertex of an infinite path of open edges
in Z2. That is to say, the large-scale penetration of the stone by water is related to
the existence of infinite connected clusters of open edges.
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x y

Figure 1.1. A sketch of the structure of a two-dimensional porous stone. The lines indicate
the open edges; closed edges have been omitted. On immersion of the stone in water, vertex
x will be wetted by the invasion of water, but vertex y will remain dry.

When can such infinite clusters exist? Simulations are handy indicators of
the likely structure of the lattice, and Figure 1.2 contains such pictures for four
different values of p. When p = 0.25, the connected clusters of open edges are
isolated and rather small. As p increases, the sizes of clusters increase also, and
there is a critical value of p at which there forms a cluster which pervades the
entire picture. In loose terms, as we throw in more and more open edges, there
comes a moment when large-scale connections are formed across the lattice. The
pictures in Figure 1.2 are of course finite. If we were able to observe the whole
of the infinite lattice Z2, then we would see that all open clusters are finite when
p is small, but that there exists an infinite open cluster for large values of p. In
other words, there exists a critical value pc for the edge-density p such that all
open clusters are finite when p < pc, but there exists an infinite open cluster when
p > pc (such remarks should be interpreted ‘with probability 1’). Drinkers of
Pernod are familiar with this type of phenomenon—the transparence of a glass
of Pernod is undisturbed by the addition of a small amount of water, but in the
process of adding the water drop by drop, there arrives an instant at which the
mixture becomes opaque.

The occurrence of a ‘critical phenomenon’ is central to the appeal of percolation.
In physical terms, we might say that the wetting of the stone is a ‘surface effect’
when the proportion p of open edges is small, and a ‘volume effect’ when p is
large.

The above process is called ‘bond percolation on the square lattice’, and it is
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the most studied to date of all percolation processes. It is a very special process,
largely because the square lattice has a certain property of self-duality which turns
out to be extremely valuable. More generally, we begin with some periodic lattice
in, say, d dimensions together with a number p satisfying 0 ≤ p ≤ 1, and we
declare each edge of the lattice to be open with probability p and closed otherwise.
The resulting process is called a ‘bond’ model since the random blockages in the
lattice are associated with the edges. Another type of percolation process is the
‘site’ percolation model, in which the vertices rather than the edges are declared
to be open or closed at random, the closed vertices being thought of as junctions
which are blocked to the passage of fluid. It is well known that every bond model
may be reformulated as a site model on a different lattice, but that the converse
is false (see Section 1.6). Thus site models are more general than bond models.
They are illustrated in Figure 1.9.

We may continue to generalize in several directions such as (i) ‘mixed’ models,
in which both edges and vertices may be blocked, (ii) inhomogeneous models, in
which different edges may have different probabilities of being open, (iii) long-
range models, in which direct flow is possible between pairs of vertices which are
very distant (in the above formulation, this may require a graph with large or even
infinite vertex degrees), (iv) dependent percolation, in which the states of different
edges are not independent,and so on. Mathematicians have a considerable talent in
the art of generalization, and this has not been wasted on percolation theory. Such
generalizations are often of considerable mathematical and physical interest; we
shall however take the opposite route in this book. With few exceptions, we shall
restrict ourselves to bond percolation on the d-dimensional cubic lattice Zd where
d ≥ 2, and the main reasons for this are as follows. As the level of generality rises,
the accessibility of results in percolation theory is often diminished. Arguments
which are relatively simple to explain in a special case can become concealed in
morasses of geometrical and analytical detail when applied to some general model.
This is not always the case, as illustrated by the proofs of exponential decay when
p < pc (see Chapter 5) and of the uniqueness of the infinite open cluster when
it exists (see Chapter 8). It is of course important to understand the limitations
of an argument, but there may also be virtue in trying to describe something of
the theory when stripped of peripheral detail. Bond percolation onZd is indeed a
special case, but probably it exhibits the majority of properties expected of more
general finite-range percolation-type models.

1.2 Why Percolation?

As a model for a disordered medium,percolation is one of the simplest, incorporat-
ing as it does a minimum of statistical dependence. Its attractions are manyfold.
First, it is easy to formulate but not unrealistic in its qualitative predictions for
random media. Secondly, for those with a greater interest in more complicated
processes, it is a playground for developing mathematical techniques and insight.
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(a) p = 0.25

(b) p = 0.49

Figure 1.2. Realizations of bond percolation on a 50 × 60 section of the square lattice for
four different values of p. The pictures have been created using the same sequence of pseu-
dorandom numbers, with the result that each graph is a subgraph of the next. Readers with good
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(c) p = 0.51

(d) p = 0.75

eyesight may care to check that there exist open paths joining the left to the right side when
p = 0.51 but not when p = 0.49. The (random) value of p at which such paths appear for
this realization is 0.5059 . . . .
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Thirdly, it is well endowed with beautiful conjectures which are easy to state but
apparently rather hard to settle.

There is a fourth reason of significance. A great amount of effort has been
invested in recent years towards an understanding of complex interacting random
systems, including disordered media and other physical models. Such processes
typically involve families of dependent random variables which are indexed by
Zd for some d ≥ 2. To develop a full theory of such a system is often beyond
the current methodology. Instead, one may sometimes obtain partial results by
making a comparison with another process which is better understood. It is often
possible to make such a comparison with a percolation model. In this way, one
may derive valuable results for the more complex system; these results may not
be the best possible, but they may be compelling indicators of the directions to be
pursued.

Here is an example. Consider a physical model having a parameter T called
‘temperature’. It may be suspected that there exists a critical value Tc marking
a phase transition. While this fact may itself be unproven, it may be possible to
prove by comparison that the behaviour of the process for small T is qualitatively
different from that for large T .

It has been claimed that percolation theory is a cornerstone of the theory of
disordered media. As evidence to support this claim, we make brief reference to
four types of disordered physical systems, emphasizing the role of percolation for
each.

A. Disordered electrical networks. It may not be too difficult to calculate the
effective electrical resistance of a block of either material A or of material B,
but what is the effective resistance of a mixture of these two materials? If the
mixture is disordered, then it may be reasonable to assume that each component
of the block is chosen at random to be of type A or of type B, independently of
the types of all other components. The resulting effective resistance is a random
variable whose distribution depends on the proportion p of components of type
A. It seems to be difficult to say much of interest about the way in which this
distribution depends on the numerical value of p. An extreme example arises
when material B is a perfect insulator, and this is a case for which percolation
comes to the fore. We illustrate this in a special example.

Let Un be the square section {0, 1, . . . ,n}×{0, 1, . . . ,n} of the square lattice,
and let Sn and Tn be the bottom and top sides of Un,

Sn = {(m, 0) : 0 ≤ m≤ n}, Tn = {(m,n) : 0 ≤ m≤ n}.

We turn Un into an electrical network as follows. We examine each edge of Un in
turn, and replace it by a wire of resistance 1 Ohm with probability p, otherwise
removing the connection entirely; this is done independently of all other edges. We
now replace Sn and Tn by silver bars and we apply a potential difference between
these bars; see Figure 1.3. What is the effective resistance Rn of the network?
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Figure 1.3. A realization of a random electrical network. Each remaining edge has unit
resistance.

The value of Rn depends on the density and geometry of the set of edges having
unit resistance, and such matters lie in the domain of percolation theory. We shall
see in Section 13.2 that Rn = ∞ for all large n (almost surely) if p < 1

2 , whereas
Rn is bounded uniformly away from 0 and∞ if p > 1

2 .

B. Ferromagnetism. One of the most studied critical phenomena of theoretical
physics is that of the ferromagnet. We position a lump of an appropriate metal
in a magnetic field and we observe the way in which the magnetization of the
metal varies according to imposed oscillations in the external field. Suppose that
we increase the external field from 0 to some given value, and then decrease it
back to 0. If the temperature is sufficiently large, the metal retains no residual
magnetization, whereas at low temperatures the metal keeps some of its induced
magnetization. There exists a critical value Tc of the temperature, called the
Curie point, marking the borderline between the existence and non-existence of
so called ‘spontaneous magnetization’. A standard mathematical model for this
phenomenon is the ‘Ising model’. We give no definition of the Ising model here,
but make instead some general remarks. In the Ising model on the lattice Zd, each
vertex of Zd may be in either of two states labelled 0 and 1. A configuration is
an assignment ω = (ω(x) : x ∈ Zd) of 0 or 1 to each vertex of the lattice. We
consider probability measures on the set� of configurations taken in conjunction
with some suitable σ -field of subsets of�; in particular, we are concerned with a
class of measures having a type of ‘spatial Markov’ property: conditional on the
states of all vertices outside any finite connected subgraph G of Zd, the states of
vertices of G depend only on those of vertices in its ‘external boundary’. Taken
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in conjunction with certain other conditions (positivity and translation invariance
of the conditional probabilities, and positive correlation of increasing events), this
property characterizes the class of measures of interest for the model. It turns
out that there are two parameters which specify the conditional probabilities: the
‘external magnetic field’ h, and the strength J of interaction between neighbours.
If J = 0 then the states of different vertices are independent, and the process is
equivalent to site percolation (see Section 1.6).

The relationship between the Ising model and bond percolation is rather strong.
It turns out that they are linked via a type of ‘generalized percolation’ called
the ‘random-cluster model’. Through studying the random-cluster model, one
obtains conclusions valid simultaneously for percolation and the Ising model.
This important discovery was made around 1970 by Fortuin and Kasteleyn, and
it has greatly influenced part of the current view of disordered physical systems.
See Section 13.6 for an account of the random-cluster model.

C. Epidemics and fires in orchards. In an early review of percolation and related
topics, Frisch and Hammersley (1963) proposed the use of percolation in modelling
the spread of blight in a large orchard. The problem is as follows. Hypothetical
trees are grown at the vertices of a square lattice. We suppose that there is a
probability p that a healthy tree will be infected by a neighbouring blighted tree,
where p is a known function of the distance between neighbouring trees. To
prevent a single blighted tree from endangering a significant proportion of the
whole orchard, it is necessary to choose the lattice spacing to be large enough that
p is smaller than the critical probability of bond percolation on Z2.

In a forest fire, trees which are completely destroyed by fire cannot threaten their
neighbours. Similarly, trees which have recovered from measles presumably gain
protection from recurrence of the disease. Such observations may be incorporated
into a more complicated model which takes into account the passage of time.
Suppose that each tree may be in any of three states: 1 (live and not on fire),
0 (burning), and −1 (burned). We suppose that the tree at vertex x burns for a
random time Tx after catching fire, where (Tx : x ∈ Z2) is a family of independent,
identically distributed random variables. A burning tree emits sparks in the manner
of a Poisson process with rate α, and each spark hits one of the neighbouring trees
chosen at random; the spark sets fire to that tree so long as it is neither burned
nor already on fire. At time 0, an arsonist sets light to the tree at the origin.
It turns out that the set C of trees which are ultimately burned in the ensuing
conflagration may be identified as the set of vertices reachable from the origin by
open paths of a certain percolation-type process; this process differs from ordinary
bond percolation in that the states of two different edges may be dependent if the
edges have a vertex in common. See Section 13.5, as well as Cox and Durrett
(1988), van den Berg, Grimmett, and Schinazi (1998), and the references therein.

D. Wafer-scale integration. In the manufacture of microchips, silicon wafers
are engraved with copies of the required circuitry, these copies being laid out
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in a square grid. The wafer is then broken up into the individual chips, many
of which are usually found to be faulty. After elimination of the faulty chips,
the remaining non-defective chips are used to build processors. There are sound
engineering and computing reasons for preferring to leave the wafer intact, making
use of the non-defective chips in the positions in which they occurred in the wafer.
Interconnections may be made between functioning units by using channels built
between the rows and columns of the grid of chips. Such questions arise as the
following:

(i) How long is the longest linear chain of functioning units which may be
created using interconnections each of length not exceeding δ lattice units
and laid in such a way that each channel of the wafer contains no more than
two such interconnections?

(ii) Find the minimal interconnection length in a wiring pattern which creates
a square grid of size k × k of functioning chips out of a wafer containing
n× n units in all.

Greene and El Gamal (1984) answer such questions under the hypothesis that
each chip is non-defective with probability p, independently of all other chips.
Under this assumption, the set of functioning chips may be identified as the set of
open vertices in a site percolation process onZ2, and thus the theory of percolation
is important.

1.3 Bond Percolation

In this section we shall establish the basic definitions and notation of bond perco-
lation onZd. We begin with some graph theory. Throughoutmost of this book, the
letter d stands for the dimension of the process; generally d ≥ 2, but we assume
for the moment only that d ≥ 1. We write Z = {. . . ,−1, 0, 1, . . . } for the set
of all integers, and Zd for the set of all vectors x = (x1, x2, . . . , xd) with integral
coordinates. For x ∈ Zd we generally write xi for the i th coordinate of x. The
(graph-theoretic) distance δ(x, y) from x to y is defined by

(1.1) δ(x, y) =
d∑

i=1

|xi − yi |,

and we write |x| for the distance δ(0, x) from the origin to x. We shall sometimes
have use for another distance function on Zd, and shall write

(1.2) ‖x‖ = max{|xi | : 1 ≤ i ≤ d},
noting that

‖x‖ ≤ |x| ≤ d‖x‖.
We may turn Zd into a graph, called the d-dimensional cubic lattice, by adding
edges between all pairs x, y of points of Zd with δ(x, y) = 1. We denote this
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lattice by Ld, and we write Zd for the set of vertices of Ld, and Ed for the set of
its edges. In graph-theoretic terms, we write Ld = (Zd,Ed). We shall often think
of Ld as a graph embedded in Rd, the edges being straight line segments between
their endvertices. If δ(x, y) = 1, then we say that x and y are adjacent; in this
case, we write x ∼ y and we represent the edge from x to y as 〈x, y〉. The edge
e is incident to the vertex x if x is an endvertex of e. Letters such as u, v,w, x, y
usually represent vertices, and letters such as e, f usually represent edges. We
denote the origin of Zd by 0.

Next we introduce probability. Let p and q satisfy 0 ≤ p ≤ 1 and p +
q = 1. We declare each edge of Ld to be open with probability p and closed
otherwise, independently of all other edges. More formally, we consider the
following probability space. As sample space we take � = ∏e∈Ed{0, 1}, points
of which are represented as ω = (ω(e) : e ∈ Ed) and called configurations;
the value ω(e) = 0 corresponds to e being closed, and ω(e) = 1 corresponds
to e being open. We take F to be the σ -field of subsets of � generated by the
finite-dimensional cylinders. Finally, we take product measure with density p on
(�,F ); this is the measure

Pp =
∏
e∈Ed

µe

where µe is Bernoulli measure on {0, 1}, given by

µe
(
ω(e) = 0

) = q, µe
(
ω(e) = 1

) = p.

We write Pp for this product measure, and Ep for the corresponding expectation
operator. We shall occasionally need a more general construction in which dif-
ferent edges may have different probabilities of being open. Such a construction
begins with a family p = (p(e) : e ∈ Ed) with 0 ≤ p(e) ≤ 1 for all e. The
appropriate probability space is now (�,F , Pp) where Pp =

∏
e∈Ed µe and

µe
(
ω(e) = 0

) = 1− p(e), µe
(
ω(e) = 1

) = p(e)

for each e.

We write A (or occasionally Ac) for the complement of an event A, and I A for
the indicator function of A:

I A(ω) =
{

1 if ω ∈ A,

0 if ω /∈ A.

The expression Ep(X; A) denotes the mean of X on the event A; that is to say,
Ep(X; A) = Ep(X IA).

The following notation will be of value later. Let f be an edge of Ld. We write
P f

p for Bernoulli product measure on
∏

e:e6= f {0, 1}, the set of configurations of all

edges of the lattice other than f . We think of P f
p as being the measure associated

with percolation on Ld with the edge f deleted.
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There is a natural partial order on the set� of configurations, given byω1 ≤ ω2
if and only if ω1(e) ≤ ω2(e) for all e∈ Ed.

There is a one–one correspondence between � and the set of subsets of Ed.
For ω ∈ �, we define

(1.3) K (ω) = {e∈ Ed : ω(e) = 1};

thus K (ω) is the set of open edges of the lattice when the configuration is ω.
Clearly, ω1 ≤ ω2 if and only if K (ω1) ⊆ K (ω2).

The following device can be useful. Suppose that (X(e) : e ∈ Ed) is a family
of independent random variables indexed by the edge set Ed, where each X(e)
is uniformly distributed on [0, 1]. We may couple together all bond percolation
processes on Ld as p ranges over the interval [0, 1] in the following way. Let p
satisfy 0 ≤ p ≤ 1 and define ηp (∈ �) by

(1.4) ηp(e) =
{

1 if X(e) < p,

0 if X(e) ≥ p.

We say that the edge e is p-open if ηp(e) = 1. The random vector ηp has
independent components and marginal distributions given by

P
(
ηp(e) = 0

) = 1− p, P
(
ηp(e) = 1

) = p.

We may think of ηp as being the random outcome of the bond percolation process
on Ld with edge-probability p. It is clear that ηp1 ≤ ηp2 whenever p1 ≤ p2,
which is to say that we may couple together the two percolation processes with
edge-probabilities p1 and p2 in such a way that the set of open edges of the first
process is a subset of the set of open edges of the second. More generally, as p
increases from 0 to 1, the configuration ηp runs through typical configurations of
percolation processes with all edge-probabilities.

A path of Ld is an alternating sequence x0,e0, x1,e1, . . . ,en−1, xn of distinct
vertices xi and edges ei = 〈xi , xi+1〉; such a path has length n and is said to connect
x0 to xn. A circuit ofLd is an alternating sequence x0,e0, x1,e1, . . . ,en−1, xn,en,

x0 of vertices and edges such that x0,e0, . . . ,en−1, xn is a path and en = 〈xn, x0〉;
such a circuit has length n + 1. We call a path or circuit open if all of its edges
are open, and closed if all of its edges are closed. Two subgraphs of Ld are called
edge-disjoint if they have no edges in common, and disjoint if they have neither
edges nor vertices in common.

Consider the random subgraph of Ld containing the vertex set Zd and the open
edges only. The connected components of this graph are called open clusters. We
write C(x) for the open cluster containing the vertex x, and we call C(x) the open
cluster at x. The vertex set of C(x) is the set of all vertices of the lattice which
are connected to x by open paths, and the edges of C(x) are the open edges of Ld

which join pairs of such vertices. By the translation invariance of the lattice and of
the probability measure Pp, the distribution of C(x) is independent of the choice
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of x. The open cluster C(0) at the origin is therefore typical of such clusters, and
we represent this cluster by the single letter C. Occasionally we shall use the term
C(x) to represent the set of vertices joined to x by open paths, rather than the graph
of this open cluster. We shall be interested in the size of C(x), and we denote by
|C(x)| the number of vertices in C(x). We note that C(x) = {x} whenever x is
incident to no open edge.

If A and B are sets of vertices of Ld, we shall write ‘A ↔ B’ if there exists
an open path joining some vertex in A to some vertex in B; if A ∩ B 6= ∅ then
A↔ B trivially. Thus, for example, C(x) = {y ∈ Zd : x ↔ y}. We shall write
‘A /↔ B’ if there exists no open path from any vertex of A to any vertex of B,
and ‘A↔ B off D’ if there exists an open path joining some vertex in A to some
vertex in B which uses no vertex in the set D.

If A is a set of vertices of the lattice, we write ∂A for the surface of A, being
the set of vertices in A which are adjacent to some vertex not in A.

Our notation for boxes is the following. A box is a subset of Zd of the form
B(a,b) = {x ∈ Zd : ai ≤ xi ≤ bi for all i }, where a and b lie in Zd; we some-
times write

B(a,b) =
d∏

i=1

[ai ,bi ]

as a convenient shorthand. We often think of B(a,b) as a subgraph of the lattice
Ld suitably endowed with the edges which it inherits from the lattice. We denote
by B(n) the box with side-length 2n and centre at the origin:

(1.5) B(n) = [−n,n]d = {x ∈ Zd : ‖x‖ ≤ n}.

We may turn B(n) into a graph by adding the edges which it inherits fromLd. If x
is a vertex of the lattice, we write B(n, x) for the box x+ B(n) having side-length
2n and centre at x.

We write bac and dae for the integer part of the real number a, and the least
integer not less than a, respectively. If (an : n ≥ 1) and (bn : n ≥ 1) are sequences
of real numbers, we write an ∼ bn if an/bn → 1 as n → ∞, and an ≈ bn if
log an/ log bn → 1 as n → ∞. Similarly, we write f (p) ∼ g(p) (respectively
f (p) ≈ g(p)) as p→ π if f (p)/g(p)→ 1 (respectively log f (p)/ log g(p)→
1) as p→ π . Finally, we write f (p) � g(p) as p→ π if f (p)/g(p) is bounded
away from 0 and∞ on a neighbourhood of π .

1.4 The Critical Phenomenon

A principal quantity of interest is the percolation probability θ(p), being the
probability that a given vertex belongs to an infinite open cluster. By the translation
invariance of the lattice and probability measure, we lose no generality by taking
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θ(p)

1 (1, 1)

pc(d) 1 p

Figure 1.4. It is believed that the percolation probability θ(p) behaves roughly as indicated.
It is known, for example, that θ is a continuous function of p except possibly at the critical
probability pc(d). The possibility of a jump discontinuity at pc(d) has not been ruled out
when 3 ≤ d < 19.

this vertex to be the origin, and thus we define

(1.6) θ(p) = Pp(|C| = ∞).

Alternatively, we may write

(1.7) θ(p) = 1−
∞∑

n=1

Pp(|C| = n).

It is easy to see that |C| = ∞ if and only if there exists an infinite sequence
x0, x1, x2, . . . of distinct vertices such that x0 = 0, xi ∼ xi+1, and 〈xi , xi+1〉 is
open for all i . Clearly θ is a non-decreasing function of p with θ(0) = 0 and
θ(1) = 1. (Probably the most transparent proof of this monotonicity makes use
of the coupling introduced around (1.4). See also Section 2.1.)

It is fundamental to percolation theory that there exists a critical value pc =
pc(d) of p such that

θ(p)

{ = 0 if p < pc,

> 0 if p > pc;
pc(d) is called the critical probability and is defined formally by

(1.8) pc(d) = sup{p : θ(p) = 0}.

The case of one dimension is of no interest since, if p < 1, there exist infinitely
many closed edges of L1 to the left and to the right of the origin almost surely,
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implying that θ(p)= 0 if p < 1; thus pc(1) = 1. The situation is quite different in
two and more dimensions, and we shall see in Theorem (1.10) that 0 < pc(d) < 1
if d ≥ 2. We shall assume henceforth that, in the absence of an indication to the
contrary, d is at least 2. See Figure 1.4 for a sketch of the function θ .

The d-dimensional lattice Ld may be embedded in Ld+1 in a natural way as the
projection ofLd+1 onto the subspace generated by the first d coordinates; with this
embedding, the origin of Ld+1 belongs to an infinite open cluster for a particular
value of p whenever it belongs to an infinite open cluster of the sublattice Ld.
Thus θ(p) = θd(p) is non-decreasing in d, which implies that

(1.9) pc(d + 1) ≤ pc(d) for d ≥ 1.

It is not very difficult to show that strict inequality is valid here, in that pc(d+1) <
pc(d) for all d ≥ 1; see Sections 1.7 and 3.3.

The following theorem amounts to the statement that there exists a non-trivial
critical phenomenon in dimensions two and more.

(1.10) Theorem. If d ≥ 2 then 0 < pc(d) < 1.

The nub of this theorem is that in two or more dimensions there are two phases
of the process. In the subcritical phase when p < pc(d), every vertex is almost
surely in a finite open cluster, so that all open clusters are almost surely finite.
In the supercritical phase when p > pc(d), each vertex has a strictly positive
probability of being in an infinite open cluster, so that there exists almost surely at
least one infinite open cluster. These phases are now reasonably well understood,
which is more than can be said about the intermediate critical percolation process
with p = pc(d), to which we shall return in more detail in Chapter 9. We make
more concrete the above remarks about the subcritical and supercritical phases.

(1.11) Theorem. The probability ψ(p) that there exists an infinite open cluster
satisfies

ψ(p) =
{

0 if p < pc(d),

1 if p > pc(d).

This theorem says nothing about the existence or non-existence of infinite open
clusters when p = pc(d). It turns out that no infinite open cluster exists when
either d = 2 or d ≥ 19, but it is an open question to determine whether or not
there exists such a cluster for general d (including the physically important case
d = 3); it is expected that no such cluster exists. Theorem (1.11) is proved by an
application of the zero–one law, and this tells us nothing about the actual number
of infinite open clusters when p > pc(d); we shall however see in Section 8.2 that
the infinite open cluster is (almost surely) unique whenever it exists.

Before proving these two theorems, we mention some associated results and
open problems. First, what is the numerical value of pc(d)? We know only the
values pc(1) = 1 and pc(2) = 1

2 . The latter value is far from trivial to show,
and this was the prize which attracted many people to the field in the 1970s. It
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is highly unlikely that there exists a useful representation of pc(d) for any other
value of d, although such values may be calculated with increasing degrees of
accuracy with the aid of larger and faster computers. Exact values are known for
the critical probabilities of certain other two-dimensional lattices (for example,
pc = 2 sin(π/18) for bond percolation on the triangular lattice); see Sections 3.1
and 11.9. It is the case that the value of the critical probability depends on both
the dimension and the lattice structure, in contrast to certain asymptotic properties
of θ(p) when p is near pc: it is thought that, when p− pc is small and positive,
then θ(p) behaves in a way which depends, to a degree, on the dimension d alone
and is independent of the particular lattice structure. We return to this point in the
next section and in Chapter 9.

Secondly, it is not difficult to find non-trivial upper and lower bounds for pc(d)
when d ≥ 2. We shall see in the proof of Theorem (1.10) that

(1.12)
1

λ(2)
≤ pc(2) ≤ 1− 1

λ(2)
,

and more generally

(1.13)
1

λ(d)
≤ pc(d) for d ≥ 3;

here, λ(d) is the connective constant of Ld, given by

(1.14) λ(d) = lim
n→∞{σ(n)

1/n},

where σ(n) is the number of paths (or ‘self-avoiding walks’) of Ld having length
n and beginning at the origin. The exact value of λ(d) is unknown for d ≥ 2, but
it is obvious that λ(d) ≤ 2d − 1; to see this, note that each new step in a self-
avoiding walk has at most 2d− 1 choices since it must avoid the current position,
and therefore σ(n) ≤ 2d(2d − 1)n−1.

Thirdly, how does pc(d) behave when d is large? Inequality (1.13) implies
that (2d− 1)pc(d) ≥ 1, and it is known further that pc(d) ∼ (2d)−1 as d→∞.
This amounts to saying that, for large d, bond percolation on Ld behaves similarly
to bond percolation on a regular tree in which each vertex has 2d(1 + o(1))
descendants.

Proof of Theorem (1.10) and Equation (1.12). The existence of a critical
phenomenon was shown by Broadbent and Hammersley (1957) and Hammersley
(1957a, 1959).

We saw in (1.9) that pc(d + 1) ≤ pc(d), and it suffices therefore to show
that pc(d) > 0 for d ≥ 2, and that pc(2) < 1. We prove first that pc(d) > 0
for d ≥ 2. Consider bond percolation on Ld when d ≥ 2. We shall show that
θ(p) = 0 whenever p is sufficiently close to 0. Let σ(n) be the number of paths of
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Figure 1.5. Part of the square lattice L2 together with its dual.

Ld which have length n and which begin at the origin, and let N(n) be the number
of such paths which are open. Any such path is open with probability pn, so that

Ep(N(n)) = pnσ(n).

Now, if the origin belongs to an infinite open cluster then there exist open paths
of all lengths beginning at the origin, so that

θ(p) ≤ Pp
(
N(n) ≥ 1

)
(1.15)

≤ Ep(N(n)) = pnσ(n) for all n.

By the definition of the connective constant λ(d) given at (1.14), we have that
σ(n) = {λ(d)+ o(1)}n as n→∞; we substitute this into (1.15) to obtain

θ(p) ≤ {pλ(d)+ o(1)
}n(1.16)

→ 0 if pλ(d) < 1

as n→∞. Thus we have shown that pc(d) ≥ λ(d)−1 whereλ(d) ≤ 2d−1 <∞.
Secondly, we show that pc(2) < 1, and we use an approach which is commonly

called a ‘Peierls argument’ in honour of Rudolf Peierls and his 1936 article on the
Ising model. Consider bond percolation on L2; we shall show that θ(p) > 0 if p
is sufficiently close to 1. It is here that planar duality is useful. Let G be a planar
graph, drawn in the plane in such a way that edges intersect at vertices only. The
planar dual of G is the graph obtained from G in the following way. We place a
vertex in each face of G (including any infinite faces which may exist) and join two
such vertices by an edge whenever the corresponding faces of G share a boundary
edge in G. It is easy to see (especially with the aid of Figure 1.5) that the dual ofL2

is isomorphic to L2; this self -duality is not in itself important at this stage, but will
be crucial to our forthcoming proof in Chapter 11 that pc(2) = 1

2 . For the sake of
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0

Figure 1.6. A finite open cluster at the origin, surrounded by a closed circuit in the dual lattice.

definiteness, we take as vertices of this dual lattice the set {x + ( 1
2 ,

1
2 ) : x ∈ Z2}

and we join two such neighbouring vertices by a straight line segment ofR2. There
is a one–one correspondence between the edges of L2 and the edges of the dual,
since each edge of L2 is crossed by a unique edge of the dual. We declare an
edge of the dual to be open or closed depending respectively on whether it crosses
an open or closed edge of L2. This assignment gives rise to a bond percolation
process on the dual lattice with the same edge-probability p. We shall return to
such matters in Chapter 11.

Suppose now that the open cluster at the origin ofL2 is finite, and see Figure 1.6
for a sketch of the situation. We see that the origin is surrounded by a necklace of
closed edges which are blocking off all possible routes from the origin to infinity.
We may satisfy ourselves that the corresponding edges of the dual contain a closed
circuit in the dual having the origin of L2 in its interior. This is best seen by
inspecting Figure 1.6 again. It is somewhat tedious to formulate and prove such
a statement with complete rigour, and we shall not do so here; see Kesten (1982,
p. 386) for a more careful treatment. The converse holds similarly: if the origin
lies in the interior of a closed circuit of the dual lattice, then the open cluster at
the origin is finite. We summarize these remarks by saying that |C| < ∞ if and
only if the origin of L2 lies in the interior of some closed circuit of the dual.

We now proceed as in the first part of the proof, by counting the number of
such closed circuits in the dual. Let ρ(n) be the number of circuits in the dual
which have length n and which contain in their interiors the origin of L2. We
may estimate ρ(n) as follows. Each such circuit passes through some vertex of
the form (k+ 1

2 ,
1
2 ) for some k satisfying 0 ≤ k < n since: first, it surrounds the

origin and therefore passes through (k + 1
2 ,

1
2 ) for some k ≥ 0 and, secondly, it
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cannot pass through (k + 1
2 ,

1
2 ) where k ≥ n since then it would have length at

least 2n. Thus such a circuit contains a self-avoiding walk of length n−1 starting
from a vertex of the form (k + 1

2 ,
1
2 ) where 0 ≤ k < n. The number of such

self-avoiding walks is at most nσ(n− 1), giving that

(1.17) ρ(n) ≤ nσ(n− 1).

Let γ be a circuit of the dual containing the origin of L2 in its interior, and let
M(n) be the number of such closed circuits having length n. By (1.17),

∑
γ

Pp(γ is closed) ≤
∞∑

n=1

qnnσ(n− 1)(1.18)

=
∞∑

n=1

qn
{
qλ(2)+ o(1)

}n−1 as in (1.16)

<∞ if qλ(2) < 1,

where q = 1− p and the summation is over all such γ . Furthermore,∑
γ

Pp(γ is closed)→ 0 as q = 1− p ↓ 0,

so that we may find π satisfying 0 < π < 1 such that∑
γ

Pp(γ is closed) ≤ 1
2 if p > π.

It follows from the previous remarks that

Pp(|C| = ∞) = Pp
(
M(n) = 0 for all n

)
= 1− Pp

(
M(n) ≥ 1 for some n

)
≥ 1−

∑
γ

Pp(γ is closed)

≥ 1
2 if p > π,

giving that pc(2) ≤ π .

We need to work slightly harder in order to deduce that pc(2) ≤ 1− λ(2)−1,
as required for (1.12). The usual proof of this makes use of a certain correlation
inequality known as the FKG inequality, which will be presented in Section 2.2.
Rather than follow this usual route, we use a more elementary method which
requires no extra technology. Let m be a positive integer. Let Fm be the event that
there exists a closed dual circuit containing the box B(m) in its interior, and let Gm



D
R

A
FT

[1.4] The Critical Phenomenon 19

Figure 1.7. If there exists no closed dual circuit surrounding B(m), then some vertex on the
surface of B(m) lies in an infinite open path.

be the event that all edges of B(m) are open. These two events are independent,
since they are defined in terms of disjoint sets of edges. Now, similarly to (1.18),

Pp(Fm) ≤ Pp

( ∞∑
n=4m

M(n) ≥ 1
)
≤
∞∑

n=4m

qnnσ(n− 1).

Much as before, if q < λ(2)−1, we may find m such that Pp(Fm) <
1
2 , and we

choose maccordingly. Assume now that Gm occurs but Fm does not. As indicated
in Figure 1.7, the non-occurrence of Fm implies that some vertex of B(m) lies in
an infinite open path. Combined with the occurrence of Gm, this implies that
|C| = ∞. Therefore, using the independence of Fm and Gm,

θ(p) ≥ Pp(Fm ∩ Gm) = Pp(Fm)Pp(Gm) ≥ 1
2 Pp(Gm) > 0

if q < λ(2)−1. �

Proof of Theorem (1.11). This is straightforward. First, we note that the event
{Ld contains an infinite open cluster} does not depend upon the states of any finite
collection of edges. By the usual zero–one law (see, for example, Grimmett and
Stirzaker (1992, p. 290)), ψ takes the values 0 and 1 only. If θ(p) = 0 then

ψ(p) ≤
∑
x∈Zd

Pp
(|C(x)| = ∞) = 0.

On the other hand, if θ(p) > 0 then

ψ(p) ≥ Pp(|C| = ∞) > 0

so that ψ(p) = 1 by the zero–one law, as required. �



D
R

A
FT

20 What is Percolation? [1.5]

1.5 The Main Questions

Consider bond percolation on Ld where d ≥ 2. We are interested in the sizes
and shapes of typical open clusters as the edge-probability p varies from 0 to 1,
and we are particularly interested in large-scale phenomena such as the existence
of infinite open clusters. We saw in the last section that ‘macroscopic’ quantities
such as θ(p) andψ(p) have qualitatively different behaviour for small p than they
have for large p. In addition to the probability that an open cluster is infinite, we
may be interested in the mean size of an open cluster, and we write

(1.19) χ(p) = Ep|C|

for the mean number of vertices in the open cluster at the origin. By the translation
invariance of the process, we have that χ(p) = Ep|C(x)| for all vertices x. The
functions θ and χ are two of the principal characters in percolation theory. We
may express χ in terms of the distribution of |C|, just as we did for θ in (1.7):

χ(p) =∞ · Pp(|C| = ∞)+
∞∑

n=1

nPp(|C| = n)(1.20)

=∞ · θ(p)+
∞∑

n=1

nPp(|C| = n),

so that

(1.21) χ(p) = ∞ if p > pc.

The converse is not at all obvious: is it the case that χ(p) < ∞ if p < pc? We
answer this question affirmatively in Chapter 5 (a sketch of the function χ appears
in Figure 1.8). This indicates that the ‘macroscopic’ quantities θ and χ manifest
critical behaviour at the same value of p. Indeed, most ‘reasonable’ macroscopic
functions, such as θ and χ , are smooth functions of p except at the critical value
pc. It is commonly said that there exists a unique phase transition for percolation.
More precisely, there are exactly two phases in the model—the subcritical phase
(p < pc) and the supercritical phase (p > pc)—together with the process at
the critical point (when p = pc). We shall study these phases in some detail in
Chapters 5–10, but we present here a brief preview of some of the main results
and open problems.

Subcritical phase. When p < pc, all open clusters are finite almost surely. We
shall see in Chapter 6 that |C| has a tail which decreases exponentially, which is
to say that there exists α(p) such that

(1.22) Pp(|C| = n) ≈ e−nα(p) as n→∞,
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χ(p) χ f(p)

1

pc(d) 1 p

Figure 1.8. The left-hand curve is a sketch of the mean cluster size χ(p). The right-hand
curve is a sketch of the mean size χ f(p) of a finite open cluster when p > pc. Note that
χ(p) = χ f(p) if p < pc(d).

and α(p) > 0 when p < pc. It follows that |C| has finite moments of all orders
when p < pc.

Supercritical phase. When p > pc, there exist infinite open clusters almost surely,
but how many? We shall see in Section 8.2 that the infinite open cluster is unique
almost surely. If |C| < ∞ then how fast does the tail of |C| decay? It is known
that there exist β1(p) and β2(p), satisfying 0 < β2(p) ≤ β1(p) <∞, such that

exp
(−β1(p)n

(d−1)/d) ≤ Pp(|C| = n)(1.23)

≤ exp
(−β2(p)n

(d−1)/d) for all n,

and it is believed that the limit

(1.24) δ(p) = lim
n→∞

{
−n−(d−1)/d log Pp(|C| = n)

}
exists and is strictly positive when p > pc. The basic reason for the power
n(d−1)/d is that this is the order of the surface area of the sphere inRd with volume
n. The existence of the limit in (1.24) has been proved when d = 2 by Alexander,
Chayes, and Chayes (1990), and when d = 3 by Cerf (1998b).

Since χ(p) = ∞ when p > pc, the function χ is of little interest in the
supercritical phase. Instead, we concentrate on the related ‘truncated’ function
given by

(1.25) χ f(p) = Ep(|C|; |C| <∞),
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the mean of |C| on the event that |C| < ∞. The function χ f is probably not
dissimilar in general form to the sketch in Figure 1.8. The superscript ‘f’ refers to
the condition that C be finite.

At the critical point. It is hereabouts that we find major open problems. First,
does there exist an infinite open cluster when p = pc? The answer is known to
be negative when d = 2 or d ≥ 19, and is generally believed to be negative for all
d ≥ 2. Assuming that θ(pc) = 0, which is to say that there exists no infinite open
cluster when p = pc, at what rate does Ppc(|C| = n) decay? It is believed that

(1.26) Ppc(|C| ≥ n) ≈ n−1/δ as n→∞

for some δ = δ(d) > 0; the quantity δ is an example of a ‘critical exponent’.
Lower bounds for Pp(|C| ≥ n) of this general ‘power’ form are known for all
dimensions d ≥ 2, and also upper bounds when d = 2. Some have asked the
provocative question “is it true that δ = 91

5 when d = 2, and δ = 2 when d ≥ 6?”;
see Newman (1987a), for example.

Major progress has been made towards an understanding of critical percolation,
but only under the assumption that d is sufficiently large. Currently the condition
d ≥ 19 suffices. When this holds, we know that θ(pc) = 0, together with exact
calculations of certain critical exponents.

Near the critical point. As p approaches pc from above (or beneath), how do such
quantities as θ(p) (or χ(p)) behave? It is commonly believed that such quantities
behave as powers of |p− pc|, and a major open problem of percolation is to prove
this. That is to say, we conjecture that the limits

γ = − lim
p↑pc

logχ(p)

log |p− pc| ,(1.27)

β = lim
p↓pc

log θ(p)

log |p− pc|(1.28)

exist, and that the limit

(1.29) δ−1 = − lim
n→∞

log Ppc(|C| ≥ n)

log n

exists, in agreement with (1.26). The quantities γ , β, δ are called ‘critical expo-
nents’. There are physical reasons for believing the hypothesis of ‘universality’:
the numerical values of critical exponents may depend only on the dimension d
and not on the structure of the particular lattice. We return to such questions in
Chapters 9 and 10, where we include a summary of progress towards answers to
such questions. As remarked above, substantial progress has been made under the
assumption that d is sufficiently large, currently that d ≥ 19.
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We close this section with a review of some of the principal characters in
percolation. According to one method of counting, there are four such characters:

(a) the percolation probability

θ(p) = Pp(|C| = ∞);

(b) the mean size of the open cluster at the origin

χ(p) = Ep|C|;

(c) the mean size of the finite open cluster at the origin

χ f(p) = Ep(|C|; |C| <∞).

(d) The fourth such principal character is the number of open clusters per vertex,
defined by

(1.30) κ(p) = Ep(|C|−1),

with the convention that 1/∞= 0. That is to say,

κ(p) =
∞∑

n=1

1

n
Pp(|C| = n).

We study the function κ in more detail in Chapter 4.

We note that

(1.31) χ f(p) = χ(p) whenever θ(p) = 0.

There are many useful analogies between the percolation model and the Ising
model, and we note that θ corresponds to magnetization, χ f to susceptibility, and
κ to free energy per vertex.

The quantities χ , χ f, and κ are moments of the number of vertices in C. There
are good reasons to define these quantities instead in terms of the number of edges
of C, principally since such a definition would enable a unified approach to both
bond and site percolation. For bond percolation on Ld it matters little which route
we adopt, and we have chosen that which leads to fewest technical complications
later.
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1.6 Site Percolation

There are ways of impeding flow through a medium other than blocking the edges,
and a natural alternative is to block the vertices instead. The corresponding model
is termed ‘site percolation’, and it is defined as follows. We designate each vertex
of the lattice Ld open with probability p, and closed otherwise; different vertices
receive independent designations. A path is called open if all its vertices are open.
The open cluster C(x) at the vertex x is defined as the set of all vertices which
may be attained by following open paths from x (if x is closed, then C(x) is
empty). As before, we write C = C(0), and we define the percolation probability
θ(p) = Pp(|C| = ∞), together with the critical probability

pc = sup{p : θ(p) = 0}.
When we wish to emphasize the type of percolation model under study, we shall
write θ site or θbond (and psite

c or pbond
c ) as appropriate.

Figure 1.9 contains four snapshots of site percolation on the square lattice for
different values of p. The critical probability of this process is unknown, but is
believed to be around 0.59; see Section 3.1.

Most arguments available for percolation models may be adapted to both bond
and site models, and for that reason we pay only little attention to site percolation in
this book. Indeed, there is a sense in which every bond model may be reformulated
as a site model (on a different graph); the converse is false, and therefore site models
are more general than bond models. We amplify this remark next. The covering
graph (or line graph) of a graph G is the graph Gc defined as follows. To each
edge of G there corresponds a distinct vertex of Gc, and two such vertices are
deemed adjacent if and only if the corresponding edges of G share an endvertex.
Suppose we are provided with a bond percolation process on G. We call a vertex
of Gc open if and only if the corresponding edge of G is open. This induces a site
percolation process on Gc. Furthermore, it is clear that every path of open edges
in G corresponds to a path of open vertices in Gc (and vice versa). [We may note
that there exist site models which cannot be obtained from any bond model in the
above way.]

Let us now consider an arbitrary infinite connected graph G = (V, E). Let
0 denote a specified vertex of G which we call the ‘origin’. We define θbond(p)
(respectively θ site(p)) to be the probability that 0 lies in an infinite open cluster
of G in a bond percolation (respectively site percolation) process on G having
parameter p. Clearly θbond(p) and θ site(p) are non-decreasing functions of p,
and the bond and site critical probabilities are given by

pbond
c = pbond

c (G) = sup{p : θbond(p) = 0},
psite

c = psite
c (G) = sup{p : θ site(p) = 0}.

We have from the above considerations that

(1.32) pbond
c (G) = psite

c (Gc).
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It is natural to ask whether there exists a relationship between the two critical
points of a given graph G.

(1.33) Theorem. Let G = (V, E) be an infinite connected graph with origin 0
and maximum vertex degree1 (<∞). The critical probabilities of G satisfy

(1.34)
1

1− 1
≤ pbond

c ≤ psite
c ≤ 1− (1− pbond

c

)1
.

One consequence of this theorem is that pbond
c (G) < 1 if and only if psite

c (G) <
1. The third inequality of (1.34) may be improved by replacing the exponent 1
by 1 − 1, but we do not prove this here. Also, the strict inequality pbond

c (G) <
psite

c (G) is valid for a broad family of graphs G; see Section 3.4.

Proof. The first inequality of (1.34) follows by counting paths, as in (1.15)–
(1.16). Therefore we turn immediately to the remaining two inequalities. In order
to obtain these, we shall prove a certain stochastic inequality. Given two random
subsets X, Y of V with associated expectation operator E, we write X ≤st Y, and
say that X is stochastically dominated by Y, if

E( f (X)) ≤ E( f (Y))

for all bounded, measurable functions f satisfying f (A) ≤ f (B) if A ⊆ B ⊆ V .
A more systematic discussion of stochastic domination is provided in Section 7.4.

Let Cbond(p) be a random subset of V having the law of the cluster of bond
percolation at the origin; let Csite(p) be a random subset having the law of the
cluster of site percolation at the origin conditional on 0 being an open vertex. We
claim that

(1.35) Csite(p) ≤st Cbond(p)

and that

(1.36) Cbond(p) ≤st Csite(p′) where p′ = 1− (1− p)1.

Since

θbond(p) = Pp
(|Cbond(p)| = ∞),

p−1θ site(p) = Pp
(|Csite(p)| = ∞),

the remaining claims of (1.34) will follow from (1.35)–(1.36). Indeed, (1.35)–
(1.36) imply that

(1.37)
θ site(p)

p
≤ θbond(p) ≤ θ

site(p′)
p′

where p′ = 1− (1− p)1,
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(a) p = 0.3

(b) p = 0.58

Figure 1.9. Realizations of site percolation on a 50× 60 section of the square lattice for four
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(c) p = 0.60

(d) p = 0.80

different values of p. The critical value of this process is believed to be near 0.59.
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which is slightly stronger that the remaining parts of (1.34).
We construct appropriate couplings of the bond and site models in order to

prove (1.35)–(1.36); this is a common technique when studying two processes
simultaneously, and will be used later in this book. Letω ∈ {0, 1}E be a realization
of a bond percolation process on G = (V, E) having density p. We may build
the cluster at the origin in the following standard manner. Let e1,e2, . . . be a
fixed ordering of E. At each stage k of the inductive construction, we shall have
a pair (Ak, Bk) where Ak ⊆ V , Bk ⊆ E. Initially we set A0 = {0}, B0 = ∅.
Having found (Ak, Bk) for some k, we define (Ak+1, Bk+1) as follows. We find
the earliest edge e in the ordering of E having the following properties: e /∈ Bk,
and e is incident with exactly one vertex of Ak, say the vertex x. We now set

Ak+1 =
{

Ak if e is closed,

Ak ∪ {y} if e is open,
(1.38)

Bk+1 =
{

Bk ∪ {e} if e is closed,

Bk if e is open,
(1.39)

where e= 〈x, y〉. If no such edge e exists, we declare (Ak+1, Bk+1) = (Ak, Bk).
The sets Ak, Bk are non-decreasing, and the open cluster at the origin is given by
A∞ = limk→∞ Ak.

We now augment the above construction in the following way. We colour the
vertex 0 red. Furthermore, on obtaining the edge e given above, we colour the
vertex y red if e is open, and black otherwise. We specify that each vertex is
coloured at most once in the construction, in the sense that any vertex y which
is obtained at two or more stages is coloured in perpetuity according to the first
colour it receives.

Let A∞(red) be the set of points connected to the origin by red paths of G
(that is, by paths all of whose vertices are red). We make two claims concerning
A∞(red):

(i) it is the case that A∞(red) ⊆ A∞, and all neighbours of vertices in A∞(red)
which do not lie in A∞(red) are black;

(ii) A∞(red) has the same distribution as Csite(p);

and inequality (1.35) follows immediately from these claims.
Claim (i) is straightforward. In order to be coloured red, a vertex is necessarily

connected to the origin by a path of open edges. Furthermore, since all edges with
exactly one endvertex in A∞ are closed, all neighbours of A∞(red) are necessarily
black.

We sketch an explanation of claim (ii). Whenever a vertex is coloured either
red or black, it is coloured red with probability p, independently of all earlier
colourings. This is not a full proof of (ii) but will satisfy many readers. More
details are provided by Grimmett and Stacey (1998); see also the proof of Lemma
(3.29).

The derivation of (1.36) is similar. We start with a directed version of G,
namely the directed graph EG = (V, EE) obtained from G by replacing each edge
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e= 〈x, y〉 by two directed edges, one in each direction, and denoted respectively
by [x, y〉 and [y, x〉. We now let Eω ∈ {0, 1} EE be a realization of an (oriented) bond
percolation process on EG having density p.

We colour the origin green. We colour a vertex x ( 6= 0) green if at least one
edge f of the form [y, x〉 satisfies Eω( f ) = 1; otherwise we colour x black. Then

(1.40) Pp(x is green) = 1− (1− p)ρ(x) ≤ 1− (1− p)1,

where ρ(x) is the degree of x, and1 = maxx ρ(x).

We now build a copy A∞ of Cbond(p) more or less as described in (1.38)–
(1.39). The only difference is that, on considering the edge e = 〈x, y〉 where
x ∈ Ak, y /∈ Ak, we declare e to be open for the purpose of (1.38)–(1.39)
if and only if Eω([x, y〉) = 1. Finally, we let A∞(green) be the set of points
connected to the origin by green paths. It may be seen that A∞(green) ⊇ A∞.
Furthermore, by (1.40), A∞(green) is stochastically dominated by Csite(p′)where
p′ = 1− (1− p)1. Inequality (1.36) follows. �

1.7 Notes

Section 1.1. The origins of the mathematical theory of percolation may be found
in the work of Flory (1941), Broadbent (1954), and Broadbent and Hammersley
(1957). Hammersley (1983) and Grimmett (1999a) have described something of
the history of the subject. We know of four books to date, the serious mathematical
text of Kesten (1982), the gentle account by Efros (1986),and the books of Stauffer
and Aharony (1991) and Hughes (1996). Of the many reviews, we mention Chayes
and Chayes (1986a), Menshikov, Molchanov, and Sidorenko (1986), Aizenman
(1987), Grimmett (1987b, 1997), Kesten (1987e), and Newman (1987a).

For general discussions of periodic lattices in d dimensions, see Grimmett
(1978a, b), Godsil and McKay (1980), and Kesten (1982, Chapters 2, 3). Follow-
ing Grimmett and Newman (1990), there has been serious study of percolation
on graphs whose growth functions grow faster than any polynomial. Many such
graphs arise as Cayley graphs of groups, and a systematic study of such systems
has been initiated. See Benjamini and Schramm (1996), Benjamini, Lyons, Peres,
and Schramm (1997), and the references therein.

The reader is referred to Chapter 12 for references appropriate to mixed, inho-
mogeneous, long-range, oriented, and first-passage percolation. The relationship
between percolation and other models of statistical physics has been explored by
Essam (1972, 1980); see also Section 13.6. Wierman (1987b) has studied ‘high
density’ percolation in two dimensions; in this percolation-type process, one is
interested only in those vertices which are incident to at least k open edges, for
some specified value of k.
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Section 1.3. The device for defining all percolation processes on the same
probability space seems to have appeared for the first time in Hammersley (1963).

Section 1.4. The existence of a critical phenomenon was observed by Broadbent
and Hammersley (1957) and Hammersley (1957a, 1959). Some people say that
‘percolation occurs’ when there exists an infinite open cluster.

Bond percolation on the line Z is essentially the problem of ‘runs’; see Feller
(1968). The proof that pc(2) = 1

2 was performed by Kesten (1980a), who built
upon earlier arguments of Harris (1960), Russo (1978), and Seymour and Welsh
(1978). Wierman (1981) adapted Kesten’s proof to calculate exact values for
critical probabilities for bond percolation on the triangular and hexagonal lattices.

Kesten (1982) proved that pc(3) < pc(2); see also the related work of Men-
shikov, Molchanov, and Sidorenko (1986, Section 4). J. van den Berg (unpub-
lished) and A. Frieze (unpublished) have pointed out a simple argument which
leads to the strict inequality pc(d+1) < pc(d) for d ≥ 1. The argument amounts
to the following for d = 2. Each edge of L2 may be thought of as the bottom of
two infinite ladders of L3. By subdividing the ‘vertical’ edges in such ladders,
we may construct disjoint ladders above different edges. By choosing the edge-
probabilities for the subdivided edges with care, we arrive at the conclusion that
pc(3) ≤ 0.4798, whereas pc(2) = 1

2 .

Menshikov (1987a) has provided a more general argument (see also Zuev
(1987)), showing that pc(L1) < pc(L2) whenever L2 is a strict sublattice of
L1 satisfying certain conditions; he is able to find non-trivial lower bounds for the
difference pc(L2)− pc(L1). His argument may be adapted to obtain a canonical
approach to proving strict inequalities for general processes and enhancements
thereof. See Aizenman and Grimmett (1991) and Sections 3.2–3.3 of the present
book.

Kesten (1990) has proved that pc(d) ∼ (2d)−1 as d → ∞; see also Gordon
(1991), Kesten (1991), and Kesten and Schonmann (1990). The detailed asymp-
totics of the forthcoming equation (3.2) were presented by Hara and Slade (1995).
See also Hughes (1996).

The duality of planar lattices was explored by Hammersley (1959) and Harris
(1960), and later by Fisher (1961). For an account of self-avoiding walks and the
connective constant, see Hammersley (1957b); a recent account has been provided
by Madras and Slade (1993).

Section 1.5. We defer the list of references until the appropriate forthcoming
chapters.

Section 1.6. It was remarked by Fisher (1961) and Fisher and Essam (1961) that
a bond model may be transformed into a site model; see also Kesten (1982, Chapter
3). We shall see at Theorem (2.8) that the definitions of pbond

c (G) and psite
c (G) are

independent of the choice of origin, whenever the graph G is connected. Theorem
(1.33) appeared in Grimmett (1997). The exponent 1 in the final inequality
of (1.34) has been improved to 1 − 1 by Grimmett and Stacey (1998), where
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one may find also the strict inequality pbond
c (G) < psite

c (G) for a broad class
of graphs G including all finite-dimensional lattices in two or more dimensions.
Further information concerning strict inequalities may be found in Chapter 3, and
particularly in Section 3.4.


