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ABSTRACT

The problem of the interaction of a quantum system having dis-
crete states, with a classical oscillating field, i‘s reexamined as a
problem in the solution of the time-dependent Schrddinger equation with
a periodic Hamiltonian. A method is presented for approximating the
time -dependent Hamiltonian with a time-independent one in the weak
oscillating field case. With the aid of Floquet's theorem the problem
is exaétly converted to one with a time-independent Hamiltonian repre-
sented by an infinite matrix. The approximation of only two states then
permits finding the resonance line shape by perturbation theory for both
single and multiple quantum transitions with equal ease. The simple
case of only two states connected by an off diagonal sinusoidal pertur-
bation is studied in detail, and a complete description of the average
transition probability is found for the strong oscillating field case. A
few more complex cases are discussed. A deeper understanding of
the analysis is obtained by examining the theory with the oscillating
field quantized. Experimental verification of the theory could best be
obtained by the methods of atomic beam spectroscopy at radio fre-

quencies,
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I. INTRODUCTION

Early in the development of quantum mechanics, Dirac provided
an approximate treatment of the interaction of an atom with the electro-
magnetic field. This theory adequately described the absorptiﬁn and
emission of radiation for the purposes of atomic spectroscopy and en-
dures in textbooks to this day. From time to time people have re-~
examined the problem in connection with various experiments and made
some small advances toward finding more exact solutions. They have
generally found that more exact solutions are not needed, unless excep-
tionally intense radiation is used. However, more and more intense
gsources of radiofrequency and microwave radiation have been developed
over the years and the recent advent of the laser has made intense,
monochromatic sources of radiation at infrared and optical frequencies
available. A further study of the interactions of radiation with atomic
systems seems appropriate.

The problem to be studied in this thesis is the interaction of a
quantum system with a strong oscillating field. By a quantum system
we shall mean a system having discrete quantum-mechanical states.
The energy spacings of the states are assumed given. Our primary
emphasis will be on the probabilities for transitions among these states
induced by the field. When no specific example is being discussed, the
system will be referred to as an atom, although it could equally well be
a single particle with spin, a molecule, or even a more complex aggre-
gate. Only one atom will be treated in interaction with the field. That

is, in macroscopic situations involving many atoms the interactions
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between atoms will be neglected compared to the interaction with the
field. The theory will be best applicable to such physical systems as
atomic beams, very low density gases, or dilute impurity atoms in an
inert crystal lattice.

By an oscillating field we shall mean a coherent field having
well defined frequency and phase. That is, the field amplitude is pro-~
portional to cos wt. The range of frequencies we can use is limited
primarily by the frequency spectra of atoms, The upper limit is the
frequency which causes ionization {excites a transition into the continu-
um). But the lower the frequency, the simpler the theory, since the
nurnber of states we need to consider becomes smaller. Our terminology
will imply that the field is the electromagnetic field, and in all our appli~
cations it will be so. However there is nothing in the formaligm which
restricts its validity to the electromagnetic field.

The interaction between the atom and the field will be lirnear in
the field amplitude, as in —; . :‘: or : . ﬁ. The matrix elements of
the interaction are assumed known. For brevity they will be indicated
by single letters like b, ¢, and g, which will be proportional to the
field amplitude. By a strong oscillating field we shall mean that these
interaction matrix elements are appreciable in comparison with the
energy separation of the atomic states or with the field frequency, so
that the usual perturbation approach is inadequate. An equivalent state-
ment is that the oscillating field strength be comparable to the atomic
fields responsible for the state separations,

Kinematics will not be considered. The atoms are to be either

at rest or in classical motion, The oscillating field is also at rest; that
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is, it consists of standing waves inside a resonant cavity, rather than
traveling waves. The atom will be regarded as under the influence of
the field for definite periods of time, during which the only time varia-
tion of the field strength seen by the atom is the sinusoidal one. In
applying the theory to experimental situations, care should be taken to
determine whether all the preceding suppositions are met, and especially
to ascertain the number of states involved in the interaction and the im-
portance of relaxation phenomena,

Treating the oscillating field as a classical harmonic perturba-
tion, our problem is to solve the time-dependent Schrbdinger equation
for the amplitudes to be in various states of the atom. From these ampli-
tudes transition probabilities and time-dependent expectation values can
be obtained.

We shall concentrate our attention on a very simple case in which
only two atomic states, a and P, are coupled by the field. Let the
amplitudes that the atom is in these states be aa(t) and aﬁ(t); the
energies, Ea and EB' Let the matrix elements of the field interaction
connecting these states be 2c cos wt where ¢ is real. The time-

dependent Schrddinger equation is (% = 1):

L W) = M)

where
aa(t) Ea 2c cos wt
W) = and Nl = (1)
aﬁ(t) 2c cos wt EB

Suppose that at some initial time to the atom is known to be in the state

1
a: Lp(to) = (O> Our problem is to solve this pair of coupled differential
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equations with such an initial condition. The probability that the atom
is in state P at time t can be found as !aB(t)‘Z. This is the transition
probability which we wish to study as a function of t, ¢, w, and
wy = Ea— Eﬁ

A physical example of this simple case is the following. Con-
sider a spin one half particle with magnetic moment pug. Place it in
a uniform magnetic field Ho in the z direction. Now apply an oscil-
lating field chos wt in the x direction. The Hamiltonian is
—K- H = %p.g?- H. The only states are the two Zeeman levels,* for
which E = %ngo, E5 = - é— p.gHo. The interaction matrix element
is 2c = -;—p.ng. By a strong oscillating field we mean that H1 is com-
parable to, or even greater than. Ho' Not only can this example be
realized in the laboratory, but it also has the advantage of being in
principle soluble by classical mechanics, considering the particle as a
spinning top with a permanent magnetic dipole moment. This example
should be kept in mind throughout the following analysis.

The advances in solving such a problem that have been made since

1927 have appeared from diverse sources and under such diverse titles

as "Stark Effect in Rapidly Varying Fields, " "Geometrical Representa-

tion of the Schrddinger Equation for Solving Maser Problems, " and

"Transitions Involving Several Electromagnetic Quanta. " The most
advanced work on the solutions of equations 1 known to the author is the
work of Autler and Townes (1). Yet they appear to have overlooked an

important feature: the possibility of multiple quantum transitions.

%*
The words "state" and "level" will be used interchangeably.
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These were predicted at about the same time by Winter (2). There

thus appears to be as much a need for a correlation of the existing

work as for an extension. Parts of this thesis will be devoted to pre-
sentation of existing resuits based on a common starting point. The

new material presented is largely an improvement in methods and under-
standing, rather than a prediction of new phenomena. It is therefore
more of academic interest, than of immediate use in describing existing
or prospective experiments. The line between original and unoriginal
work is hazy, but literature references known to the author will be
mentioned wherever applicable,

The logical interconnections of the following chapters are not
those of a linear chain, so a few words on what to expect may be helpful.
In chapter II we shall review briefly the usual method for treating an
oscillatory perturbation and indicate why it is not a suitable method for
strong fields. In chapter III we shall present the weak field solution
for equations 1 and discuss some of the implications of this form of
solution. Chapter IV extends the method of chapter III for finding an
approximate time-independent Hamiltonian to problems with more than
two atomic levels. The introduction of time-independent perturbation
theory then converts the resonance problem for systems with many states
to the resonance problem for a systern with two states. Chapter Vis a
short and rather independent one showing how the perturbed energies of
a time-independent Hamiltonian may be plotted to display information
about the corresponding perturbed wave functions, and in particular to

reveal resonances implicit in the approximate Hamiltonians used in



chapters III, IV, VII, and IX.

In chapter VI we prepare a fresh attack on the solution of equations
1 by developing a formal theory for the solutions of the time-dependent
Schrddinger equation with a periodic Hamiltonian, Chapter VII then
takes the results of chapter VI and combines it with the perturbation
method of chapter IV to obtain improved approximate solutions of the
two state problem, including solutions for multiple quantum transitions.
Chapter VIII is an all out attack on the two state problem using results
from chapters V, VI, and VII. Through a variety of analytical approxi-
mations plus numerical computations the behavior of the transition
probabilities in moderate to really strong fields is elucidated. Chapter
IX rests on all the preceding chapters by discussing extensions of the
theory so far presented to more complex problems. Finally chapter X
looks at the whole business anew from the point of view of quantum field
theory. An interesting parallel is drawn between the quantized field
formalism and the formalism of chapter VI and greater insight is gained
into the physical interpretations of the formulas.

Appendix A gives a derivation of the perturbation theory used in
chapters IV, VII, and IX. Appendix B discusses the infinite determinant
method of calculating characteristic exponents as it might have been used

in chapter VIII,
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II. TIME-DEPENDENT PERTURBATION THEORY

In almost every textbook of quantum mechanics equations 1 are
solved to first order by time-dependent perturbation theory. The results
are used in discussing the emission and absorption of light and are quite
adequate for that purpose. We shall review this method of solution
briefly here and indicate what might be learned by carrying the calcula-
tion to higher order.

The usual procedure of time-dependent perturbation theory is to
define the amplitudes with the energy part of the phase factored out. Let

-iE t -iE,t
aa(t) = bu(t)e ¢ and aﬁ(t) = bﬁ(t)e B

*
ferential equations:

Then the b's obey the dif-

. iwot
1ba. = 2c cos wt e bﬁ
. "iw t
xbﬁ = 2c cos wt e ba

where the dot denotes time differentiation and w, = Ea- EB. These
equations are iterated to obtain a solution as a series in powers of c,
starting the iteration with the initial conditions. Taking b =1 and

bﬁ =0 at t =0 for the initial conditions, the well-known first order

result is:

-i{w -w)t -i(w_ tw)t
_ ¢ o c o .
b [e -1]+w0+w[e l:}

Bmw - w

One usually says that near w = wg the first term shows a resonance

*
Compare Ref. 3, equation 29, 5.
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and the second is negligible. Squaring the first term gives the usual
transition probability:

(wc—w)t

1‘%12 = ;aﬁgz = 2 __ sin S

(wo~u92

When (wy - @< 2c this solution can be valid only for limited times, for
otherwise it violates unitarity (!aaiz + [aﬁ §2 =1 at all times). Never-
theless everyone proceeds with it, performing an average over w or
W, and ending up with a constant transition probability per unit time,

sometimes called the Golden Rule, which must also be invalid at large

times.
If one tries to carry the perturbation theory to second order one
finds
2
. +
5 = CZ. Ziwt Zwoc 1(wo w)t N Zwoc
e w-w 2 2 ¢
w_ - w W -w
o o
) 24, C Hwg-w)t c? o~ 2wt
z °© w tw
w - w o

The constant term will become secular (proportional to t) upon integra-
tion, as well as being singular at w = w_, giving b an impossibly large

imaginary part. This unpleasantness can be avoided by the following
SEt - Lidat

artifice. Redefine the b's by setting a_ =b_e e 2 and
ag = bﬁe e » where Aw is a quantity yet to be determined. The
b's satisfy

. 1 i(wo+ Awit

ibaz - —Z—Awba t+2c cos wte bﬁ

. -i{w A w)t 1

. - o i
1b{3 = 2c cos wt e ba + 5 Awbﬁ



Iterating we find in first order

-i{w tAw- w)t
c o
'-e - 1} + nonresonant term

bﬁ = wo+Aw—w

In second order we have

. 1 Zc.oocz
ibu = - -Z-Aw + ;‘Z"j;‘é + oscillating terms

By choosing Aw = 4w0c2/(w§ - wz), no secular terms will appear in
second order. Now look at how this value of Aw affects bﬁ' Let

2q = Wy + Aw - w, Substitute for Aw and square:

2
8w ¢ .
4q2 = (wo— o.))Z + “"oi = + .order c4
Expand around w = w ¢
W -w
4q2 = (w_- w)2+ 4C2+ 4c® + higher order
o Zmo
2 2
2 C 2 .
4q” = (wo— w +5—) + 4c” + higher order
o

Finally
q = }—'(’w-w —Ef-)z+c2' 1/2
4 ° W,

This expression for g remains nonzero as w is varied through reso-
nance., Putting it into our resonant expression for bﬁ gives us the
transition probability

2

]bﬁjz = & sin’qt
q

which is less than or equal to one for all w near W, and all times,
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No matter how unconvincing this derivation is, the above result is about
the best analytic solution of our problem known for w near resonance.
It suggests that the singular appearance of the perturbation solution is
due to a series expansion which does not converge near resonance. Time-
dependent perturbation theory is therefore not a desirable method of
solution,

Nevertheless if one were so rash as to carry it to third order,
one would discover among the morass of terms contributing to bﬁ the
following one:

3 —i(wo-l- Aw - 3wt

cie - 1]
Zw(wo't" Aw - w)(wo+ Aw - 3w)

Just as our first order solution gave a resonance at w_t+ Aw - w=0,
w 2
this term implies a resonance at wo+ bw-3w=0 or w= —39- + %—%—- s

using the previous value of Aw. Such a subharmonic resonance is called
a triple quantum transition, since three photons of frequency w are re-

2
c
%QJ— . This particular transi-

quired to span the energy difference W, +
tion has been observed to occur among the magnetic substates of optically
aligned sodium vapor by Margerie and Brossel (4).

Better methods for obtaining these results will be developed in the

succeeding chapters.
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III. WEAK FIELD SOLUTION -- TWO LEVELS

It is instructive to write out the interaction term in equations 1
in terms of exponentials: 2c cos wt = cei"ot + ce-iwt. If but one exponen-
tial were present (and its complex conjugate on the other side of }:yc
to preserve hermiticity), an elimination of one amplitude from the two
coupled equations would lead to a second order differential equation with
constant coefficients and an exact solution. Yet with both exponentials
present, the amplitudes are so intertwined that the equations resist all
attempts to uncover an exact solution in terms of known functions. The
reason for this frustrating situation can be eludicated by a transformation
which we shall call phase factoring.

Suppose that we define new amplitudes by factoring out from the

old ones a time-dependent phase:
a (t) = e Ma(t) , aglt) = ¢ B (1)

Now all results of physical measurements can be obtained from the den-

sity matrix

% *
aaaa aﬁaa
p =
* *
auaﬁ aﬁaﬁ

Suppose we write p in terms of a and [ instead of a, and aﬁ. The
diagonal elements, which give transition probabilities, are unaffected

by the change, while the off-diagonal elements change by a factor

eil(p-v)t For these off-diagonal elements, which are needed in com-

puting certain expectation values, p - v must be remembered.
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Otherwise p and v can be anything we like.
The new amplitudes obey the differential equation
e T
a E,- v cellp-v-ait,  ilp-viw)t
1oem = . .
de B ce—l(u-v"(’g)t-i'c:e_l(l"t-v-i-w)t EB- v B
The differénce p. - v appears only in the off-diagonal elements, while
p + v appears only in the trace of the new Hamiltonian, Since p +v
does not appear in the density matrix, the trace of the Hamiltonian can
have no physical significance, It merely represents a zero point for
measuring energy. A convenient round number for the trace is zero.
So let p +v = Ea-f- Ef3°
If we now choose p - Vv = w, one of the two exponential terms be-

comes a constant. Solving these relations for p and v our new

Hamiltonian becomes

1 2iwt
s {w,-w  cll+te )
= ')#O + '}:/1 (2)
-2iwt 1
cll +e y - 5 (wo— w)
where
A c 0 ceZimt
:HO= R HI: 3and A=!Z"(w"wo)
-2iwt O
c A ce

If we had started with only one exponential, our Hamiltonian would have
had only the time independent part HO. For a constant Hamiltonian an
exact solution can of course be obtained by elementary methods. Only

with 7@(1 present do we really have differential equations with periodic

coefficients and all their attendant complexities.
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When we have a weak field (c/w <<1) applied near resonance
(A/w << 1) the eigenvalues = p of 7<>/0 are much smaller than w, Hence
'Hl oscillates very rapidly compared to the behavior of the solution
neglecting ')Q}l. We would expect that the effect of ‘Hl on the solution
will average out after a few cycles, so that neglecting it will give us an
approximate solution to equations 1, Our phase factoring transforma-
tion has thus transformed part of our time-dependent perturbation into
a time-independent perturbation which we can use as a first approxima-
tion in solving the problem, leaving the remaining time-dependent per-
turbation for higher approximations. With this program then, let us
work the problem i-aq‘f- = ’}:/O ¢ with ¢ = (g) . The effects of 'Nl
will be considered in chapters VI to VIIL

Since Ho is time independent, it commutes with itself at all
times and we can use the formal solution

-i Mt
W(t) =e 7 U(0)

Now Hg = pzj_ , where p2 = ¢ +A2; hence

-1 Not

- S L
e = cos pti psm pt Ho

With (0) = (3) , we then have

cos pt +i% sin pt

Ylt) =

-i-(-:-sinpt
p

The probability that a transition has occurred to state f by the time t

is
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P = )% = c’ sin’ pt
Bea = = zee
or
4c? 2 2 2 1/2
P = > sin” [(2¢)“+ (w - wo) ] = (3)

e 4w - w,)

This equation represents the natural or Rabi line shape of atomic beam
spectroscopy (5, 6). We shall refer to it simply as the Rabi formula.

| As we shall show in chapters IV and VII equation 3 is a very good
representation of the probability for any resonance transition induced

by an oscillating field when that resonance is well separated from other
resonances. For this reason we shall describe equation 3 in detail.

As a function of time the transition probability oscillates with
frequency 2p between zero and some maximum. At resonance this
maximum is one, i.e. if w = w5 the transition has taken place with cer-
tainty at t = w/2c. As t progresses the field first induces the atom
to jump from state a to state B, then to jump from f back to a, then
to B again and so on. The atom just keeps emitting a photon, absorbing
one, re-emitting it, etc. as long as the field is applied. If the atom has
no other states and no other interactions, there is nothing else it can do.

The dependences. on applied frequency w and energy level sepa-
ration w_ are identical and symmetric. The line shape for ct = /2
is shown in figure 1. However the pattern depends strongly on the time
t, spreading out with smaller amplitude for shorter times and drawing
together with higher lateral peaks for larger times. At some times there

is a minimum instead of a maximum at the center. The time average

2
line shape is just the Lorentzian: > 2¢ vk The half width at

4t (0 - @)

half maximum is 2c, proportional to the strength of the oscillating field.
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We will often refer to 2c as the width associated with the Rabi formula
(equation 3).

To understand still better the Rabi formula, the approximations
used to obtain it, and the phase factoring transformation, let us look at
our physical example of a spin one half particle in a magnetic field Ho’
We have from chapter I: w, = ngo, c = %ngl' If only one exponential

were present, we would have the Hamiltonian

1 1 -iwt
s wrgH — gpgHpe
H.. =
o .
1 wt 1
grele™ - FugH,
=l-p [c H +-1—-cr Hcoswt+-1—o’ H, sin wt]
ZHBLO s 77 0% 2 %y

Instead of an oscillating field H.1 in the x direction, this interaction is

. . 1
with a field Vi H1

The oscillating field is just a superposition of two such fields rotating in

rotating in the x-y plane with angular frequency w.

opposite directions. In neglecting M, in the derivation of the Rabi for-
mula we were in effect neglecting one rotating field component and re-
taining the other. For this reason the approximation is usually called
the rotating field approximation., It suggests that it is the one rotating
field component that actuélly causes the transition. This view is sup-
ported by angular momentum considerations. The two Zeeman levels
differ by one in their z component of angular momentum. To conserve
angular momentum they must interact with a photon carrying angular
momentum in the z diréction, i.e. a circularly polarized photon or
rotating field.

Our phase factoring transformation can be looked upon as a
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transformation of the wave function by the matrix operator

ipt -):Z- lot
e 0 %i(E +E )t | 0
= e @ R - l-ic.ut
ivt 2
0 e 0 e

The scalar factor is of no consequence. The matrix factor can be written

in terms of spin matrices as

1 . .1 1. .
cos > wt + ic_sin > wt = exp (—2- wzwt) = exp (1Szwt)

This is the rotation operator for rotating a spin one half wave function
about the z axis by an angle wt. The phase factoring transformation
in this example is thus seen to be a quantum-mechanical transformation
to a rotating coordinate system. In a coordinate system rotating with
the field, the field will appear constant, hence the constant Hamiltonian
‘}40. An anti-rotating component of the field will appear in the rotating
coordinate system as rotating at twice the frsquency, e.g. 73/1.
Historically the Rabi formula was discovered in just the inverse
order to that given here. The problem of magnetic resonance was first
treated quantum-mechanically for a rotating field (7, 8, 9). The possi-
bility of extending the Rabi solution to magnetic resonance between
states of coupled spins or to electric resonance transitions was not
immediately apparent because an exponential type of interaction no
longer has a clear physical interpretation in terms of a rotating field.
However a derivation of the Rabi formula for a general two-state system
was eventually worked out by Torrey (10) as a purely mathematical prob-
lem. Current derivations of the Rabi formula (5) just assume an expo-

nential form of interaction and solve the Schr8dinger equation. Our
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phase factoring method, which is just the mathematical abstraction of
the transformation to a rotating coordinate system, helps to show why
using only an exponential interaction is a good approximation for the
general quantum-mechanical problem.

The magnetic resonance problem can also be solved as a prob-
lem in classical gyroscopic motion. By an appropriate association of
the classical coordinates with the quantum-mechanical probabilities,
it has been found that the correct quantum-mechanical transition proba-
bility can be obtained from the classical solution (11). Relatively
recently it was shown by Feynman et al. (12) that the general two-state
problem is mathematically equivalent to the classical magnetic resonance
problem, and hence subject to the same physical visualization.

We shall now discuss in what kinds of physical experiments the
Rabi formula plays a role, and why it does not appear in all cases where
electromagnetic spectra are studied.

The most direct application of the Rabi formula, and the one for
which it was originally derived, is atomic beam resonance spectroscopy.
Here one passes a beam of atoms through a state selector which defines
their initial state. The beam then traverses a region where the oscil-.
lating field is applied, each atom traversing it in a definite time. The
beam passes through a second state selector, which determines the final
state of the atoms, and finally goes to a detector. During this time atoms
within the beam are unlikely to interact or collide with each other. In such
an experiment the Rabi formula has been verified in detail (6). Usually

the atoms in the beam have a distribution of velocities and spend varying
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amounts of time in the oscillating field region. The observed spectral
line is then a weighted time average of the Rabi formula (see references
5 and 6 for details), The amplitude of the oscillating field is chosen such
that for most atoms ct = 1r/2 (optimum excitation) and a maximum
transition probability is observed. Since the line width is proportional
to c, ¢ is a measure of the uncertainty in energy associated with the
measurement of the energy level separation W while t 1is the length

of time occupied by the measurement. Thus ct equal to the order of
one is a manifestation of one of Heisenberg's uncertainty relations.

The advantage of an atomic beam device for spectroscopy is the
relative freedom from mutual interactions between different atoms in
the beam. Such interactions can broaden or distort the lines relative to
those of the free atom. In most other types of spectroscopy interatomic
interactions are the principal cause of line width. As a representative,
but mathematically simple example we shall consider the effects of
collisions in a gas upon the Rabi formula.

Suppose that in a gas in thermal equilibrium the atoms have no
interaction except during the short times of actual collisions. Immediately
after a collision let the probabilities that the atoms are in either of the
two states of interest be determined by the Boltzmann distribution, re-
gardless of the states occupied before the collision. Then the radiation
field acts on the atoms to produce transitions only between collisions.

If the mean collision time is T, the probability that an atom will travel
for a time t between collisions is e‘t/'r in a Boltzmann gas. The

transition probability averaged over this length of interaction time is
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o 2 -t/T 2
R = S‘ -C—z- sinzpt eT dt = -1-2— 24C T
T
1 4c”
S 2 (w - w )2+4c2+-1—— @
0 'rZ

For long times between collisions ( -1; << c¢) we have just the unweighted
time average of the Rabi solution. For short times between collisions

(3>> c) the probability reduces to 2c/ [(@ - w_)°

+:1Z]' This is the
classical Lorentz expression for pressure broadening (13). Since the

c2 in the denominator has been neglected this result could equally well
have been obtained from the perturbation theory solution as is usually
done. Any other mechanism which effectively makes the time 7 the
atom is free of transition producing influences other than the oscillating
field, small compared to 1/c will produce similar results. In emission
and absorption spectroscopy there is usually such a relaxation mechanism
present.

It is only when our oscillating field is a stronger transition pro-
ducing influence than relaxation mechanisms that the Rabi formula mani-
fests itself. One effect is the field strength dependent line broadening,
sometimes called saturation broadening (14, 15), shown by the 4c2 in
the denominator of equation 4. Another principal effect is a change in the
equilibrium population of the levels, If the thermal probability for being

in state a is -12- (1 - €), its probability in the presence of an exciting

field is

'qu:-lz-(l-e)(l—R)+%(1+6)R=-lz(l—e)+€R (5)
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where R 1is given in equation 4. At resonance and in the strong field
limit (c > 1/T) R approaches one half and the equilibrium populations
of the two levels become equal. The tendency of the radiation field is
thus to equalize the populations of the levels, while the collisions tend
to restore a Boltzmann distribution. Equation 5 expresses the results
of these competing forces. Pumping a system with radiation so strongly
as to equalize the state populations is called saturating the transition and
finds useful application in maser devices (16). A good discussion of
saturation in state populations and also in power absorption has been
given by Javan (17, Sec. III).

We noted in our discussion of time-dependent perturbation theory
that a constant transition probability per unit time (the Golden Rule)
is commonly obtained from the perturbation theory transition probability
by performing an average over w Or «_. The perturbation theory
transition probability is valid only for limited times, and so is the
Golden Rule. But the Rabi formula is valid for all times. By using it
in place of the perturbation solution we ought to be able to discover how
the Golden Rule is modified at large times to avoid violating unitarity.

Following the argument in Schiff (3, p. 199), we assume that in
place of the single state P there are a large number of states f with a
density per unit frequency interval p(wo) which is nearly constant over
a range of a few c about w. We assume also that the matrix elements
between a and each of these states are essentially the same. The total

transition probability is

g laﬁ(t) | Zp(wo) dw,
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with {aﬁ(t) ‘Z given by equation 3., The foregoing assumptions enable
us to factor czp out of the integral and extend the limits to plus and
minus infinity, since the transition probability is strongly peaked at w.

Differentiating we obtain the transition probability per unit time

o . 2 fo s} .
W = 2 [czp(w)g‘ —————2—51nz t dwo]z Zczp(w) Y _________suanpt dw
-00

ot J o
P w

Changing the variable of integration to y = p/c the integral can be
evaluated by a formula given in Magnus and Oberhettinger (18), The

final result is
2
W = 27c p(w)Jo(th)

For small times the Bessel function is approximately one and we
have just the Golden Rule. For large times the transition probability
decreases and oscillates, gradually dying to zero as absorption and stimu-
lated emission occur with nearly equal probability. When relaxation

phenomena are present we would have to compute something like

S‘OO e-t/.r 2 Z-n'czp(w)
2wc p(w)J (2ct) dt =
0 ° (1 +4c?r?)l/?

In the usual case of short relaxation time (cT << 1) we have again just

the Golden Rule. For strong exciting fields the transition probability is

still constant in time, but proportional to ¢, instead of cz. The total

integrated transition probability S\m W(t)dt is wcp, which is the number
0

of states in the frequency interval mc,
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IV, WEAK FIELD SOLUTION -- MANY LEVELS

The problem of the interaction of a general system of coupled
spins with a rotating magnetic field has been elegantly treated by Salwen
(19), using rotating coordinates to obtain a Hamiltonian constant in time.
We shall now show how a time independent Hamiltonian describing
resonance transitions may be found for any many level situation. The
method is to apply a phase factoring transformation to the wave function
and then neglect the oscillating part of the new Hamiltonian, exactly
as we did in deriving the Rabi Formula.

Suppose we have a Hamiltonian

Ea 2Cc cos wt 2d cos wt
'H 2c cos wt E6 2b cos wt
c 2d cos wt 2b cos wt EY
corresponding to the amplitudes au(t), aﬁ(t), ay(t), ..« . We know

from first order time-dependent perturbation theory that resonances
occur whenever w 1is approximately equal to the difference between two
energy levels directly connected by the perturbation. From nth order
time-dependent perturbation theory resonances occur whenever nw is
approximately equal to the difference between two energy levels indirectly
connected by the perturbation through n-1 intermediate states (20).

We wish to transform our Hamiltonian so that levels excited at resonance

become nearly degenerate and are connected by time-independent matrix
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elements, They can then be treated exactly or by time-independent per-
turbation theory, leaving only non-resonant terms for time-dependent
perturbations.

Let us define new amplitudes:
_iut
a{t) = e an(t)

B(t) = einaﬁ(t)

_ it
v(t) = e aY(t)

As noted in the two level problem these new amplitudes are just as good

as the old ones for computing transition probabilities. The new amplitudes

obey a Schrddinger equation with the Hamiltonian X':

E -p 2¢ cos wt ™V 54 cos wt G-t
2c cos wt e-i(u-v)t E, -v 2b cos wt el(v_ at
| -
2d cos wt enl(p"—g)t 2b cos wt e—l(v-g)t Ey- £

By choosing p+tv+€+... = E.t Eﬁ+ Ey+ ... we can make the trace of

1
W - anything we like. By choosing p-v = w we can transform

2¢ cos wt into c{l + eZwt

). At the same time (E_ - p) - (E:ﬁ- v) becomes
Ea— Eﬁ' w, If a and P are near resonance with frequency w, this
difference is small compared to w. Thus setting p - v = w accomplishes
both objectives outlined above. We can do the same for each pair of
levels in resonance and perhaps others.

Note that p -v=w, v -§ =w, p-§ =w would be inconsistent

equations. Not all oscillating off diagonal elements can be converted
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from 2 cos wt to (1 + eiZiwt)’ But levels a and y cannot be resonant
with frequencies w and 2w both. So we use p - § = w or 2w, depending
on which is nearest resonance, and let other matrix elements remain
entirely oscillatory. Thus different phase factorings may be desirable
for different ranges of w. In most practical cases, however, selection
rules will make enough off diagonal elements zero so that one phase
factoring will cover all resonances of interest.

Having suitably evaluated the phase constants u, v, ... we write
N' as ‘)40 + 7#1, where 'A/O i8 constant and includes the resonances
of interest. 1 is purely oscillatory and will be neglected for the
present. The effects of including ?ﬁ/l will be considered in chapter IX
and found to be smallif b, ¢, d, ... are much less than w.

The problem has now been reduced to one with a constant
Hamiltonian. To solve the Schrddinger equation we need to find
exp (-i 'Hot), which can be done by diagonalizing Wo. Due to the
algebraic awkwardness of expressing the roots of cubic and higher degree
polynomials, we shall not attempt to analytically diagonalize anything
bigger than a two by two matrix. Instead we shall use the perturbation
theory in Appendix A to reduce larger matrices to two by two. This
will enable us to treat all resonances which are well separated from
each other. When resonance lines overlap,the reduction to only two
states is no longer a good approximation.

To avoid repetition we shall compute the exponential function of a
two by two matrix once and for all. If we are studying an n-quantum
transition between two states, say a and [, we obtain after phase

factoring and perturbation reduction to two by two size a hermitian matrix
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of the form

1
EO.+ ’6(1 -2- u
hla = + multiple of unit matrix (6)
3
-1-2-11 E‘3+ 6ﬁ+ nw

where 50. and 55 are level shifts due to interactions with other states
and lz-u is the nth order matrix element connecting the two states.
We can write this in terms of the Pauli o matrices, letting d be the

difference of the diagonal elements

1

_ 1 1
Hz = Eoi +§dcrz + > Re(u)o'x -5 Im{u)o

The unit matrix commutes with all the others and can thus be algebrai-

cally separated out:

exp (- i Hzt) = exp (- iEot) exp [ -i(do*z+ Re (u)crx- Im(u)cry)%]

The ¢ matrices anticommute, hence

(do'z + Re (u)crx- Im (u)u'y‘)2 = d%+ Re (u)2+ Im (u)za £

We use this relation to simplify powers of the ¢ matrices in the series

" expansion of the exponential, obtaining finally
exp (- i Hzt) = exp (- iEot)[vcos _1_'2_t_

. (drrz+ Re (u)o*x— Im (u)e

-1

)
7 sin%—:—

r

If the initial state is @, the wave function at time t is
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a 1 . cos LA i-cl sin It
-1E0t 2 r 2
= exp (- i Nzt) =e
. u rt
ﬁ 0 = 1-; 81n—2——
2
The transition probability is |B]% = Jul sin? I If we write
e s P ity = 2 > e write w___

for Ea+ 60— Eﬁ - 6(3, we can express the result as

1/2
P, = Lu] 5 > sinz[(nm-mr )2+ [ulz]
(nw-w__ )%+ |u es
res

t
5 (7)

Equation 7 is the generalization of the Rabi formula to multiple quantum
transitions. It has been given previously by Hack (20), Salwen (19), and
by Winter (21), but always for a limited class of resonance transitions,

The present formulation reveals it to be valid for any transition where

resonance exists between only two levels. In discussing specific examples

henceforth we shall not write out equation 7, but merely write down the
resonance frequency woog and line width parameter u to be substituted
therein by comparing the two by two matrix approximating our problem

with Eq. 6.

As an explicit example consider a three level problem:

Eu 2¢c cos wt 0
B = 2c cos wt E Z2b cos wt
C: B
0 2b cos wt EY

These levels might, for instance, be the Zeeman sublevels of the F =1
hyperfine state in the electronic ground state of atomic hydrogen. The

central level B could be shifted from the midpoint between levels a and
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vy by the quadratic Zeeman effect, yet Ea— E‘3 could still be small com-
pared to the separation between the F =1 triplet states, and the F =0
singlet state which we would be neglecting.

We perform the phase factoring transformation with

= (B +E,.+E +3 3, =(E +E,+ E 3, =(E +E_+E -3 3
2] ( a B v w)/ v ( a B Y)/ 3 ( a B v w)/
obtaining
A -% c 0 0 ceZiwt 0
. Y .
,HC___ c _23_a_ b + ce 2iwt 0 belet (8)
o b -a-3 0 be Xt

where A = }Z-(Ea- EY) -w and a = %(ZEB— E,- EY). The energy level
scheme and meanings of the parameters a and A are illustrated in
figure 2. We neglect the oscillating part of H(': until chapter IX and
consider two cases.

Consider first the case where we have a resonance between levels
a and B. Then A = a and the first two levels in H(': are nearly de-
generate, while the third is 2a away. If a >> b,c we can treat the third
level by the perturbation theory of Appendix A, reducing the problem to a

two level one (equation AS8):

The transition probability Pﬁ«- is then given by equation 7 with n =1,

a

%
This particular three level problem has been studied in more detail by
Besset et al. (22), but they do not clearly indicate how they arrive at
their results.
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2
©es = Eq- Eg- bz/[(EB- E) - (Eg- Eg)] (or &= a+ 3-), and u= zc.

res
The effect of the interaction with the third level y has been to shift the
energy of the level f and thus the resonance frequency. When the above
approximate solution is valid, the a,P resonance is well separated
from the B,y resonance and the level shift is only a small fraction of
the line width. As a decreases the shift increases, but never becomes
larger than the line width 2c.

Consider next the case where we have a double quantum transition

between states o and y. For this case we have A << a and the first

and third levels in Hé: are nearly degenerate. If again a >> b,c we

can treat the second level by perturbation theory obtaining the two level

matrix
A__a__ff. _be
3 a a
_be -A~9_-.‘?.l2.
3 a

The transition probability from state a to y 1is again given by equation 7
with n=2, u= 22, and © o= Eg- Ey+ 2(b2- cZ)/[ (Eﬁ- EY) - (E,- Eﬁ)]
(or A = (cz— bz)/Za). The width is much smaller than that for the single
quantum transition and hence requires greater excitation powers (larger

‘ b,c) to observe. But with ut= w the transition probability PY"‘O' can
be close to one while Pﬁ«a is still quite small, As a decreases the
width of the double quantum resonance increases. Also the single quantum
resonance to state P approaches the double quantum resonance. When

the two lines overlap it becomes possible for the system to reach state vy

by two successive real single quantum transitions with appreciable
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populating of state PB. This process then competes with the double
gquantum transition, which goes virtually through state f without appreci-
ably populating it, making a more complicated line shape. However for
large a the single and double quantum resonances are quite distinct.

When a = 0 there is no longer any distinction between two suc-
cessive single quantum transitions and one double quantum transition.
This special case arises in the Zeeman effect of particles with spin one.
However Majorana has shown that the transition probabilities between
any two magnetic substates of a particle of arbitrary spin can be expressed
in terms of the transition probability in the spin one half case (23, 24).

So for simple Zeeman spectra we need solve only a two state problem.
Unfortunately Majorana's result does not extend to coupled spins.

To give a better feeling for the magnitudes involved we have
evaluated an example from radio frequency spectroscopy in terms of
experimental quantities. Suppose we are observing magnetic resonance
between the three Zeeman sublevels of the F =1 hyperfine state of atomic
hydrogen, using an atomic beam spectrometer. In a static field H0 of
8 gauss the levels are spaced by about 11 megacycles with the mp= 0
levei shifted 86 kilocycles from the midpoint between the mp= 1 levels
_ by the .quadratic Zeeman effect. The AmF = %] transitions are excited
by an oscillating field chos wt perpendicular to Ho‘ Suppose that the
transit time of the atoms through the apparatus is such that H.1 = 8.5
milligauss gives a maximum transition probability with a line width of
about 15 kc. In such a situation the ratio c/a is 0.05 so our approxi-
mate solution should describe the experiment adequately. The ratio

-4
c/w is 4 x 10 , so the neglect of the anti-rotating component of the
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exciting field is a very good approximation.

The two primary resonances l1+~— 0 and 0<— -1 will appear
as distinct peaks about 170 kc apart, both with 15 kc line widths since
the matrix elements b and c¢ are nearly equal. The frequency shifts
of the peaks due to the presence of a third level amount to only 100 cps.
The double quantum transition 1< -1 will fall midway between the two
primary resonances and would be barely discernible at only one twentieth
the height of the other peaks.

Upon increasing the rf power by a factor twenty (increasing
Hl to 40 milligauss) the double quantum transition will be excited opti-
mally. It will then have about the same peak amplitude as the other
resonances, and a width of about 7—1/2 kc (one half of 15 kc because n = 2
in equation 5), The primary resonances will each have broadened to about
70 kc widths and been shifted away from each other by about 2 kec.

Although double quantum transitions were studied theoretically
by Goeppert-Mayer (25) more than thirty years ago, they were not ob-
served in the laboratory until 1950 (26). An experiment similar to the
one just envisaged, but with a slightly more complicated spectrum, has

39

been performed by Kusch on the hyperfine levels of K and several
double quantum transitions were observed (27). Salwen's analysis (19)
was directed toward the explanation of Kusch's results. The most com-
plete discussioﬁs of multiple quantum transitions available are in the
article by Hack (20) and in the Handbuch der Physik article on atomic

and molecular beams (6). Double quantum transitions have recently been

observed in the optical region with the aid of laser light sources (28, 29).



-31-
V. INTERPRETATION OF EIGENVALUE PLOTS

In their work on the problem of resonances in a many level sys-
tem, Besset, Horowitz, Messiah and Winter (22) described a most
remarkable behavior of the eigenvalues and eigenfunctions of the
Hamiltonian as w passed through a resonance. For example in
figure 3 we show a plot of the eigenvalues (curves) and diagonal elements
(straight lines) of the two-state Hamiltonian 70/0 used in obtaining equa-
tion 3. The eigenvalues form a hyperbola, with resonance in the
transition occurring at the position of closest approach of the two
branches. The distance of closest approach is 2c¢ or the width of the
resonance. Asymptotically the eigenvalues approach the values they
would have if there were no interaction (straight lines in the figure),
except they have switched identities in going from one side of the
resonance to the other. The accompanying eigenvectors reflect this
change in identity. In figure 4 we show the eigenvalues and diagonal
elements of the three level Hamiltonian discussed in the preceding
chapter. The eigenvalues are nearly the same as the diagonal elements
except-when they come close to each other, as they do near A = a,0, -a.
It was at these places that we found resonances, The following analysis,
" which has not been given by other authors, will show how much may be
learned about eigenvectors and transitions from perusal of such a graph
of the eigenvalues,

Consider a hermitian matrix )} , such as might be obtained
from a phase factoring transformation as described in the preceding

chapter. Write its diagonal elements E as a_y tb_, where the a
m m m m
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are simple numbers (e. g. i%— ) Then 8 W/8y is a diagonal matrix with
elements a - The off diagonal elements of ‘N will be regarded as a
perturbation. We introduce Dirac notation for the normalized eigen-
vectors. Thus [m> is the eigenvector of the unperturbed (diagonal)
matrix corresponding to the eigenvalue Em, and lkm > is the eigenvector

of the full matrix corresponding to the eigenvalue )‘m' In this notation the

eigenvalue equation is
Wi >=2_[r > (9)

If we plot Em as a function of y we find a straight line of slope
a_. In a simultaneous plot of all Ern each line can be associated with
a state lm > by its slope a - For a small perturbation the eigenvalues
)\.m plotted as functions of y should lie close to the E and therefore
be subject to the same identification rules.

To show this analytically we differentiate equation 9 with respect

to vy:

oA
oN ) _%"m )

The eigenvectors form a complete basis, hence we can expand their

derivatives:

2 =) S (10)
k

N can now operate on |A, >, giving us after transposition
P , > giving p

ahna -
> = x>+ _/_>_, C A - 2) A, >

W
dy
k

aylm

Taking the inner product with Qm} and < ka respectively we obtain
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12N
m _ oM
& - <>\m1-571>\m> (11)
and
<)\k[%§]km>
m k

Since 8 W/dy is diagonal in the unperturbed representation we can
evaluate equation 11 in the form

8Xm 2

— = i >

2= ) ad<ib > 3

i
Since ; [<i|n >lz = 1 from the normalization, 8\ __ /8y must lie
Ly m m

between the maximum and minimum values of a,. If in a certain range
of y values S)\m> is predominantly state |n> with admixtures of other
states of order €, then equation 13 becomes azt»m/ay =a + Oez.
Thus the slope of )\m(y) gives information about the components of
its eigenvector.

By differentiating equation 9 twice and using equations 10 and 12

we obtain

2 ON 2

9 )\mz }<)\m"'g;," ‘)\k>l

—Z ¢ x_- X (14)
oy Kt m m k

If f)‘m> is predominantly state |n>, 6'2)\m/8yZ is of order €°. Thus
a nearly pure state is identified by a nearly constant slope of some a..
In figures 3 and 4 we find examples of this where the curves are well
separated. The states are labeled along the asymptotes.

As )\m and )\k approach each other, their second derivatives
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become large, bending the curves away from each other. Barring acci-
dental degeneracy the curves do not cross as the unperturbed Em do.
The principal exception occurs when the states lm > and ik> are in
no way coupled by the perturbation, in which case < )\ml %—;E | )\k>

is identically zero.

If l)\m> and ]xk> are nearly pure unperturbed states as they
approach each other from either side, we expect they will mix only with
each other when they are close together. We can then analyze their
behavior by making a two-state approximation. Introduce A(y) to denote
the degree of mixing of the two states. Our two state approximation

becomes explicitly
<m|r_>=VI-A1/Z - 0e®  <m|r >= e "VIFAI/Z - O€?
<k[r_>='VIFA)/Z - Oe? < k[N >= - V(I-A)/Z - 0*  (15)

<i|A_>= Oe i# k,m <i|[A_> = Oe i# k,m
m k

These forms are largely dictated by orthonormality. As A varies from
-1to 1 ])\m> changes from |m> to |k> and [)\.k> from |k> to

lm>.

The behavior of A and the eigenvalues as a function of y can be
recovered entirely from equations 11 and 14 in this two-state approxima-

tion. The derivatives are

m_ 1-A 1+ A 2
5y - > am+ > ak+O€
X

k=1+Aa +1-Aa +O€2
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2 2
M 1-a% Bymay) 2
z % % % T Oe
oy m k
2 2
"N 1. A% (a2 2
) e
oy m 'k
Let )\m— A = T Then Or/dy = A(ak-— am) + Oez and
2 2
9%r _ 1- A? > (a,-a)7- (8x/0y)
= (a -a,) =
5 2 T m Kk T
Yy

This differential equation can be readily solved, yielding
2 2 2 2 2
r’ = (am- ak) (y - yr) +u” + Oe (16)

where Y. and u are constants of integration. Evidently Y, is the

value of y at minimum separation and u is the value of the separation.

8km Bkk
Since 5 +—5~§;— am+ak

is constant we can integrate to get X\ __+ A\
m

and combine with r to find the individual eigenvalues

1 1
m Eo-i- ~2-(am+ak)y+ 5 T

A
_ 1 1
)\'k—Eo+ -Z.(am+ak)y-7r

Thus in the vicinity of resonance the eigenvalues form a little hyperbola,
with corrections dependent only on the squares of amplitudes for ad-
mixtures of other states.

As (y - yr) passes from large (compared to u) negative to large
positive values, A = -12- (ak~ am)(y - yr)/r goes from -1 to +1 and the

eigenvectors exchange their identity in terms of unperturbed states.
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This behavior is characteristic of a resonance.
Knowing A, and from it the amplitudes in equation 15, we can
actually solve the resonance problem. Suppose that at time t =0 the

system is in state
lm>=V{ - A)/Z >+ VT + A1/Z [x, > + Oc

Then at time t the system is in state

-iN t

it .
6> =VA-A/ze ™ _>+WTTA/Ze K 2o+ O

The probability of transition to state lk> can be evaluated as

2
_ 2 _u . 2rt 2
Pk m I<k]t>! ~;—-2-s1n - torder €

With a suitable definition of y and Y, this agrees with equation 7.
This should not be surprising since the same approximation, that of two
states, was used in both derivations.

Thus if we are looking for resonances in a complicated many level
problem we can first plot out the eigenvalues as a function of a y-like
parameter. From the graph we can identify states and locate resonances,
even when shifts are large. In figure 4 note how the different widths of
the resonances and the shift of the central one show up. (Unshifted value
is at the intersection of the straight lines) If three or more levels are
comparably close and : representing mixed states in some region, we know
we have to treat them exactly; yet we may still be able to neglect some
states which are far away. Even though the eigenvalues are obtained by

an electronic computer and a three or four level Schrdédinger equation
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must be subsequently solved by the computer, we have gained much by
finding where to look for which resonances. A blind computer attack
suffers from the fact that the transition probabilities for given param-
eters depend sensitively on the time.

The results of this chapter will be of particular benefit in fer-

reting out the strong field behavior of equations 1 in chapter VIII.
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VI. THE SCHRODINGER EQUATION WITH PERIODIC HAMILTONIAN

The lowest order effects of including Hl in the solution of
equations 2 were first successfully determined by Bloch and Siegert for
the case of magnetic resonance (30). They found oscillating terms of the
order -&ezmt appearing in the amplitudes and a change in the transition
rate frequency p. They then noted that in atomic beam devices the
atoms enter the radiation field in a continuous stream. The times of
entry t_, and hence the initial phase of the oscillating field seen by the
atoms, are different. What one should compute is a transition proba-
bility averaged over the initial phase of the field, or equivalently over
the initial times ty keeping the elapsed time t - tg fixed. This
average is distinct from one over the elapsed times required if the atoms
have a distribution of velocities. On averaging their probability over ty
Bloch and Siegert found that the oscillating terms go out in first order,
leaving a transition probability of just the Rabi form (equation 3) except
that w, is replaced by wo + —Z—-— . This so-called Bloch-Siegert shift in
the peak of the resonance is a sZna.ll fraction of the line width, and be-
comes a smaller fraction as c/cuo is reduced to increase the accuracy
of the measurement of w . Hence it is of no importance in precision
spectroscopy (31).

Bloch and Siegert's result has been rederived by a variety of
methods (32, 33, 1, 31, chapter II of this thesis), all shorter than the
original one. But after much study we have developed a method so much

superior that a third order solution can be obtained with less effort than

Bloch and Siegert expended on their first order solution, In order to
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understand this method we must first develop a formal theory for the
time-dependent Schrédinger equation with a periodic Hamiltonian. Then
in chapter VII we shall rederive the Bloch-Siegert solution with unprece-
dented ease.

We shall study the general properties of the time-dependent
Schrddinger equation with a periodic Hamiltonian in matrix form., That

is, we seek solutions of
. d 7 _
i dlt) = H(u() an

where HC isan N by N hermitién matrix of periodic functions of t
with period T or frequency w (wT=27), and § is an N by 1 column
matrix of the probability amplitudes. The components of HC and
will be denoted by Greek letters a, B, y, ... corresponding to the
atomic states. The matrix equation:17 is just a shorthand way of writing
N simultaneous first order differential equations. Such a system has N
linearly independent solutions. These N solutions can be used to form
the columns of a square matrix X(t) which satisfies the Schrddinger
equation and is non-singular.

Since the Schr8dinger equation is linear, any linear combination
of the N solutions in X(t) is also a solution. In matrix notation a
linear combination is achieved by multiplying X(t) on the right by a matrix
of constants. Of particular interest is the matrix U(t;to) = X(t)X-l(to)

which obeys the Schrddinger equation and the initial conditions

U(to;to) =41, For the solution of equation 17 is

b(t) = Ultse )u(t,)
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that is, U(t;to) describes the evolution in time of an arbitrary state
q;(to). The components of U can be directly interpreted in terms of
probability amplitudes. For instance Uﬁa(t;to) is the probability ampli-
tude that a system initially in state a at time to’ will be in state 3 at
time t.

Since ')alc is a hermitian operator, the normalization xb*(t)tp(t),
or more generally X+(t)X(t), is constant in time. In the case of U(t;to)
this constant is the unit matrix, since we can evaluate it at t = to.
Therefore U(t;to) is a unitary matrix for all t. By multiplying on the
right by a constant unitary matrix, many other unitary solutions of
equation 17 can be obtained.

Since ’Hc is a periodic function of the independent variable,
we can apply the Floquet theory for differential equations with periodic
coefficients. Two other authors,(32, 1) have used Floquet's theorem in
connection with the present problem, but neither carried it to the extremes
about to be described. We shall first derive Floquet's theorem in matrix
notation, |

Let X(t) be a solution of equation 18

5 X(0) = WX (18)

Replace t by t + T. Since NC is unchanged, X(t + T) is a solution of
the same equation as X(t). Hence they must be related by a constant
matrix: X(t + T) = X(t)A. Let A be diagonalized by the unitary matrix

Rk -ig T
R. Write its eigenvalues as exponentials e . Then

%
Since this derivation was first worked out, a matrix representation of
Floquet's theorem has appeared in the literature (34). A rigorous treat-
ment in terms of coupled first order equations is given by Moulton (35).

*
*If this is not possible, see Moulton (35).
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R_lAR - e-—iQT

where Q is a diagonal matrix with elements Qe We now have

X(t + T) = X(t) Re 1QTR-1

Multiply on the right by Rel=2(t*T)

x(t + IR T 2 x(p) RO

If the right hand side is denoted by ®(t), then the left hand side is
$d(t + T), or & is a periodic function of time. Thus there exists a

where

solution of equation 18, namely X(t)R, of the form <I>(1:)e“inC

®(t) is periodic and Q is diagonal. This is Floquet's theorem in mat-

—iqﬁt
are in the form

rix form. The components of the solution ‘I)aﬁ(t)e
given in the usual treatment of Floquet's theorem. The q's are called
characteristic exponents, Their determination is the major obstacle
to the solution of differential equations with periodic coefficients,

In our problem ')a(c is both periodic and hermitian. Hence we
could have used the unitary matrix U(t;to) in the above proof. Then
A becomes a unitary matrix (namely U(t0+ T;to) ) and can always be
diagonalized by a unitary transformation R. Its diagonal form is also
unitary, i.e. the matrix Q must be hermitian, or the characteristic
exponents real, This is in contrast with the case of the Mathieu or Hill
equations where the characteristic exponent may be either real or com-~
plex, depending on the values of certain parameters. With X(t), R,
iQt

and e’ all unitary, ®(t) is unitary and we can strengthen Floquet's

theorem to say there exists a unitary solution of equation 18:
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F(t) = ®(t) qut. The special solution U can then be written in terms

of F:

-iQ(t-t )

@ “(t)

Ultst ) = F(OF " (t,) = &(t)e .

A relation exists between the determinant of U(t;to) and the

trace of Hc(t). The formal solution for U is

t
1
U(tl;to) = P exp (~-iS't ')c(c(t) dt) (19)

o
where the P indicates the time ordered product of the matrices in the
integral. If we write the integral as a limit of a sum, then the exponen-
tial of the sum becomes a product of exponentials, The determinant of
U is the product of the determinants of the exponentials, The deter-
minant of the exponential of a matrix is the exponential of the trace of
the matrix, Making this substitution we can put the product of exponen-
tials back into the form of an exponential of an integral and drop the P,
since we now have ordinary comrmutative numbers instead of matrices,

The final result is

Y

det U(tl;to) = exp ('iS. Tr 'Hc(t) dt )
t
o]

In particular the determinant of A is

t +7T
.l o
det A =det U (to+ T;to) = exp (-i Tr ')Q/C(t) dt)

t
o

But the determinant of A also equals the product of its eigenvalues

det A= [] exp (- iq T) = exp (“iz q,T)

a
a
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Equating the two exponential forms for det A we find that the sum of the
characteristic exponents becomes, within an integral number of w's,

just the time average of the trace of HC’

t +7T
z qq = .%,_ St ° Tr Hc(t) dt (mod w) (20)
a o

As discussed in chapter IV we can make the trace of HC anything we
like, so that we have one free relation among the characteristic ex-
ponents. In the case of two atomic states in chapter III we chose the
trace to be zero, because we then have qB= - 9y hence only one
characteristic exponent to determine,

From equation 19 we also see that if 'HC is symmetric at all
times, then U is symmetric. In these cases the transition probability

P, = ]U is the same as the inverse transition probability

IZ
Ba

P For a two state system the unitarity of U makes these

a ~—B°
transition probabilities equal whether HC is symmetric or not,

Next we shall show how the problem of determining the unitary
Floquet solution F(t) of equation 18 can be reduced to an eigenvalue,
eigenvector problem for an infinite matrix. We write F in component

form:

-iqﬁt
Faﬁ(t) = (I)aﬁ(t) e

We expand the periodic function éaﬁ in Fourier series with coefficients

I

Faﬁ:

ot -ig,t
Faﬁ(t) = Z Fzﬁeln e B
n
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We also expand the components of '}Q/C in Fourier series:
_ n _inwt
(NC)O,[S - Z Huﬁe
n

Substituting into equation 18 we get an infinite set of recursion relations

for the F .
ap

)
(-nw + qﬁ)F L ?:/a
v k
These equations can be rewritten in the form of a matrix eigenvalue
equation:
n-k ko _ n
Z(,HGY + nw 6ay6kn)Fyﬁ = qﬁFaB (21)
v ,

In this equation q‘3 is the eigenvalue and FI‘:B is the corresponding
eigenvector with components denoted by the pair of indices a,n. The
operator is a matrix with rows identified by a,n and columns by vy, k.
This operator will be denoted by HF and called the Floquet Hamiltonian
associated with the semi-classical Hamiltonian 'NC. Since n. and k
range from - oo to +oo, HF is an infinite matrix. We shall order
the components so that a runs over the finite number of atomic states
before each change in n. In the case of equations 1, for example, the

Floquet Hamiltonian is:
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. Ea—w 0 0 c 0 0 0 0

0 Ep—w c 0 0 0 0 0
. 0 c E 0 0 c 0 0

a
c 0 0 E c 0 0 0 .
P (22)

Q 0 0 c Ea+w 0 0 c .
. 0 0 c 0 0 Eﬁ-}w c 0
. 0 0 0 0 0 c Eu+2w 0
. 0 0 0 0 c 0 0 E‘3+Zw .

Since two indices are required to identify a row or column of
the matrix, it is convenient to introduce Dirac notation for the components

of HF and F, Therefore let ?:/F be defined by

<an' 'HF fﬁm> = NZ[;m + nw&aﬁsnm (23)

The |an> are an orthonormal basis providing the above matrix repre-
sentation of HF‘ They can be thought of as column matrices of all
zeros, except for a one in the a,n position. Alternatively they can be
thought of abstractly as elements of a Hilbert space with norm one.
They are not actual quantum-mechanical states of a physical system,
although they have similar properties.

The eigenvalues and normalized eigenvectors of HF will be

denoted by )\ﬁm and l)\ﬁm> respectively:

> =

HF{)‘ﬁm "ﬁm"‘pm>
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If we take the inner product of both sides of this equation with <an|
and introduce the unit operator in the form Z [yk > <ykl to the right
of HF’ we obtain the component form of thzkeigenvalue equation analo-

gous to equation 21:

Z <an| Wg|vk> <yk]kﬁm> =X 3< an|x5m>
vk '
Before we can identify the components of F with these eigenvectors,
we must develop some of the properties of HF'
As can be seen from equation 23, NF has a periodic structure,

with only the number of w's varying from block to block. From the

definition this periodicity property can be written explicitly as
<an+p| 'HFlﬁm tp> =< an | HFIBm> + pwéaﬁﬁnm

This relation endows the eigenvalues and eigenvectors of HF with
special properties. The eigenvalues are in principle found from the
secular equation det (W - A1) =0. If A is replaced by A + pw, the
determinant is still the same. Hence if ?\’ is an eigenvalue, so also ié
A +pw for any integer p. This property can also be seen in the
Floquet solution, since b); redefining the summation index n we can

tack onto q any number of w's. To be precise we shall write

.,

. A_=q_ +*nw, where q_=2A is defined to be that member of the set
-~ “an a ? a al

T T

having the smallest absolute value.
The eigenvector components <0.n|>tﬁm > belonging to the eigen-

value ?yam are also related to each other by a simple shifting in m

and n. The eigenvector Mﬁm +p> obeys
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A > = A A >
HE Pty > = Mg A pmp
Take the inner product of each side with <an+p| and introduce the unit

operator 2 lyk+p> <yk+pl to the right of HF:
vk

ZK an+p | HFlyk'*'p> <yk+pfkpm+p >
vk

< antp !)g

= amtp Brtp

Apply the periodicity properties of }p and A[Sm

Z [’< an | HF[Yk > +Pw5ay6nk]< yk+pf)tﬁm+p >
vk

= (Nﬁm;"pw) < antp lkﬁm"‘p >

The pw terms on each side cancel, leaving

< q k> < vk A > =2 < A >
Z ol Ngly vkt lAg B Ot 4
vk
which is just the equation satisfied by < anf\ Bm >, Since they satisfy
the same homogeneous equations, are both normalized, and have relative

phases which we are free to choose, we can identify the components

completely:

a

\,< antp |2 >=<an|r, > (24)

pnip Bm

This relation will be used repeatedly in what follows,

and < an|X > are eigenvectors of HF with

Since both FI;

P Pm

the same eigenvalue qB = ABO’ they must be proportional:
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n e
Faﬁ— c§< anllﬁo> (25)

We can evaluate CJ5 with the aid of equation 24. The matrix F is

+ .
unitary: F F = 1. In component notation this becomes

%

Y
or
L 2 ig t . ~ig ¢t
~imwt “a n _inwt ﬁ) .
Z(ZF@Q ° MZFY;&Q ° 7 %
Yy m n
*i(q, ~agit

Because of the 50.{5 on the right, e can be set equal to one.

We replace the sum over m by a sum over £ =n - m:

3‘ 2* n ifiwt

n- ilwt _
_.,ZZFW Fyﬁe ”Saf—‘
y n £

Since the right-hand side is independent of time, the left-hand side must

be also:

n-{ *
Z Z Fya  Fyp = Caplio
Y n
Introduce equation 25 for the Fls:
F
Y n
We now use equation 24 to move { to the other side of the bracket:

Z <, lyn>< ynlkﬁ0> [Cﬁ{z = 8,880
yn
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The sum over y and n produces the unit operator

2
> ]cpj = 6,58

< Ny INgq 20

But the eigenvectors !)‘ﬁm > are orthonormal. So we obtain finally
[Cﬁlz = 1. Choosing the arbitrary phase to be zero, C‘3 equals one

and equation 25 becomes

n —
Fop = <cm|>\‘30 >

We have now completely reduced the problem of finding the unitary
Floquet solution F(t) of equation 18 to that of finding the eigenvalues
and eigenvectors of the infinite matrix HF’

Let us also evaluate the components of U(t;to) = F(t)F-l(to) in

Dirac notation: S\ be
‘:\/\i/ ’%‘V&A "

A

. _ ikwt -iq'ytz ' Uwt iq'\(to
Uﬁd(t’to) = Z ZJqﬂ{ IAYQ>e e <AY0 la-£ >e Oe
Y

We apply equation 24 to express both brackets in terms of lAyl > and

replace the summation index k by n=k +£:

_ Y
Uﬁa(t;to) = Z Z <ﬁn|>¢y‘e >e ¥
n vy!

1 (t—to) inwt

<AY£ [a4’3> e

The sum over y and { produces the same function of ’HF as the

function of Ayl appearing between the ket and bra:

-1 HF(t-to) inwt (26)

Uﬁa(t‘to) = Z <pnle a0 > e

n
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The matrix elements appearing in this equation are the components
of a vector lt> » which satisfies the Schr8dinger equation igt— !t> =
HFlt > with the initial condition [t > = |a0 >. Thus Uﬁa(t;to) ,
which is the amplitude that a system initially in atomic state a at time
to evolve to state P by time t according to the time-dependent
Hamiltonian Hc(t), can also be interpreted as the amplitude that a
system initially in state ICLO > at time to evolve to state Iﬁn > by
time t according to the time-independent Hamiltonian HF’ summed
over n with weighting factors einwt. In so saying we imply that Io,n >
and [ﬁm > represent states of a quantum system. Now a and B do
represent atomic states, but what are m and n states of, the oscil-
lating field? In HC the field was considered classically. Is applying
Floquet's theorem somehow related to quantizing the field? In chapter X
we shall investigate this question, and find that it is indeed reasonable
to associate |an > with quantum states of the oscillating field. In the
meantime we shall refer to |an >, etc. as "Floquet states" and give
an interpretation of our equations as if they were actual quantum states.
Our results will, of course, be independent of whether the reader regards
them as physical states, or merely notational devices.

Now let us study the transition probabilities in Dirac notation.

The transition probability from state a at time t, to state B at time

t is:
P (st ) = U, (tst )]|?
B+a o Ba'"’ "o

-i W (t-t ) imwt H H L (t-t )
= Z<ﬁkle PR ]a0>elmw °<am|e F&oo Bk > (27)

km
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-inwt

If we let [t > = A e olan >, then
o - n
n

" i(k—n)wto
[t, ><t, | = Z A Ace |an > < ak
nk

imwto
= Z IaO > e < am

m
. * .
with ; A A =], We can now write
, n ntm
n

(t-t )
° e, >1? (28)

-3 NF
Pg . Jtt) = Z |< Bk|e
k
and read it simply as the probability to go from an initial state Ito >,
which is atomic state a and a coherent field state, to a final atomic
state B, summed over all possible final field states.

It is usually necessary to average the transition probability over
the initial time tos keeping the elapsed time t - t, fixed, in order to
compare the theory with experiment. The reason for doing this in the
case of atomic beam experiments was mentioned at the beginning of this
chapter. In other kinds of experiments the initial time is often deter-
mined by the action of a relaxation process on the atom, and thus would
again be randomly distributed in time compared to the phase of the oscil-
lating field. This average is readily performed on equation 27, yielding

-1 W (t-t )
Pﬁ__a(t—to)=Z[<[3k|e Fooo |ao>|2 (29)

k

This differs from equation 28 only in the initial state. In equation 28 we
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had a coherent mixture for an initial state, presumably describing a
field of well defined phase. In equation 29 our initial state is a pure
Floquet state, and must presumably describe a field with undefined phase.
As can be readily verified from the periodicity properties, it does not
matter whether the initial state in equation 29 is [a0 > or [am >, so
long as it is pure.

If we also average over t - t, we obtain the all time average

transition probability:

ZZ |<ﬁk])t ><A [a0>]

k v4

1]

z BY ay (30)

where the N by N matrix T is defined to be a partial sum of the
squares of the eigenvector components:
Top - 21<dlh60>]2= Z ]<a0]kﬁm> |2 (31)
I m

If all non-zero differences lyﬁ_ A‘Gm are large compared to 1/7, where
T 1is either t - to’ or a relaxation time, whichever is smaller, then P
is the transition probability we want to compare with experiment.

Regardless of the physical interpretation, equations 29 and 30
provide a method of computing time average transition probabilities
which is much superior to previous methods that require a complete
evaluation of Uﬁu(t;to)’ squaring, and finally averaging away half of the
laboriously computed terms. Equation 29 merely says that we compute
the transition probability from a single Floquet state [aO > to various

states lﬁk > as governed by the time-independent Hamiltonian )Q;F.
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Since these probabilities decrease rapidly as k departs from 0, only
a very few terms in the infinite sum over k need be calculated. We
have, in effect, by introducing HF’ transformed the time-dependent
problem to a many-level problem with constant Hamiltonian subject to
the methods of chapters IV and V.

In addition to transition probabilities we can compute all of the
elements of the density matrix for the atomic states as a function of

time from the density matrix at any given time:
= Ult: L.
P(t) - U(t,to)P(to)U (trto)

We can then find the expectation value of any atomic operator as a function
of time by the usual rule of quantum statistical mechanics. When p is
expanded in terms of Floquet states it becomes a sum of terms oscil-
lating with frequencies corresponding to the differences between two

of the eigenvalues of the Floquet Hamiltonian. This is the general time
dependence of the expectation value of any atomic operator.

In many cases, such as a gas at low pressure, we observe an
expectation value averaged over initial (collision) times to keeping
laboratory time t fixed, and the initial value of p would be constant,
representing some sort of thermal equilibrium. Under this kind of
average the time dependence of the expectation value contains only the
exciting frequency and its harmonics and does not contain any q's.

If we compute the expectation value of an electric or magnetic moment,
then following the semi-classical theory of radiation we can use these
oscillating moments as classical sources to find the spontaneous radia-

tion emitted by the atom at harmonic frequencies. This procedure was
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used by Armstrong et al. (36) to predict the existence of optical har-
monic generation in matter. They used the solutions of time-dependent
perturbation theory, but the formalism of this chapter is exact, pro-
vided only that eigenvalues and eigenvectors of the Floquet Hamiltonian
are found. In the following chapters we have concentrated on transition
probabilities, leaving the large, interesting subject of harmonic genera-

tion for future exploration.
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VII. IMPROVED PERTURBATION SOLUTIONS -- TWO LEVELS

We now turn to the solution of equations 1, utilizing the formal
methods developed in chapter VI. In this chapter we shall apply the
perturbation techniques introduced in chapter IV to the Floquet Hamil-
tonian and discover the basic resonance properties of a two state system.
We shall use the phase factored form, equation 2, since it has a larger
frequency. It is also traceless, so by equation 20 the characteristic
exponents can be written +q and - q. The Floquet Hamiltonian for

equation 2 is

-A-2w c 0 0 0 0 a -1

c A-2w c 0 0 0 B -1

0 C RPAN c 0 0 a 0
(32)

0 0 c A c 0 g O

0 0 0 c -At2w c . a 1

0 0 0 0 c A+2w B 1

where A = 17 (w - wo). The row indices are given at the right to help
identify the components.

If the Floquet Hamiltonian for equation 1, shown in equation 22,
is examined closely, it will be discerned that E‘3 is coupled through ¢
to Eai w, and indirectly to E(1 * 3w, Eﬁ * 2w, ..., but not at all to

Eo.’ E,*w, ... . The whole system of equations can be separated into

p
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two independent sets of equations; the sets differ only by one w in energy
scale. The phase factoring transformation has shifted these two sets

so they coincide with each other, giving us a simpler HF to work with.
This phenomenon will always occur when the phase factoring described

in chapter IV produces a Hamiltonian of frequency 2w instead of w.

Let us first investigate the transition probabilities near the pri-
mary resonance w=® w_, using equation 29. The Floquet states |a0>
and “30> are nearly degenerate, while all other states are relatively
far away. If we simply neglect all other states, we are making the rota-
ting field approximation discussed in chapter III. The rotating field
solution will be called the zeroth order solution to equations 1 near
resonance, Considering c, &, and q of the same order we seek solu-~
tions to higher orders in c/w.

To get a first order solution we merely treat the other states by
the degenerate perturbation theory of Appendix A, obtaining the two level

matrix

(o]
[ A—‘Z-a

(We have neglected q and A compared to w in the denominator.) As

in chapter IV the first order solution is then given by equation 7 with
2
n=1, w o + & , and u = 2c. This is the Bloch-Siegert solution,
res o w

The first order solution was so easy, we ought to work out the
second order. To do this we shall evaluate the eigenvalues and eigen-

vectors of Ng carefully, illustrating explicitly the use of our theory.
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We determine the eigenvalues from equation A8 of Appendix A. The
only change from first order to second is to retain q and A in the
denominators of the c2 terms. We then expand these terms on the

basis of g, A<< w:

2
C

C Jay q
———— S — F et
gF Ax2lw * Zw(1+2w Zw)
2

38

(W)

2 2
If we define A'=4A - -g—w—- i—izz (A-%‘;)u—z;—c—w?)’ our two by two

matrix becomes:

2
Al -_C...._g.. c
4w
ch
c A - =
4w

Its eigenvalues are q = - -C% + p, where p = (c2+ A'Z)I/Z. Solving for
2 4w
qQ q=(1 - f—z)p. In detail we have
4w

2 2 c:2 2 CZ 2 CZ 2 c5
q =C(1-z-2-) +(A--2—w—)(1— 2)+order—§- (33)

2w w

We see that q 1is still a hyperbolic function of A, as it was in lower

orders of approximation. In terms of this q the eigenvalues of Mg are

A _=q+t 2nw
an
(34)

Xon

The eigenvector components for the two by two matrix are found

i

-q + 2nw

from equation AlO:
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, 1/2
<<:L0[A0LO>=N(1’Z‘pA ) = - <pofag, >
/ (35)
. 1/2
<po[A > = N(.Il.'_;f__) = <a0[rgy>

where N is a normalization constant approximately equal to one. From
equation A6 of perturbation theory, the other components can be ex-

pressed in terms of these:

<01|Aa0>=mc—_—2—‘3—<[30!)tao>z %{% (p;PA' v
<P = graTar <20 g7 = 75 z-pAl)l/2 (35)
<allgg> = A <Pge> = 75 (Bg— )1/2
<I3~1b\ao>=-_-q-—'-_—£—_*-_—2;—<a0]kﬁo>z 2%( -;pAn)l/Z

All others are of higher order and will not be needed. The normalization

is

]<a13xao>]2+ l<noj>xao>]2+ ]<;30]Aao>jz+ |<p -1jxa0>]2=1

2
giving N =1 —5—2.
8w

To compute the matrix elements of exp (-i },(Ft) we use the ex-

pansion in terms of the eigenvectors of HF :

-i Mgt -idot
< Bkle !a0>=§‘<ﬁk|7t >e VP<x  |a0>
Lo yn yn
yn

For k =0 we have two terms:
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-i gt -i?xaot<A

[a0 > = < gofa g >e a0 >

(10I

—ikﬁot
+< po]kﬁo>e <Aﬁ0{a0>

<50{e

The other terms in the sum are of third order or higher. With the eigen-

values and eigenvectors just computed this reduces to

}uo>=-i-§-(1-°2)sinqt

For k=1 or -2 we have only terms of second order and higher. When
squared these give fourth order terms, which we are neglecting. For
k = -1 we have four terms of first order, corresponding to the yn
values: a0, B0, a-1, B-1. Using equation 24 all components can be
changed to those given in equations 35, giving us

ZCTS E:-%_)—-e-iqt +_§w_ g*%ieiqt_ _é:_‘; -;?)' e-»iqteZiwt

- ' . -
_ < A e1qteZm>t

2w P

This can be rewritten as

c LAY LAY 2iwt
= | {cos gqt + i— sin qt) -~ (cos gqt - i-— sin qt)e
5= [(cos q 5 sin qt) - (cos q =~ sin qt) ]

Now we are ready to evaluate the transition probability by equa-

tion 29:
-i N iM

t it 4
Pgaglt) = |<po)e T |a0>|%+ [<p-1le T [a0>|%+ o)

c:2 .::2 2 2 c2 2 ar? 2
= =~ (1 - —5) sin"qt +——2-[2 cos“qt + 2 =5~ sin"qt
P 4w 4w P
12
-2 coszqt cos 2wt +-2—é2——sin2qt cos 2wt
P

1

A
S8 sin qt cos gt sin 2wt]
P
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Rearranging some of the trig functions we get finally

% c2 .2 c2
Pﬁ__a(t)=-—z(l-—-2-)81nqt+———2
P @ 2w
CZ CZ 2+ AtZ A’
-3 [(—2- + P—-—-Z—--—- cos 2qt)cos 2wt + 2 —sin 2qt sin 2wt]
40 P P P

(36)

We should remember that this is the transition probability averaged

over initial times., The transition probability with the initial-time
dependence included (equation 27) contains many more terms. The use of
equation 29 has saved us the trouble of computing these extra terms which
we do not observe experimentally.

When % is small and we are close to resonance, the second line
of equation 36 oscillates very rapidly compared to the first line and may
be disregarded as not observed. The remainder is of the Rabi form,
except for a small decrease in amplitude and the addition of a constant
term, representing the off-resonance background transition probability.
Such effects are usually created by experimental conditions anyway.

The line shape retains symmetry with respect to W, but not with
respect to w.

In sum we find in equation 36 that the modifications produced
in the Rabi line shape (equation 3) by the presence of Hl in equation 2
are a shift in the resonance peak, a reduction in amplitude and the addi-
tion of a base. These modifications do not destroy the basic features
of the line shape. Similar types of modifications due to oscillatory,
nonresonant perturbations can be expected in all resonance transitions,

Henceforth we can utilize the Rabi-type line shapes found from chapter IV,



-61-

equation 7 with increased confidence of their validity, even when Zoc_
is as large as L
g g
In chapter II third order time-dependent perturbation theory sug-
2
9c

gested that there be a resonance at 3w =w_ + o We now have the
o w

tools necessary to study this possibility. A will no longer be a useful
parameter, so we replace it by }Z(w - wo). Then the diagonal elements
of NF contain a succession of half integral numbers of w's plus or
minus L w e Looking through } F Ve find that when 3w= @ s |a0>

2
is approximately degenerate with {ﬁl >, Applying the perturbation

theory with these two states treated as degenerate and setting « = 3w

in the denominators of the perturbation corrections we obtain the two

by two matrix

-}-w-{-}_w +3C2 ..._C_%
2 2 o 4w 4("‘)2
& 50 1, 3¢
4—(:2 2 2 o 4w
-i Wt 2

The transition probability |[<p1l]e F1a0>|“ is then of the Rabi

type given by equation 7 with n = 3,

302 9cZ c3 9c3
mres = wo+ 5o or w +E— and u == or >
o) 2w Zwo

The other terms in the sum in equation 29 are of order (c/m)z. So
there is indeed a resonance, corresponding to a triple quantum transi-
tion. Note that there is a frequency shift analogous to the Bloch-

Siegert shift, but that it is greater than the line width, and is thus very
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important for experimental observation. The Rabi-type formula for
this transition has been previously derived by Winter (21), His results
agree with ours in frequency shift, but disagree by a factor of two in the
line width. Autler and Townes (1) were apparently unaware of this
resonance, although their numerical results revealed it.

Strong fields are required to observe this transition, because
if the line width is much less than the experimental resolution, it can-
not be seen. For example in a typical atomic beam experiment a transi-
tion at 1010 cps might be optimally excited (2c= w/t) by about one milli-
watt of microwave power input to a resonant cavity, giving a line width of
about 104 cps. At this low power level the Bloch-Siegert shift would be
only 10‘3 cps and the three quantum resonance would have a line width
of the order of 10_9 cps, neither of which is anywhere near observable.
In order to excite the three quantum resonance optimally (c3/2w2 = 7/t)
we would have to supply 100 kilowatts of input power at 1/3 x 1010 cps,
assuming a resonant cavity with the same Q. We would then have a line
width of 1/3 x 104 cps (we are assuming t is the same in both cases),
and the peak frequency would be shifted 375 kilocycles from 1/3 x 1010
or 333 megacycles.

The three-quantum transition can be thought of as a result of the
alternate actions of the rotating and anti-rotating components of the oscil-
lating field. For our physical example of an electron in a magnetic field
we can describe it as follows., With the electron initially in the lower
state m = - 1/2, it first absorbs a photon from the rotating (M, = +1)
component of the field, going to the upper state m = 1/2 with non-conser-

vation of energy. It cannot absorb another rotating photon because of
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angular momentum limitations, but it can absorb an antirotating ( M = -1)
photon to return virtually to state m = -1/2, but adding energy. Finally
it absorbs another rotating (MZ = + 1) photon to arrive in the m =1/2
state with energy and angular momentum conservation. Marjorie and
Brossel (4) show this pictorially, except their figure implies that the
photons are absorbed in a different order. Since the energy noncon-
serving intermediate states have very short lifetimes, a very high photon
density is required to get all three photons in before the system decays
back into the initial state. The classical solution of this problem will
also show this resonance.

" One might next inquire if there are other multiple quantum transi-
tions for the two state system. The unperturbed energy associated with
1

. 1 1 .
|o.0> is —§w+iwo, and with [ﬁp>, (2p +—2—

approximately degenerate for (2p +1l)w = W Thus multiple quantum

Joo - %2— w,- These are
transitions should occur for Wy equal to any odd harmonic of the driving
frequency. They do not occur at even harmonics, because our perturba-
tion has only off diagonal elements with respect to the atomic states. In
the case of the electron in a magnetic field this selection rule can also be
understood from the conservation of the z component of angular momen-
tum.,

We have already done the cases p =0 and 1 in this chapter. To
the same approximation we can just as easily find the Rabi-type solutions

for any value of p. The result is equation 7 with

n=2p+1
2 2 2
_ 2ptl ¢ (2p+1)° ¢
Wres T W pp) » °F “% ﬂ_p%fr '&): » P>0 (37)
2p+1 / 2p 2ptl
a = (2pHl) e - p=0

or
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These results were also found by Winter (21), except that he did not know
the numerical factors in the u's.

Keeping ¢ and w {fixed and looking at the transition probability
as a function of w equation 37 says we should find resonances near
w, = w, 3w, 5w, Tw, ... . The shifts are all towards smaller W, and
decrease with increasing p (compare figure 6b). The widths decrease
rapidly, because of the powers of c/w. However even if c/w were
large, the widths would eventually decrease because of the factorials in
the denominator. So only a finite number of resonances would have
sufficient width to be observable.

Keeping ¢ and wg fixed and looking at the transition probability
as a function of w, equation 37 says we should find resonances near
w =W, w0/3, wo/S, ..+ « The shifts are all towards larger w (com-
pare figure 10). The widths decrease as p increases only when c/wo
is small. The transition probability is probably simpler as a function
of Wy than as a function of w. In magnetic resonance experiments it
is usually measured as a function of wg by varying the static magnetic

field.
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VIII. THE CHARACTERISTIC EXPONENT
STRONG FIELD SOLUTION FOR TWO STATES

The procedure for solving equations 1, as developed in chapter VI
and illustrated in chapter VII, is to write down the Floquet Hamiltonian,
determine its eigenvalues or the characteristic exponents, determine
the corresponding eigenvectors, and then substitute into one of the
equations 26, 28, 29, or 30, The most important and most difficult
step is the evaluation of the characteristic exponent.

It was pointed out by Autler and Townes (1) that when we have
two isolated states a and P subject to a strong oscillating field at
frequency w and then observe a very weakly excited transition between
this pair and a third far removed state y, resonance in the latter transi-
tion occurs when the frequency of the weak excitation w' = Ey— q,- hw
or EY— qB— nw, where qa+ nw and 93 + nw are the characteristic
exponents for the ,P system or the frequencies of the components of
the U matrix. Hence the values of the characteristic exponents are
experimentally observable quantities.

Since the characteristic exponents are the eigenvalues of a many-
level system, we can plot them as functions of a parameter and analyze
the graph for resonances according to the discussion in chapter V.
Autler and Townes (1) made such a plot of the characteristic exponents
for equations 1 as a function of w. We shall instead look at the character-
istic exponents as a function of Wy keeping w constant. By inspection

of such a graph we then locate resonances and form a qualitative idea

of the transition probabilities.
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Because of the periodic properties of the eigenvectors of the
Floquet Hamiltonian and the simplicity of only two atomic states in
equations 1 we can actually find quantitative information about transition
probabilities from a graph of the characteristic exponents. Let W,
correspond to the y parameter of chapter V. Then, referring to

equation 32, all unperturbed Floquet states }an > have slope a = + -1-2-,

and all states |Bm > have slope ag= - -12 . From equation 13 we have
o\
e0 _ 9q _ 2
T T, " )t g >
- v

We have chosen the a's to be independent of £. We can thus perform
the sum over I and express the result in terms of the T matrix

defined in equation 31:

9q _ 1 1
5o, = 2 Taa” Z Tpe (38)

From the normalization of the eigenvectors we have
S YN S
z ay By ye vB
Y Y Y Y

These equations alone define all four components of T in terms of any
one. The additional relation among the T's found in equation 38 com-

pletes their determination:

_ _ 1 9q
To,a'TBE:' 2+5Uo
— -1 9q
Tap = Tpa = 2 5o,

We now substitute these into equation 30 and find for the all time average
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transition probability

2

= 1 9
Pge g = -2[1-4(55210) ] (39)

This remarkable result permits us to sketch the time average transition
probability directly from a plot of the characteristic exponent. In parti-
cular it tells us that resonance peaks occur at %}‘1 = 0 and always have
magnitude one half,

For the several reasons outlined above, a considerable effort
was expended in determining the characteristic exponent for the simple
two level problem as a function of the parameters c, w, and W, using
every conceivable line of attack. To keep the equations as concise as
possible the work was done in a dimensionless notation, utilizing

as a scale parameter. We define

_ 2c
X — —
SV
_ “o _ 24
y=o erl-y=-g
(40)
.= 2
w
_
T3
In terms of this notation equation 2 becomes
q a -1ty x(1 + e4w) a
L 3F ( ) = ( -4iT ) ( ) (41)
p x(1+e 7)) 1-y P

The Floquet Hamiltonian becomes
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-3-y x 0 0 0 0 . B -1

x ~lty x 0 0 0 . a O

. 0 x l-y x 0 0 . B O
(42)

. 0 0 x 3ty x 0 . a 1

0 0 0 x 5-y x B 1

0 0 0 0 x Tty a 2

and equation 39 is
2
= _ 1 dz

Pﬁ._(,'*j;_'[l‘('g?)] (43)

The characteristic exponent for the differential equation 41 is z. We
wish to evaluate z as a function of the two parameters x and y. We
shall first mention some general properties of z(x,y) and then find
approximations to it valid for various regions of x and y until we have
a complete picture of its behavior. Then at the end of the chapter we
shall interpret the results in terms of transition probabilities for the two
state system excited by a strong oscillating field.

The Hamiltonian HC in equation 41 has frequency 4 (period m/2)
and trace 0, Thus if z is a characteristic exponent, so also is z + 4n
and -z + 4n for any integer n (compare equations 34). This multiple-
valuedness must be remembered, since some of our approximations will
jump from branch to branch.

The elements of HC are entire functions of x and y. Then,
as shown by Moulton (35), any component f(T) of the solution of the

Schr8dinger differential equation is also an entire function of x and vy
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at any value of 7. If we write f(T) = e—iZTz Anei4n'r, then f(r/2) =
e-ivz/Z £(0) or e-inz/z is an entire functidn of x and vy. By writing
differential equations for the real and imaginary parts of f separately
we can similarly show that cos mz/2 is an entire function of x and v.
The multivaluedness of z comes entirely from the inverse cosine
function,

In principle z is determined from the eigenvalue equation or

infinite set of coupled recursion relations

i
(]

(4n -1 +y - z)An + xBr1 + XBn-l

(44)

i
(=]

(4n +1 -y - z)Bn txA +XAn+1

By juggling these equations one can determine the symmetry properties:

z(x,vy) = z(-x,y)

z{x,y) -1 =1~ z(x, -y)

Hence it is sufficient to study 2z for positive x and vy.

Since every Floquet state in equation 42 is connected to every
other one by a unique chain of x's and intermediate states, we expect
the eigenvalues of 'HF to be nondegenerate for x> 0, A possible
proof is to start with a two by two submatrix. By explicitly diagonalizing
this we show it to be nondegenerate. We then add a third level. With
the first two diagonal with respect to each other, their interaction with
the third level is of the form of a perturbation due to a single level and
leads to nondegeneracy for all three levels by an argument given in

Condon and Shortley (37). This argument can be repeated, adding in one
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level at a time, for any finite submatrix, and presumably by induction
to the infinite matrix. Nondegeneracy in z means that z cannot be

the same as any of its other branches, or that
z#0, 2, £4, ... (46)

Thus in a plot of the multiple values of z, the lines z =0, £ 2, £4, ...
can never be crossed by 2z, or each branch of z is confined to a strip
of height 2 (see figure 5).

When x = 0 the solutions of equations 41 are simple exponentials:

Q= Caei(l—y)'r B = Cﬁe-i(l-y)'r

Thus in the limit of x approaching zero we must have z = *(1-vy) + 4n.
Plotted as a function of y this represents an infinite grid of inter-
secting lines of slope =y, as in the right portion of figure 5. For
x > 0 we have just seen that the z curves cannot cross, hence each
intersection point must be replaced by a little hyperbola. Each branch
of z is then continuous in y, and nearly a triangular wave of constant
amplitude but slightly rounded corners. This is the very small x
approximation,

We shall now consider an approximate solution for large values
of y. It is obtained by the so-called adiabatic approximation in which
we work with instantaneous eigenfunctions (compare reference 3,

p. 213 f), We solve the eigenvalue equation

HC(T) S(rt) = S(7) E(T)

at each instant of time T. Since HC is periodic in T, so also are S

and E. Let us define a transformed solution W by
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W(r) = 5"Y(7) F(m)

where F 1is a solution of i(d/d'r)F = NCF. Since S 1is periodic, W
has the same characteristic exponent as F. W now obeys the

Schrddinger type equation

. d _ d -1
IEW—[E-*.I(—&_’I-:S )S] w

The adiabatic approximation consists of neglecting ((—%_— S—l)S relative

to E. Since E 1is diagonal we then have the approximate solution
T
Wi = W) exp [ -i{ B ar]
0

Let E(T) =Q+ E('T), where Q is the time average of E and E is the
oscillating part. Then we can write W as

T _ .
wW(r) = W(0) exp [-13‘ E(7) dT] e—lQT

0

which is just the Floquet form of solution., Hence the characteristic
1

exponents for W or F are the elements of Q = (2/11')5. ﬂE(T) dr.
0

Using the NC of equation 41 we find

E(T) = crz[ (1 - y-)Z + 4X2COSZZT] 1/2

The integral for the time average can be expressed in terms of a com-
plete elliptic integral of the second kind. Our approximation for z is

then

2 2. . 211/2 2x N2 ( 2ix
z % Z2[(1-y)%+ 4x7] E([(l_y)2+4x211/2 ) =2apnE(EE) wn

The first form is useful for tabular evaluation of the elliptic integral,



-72-

while the second is useful with a power series approximation for it.

By computing (a%- S-l)S and comparing with E we find that this ap-
proximation for z is valid when y >>1 and y?‘ >> x, Because of these
restrictions an expansion of equation 47 in powers of x/y may be an

equally good approximation:

x2 3 x4
zzl”y_'_y—'+z_'§'oon (48)
Yy

In its region of validity this approximation is monotonic, hence it does
not stay in a strip, but crosses from branch to branch of z.

Our next approximate evaluation of z will be for small values of
y. To find such we want a differential equation with the y terms off
diagonal and the x terms diagonal. This merely requires a change of
dependent variable. Starting with equation 41 we first undo part of the
-1

hase factoring by defining a(7) = e T'a(T), b(T) = e’ T (7). Then a and
p Y g

b satisfy the differential equations

, da

igr =va + (2x.cos 2T)b

(49)

db

igr = (2x cos 2T)a - yb

and have characteristic exponents =% (1 - z) + 2n, Adding and subtracting

these two equations we obtain

2x cos 27(a +b) + y(a - b)

i

. d
1E(a+b)

y(a + b) - 2x cos 27 (a - b)

H

. d
l-a"—’;(a—b)

These equations become uncoupled for y = 0 and can be solved exactly,
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yielding a = cos (x sin 27) and b = - i sin (x sin 27). We can proceed
to find the effect on these solutions of a small y by a method similar
to that slipped into chapter IL.

Define: ax b = ui('r)e:F ix sin Z’Tel(Z - T

The u's .obey

. + + +21 1
i S = (z - Do +ye 2ix sin 2'ru=F

+
For y=0 we have z =1 and u =1. Using these as first approxima-

tions for u, and expanding the exponential in Fourier series

* + 2inT

iad?u ={z - 1) +yZJn(2x)e

n
If 1 -2z is to be the characteristic exponent, u must be a periodic
function of 7. The constant terms on the right will be proportional to
T upon integration and hence not periodic. Therefore we set them

equal to zero, obtaining the approximation
z=1- yJO(Zx) (50)

By the y symmetry in equation 45, the yz term in the power series in
y vanishes. The y3 term involves a double sum over a product of
three Bessel functions, which is inconvenient to evaluate. Bessel functions
are always less than one, so equation 50 is a useful approximation for
y << 1, Since Bessel functions fall off as X-l/z for large x and the yn
term is multiplied by n Bessel functions, equation 50 is also useful for

2

y << x, when x is very large.

We now take up the large problem of a small x approximation
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carried to a high order. The equations 44 are three-term recursion
relations. In such cases the ratios of coefficients and the z param-
eter can be expressed in terms of continued fractions, This was the
method used by Autler and Townes (1) to solve equations 1. In our

notation their equation 11 becomes

XZ XZ
. x
1-y+z- 3tytz-... -3-ytE- iy,

Autler and Townes evaluated the continued fraction numerically to
obtain their plot of the characteristic exponent, but found the evaluation
difficult near y equal to an odd integer. We shall use the continued
fraction to find z as a power series in xz. We could just make a
straight algebraic expansion of equation 51, but instead we shall only
imagine the expansion, so as to determine the general nature of the
coefficients of the various powers of x, and then use undetermined
coefficients plus other information to perform the final evaluation.

Let z=1-y - ¢(x,y)e Then ¢ obeys the continued fraction

equation

XZ 2
o= —%X b X (52)

2 - 2
24y ey, AIes gy

Let olx,y) = Z tpzn(y)xan. ?y = 0. From the symmetry relations
(equation 45) $2n is an odd function of y.. If we were to compute ¢
by iterating equation 52 we would find that ¢, are partial fraction

functions of y. The denominators 1+ y would appear in ¢,. Upon
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substituting ?5 in the right side of equation 52 and expanding, Py
would contain (1 % y)-3. Not until we reach order x6 in the expansion
would 3 *y appear in the denominator. By thus studying carefully the
way in which the expansion of equation 52 would develop one arrives at

the following partial fraction expansion for the ¢'s:

Ak n-2 n-
k+z (3V) z (5Y)

o L U A s | k=1

n-~ I -

¥ e
& e & oL & o

2n-1

Pon~

2n-1 2

The second line is obtained from the first by antisymmetrization in vy,
Any sums having an upper limit less than one are to be omitted. This
form of ¢ can also be inferred from the expansion of the infinite deter-
minant performed in Appendix B.

The form given above for z has poles at y equal to odd integers.
But we have shown previously that cos mz/2 has no poles for finite x
and y. The cosine is a function of the square of its argument, so if z

has no poles, we are all right:

=Q-y-0f=0-9%-20 -y +ed

The cross term and square term permit a possible cancellation of the
poles at y =1 in each order in xz, so that zz can become analytic at
y =1, We shall require z2 to be analytic there. This will give us
many relations among the coefficients in equation 53. The cosine is

equally well a function of the square of its argument plus any number of
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half periods. We shall also require that each of (z + Zn)2 be analytic
at y = 2n +1. These requirements are then equivalent to having
cos mz/2 an entire function of Ve

In addition we have from the power series expansion of Jo in

equation 50 that

(-n"
¢, = y (54)
2n (n!)Z

in the limit of small y. From the power series expansion of the elliptic

integral in equation 47 we have that

2 n
v, = - [(znr-lll) 1 J (U7 -2nt (55)

in the limit of large y. These relations plus the analyticity require-
ments are more than sufficient to completely determine the coefficients
in equation 53. We shall do the lowest orders to illustrate the method.

For the order x2 we have from equation 53

e W
25 1y T THy

From equation 54: ¢, = -y at small y. Expanding ?5 the coefficient
of y is 2Al' Hence ZA1 = -1, From equation 55: qozzy-l at large

y. Expanding ?5 the coefficient of y-l is -ZAl. Hence —ZA1 =1,

Both equations give A1 = - lz-. Thus ¢, = -y(l - YZ)-l.

For the order x4 we have from equation 53

A A A A A A
1 1, 2 2_ . 3 3

¢ = - -
P aw? awm? aey? oaw)’

From equation 54: Py = %y at small y, giving us the relation

1 . 3 -3
ZAl + 4A2 + A3 = Z- From equation 55: Py = - (Z)V at large v,
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giving us two equations, since there must be no term in y :

- _ 3
-2, = 0 -2A) t4A, - 2A; = - 3

For analyticity about y =1 we expand z‘2 in powers of x and make

coefficients of each power analytic:

2 2 2 2 4 2 4 '
z7=(l-y-9)" =(1-y)7 - 2(-y)e,x" - 21-y)p x" + @ x" + Ox ©
From its form in equation 53, (1—y)<p2 has no pole at y =1, In order
to make -2(1-y)<p4 + q)g analytic at y =1 we expand qog in a partial
2

fraction series, We have terms in (l-y)"1 and (1—y)“2 from both ¢

and (l-y)tp4. By requiring these to cancel we obtain the relations

[y

=0 -2A, t==0

-2A, - 3

2 1%

S

Altogether we have five equations for the three coefficients. They have

the consistent solution

For the order x6 we have six coefficients to find, including five

3 we require (z + 2)2 to

A's and B,., To remove the new pole at y

1.

be analytic there or (3-y)¢6 analytic at y = 3, which it is by equation 53,

1]

At y =1 we require analyticity of —2(1-—y)<p6 + 20,94, giving us four
immediately soluble relations. From the large y approximation we get
three, and from the small y approximation, one more equation. The
eight equations for six unknowns have consistent solutiqns, of course.

The extra equations provide a check on the arithmetic.
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Although this procedure is awkward to describe, it requires
enough less algebra than more direct methods of obtaining the expansion
in x, that it has been successfully carried through order x8. Half
of the work in this high order was the reduction from the partial fraction

series to a more compact form. The final result is

2 3,2
p=1-y+ X xZ-X(1+3X)x4+X(1fZZS)x6

1-y 4(1-y%)3> (1-y2)
3 5, . 2

+ Y x6"%""Y’—"z5 XS"Z‘ L("iz—327) %

4(1-y%)%(9-v%) (1-y%) (1-y%)

3, 2

.5 _y(5-y7) B. 23 y R

4 (l—y2)4(9~y'2)2 64 (1-y2)2(9-y2)2
+ order xlo (56)

For computation we would not always use this equation itself, but (z+2n)2,

since these series converge faster. For y between 0 and 2 we would

use

2
2 _ 2 2y _2 4 (1-5y-2y~) _6
z" = (l-y)° + x“ - X x* + L %
I 2(1+y) 2(1+y)>(9-v9)

+ order x8 (57)

and for y between 2 and 4

2 3., 2 2
(2+2)° =[3 Sy + Lo xt - x_(l_té%'_) Ay (13;2 5) x6:‘
l-y 4(1-y") (1-y%)

+ Y 55 X6 + order x8 (58)
2(1-y7)"(3+y)
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and so on for other regions in y. However equation 56 is satisfactory
for regions between narrow resonances. These series are good enough
approximations to reproduce the numerical results of Autler and Townes.
The locations of the various resonance peaks are found by solving
d(z+2p)/dy = 0 for y. Using an iterative solution we find these peak
locations as power series in x. The x2 term will just give us the same
results as perturbation theory (compare equation 37). However higher
order terms are not too difficult to evaluate from equations 56 :to 58.

For the primary resonance we obtain from equation 57 the peak location:

=1_§f_ _ 5x4 _ 61x6 _
Y Z 4 2048 " "

Converting to dimensional notation and solving for w instead of W, the

resonance condition is

2 4 6

wsa t S, S 32 (59)
o 4w 32w
o o

The c2 term is the Bloch-Siegert shift and the next two terms are the
higher order corrections to it. One would have to go to sixth order to
obtain this result by perturbation theory.

With all the preceding approximations there is still a sizeable
gap between small and large y atlarge x in which we know nothing
about the behavior of z. There seems little hope of finding any known
function which looks like Bessel functions at small y and elliptic inte-
grals at large y. Hence resort was finally made to numerical computa-
tions. The method used was to integrate the differential equation numeri-

cally over one period and thus obtain the A matrix of chapter VI. The
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characteristic exponents are found from the eigenvalues of A, The
last step is particularly easy for a two level problem with traceless
Hamiltonian, For then the matrix of characteristic exponents Q is
of the form qo,. Hence Tr e QT - 71 A= 2 cos qT. If the a and B
in equation 41 are fixed by the initial conditions a(0) =1, f(0) =0,

then

o(T) -BH(T)
A = U(T;0) = (

)

where T is the period and the second column was determined by the

B(T) o™ (T)

restriction that A be unitary and have determinant one. Taking the

trace of A we find cos qT = Re a(T), or in our dimensionless notation
.

cos Z2 =Rea (7) (60)

A program was written for the Burroughs 220 electronic digital
computer at the Institute, taking advantage of an existing subroutine for
numerical integration of differential equations by the Runge-Kutta method.
The program actually integrated equations 49 with a(0) =1, b(0) =0

up to T = m/2. It then computed z by the formula
_, 2 -1 ™
z-—(;)cos [—Ima(-z—)] (61)

which is equivalent to equation 60. The inverse cosine subroutine auto-
matically selected that branch of z lying between 0 and 2. The
normalization [a(T) fz + |b(T) [2 was also printed out. Its deviation from
unity gives a rough measure of the accuracy of the integration. As x and

y increase the right-hand side of equation 49 varies more rapidly and one
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has to use a smaller interval in the numerical integration to retain
accuracy. Hence even with a computer it takes more time to get results
for large =x.

The data from the computer was first used to verify the various
analytical approximations. In particular it was found that equation 57
gives the value of z to within 0,002 for x =1 and y anywhere between
0 and 2, being even an order of magnitude better at y =1 and near
y = 0. Equation 58 gives comparable results for y between 2 and 4,
while equation 56 is satisfactory for larger values of y. These equa-
tions still give some good results at x = 1-1/2, but have rather large
errors for x = 2, since terms in xlo are then important. The agree-
ment between the results of machine computation and analytical approxi-
mations; was particularly encouraging because of the disparity in the
methods.

The computer was then used to map out the characteristic expo-
nent z in the regiony =0 to 5 and x = 0 to 6, From a study of this
data it was easy to infer the behavior of z for all x and y. Sample
curves of z as a function of y in the range 0 to 7-1/2 are shown
for x = -12-, 1, and 3 in figures 6a - 8a. We shall discuss the meaning
of figure 6a in detail and then indicate how increasing x modifies the
picture.

For the "small" value x =1/2 (this corresponds to Hy = H_ for
a spin 1/2 particle in magnetic fields) we see from figure 6a that z
is essentially a triangular wave as in the limit of small x, except around

y =1 where the corner is nicely rounded off. Actually all the corners
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are rounded, but as y increases this rounding occurs on too small a
scale to show in the figure. In figure 5 we show this same curve together
with several other branches of z. Wherever we have a corner in one
branch we have one’in the other branches such that two branches come
very close to each other. By the arguments of chapter V we then say
that the corners of the triangular wave in any branch of z are actually
little hyperbolae and correspond to resonances in the probability for
transition from state a to B. The corners near y =3, 5, 7, etc.,
correspond to three, five, seven and more quantum resonances of the
type discussed in chapter VII. From equation 16 the distance by which

a rounded corner falls short of the bounding line z =0 or 2, which is
half the distance to the other branch of the little hyperbola, corresponds
to half the width of the resonance. These widths were determined by
perturbation theory in chapter VII (equation 37) and found to be exceedingly
small for the higher resonances. For the resonances near y = 3, 5, and

2, 6 x 10_5 and 10-7 respectively.

7 in figure 6 these widths are 1.6 x 10~
Since the separation of the resonances is large compared to the widths in
the triangular wave region of the z curve, the Rabi-type formula(equation
7) gives a good representation of the resonance line shape.

The broadly rounded corner near y =1 corresponds to a bread
resonance, For such broad resonances, and inbetween resonances, i.e.
anywhere that z 1is not close to any of its other branches, the 2z fre-
quency of oscillation in a Rabi-type formula becomes comparable with
the frequency of the oscillating field, which is usually rapid compared

to the action of any relaxation mechanism or the response of physical

apparatus detecting the occurrence of transitions, What one observes in
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these cases is the all time average transition probability of equation 30.
For our two-state system we can use the special result equation 43 to
obtain the average transition probability directly from a graph of z as

a function of y. Equation 43 is what we have plotted below the corre-
sponding z curve in figures 6b - 9b. By comparing the lower or transi-
tion probability curves with the upper or characteristic exponent curves
one can learn to visualize the lower curve when only the upper one is
available. Thus the resonances in the lower curve, figure 6b, corro-
borate our description of the resonances implied by the upper curve,
figure 6a.

The vertical lines represent resonances whose widths are too
narrow to show on the scale chosen, although they all reach the theoreti-
cal maximum height of one half. In a physical experiment the finite
resolving power of the apparatus reduces the height of narrow resonances,
so much so that those of very tiny widths are not observed at all. For
example, if in observing the line shape shown in figure 6b we had a resolv-
ing power of 10—3 (e. g. in magnetic resonance our static magnetic field
H0 were constant to one part in a thousand), then the y = 3 resonance
would have the full height shown, the y = 5 resonance would have one
sixteenth that height and the y ® 7 resonance would not be seen. In
normal spectroscopic work x is very small and only the primary reso-
nance is wide enough to be seen. This is quite fortunate, for spectra
are complicated enough as it is without having to worry about a series of

multiple quantum transitions for each line.

As we increase x each resonance broadens and shifts toward
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smaller values of y. This is clearly shown in figure 7 where x =1

(I--I1 = ZHO). The fundamental single quantum resonance has moved to
y=0,70r w=14 W, It has also become so broad that the triple
quantum resonance sits on the side of it and the higher resonances sit on
its tails The large transition probability at y = 0 arises from the over-
lap of the single quantum resonance transition with its "image" at nega-
tive y. (The antisymmetry of z implies symmetry of the time average
transition probability in y.) The curves for x =1/2 and x =1 (figures
6 and 7) can be obtained from equations 56, 57, and 58 together with 43,
plus perturbation theory for the widths of higher order resonances.

As we increase x further the slope of z at y = 0 changes
from negative to positive. As this happens the peak of the primary
resonance moves to y = 0, meets its immage there, and then disappears,
leaving a very high and broad "background" transition probability
centered at y = 0, The next or three-quantum resonance moves toward
yv = 0 and broadens until eventually it too reaches its image at y =0
and disappears. Before it so disappears theoretically, as indicated by
the vanishing of a peak reaching to one half, it may disappear experi-
mentally because its amplitude over that of the background becomes very
small,

In figure 8 we show the strong figld case x =3 (H_l = 6HO). Here
the single and triple quantum resonances have both disappeared and the
five-quantum resonance is on its way. The latter has shifted all the way
fromy =5 to y = 2.85 and acquired a width of about 0.5. This width

still agrees surprisingly well with the perturbation theory prediction for
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the width: x5/512 = 0,47. The next resonance is still much narrower
with a width of 0.04. The background transition probability now extends
to large values of vy.

As we increase x still further this same general behavior con-
tinues. The z curves become flatter for y the order of one, then
after only one or two broad swings they approach triangular waves.

The period of the triangular wave decreases as y increases, until it
eventually comes close to the large y (and small x) limit of 4 with

the corners approaching their positions for x = 0. The transition region
between z(y) linear at small y and triangular wave at large y is
never very large and nothing unusualioccurs there. The time average
transition probability shows with rising x an ever widening background
with one or two side peaks of appreciable width, but shifted very far
from their "home" positions at x = 0. Numerical calculations on the
computer were necessary to obtain figure 8 for x = 3 and have been
done at x = 8, confirming the general behavior we have outlined.

In addition to detailed plots like those in figures 6 - 8 we can
obtain some information on transition probabilities by applying equation
43 to our analytical approximations, From the large y approximation

equation 48 we obtain

— xz llx4
P== - =—5t...
y 4y

This gives the magnitude of the background transition probability for

large x and very large y. For modest values of x and any y not

close to 1 a better approximation for the background comes from the xz
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term of equation 56:
S _1+y® 2 4
P = X~ + order x
2,2
-y
These two approximations are good when they give a small P, From

the small y approximation, equation 50, we obtain
=. 1 2
P= 3 [1- JO(ZX)]

For small x we have P = x'2 in agreement with the preceding equation
for y =0, As x increases JO has roots which make P go to its maxi-
mum of 1/2, These roots tell us at just what value of x the various
resonances are shifted into the origin to disappear. Thus at any given

x we can tell how many resonances we have lost.

On figures 6b - 9b we have plotted the transition probability as a
function of the unperturbed level separation W, keeping the ratio c/w
fixed. Frequently one records resonances by varying w and keeping c
and w_ constant. In such a plot the primary resonance will broaden
and shift outward to larger w as c/wo increases. The other reso-
nances will follow after from their jammed up position near w = 0, riding
the back slope of the primary resonance (figure 10). In this way of plotting,
our small y approximation holds in all the region of w >> W, giving us
P = }2—{ 1 - Jé (%C- )]. This function of w has broad resonances with
peaks at w = 4c/rn, where the r are the roots of Jo. If c/w is large
enough, some of these peaks will occur within the region of validity of
this approximation and give us the actual positions of resonances, where
these positions are now large compared to the original resonance fre-

quency. Thus the asymptotic position of the primary resonance (equation
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59 in the limit ¢ >> wo) is 1, 663c.

Because of the increasing background or nonresonant transition
probability, the time average transition probability at any fixed value of
w and W increases toward the limiting value of 1/2 as c increases.
When ¢ becomes large compared to W, the oscillating field is much
stronger than the static or atomic field producing the energy separation
w_ . Hence a particle, such as an electron in the magnetic field of a
nucleus, is more strongly coupled to the oscillating field than to the
nuclear field, It then tries to follow the oscillating field and its state,
defined relative to the nuclear field, becomes unimportant in its motion,
Its motion might then make it appear as if on the average it spent half
its time in each state.

Before anyone rushes out to experimentally test these results
we should give some idea of just how strong an oscillating field is re-
quired. Suppose we wish to make x = 1. Then for our radio frequency
example in chapter IV we would need a peak field strength of about 16
gauss or 5 kilovolts/cm. This kind of field strength is readily attainable.
However, for our microwave example in chapter VII we would need a

6 volts/cm or the order of 109 watts power input

field strength of about 10
to the resonant cavity. This would be near or beyond the limit of present
technology. At the frequency of the ruby laser a field strength of the

order of 108 volts/cm would be required. This is about 15 times greater

than a theoretical maximum attainable field within the ruby and at least
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100 times greater than any fields actually produced.

Oscillating fields of such great strengths can cause other phe-
nomena as well as rapid transitions between levels. Fontana, Pantell
and Smith (38) found that a microwave field with a peak field strength
greater than 25 kilovolts/cm caused ammonia molecules to ionize and
form a plasma, whose behavior requires a completely different thoery.
Thus in some experimental situations it may not even be possible to
apply such strong fields without producing conditions for which the

theory does not apply.
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IX. EXTENSIONS TO MORE COMPLEX CASES

We shall now discuss some of the phenomena and difficulties
encountered in trying to extend the methods cf chapters VII and VIII to
more complex problems. We shall first deal with the two state system
under a general type of oscillating interaction. Then we shall discuss
a problem with three atomic states, and finally we shall mention the
effects of additional frequencies of excitation. The general outcome is
that the perturbation method is as effective with more complex cases as
it was in chapter VII, while the methods of chapter VIII are not. Some
guidelines are given to help minimize the amount of numerical computa-
tion necessary if a complex problem must be solved in detail.

In order to understand the possible generalizations of the form
of an oscillatory interaction in a two-state system we shall use the
language which particularly describes the magnetic resonance problem.
As noted by Bloch and Siegert (30) one can excite a magnetic transition
with an elliptically polarized field, as well as a linearly or circularly
polarized one. That is we can have rotating and antirotating components

of the field with different magnitudes. This is described mathematically

iwt

by replacing 2c cos wt in equation 1 with ce  + creTiut

, where ¢ and
¢! can now be unequal. By appropriate choice of the zero for time and
the relative phases of the amplitudes we can still have ¢ and c¢' real.
It is also possible to have a component of the oscillating field parallel to
the z axis. This has the effect of modulating the energy separation w_.
Since it could have any phase relative to the perpendicular field, we |

describe it mathematically by adding 2g cos (wt - 8) to E(1 and
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- 2g cos {(wt - 8) to EB' Note that adding oscillating terms of the same
sign and magnitude to E_ = and EB will have no effect on transition pro-
babilities, for they can be removed by a phase factoring transformation
with an oscillatory phase. Since the same phase would be used for both
states, these phase factors will cancel out in the density matrix., The
AZ term that comes with a _;—; A interaction is of this form and thus
does not contribute to transition probabilities.

The generalized traceless Hamiltonian for the time-dependent

two-state Schr8dinger equation is

w, -iwt iwt
2 +2gcos (wt - 5)  ce 4 crel®
He = . : w 2
celwt + c'e_lwt - "2‘9" - 2g cos (wt - §)

It can describe any orientation of elliptically polarized radiation exciting
the system. The most common case experimentally would be an inclined
oscillating field for which ¢ =c¢', § = 0,

Our first step in the solution of equation 1 was to perform a phase
factoring to make part of the off diagonal elements time independent,
and the rest have frequency 2w. This phase factoring is less useful now,
since it does not affect the g terms. The resulting Lo would still
have terms with frequency w as well as 2w. So we shall take equation

62 as it is and write the Floquet Hamiltonian corresponding to it from

equation 23:
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~wtBw O g c 0 0 0 0 a -1

. 0 -w- %wo c! -g O 0 0 0 B -1
. g* c! ‘:"é'wo 0 g c 0 0 a 0
c -g* 0 -%’wc c! -g 0 0 . B O

(63)

0 0 g™ c! w-l%mo 0 g c . a 1

0 0 c -g¥ o w-%wo c! -g . B 1

0 0 0 o g¥ ' 2wtbe_ 0 . a 2

. 0 0 0 0 c -g* 0 2w-Bw_ . B 2

The phase difference & has been put into g as a complex phase
angle. The quantum numbers of the Floquet states have been listed on
the right. The field quantum numbers are 2p or 2p +1 compared to
the corresponding numbers p in equation 32 because we have not done
the phase factoring.

In the weak field case.c, c', g << w we can look for cases where
a pair of Floquet states in eqiation 63 are nearly degenerate and then
apply perturbation theory to get transition probabilities of the form of
equation 7, just as we did in chapter VII for the case ¢' =0, g =0. We
find that |0 > is degenerate with |Bn > when nw = W, Because the
g's couple all states with the same atomic quantum number but different
field quantum numbers to each other, we can always find matrix elements
connecting |00 > to |Bn > for all integers n. Hence multiple quantum

jumps involving one, two, three, ... photons are all possible. From the
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point of view of angular momentum selection rules for magnetic reso-
nance the oscillating field in the z direction carries no angular momen-
tum in the z direction. Thus by taking n - 1 of such photons with
Mz = 0 and one rotating photon (Mz = +1) we can make the transition
from m = —}2— to m = +-12 with n quanta. These transitions have been
predicted previously by Winter (2) and shown experimentally by Margerie
and Brossel (4). As in the simpler case the resonance shifts, but only
the order of magnitude of the widths, were given by Winter (21). We
can find both by the methods already developed. We shall do a few
cases to illustrate the kind of results one encounters.

Let us first consider a double quantum transition from |a0 >
to lBZ >, We assume these states are nearly degenerate in equation 63:

1 1
Ewoz 2w - Ewozq or 2w=® w, ® 2q

and apply the perturbation theory of Appendix A. The Vpp sum of

equation A7 now has several non-zero terms:

2 12 2 2

c +_C e lel® ,_ lelf
q-wt L w q+w+—1— w q-w- L w qtw- L w
2 o 2 o 2 o 2 o

We approximate the denominators by replacing q and Wy by w and

2 12
2w respectively, obtaining %— * =357 . The cancellation of the

lowest order shifts produced by the g's occurs for all states, so that
none of our transitions has a lg{z shift. The g does contribute to
frequency shifts in higher orders, however. The qu interaction con-

tains two terms of second order
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—& +—E
q—w+—2—wo q—w—-z—wo

which become equal upon approximating the denominators. These two
terms correspond to the two different orders in which the two polariza-
tions of photons (MZ =1,0) can be absorbed or emitted. Our two by

two approximate matrix becomes

1 % ' 2
Lo v+ _Lcg
2 o w 3w w
2 12
- Zcg - Lo <~
W 2 0 w 3w

From this we read off the parameters for the transition probability rela-

.Zc2 Zc"2 4c
tion equation 7, finding n =2, w = w =+ and u= - =8,
res o w 3w w

As a numerical example consider again an atomic beam experi-
ment with a transition frequency of 1010 cps and a line width of 104 cps.

' = g. Then if one milliwatt input power excites

Consider the case ¢ = c¢
the single quantum transition optimally, 450 watts are required to

excite the double quantum transition optimally and the resonance fre-
quency is shifted 2 kc from lz-x 1010 cps, or the order of one line
width. This is not as bad a situation as the three quantum transition
described in chapter VII, but ig§ much worse than the two quantum tran-
sition described in chapter IV. The reason is the much larger degree

of energy non-conservation in the intermediate state for the present case.
The "half frequency" transitions at about 3 MC observed by Hughes

and Grabner in the rotational spectra of RbF (26) were presumably of

this type, but with more than two states involved.
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The three-quantum transition with a g term present can take
place by several paths. In addition to the absorption of photons with
Mz = +1, -1, ¥1 described in chapter VII, we have the possibility for ab-
sorption of photons with MZ = +,0,0; 0,4+, 0; and 0,0, +1, all of which
represent distinct terms in the interaction matrix element qu. These
various terms can interfere with each other. Working out the perturba-

tion theory we find the parameters for equation 7 to be n = 3,

2 12 2 1 4 2
w =+ +5— u=-25+ 258 or
res o w 2w’ 2 2
2w
> lzc‘éc‘2 - ac3c! ]glzcos 26 + 16c2~[g|4
laf? - .
w

By varying the value of g relative to c one varies the width consider-
s

ably. In the special situation c = c' = V8 g = V8 g the above width

vanishes., However there may still be a higher order term in u which

does not vanish,

Transitions with n = -1, -2, -3, etc. are the same as those for
positive n except that ¢ and c¢' interchange roles and the phase differ-
ence & reverses sign. Not to slight any of the integers we should also
include n = 0. Our perturbation theory gives us a resonance between

Z(C'z— CZ)
|@0> and [BO> in second order with n =0, w Tw t—

res ) w
*

and u = 4(cg - c'g)/w. This resonance corresponds to the absorption
of an MZ = +1 photon followed by the emission of an MZ = 0 photon, or
the absorption of an Mz = 0 photon followed by the emission of an M =-1
photon, Since n = 0 the resonance is located at W T 0 or

w, = Z(CZ— C'Z)/w or w = Z(CZ— C'Z)/mo where w>> c >> W . Because
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of the latter inequality we have in a sense a strong field situation.

For the two state system with a generalized oscillatory inter-
action the special formula equation 39 still applies for the time average
transition probability and resonances are located at Bq/awo = 0 where
q is the characteristic exponent. The determination of q is much
more difficult than it was in chapter VIII, becauée of the increased
number of parameters and more involved couplings of states. We shall
not try to do much more than we already have with perturbation theory.
However we indicate briefly which of the methods of chapter VIII are
still applicable. The dimensionless notation can still be used with the
additional definitions x' = 2¢'/w, w = 2g/w. The characteristic expo-
nent z now has frequency 2 (period w) instead of 4. In the limit of
small oscillating perturbation z is approximately the triangular wave
extension of 1 - y running in strips of height one. There are few sym-
metries in the general case. However in the special case x' = x, w
real, z is symmetric about y = 0; while for x' =0, z is symmetric
about y =1. The z values are normally not degenerate, but "accidental"
degeneracy is possible. For example it occurs at x = x', w real, y =0
where z =1=2-z. The large y approximation can be carried through
as in chapter VIII except that the integral cannot be expressed in terms
of a simple tabulated function. However we can obtain a series expansion
of the integral analogous to equation 48. The small y approximation
method of chapter VIII fails completely except when x = x', w real. In
this oscillating field case we can, by choosing a linear combination of a

and b which diagonalizes the part of }/C proportional to cos 27, obtain
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2= 1- (y/v) [w? + %202 (2] /2

where v2 = w2+ xz. No real attempt has been made to find a partial
fraction series analogous to equation 53.

The computer method for finding z does work with equations 62
and the program was generalized to handle them. Because of the longer
period we must integrate the differential equation twice as far as before
to obtain z. This doubling of the integration time along with the larger
number of parameters discouraged an extensive study of z with the
computer. A few trial runs showed the same type of behavior as for the
simpler case except, as already noted, resonances occur twice as often.
In figure 9 we show sample curves of z and the time average transition
probability for the parameters x =x' = w = w= 0. 6. By imagining an
experimental resolving power to reduce the height of the narrow four
quantum peak and some sort of experimental damping of the amplitude at
small y, figure 9b is in qualitative agreement with the experimental
strong field curve of Margerie and Brossel (4, figure 2). Due to lack
of experimental details a quantitative comparison is not possible.

We shall now discuss the problem of three atomic states connected
by an oscillating perturbation. We treated this problem in chapter IV
using the rotating field approximation, but we now retain all of the oscil-
latory perturbation. The energy level scheme and parameters are shown
in figure 2. After phase factoring HC has frequency 2w and is given

in equation 8. The Floquet Hamiltonian corresponding to this HC is
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. -Zw—A—%- 0 b 0 0 0 . y -1
- - - - -

. o A—% c o ! o0 0 3 a 0
|

b | ¢ %9- b, 0 i B 0

| . (64)

0 0 b -A-2 | 0 b . y O
_________ Jd

0 0 c 0 20tA-2 ¢ a 1

) 0 0 0O b c 2 +-2§aE . B 1

where the Floquet state quantum numbers are indicated on the right.

In chapter IV we considered only the three by three block of NF
outlined by dashed lines. With the full Floguet Hamiltonian we can map
out the complete spectrum of multiple quantum transitions by finding
for which frequencies two diagonal elements become degenerate. For
transitions from atomic state o to atomic state  we set the unper-

turbed energies of |a0 > and |Bn > equal, obtaining
2nw = A - a or (2n + 1w = Eq— Ef’

Hence we expect multiple quantum transitions to occur whenever the
energy separation E - E‘3 equals an odd harmonic of the driving fre-
quency, just the same rule we found in chapter VII for the case of two
atomic states. For transitions between atomic states f and y we have

a similar result. Resonances occur when
2nw = A+ a or (2n+l)w = E‘3 - EY

These two cases in the three level system have the same selection rule
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as for the two level problem, but not the same answer, since the third
level contributes to the shifts and widths of the transitions by acting as
an alternative intermediate state.

For transitions between atomic states a and P we find resonances

when

2nw = 2A or (2n+2)w=E - E
a Y

Hence we expect multiple quantum transitions to occur whenever the
energy separation E_- EY equals an even harmonic of the driving fre-
quency., The two-quantum transition was discussed in chapter IV, As a
representative example of the results one can get in complex multiple
quantum transitions we give here the parameters in equation 7 which make

it describe the four-quantum transition between states a and y. We find
2 2 2 2
c o b b
+ +
Y w-a 3w-a wta 3wta

by perturbation theory n =4, ®oeg = Ea— E
and u = bc(cz-bz)/w(wz—az). Note that this transition is enhanced (u
increased) when a=®=* w, since the intermediate level B 1is then in such

a position that energy is nearly conserved in one of the four emissions or
absorptions. However it will still require stronger fields to observe

than were required for the three quantum transition described in chapter
VII. In the radio frequency example of chapter IV an H1 of about 5
gauss would be required to observe this transition, A factor of three

in this estimate is due to the fact that b and ¢ are nearly equal, making
u considerably smaller than an order of magnitude estimate.

The methods of chapter VIII are of little avail on the thtee state

problem. We no longer have a simple relation like equation 39 to give
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us transition probabilities directly from the characteristic exponents,
but must fall back on the general formulae of chapter VI, Numerical
integration of the differential equation can give the characteristic expo-
nents through the A matrix, but the integration would have to be done
twice with different initial conditions before A could be determined.
Computation of transition probabilities by integrating the differential
equation is tediaus because a large number of integrations must be done
in order to average over initial or elapsed times. The best method would
probably be to diagonalize the Floquet Hamiltonian directly with a fast
computer. One should first look only at the eigenvalues as a function

of a y parameter in order to locate resonances as described in chapter
V. Then one can compute eigenvectors at the points of interest. The
periodicity properties of the Floquet Hamiltonian make it unnecessary

to compute more than three eigenvalues and eigenvectors. Truncation
of the Floquet Hamiltonian causes no serious error. To get eigenvalues
within an absolute error € one need take a block of HF just large
enough so that all components greater than € are obtained for the eigen-
vectors corresponding to eigenvalues in the middle of the block.

If we excite our system with two or more commensurable fre-
quencies we can still use the general theory of chapter VI, but NF will
have a much more complex structure than the one in equation 22. With
only a single frequency of excitation the system absorbs and emits photons
at this one frequency. But with harmonic frequencies present in the exci-
tation the system could absorb photons at one frequency and emit at

another. This complicates the picture considerably, but also makes it
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more interesting, because of the possibility of finding conditions with
respect to the natural atomic frequencies at which an atom might translate
power from one frequency to another, i.e. act as a frequency multiplier
or divider. However the theory of chapter VI treats atomic transition
probabilities, not radiation field transition probabilities. It is not
suitable for treating absorption and induced emission at harmonic fre-
quencies, since the Floquet states do not distinguish between two photons
of frequency w and one photon of frequency 2w.

Finally we mention what happens if we excite our system with two
incommensurable frequencies w and w'. In the first place our Hamiltonian
will not be periodic so all the theory of chapter VI is useless. Howewver if
w - w' is small compared to either w or w' we have an approximation
possibility. Suppose our interaction matrix element in HC is
2c cos wt + 2b cos w't. If we write this in exponential form and perform
a phase factoring to make one exponential term constant, we get

. 1 PN
o + ceZuot + bei(w+w )t bei(w w')t (65)

If we now neglect the two middle terms as being more rapidly oscillating,
we have only the single frequency w - ' in the Hamiltonian and can apply
the theory of chapter VI. We can use this approximation, for example, to
find that the presence of ' produces a shift in the w resonance of ap-
proximately sz/(w-w'). Note the similarity of this shift to that computed
in chapter IV for the case of an additional state: bz/(wo—wl), where W,
and w are natural frequencies (energy level separations) of the atomic
system rather than frequencies of the radiation field.

In general each exponential term in equation 65 produces a shift.

In lowest order these shifts add, giving a total shift
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Zc2 + sz + sz __E:_E + 4wb2 66
w-(-0)  w-(-o')  w-o' T w w2 (66)

As we have written it the Bloch-Siegert shift (first term) is seen to be a
shift due to the presence of another excitation frequency -w, and is of
exactly the same form as the other terms. Thus a resonance transition
is produced by one exponential component of an exciting field, while the
other component and any other exciting fields produce in first approxi-
mation only small frequency shifts.

If the oscillating field at frequency w' connects atomic state
pairs different from those connected by w, it is often possible to perform
a phase factoring and obtain a rotating field approximation containing
part of both interactions., For example in the three level Hc of
chapter IV we could replace b cos wt by b cos w't. By a slightly differ-
ent choice of p, v and £ we would obtain after phase factoring the
same time independent part of }:/c': as in equation 8. Such an approxi-

mation was used by Javan in his treatment of the three level maser 17).
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X. QUANTIZED FIELD TREATMENT

In this chapter we shall consider the radiation field to be a
quantum system, as well as the atom., Then by taking the limit of large
quantum numbers for the field, we shall see how this theory goes over
into the theory given in chapter VI, Finally we discuss some of the
improved physical interpretations provided by a quantized field view-
point,

We write the total Hamiltonian as a sum of three parts repre-
senting the atomic system, the radiation field, and their interaction

respectively:
7§(Q - Ha * Hf * Hi

The radiation field, when quantized in a cavity, is in generral made up
of an infinite number of uncoupled harmonic oscillators with frequencies
determined by the dimensions of the cavity. In the preceding work we
considered primarily a single frequency of excitation, hence we shall
here consider only a single mode of the field to be excited. Then we can

use H

¢ 2as just the Hamiltonian for a single quantum-mechanical oscil-

lator of frequency w.

We shall work in an energy representation in which Ha and Hf
are diagonal. The basis states will be denoted by |an>, where a refers
to the state of the atom and n refers to the excitation state of the radiation

field oscillator, or the number of photons present. Thus the matrix ele-

*
ments of Ha and Hf are:

® . . . .
This matrix representation for treating the quantized field was suggested
by a National Bureau of Standards Technical Report by M. Mizushima

(unpublished).
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<0.n[ Hafﬁm>= Ea6a 6mn

< an| foﬁm> = nwd g6

We are neglecting the zero-point energy of the field.

For }:[i we will assume the form of a product of an operator on
the atomic system with an operator on the oscillator. The latter operator
will be linear in the creation and annihilation operators for the oscillator,
so that Hi has matrix elements only between states which differ by
one in photon number. The usual electromagnetic interactions ;X or
:oﬁ are of this.form,

As in the previous work we shall concentrate on the simple case
of two atomic states. Let Hi have only symmetric off diagonal elements
with respect to.the two atomic states. Then its matrix elements are:

*

<onlyilﬁn+1>=<ﬁn| Hilan+1>= c = ¢

The details of the interaction are all consolidated into the letter e
We note only that the matrix elements of the creation and annihilation
operators, and hence the c_, are proportional to (n + 1)1/2. We can now

write down a sample portion of the infinite matrix representation for

Mo
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° . . .

. Ea+(n-l)w 0 0 cn—l 0 0
. 0 E6+(n~l)w cn-l 0 0 0 .
. 0 c -1 E +nw 0 0 c
n a n
. c -1 0 0 E,thw c 0
n B n
. 0 0 0 c. Ea+(n+1)w 0 .
+
0 0 <, 0 0 E‘3 (n+)w

This has a familiar look to it. If ¢ were independent of n, and
if n extended to - oo instead of just to zero, we would have exactly the
Floquet Hamiltonian associated with equations 1 and shown in equation 22.
For large n, c, varies slowly with n. Then if we let ng be some

very large photon number, we can make an approximate identification:
HQ = nowi + HF (67)

where we use <, for ¢ in M. The identification is good only for
photon numbers nZar ns but improves as n, increases.

In writing equation 67 we are also associating the basis states
for the two matrix representations, We are saying that the quantum state
]ano+ m> is approximately isomorphic to the Floquet state [am > of
chapter VI. This isomorphism is very good for n_ >>m., Of course it
becomes nonsense for m < - n, since we no longer have any quantum

states to correspond to the Floquet states. As we vary the strength of the

field we are changing n_, and hence changing the correspondence between



-105-

quantum and Floquet states. Then too quantum states can be looked at
in a coordinate representation as a product of a wave function for the
atom with a wave function for the oscillator, a concept we did not have
for the Floquet states. Thus the correspondence of the abstract Floquet
states with quantized field states is a rather limited one. Nevertheless
it is sufficient to permit an interpretation of the transition probability
equations of chapter VI from a quantized field view point.

First we shall try to reconstruct the amplitude functions
Uﬁa(t;to) appearing in the solution of the semi-classical Schrddinger
equation 17 in terms of states of the quantized field. Uﬁa contains no
detailed information about the radiation field, since the field is con-
sidered classical and unchanged by its interaction with an atom. So we
must first find a state of the quantized field which as closely as possible
approximates the classical behavior of the field appearing in WC' Such
a state is the so-called oscillating wave packet (Ref. 3, pp. 67-69).

In terms of energy eigenstates it can be written

Q0
$E, ) = Z Ag ™ 0> (68)
n=0

where the states |n> are the Hermite orthogonal functions with § as a

variable, and the coefficients are
1.2
en,” i
A = =2 (69)
n (Zn n!)172

where go is the classical amplitude of the field. This state has the
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property that the expectation value of the coordinate £ is just that of

a classical oscillator:
<£E> = §Ocos wt

Since this is the time dependence of the field used in )»/C, we shall use
the oscillating wave packet to represent the classical field in terms of

quantum states.

Suppose then we represent the initial state of the system by
—inwto
t >= Z A e lo,n >
o n
n

which we interpret as atomic state a at time to plus a classical field.
We let this state evolve in time according to the quantized field
Hamiltonian NQ. The probability that at time t it will be in the atomic
state P with the classical field still present is then

-i M A(t-t)
<tl bl o)

cle |t, > (70)

where
-imuwt
[tf>= ZAme |Bm >
m

This probability is what we would expect to correspond to Uﬁq(t;to)‘
In order to make the quantized field really classical we must go
to the correspondence limit of large photon numbers. The amplitudes
A~ are peaked about photon number n_=~ -12—55. The width of the peak
is about £ = (Zno)l/z. If we make the classical approximation that
n >>1 or go >> 1, this peak becomes relatively narrow, The only terms

in the sums in |t and |t_> that are then important are those close
o P
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(within a few §O) to n_. In this vicinity the ¢ in HQ can be well ap-
proximated by c_ . So we replace 'HQ in equation 70 by nowl + ‘HF.
We also replace t}cl)e guantum states by Floquet states to accommodate the
increased range in summation index, defining An =0 for n <0, States
far from n in photon number are strongly damped by the A coefficients,
so it does not much matter whether we neglect them or add more.

inowt
Canceling factors of e we then have

¢ -i HF(t~tO) imuwt -inwto
Uﬁa(t;to) = Z AmAn <[3m]e ]an >e e (71)

nm
The introduction of HF and Floquet states permits us to utilize their

periodic properties to rewrite equation 71 in the form

-i Wplt-t) Jikot

. ~ * o
Uﬁa(t,to) = Z An+kAn<6kie [a0 >

kn
It can be shown that the sum over n is just one plus the order of kz/no.
The matrix elements fall off strongly for large k, hence only values of
k << n are important. So to a good approximation we can replace the
n sum by unity and obtain finally
-t Mplt-t,) Jikot

Ugg(tity) = Z<{3k le |a0 >

k
This agrees with equation 26 in chapter VI, If we now differentiate this
equation with respect to t we shall find that U satisfies the Schrddinger
equation 18 with the Hamiltonian '}b/c of equation 1 and the same initial
conditions. Thus the semi-classical treatment of the radiation field is
completely recoverable from the quantum treatment in the approximation

of large quantum numbers.
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We can now fortify the interpretation of the transition probability
equations 28 and 29 of chapter VI, Since the only Floquet states that
contribute to the sum over k are those with small k, we can identify
them with the real quantized field states of photon number no+ k. In
equation 28 we identify the initial state }to> with that given above for
equation 70, namely an oscillating wave packet, This represents a field
of well defined initial phase, which is exactly what was used in arriving
at equation 28, The interpretation of equation 28 can now be read in
terms of quantized field states. In equation 29 we used a pure energy
eigenstate for an initial condition of the field, For such a state the
probability of a given amplitude of the field is independent of time, hence
it represents a field of completely undefined phase. The transition
probability in equation 29 reflects this in its functional dependence.

The quantized field formalism thus shows us how to interpret
transition probabilities as taking place between states of both the atom
and the radiation field. These are stationary states when the radiation
field is present but not interacting, so may be studied by methods of
time -independent quantum mechanics. They permit a more unified picture
of many phenomena. For example the double quantum transition discussed
in chapter IX can be described as taking place between the quantized field
states fo.no > and ]ﬁno‘\"z > via the intermediate states fano+ 1> or
fﬁn0+ 1>, The double quantum transition discussed in chapter IV can
also be described as going between the quantized field states iano > and
Iﬁno+ 2 > via the intermediate state {yno+ 1>, Both cases involve inter-
mediate states different from the initial and final states. These two ex-
amples of double quantum transitions have sometimes been thought to be

distinct (Ref. 5, p. 306), but we now see that the only distinction is in the
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identification of the intermediate state. Experimentally the distinction
of having a third atomic state is significant, because with it we may have
less energy non-conservation in the intermediate state than the w we
must have without it. Hence we can often observe double quantum transi-
tions through well-placed intermediate atomic states with much weaker
oscillating fields than are otherwise required. The four-quantum transi-
tion mentioned in chapter IX would be a mixture of the "two kinds" of
multiple quantum transition.

The reality of the eigenstates of )a[Q as true stationary states
of the atom plus radiation field in interaction was brought out in Autler
and Townes "resonant modulation" experiments (1). By observing the
absorption of a weak oscillating field at a microwave frequency causing
occasional transitions to a far removed state, they were able to observe
directly the "spectrum" of a pair of states strongly excited near reso-
nance by a radio frequency field. The positions and strengths of the
absorption lines at the microwave frequency were a direct measure of
the eigenstates and their relative populations for the pair of levels inter-
acting with the strong rf field. Autler and Townes did not think of this
spectrum as corresponding to stationary states because they viewed the
field classically, From a quantized field viewpoint, however, we would
describe the microwave transitions as taking place between eigenstates
of the atom-~rf field system plus the microwave field:

I),ann' > — }Avmn' +1>
where the n' is the photon number at the microwave frequency. Each
resonance absorption would correspond to a superposition of many such

transitions which have the same difference between m and n:
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wl

= Aan— A\{m =q- q_Y + (n-m)w

but nevertheless transitions between states which are stationary in the
absence of the microwave field.

If the !Aan > are stationary states, one should not only have
induced transitions between them, but also spontaneous transitions.
The relevant matrix elements are in general non-zero, so the quantized
field formalism does predict such transitions. The semi-classical
treatment also gives these spontaneous transitions, since it predicts
radiation at the frequency differences Aan- hﬁm from the induced
moments of the atom at these frequencies, as mentioned at the end of
chapter VI. Observation of such transitions depends on the coherence of
the spontaneous radiation from many atoms, a problem which we shall
not go into here.

One paramount advantage of using a quantized field description
is that it is readily extended to include additional frequencies of excitation,
something we could not do with the theory of chagter VI. The extension
merely requires the addition of another photon number for each additional
mode of the radiation field which we wish to consider. If there are a
large number of photons in any mode, we can approximate its interaction
matrix elements with the atom to make them independent of photon num-
ber, just as we did for the single mode at the beginning of this chapter.
The resultant interaction is easier to deal with mathematically. This
formalism will then provide a medium for handling such problems as
frequency mixing and harmonic generation,

If a second frequency of excitation is nonresonant, one of its
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principal effects is to shift the energy levels of the atom. This shift
can be computed readily from the quantized field formalism and pertur-
bation theory. Suppose atomic states o and [ are connected by the
matrix elements 2c cos wt + 2b cos w't in the semi-classical Hamil-

tonian HC. The quantized field matrix elements are then

%

1]

< an,n']Hi]ﬁn+1,n‘> <(3n,n‘|]=(i]o.n+1,n' >=c=c

A

<an,n~.’]}/i]{3n,n'+1> b=5b

11

<PBn,n'| ‘Hi]an, n'+ >

where n and n' are the photon numbers at frequencies w and '
respectively and the dependence of ¢ and b on these photon numbers
has been neglected. From second order perturbation theory the shift

in the energy E_+ nw + n'ew' of the state |an,n'> is

Z ' |<an,n'lwilﬂm,m'>12 2 b2 b2

(Ea+nw+n'w')-(E fmetme) o te @ o e

B o o

m m'

where the prime on the sum means we have omitted the resonant term
with the denominator w -, The energy of |Bn+l,n'> will be shifted
by the same amount in the opposite direction, so that the shift in the
resonance frequency is twice that given above (compare equation 66).

If there are also matrix elements connecting a with other atomic
levels, we must also sum over these levels in equation 72, For example

the matrix element

g =<an,n'| Hilynil,n' > = g*

would contribute to E(1 a shift
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where wy = Ea~ E_. This shift would not necessarily be doubled in the
resonance frequency since levels P and y might not be connected by g.
These shifts can be thought of as the result of transitions from ]an, n'>

to another state, which then decays back to the original state. Since
energy is not conserved in the intermediate state, the transition is virtual.
In the quantized field formalism the shifts due to additional atomic levels
or to additional frequencies of excitation are both produced by this same
mechanism and come out of the same perturbation formula, thus explain-
ing the similarity in their form noted in chapter IX,

In quantum field theory, matrix elements such as b are not zero
even when n' is zero. A level shift should occur by a spontaneous virtual
transition when no radiation at ' is present. Although the matrix elements
may be very small, this shift exists for all modes of the radiation field.
The total shift, summed over an infinite number of modes of the field,
is infinite. This kind of shift has been the subject of much investigation
in the theory of quantum electrodynamics and requires renormalizations
to eliminate the divergences. We are here assuming that all that has
been done and that any atomic level shifts due to spontaneous virtual
transitions, such as the Lamb shift in hydrogen, have been included in
'Ha. The shifts we have described here are increases to shifts such as
the Lamb shift due to the increased probability of the virtual transition
when quanta are already present in the field, i.e. induced virtual transi-
tions, This we believe to be the true explanation for shifts such as the

Bloch-Siegert shift.
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A number of approximations were made in showing the equiva-
lence of the quantized field formalism and the Floquet formalism of
chapter VI, All of these were based on the assumption that the photon
number n is very large. To show how good an approximation this is
we have worked out some order of magnitude estimates for n. Both
n, and the x parameter of chapter VIII are dimensionless variables
representing in some way the strength of the oscillating field, so there
should be a dimensionless number relating them. For the field quantized
in a cavity of volume V:

c=c_ =~ p.o(Zn'no/Vw)l/Z = (w/2)x

[e]
or

n_ = (vV/4p)x”

where p is an electric or magnetic moment of the atom and v = w/2m.
The number of photons hence depends not only on xz, but on the fre-
quency, the volume of the cavity, and the properties of the atom. If

we take V to be the volume of a resonant cavity whose fundamental mode
has frequency v and choose for p values typically associated with a

natural frequency v of the atom, then some rough orders of magnitude

are:
Near infrared v=4x 1014 cps n, = 1010xZ
Microwave v o= 1010 cps ng = IOZZx2
Radio frequency v = 106 cps n_ = 1037x2

The photon density varies less violently with frequency:

21 25 2

nO/V =10 to 1077x photons/cm3



-114 -

In all cases except very weak fields the approximation o >>1 is
exceedingly good and one should have no qualms about using a classical
description of the field. A simple way to determine when the quantized
field mathematics is necessary is to compare the spontaneous radiation
lifetime of the states with other relevant times in the experiment.

. _ m ,\1/2 _ m .
Since €. tm = cnO(1 + H; ) ®oc 1+ ———Zno ) we can expect devi-

ations in the eigenvalues of %(Q from those of WF to be of relative
order m/nO and a sample matrix diagonalized on the computer confirms
this. This lowest order correction has the effect of decreasing the fre-
quency without destroying the periodicity. Thus the harmonics spontane-
ously emitted by a system would not be exact harmonics, but would be
shifted by the order of x/no. As can be seen from the above figures
this shift is too small to worry about, except when x is very small, in

which case the spontaneous radiation would doubtless be too weak to

observe.
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APPENDIX A

PERTURBATION THEORY

We shall describe here a perturbation theory for finding eigen-
values and eigenvectors of hermitian matrices, both for the non-degen-
erate case, and the case of two nearly degenerate eigenvalues. Although
the methods are not original, it was thought convenient to have the for-
mulae available in the form used in the body of this thesis. Also the
following derivation brings out the parallel between the non-degenerate
and degenerate cases.

Consider the equation

(E° + V)A = AE (Al)

where E° and V are given hermitian matrices. We wish to find the
diagonal matrix of eigenvalues E and the unitary matrix of eigenvectors
A, We shall agssume that the unperturbed matrix E® is already diagonal
and seek solutions in power series in the perturbation V.

We first transpose equation Al

AE - EPA = VA

and then write out its components

o —
Z (AikEkﬁkp‘ E; ﬁikAkp) - }: VikAkp
k k

Solving for the Aip on the left we obtain

V'kAk
A, = ; . (A 2)
ip d B - Eo
k P i
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E_and Aip are the particular eigenvalue and eigenvector we seek.

We consider two cases,

Case I: Non-degenerate Eigenvalue

(o]

Suppose that Ep - Ei0 is large compared to the components of

V for all i except i = p. Then from equation A2 we see Aip will be
small except for i = p. We separate out the large term App from the
sum over k and write equation A2 as
A = _.}L_PE + Z __l.li_l‘f
ip
The prime on the sum means that the term for k = p is to be omitted.

Since the last term is smaller, we can solve this implicit equation for

Aip by iteration, obtaining

— V. ’
Z 13 JP +... ]App (A3)
p i ; (E E; )(E E )

il
| I

A,
1p

To determine Ep we set i = p in equation A3 and multiply by

(Ep - E;). The App can be canceled from both sides, leaving the

familiar result

<:

P1 13 JP +... (A4)
(E E)(E E)

E =E>+V +Z P11P+Z
P P PP
i

LI r\4

This is an implicit equation for Ep and is usually evaluated by iteration.

The element App is obtained from the normalization of the

eigenvector, or unitarity of the A matrix
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To second order this gives
2
1 |V,
A_=1- > Z — 1P (A5)
PP ~|E_- E
1P

The eigenvectors Aip will automatically be orthogonal to other eigen-
vectors computed by the same method. Equations A3, A4, and A5 pro-

vide the complete perturbation solution to equations A2 for a non-

degenerate eigenvalue.

Case II: Two-fold Nearly Degenerate Eigenvalues

Suppose that E_- E? is large compared to the components of
V for all i except i =p and q. Then from equation A2 we see Aip
will be small except for i = p and q. We separate out the large terms
A and A from the sum over k and write equation A2 as
_ YVip®op . Vigtap +Zt ViicPkp

P g .g° E-E° E - E°
P i P i k P i

A

The prime on the sum now means that both the terms for k = p and for
k = q are to be omitted. Since the last term is smaller, we can golve

this implicit equation for Aip by iteration, obtaining the result

V. 3 V..V,
Ai=[-—-—iﬂg+z 1 Jp +... |A
P E - ES < (E - E°YE - E9 pP

p i J (p i)(p j)

v, ! V..V,
+(—-—-‘1—5+z 242 O+..‘}qu (A6)

L E - E; E - EJD)(E - E;

p i j(p ,r)(p J)
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To determine Ep we set i = p in equation A6 and multiply
by (Ep— E;). But the App can not be canceled from both sides because

of the qu terms in equation A6. We are left with

EA =E°A +
pP PP P PP Vpp(p PP qu p) Aap

where

'V .V, 'V V..V,
V. (E)=V__+ L +Z' pr 1 JP +...
PP PP E-E° & & (E-E°)NE-EY
i 1 i j
and (AT)

’qu(E):qu +Z "E;oq’LZZ Pl 1J Jq + .
i 1 i j

EE(EEO)

We need another equation relating App and qu. To obtain it we
merely set i = q in equation A6 and multiply by (Ep- EZ). We find

E A _=E°A V. (E_)A V. (E)A
pap = Fqap T Vap'Fppp T Vqq'Fp)tep

where ']/qp(E) and 'I/qq(E) are defined by relations exactly analogous
to equations A7. These two equations for App and qu can be com-

bined into a single matrix equation

o
EP ¥ VPP(E) VPQ(E) APP APP
= E (A8)

0
VQP(E) Eq ¥ qu(E) qu qu

This is an implicit eigenvalue equation for the two eigenvalues Ep and

E . However the distinction between Ep and Eq in the . ¥ matrix
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elements is only a third order effect.
The hermiticity of V guarantees the hermiticity of Y(E),

hence we can always diagonalize the above matrix. The eigenvalues are

21 o o
E=5 [Ep + ypp(E) + Eq + ‘qu(E)]
23UES + o (m) - B2 -y @]% 4] v [5)2 (ag)

If Ep denotes the larger root, the dominant eigenvector components are

. 1 + R(E 1/2
Nele[_.:_i_f_)_]/

PP 2
1-R(E ) ~1/2
A =N[___£_]
qp 2
(A10)
A = Neie[ 1 RE T/Z ‘
Pq 2

1+ R(Eq) 1/2
A4q "‘N[ —z }

where O is the phase angle of '\/pq and
R(E) = [E, + 1, (8) - B - Y, (@] {[E, + v (5

AN <) LR VAN kS B

N is a normalization constant equal to one minus second order cor-

rections from the other components. The signs guarantee orthogonality.
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Equations A6 through AlO provide a complete perturbation solution to
equations A2 for two-fold nearly degenerate eigenvalues. These results
are essentially the same as those given by Salwen (19, Sec. 3B), al-
though the presentation and notation are different.

The same procedure could evidently be extended to any number
of nearly degenerate eigenvalues. However it becomes less useful as
an approximation because of the increased analytical difficulty of

exactly diagonalizing larger than two by two matrices.
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APPENDIX B

THE CHARACTERISTIC EXPONENT FROM INFINITE DETERMINANTS

We have mentioned in Chapter VI that the characteristic expo-
nents for the Schrédinger equation with a harmonic perturbation are in
principle obtained from the characteristic equation det (')a/F - M) = 0.

We shall in this Appendix show how this determinantal equation can
actually be evaluated to find the series expansion for the characteristic
exponent given in equation 56. We use the dimensionless notation of
Chapter VIII, with HF given by equation 42. As it stands the value of
det ('HF - M) must be infinite, since the product of the diagonal elements
diverges. To obtain a convergent determinant we divide each row of

(H .. - M) by its diagonal element, forming the infinite determinant
F y g

X
. X 1 X 0 0 .
TH-% TH-x
D(x,y,\) = . 0 1—’;-_7 1 T-%-‘X 0 . (B1)
x X
. 0 0 TH 1 I
X
. 0 0 0 =% 1 .

By a theorem of St. Bobr (39) the determinant D can be shown to be
absolutely convergent for all complex values of x, y, and N except
those producing a zero denominator. The characteristic equation

det (HF- M) = 0 then has the roots \ = z(x,y) determined by D(x,y, z)=0.
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By exact analogy to the method given in Whittaker and Watson
for the Hill determinant (40) we can completely determine the dependence
of D on M in terms of elementary functions. The absolute convergence
of D implies that D is an analytic function of X, except for simple
poles at A=4n -1+y and 4n +1 -y, n any integer. By changing the
sign of all denominators and writing D in reverse order it can be seen
that D is an even function of X\, D 1is also a periodic function of \ with
period 4, since adding 4 to z only shifts the center of the determinant,
but relative to infinitely remote corners. Because of the periodicity
and evenness the residues of D at all its poles must be the same. Now
the trigonometric function cot W - cot E(LL%_'F_Y_}. is also
an even periodic function of N with period 4 and simple poles at 4n - 1+y
and 4n +1 -y, all with residue +1. If K(x,y) is the residue of the poles

of D, then the function
D(x,y,\) - K[cot T ELo¥) _ oopmlh -1 y)

is entire, since all the poles cancel out. As \ approaches infinity along
any line not parallel to the real axis the off diagonal ements of D wvanish,
so that D approaches 1, while the cotangents cancel each other. Thus
the above function approaches 1 as A approaches infinity. An entire
function which is everywhere bounded is a constant, Therefore the above

function equals one for all X\, or

cOos '?
D(x, v, A =1+ 2K — . ﬂ (BZ)
CcCOs —2— - 81n ~
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We can evaluate K in terms of D at any special value of \.
Suppose we set N =1 in equation B2. Then substituting the resultant

value for K back into equation B2 we obtain the result

cos -1%& - D(x,y,1) sin 1%5

A . _1'_(1
cOs '-2— - 8Sin 5

D{x,y,\) =

To find the characteristic exponent z we have now to solve D(x,y,z)=0,

or

cos %z_ = D(x,vy,1) sin 122 (B3)

We have thus reduced the problem to the evaluation of an infinite deter-
minant depending on only two variables.

A tridiagonal determinant, such as we have in equation Bl, has
the property that in its expansion each off diagonal element always appears
multiplied by its "partner" located diagonally opposite it on the other side
of the main diagonal. Hence the value of the determinant is unchanged if
an off diagonal element trades places with its partner, if both change sign,
if both are replaced by their geometric mean (symmetrization of the deter-
minant) or if all of one partner is transferred to the other, leaving a
factor one behind. Assuming the latter done for each pair of off diagonal

elements we can write a tridiagonal determinant as
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. 1 g, O 0 0 0 .
. 1 1 B, O 0 0 .
. 0 1 1 By 0 0 .
D(p) = (B4)
. 0 0 1 1 B, 0 .
. 0 0 0 1 1 B, -
0 0 0 0 1 1 .

Let us expand D(B) by the usual rule for expanding determinants.
We start with the product of all the diagonal elements, which is unity.
We then consider replacing one diagonal element by an off diagonal
element, finding that we must also take its partner. We thus obtain a
term - ﬁn. We can do this for every off diagonal element so we get the
sum of all Bn. We next consider terms containing two B's. We get
all such combinations where the two B's are distinct and not adjacent.
If we try to take two adjacent B's we cannot take their partners, but
must instead take all the B's. In a finite tridiagonal determinant this
product of B's is multiplied by a zero in a far corner. In a convergent
infinite determinant the infinite product of B's diverges to zero. So
such terms need not be considered. Our expansion in general then con-
sists of all possible terms containing a product of a finite number of
B's with the selection rule that no two f's in the same term can be

adjacent. We can write it as follows:



oo Q0 (82
> D) e e (B5)

i=-00 j=it+2 k=j+2

For D(x,y,1l) we have

2 2

- xX
Bon = (4n+y)z{4n—2-y) » Pontl T @) Enteoy) (B6)

The single sum of ﬁi from minus to plus infinity can be evaluated by
contour integration. The method is described in Titchmarsh (41) and
other books on complex variable theory. However in the multiple sums,
as written above, we need to sum from an arbitrary, but finite lower
limit. Although this sum for B alone can be expressed in terms of the
logarithmic derivative of the gamma function, this is of little help in
evaluating the multiple sums, let alone summing the [ series to obtain
D. The ewvaluation of D can be done analytically if both factors in the
denominator of ﬁi contain y with the same sign. However this corre-
sponds to the physically uninteresting case of degenerate levels, which
could have been solved exactly by other methods as well.

An alternative way of evaluating equation B5 is to consider powers
of the single sum over f. They will contain among their cross products
all the terms we need for the multiple sums, plus a few we do not need.
The latter contain powers of a single ﬁi and products of adjacent B's,
Their sums can be evaluated by the contour integration method and sub-

tracted out. lL.et us define
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Sk = Z (5i)ks Sk.! =z (ﬁi)k(ﬁiﬂ)l, etc.
i 1

where each sum is from minus to plus infinity. Then the expansion in

equation B5 can be written as

DB =1-8 +(582- s,-5))
s3 S,
“('6"+'§"+S +s111 > 1 snsl)+... (B7)

We shall illustrate the use of this equation by evaluating D(x,y,1) to
fourth order in x {second order in B).
1 -1 _ 1 1 -1
Leta = {n + -Zy) an?fl bn-(n--z—zy) . Then
X
(—B-)a b and Bont = (R-)anbnﬂ. The product of a and b can

be rewritten in terms of their difference:

_ 2
2Py, = yH (b,-2) a'nbn+1 -1 (b, a2

Thus the sum over P becomes

= Z (Bont Pons)
n

2
2
= % Z[y-ﬂ (bn— a’n) + y-1 (bn‘H.- an):l
n

Because of the infinite range of the summation index, the sums over bn

and b are identical

n+l

X2.
o
n
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The sums are evaluated by contour integration, or recognized as the

partial fraction expansion of the cotangent

= = - M: ﬂ
zan wcot-’ix, an T cot ) wtan4

n

The final expression for S1 is
™ xzz my
S;=-32 o cot =

For the next order we must evaluate S2 and S

N a2 -
S, = Z B Sn ‘Z PnPnn
n n

As before we express the B's in terms of the a's and b's and expand

n

the products in partial fractions, obtaining

4
e Bof[ =ty ety ] To2 et
2 '2'33{ y)° (y-n? Z soon

n

-[(Yf1)3 yl) Jz(b -a)}

The sum over the squares of a and b involve second order poles and

lead to cosecant squared terms:

z anz L1 CSC %z z =T CSCZ—TL(-%Lz)z 11'28802%

n

After simplification we obtain



A

s - %Zﬂ 2my , y By LTy ] L4
= (Y -1)2 CSscC (Y2_1>3 cO > X

and

2 -
_ 1 T 2w L Ty 4
Sll— [ > g csc _ZX +—-Zl—2— v cot 5 J b'e

y -1 {y"-1

When we combine all the x4 terms together we discover that the co-

tangent squared terms from Sl2 and the cosecant squared terms from

S2 and S11 just counteract each other, leaving a non-trigonometric
term
1£ . 1ls _s.= _12_71"_3-3’(3 2+1)1r_cot_1_r_z «* (B8)
271 2% " "1 w20l &y > 8 2

This cancellation could have been predicted, for D{x,y,1) has only
simple poles in y at the even integers. These poles are represented
by the cotangent function. A cotangent squared term would represent
second order poles, which do not occur because of the limitation on the
products of B's that can be formed. At first glance there might appear
to be third order poles in equation B8 at y = +1, but the cotangent has
zeros there, reducing them to second order, and the non-trigonometric
term.is of just such a size as to cancel the second order poles leaving
just first order poles. If we go to higher orders with the expansion of
equation B7, we get higher order poles in the sums which must all cancel
when the sums are combined in each order. Hence it appears we would
be doing too much work.

We can write D(x,y,1) = f(x,y) + g(x, y)cot EZY. , where all the
poles are represented by the cotangent. Then substituting into equation

B3 we find that the poles disappear and cos Ig‘- is an entire function of
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y as required by the differential equation.

cos FZE = f(x,y) sin -TEZX + g(x,y) cos EZX

If we expahd f and g in power series in x with coefficients on and

8on? then to order x4 we have found so far

fo =1 g, = 0
= = X _y
f2=0 822 2
2 v 2
RS 0y - - Mg
4~ 7 4~ 7
(y™-1) (y™-1)
1 2
Note that f, = -5 (gz) . We surely have done too much work.
If we let z{x,y) =1 -y - ¢(x,y), then
Iz - 9 gin XL in X ¥y
cos = cos =~ sin = + sin 5~ CO8
or f and g are related by f2+ gz =1, From our value of g we can in

turn write the expansion of ¢:

sy = 7 ;4_;_“_

y —1)

We now have the terms through order x4 in the expansion of z given

in Chapter VIII equation 56, By considering how the products of a and
b develop in the various sums in S one can arrive at the powers in-
volved in the partial fraction expansion of z (equation 53), For instance
the first terms with 3 +y in the denominator come from S111 where the

2
! H s 3 o -
products of a's and b's involve factors like a __1b #1 =3 (b 472 _1).
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These terms then do not arise until sixth order in x. One is then led to
continue to higher orders by postulating the partial fraction expansion,
rather than continuing the expansion in equation B7.

Our investigation of an expansion for 2z via infinite determinants
has thus led us back toward the method of undetermined coefficients in
a partial fraction expansion used in Chapter VIII. However we no longer
need the continued fraction expansion in postulating the partial fraction
expansion in equation 53, Both the continued fraction and the tridiagonal
determinant are associated with three term recursion relations such as
we have in equation 44. When we have more complicated recursion
relations, as we would have with the problems discussed in Chapter IX,
we can no longer use continued fractions, but can write the infinite deter-
minant. The expansion of an infinite determinant that has more off
diagonal elements than a tridiagonal one, is more complex than equation
B5, but can still be written down. The general formula for the expansion
is given in Hill's famous paper on the motion of the lunar perigee (42).
Although mathematicians have worked out convergence criteria for
infinite determinants, the original work of Hill seems to be the most

advanced work available on their analytical evaluation.
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Figure 2. Energy levels and parameters for a three-state system.
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Figure 3. Eigenvalues and diagonal elements of a two-state
system as a function of frequency deviation A.



-134-

Figure 4. Eigenvalues and diagonal elements of a three-state
system as a function of frequency deviation A.
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Figure 5. Characteristic exponent z as a function of y showing
six branches. x =1/2.
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Figure 6a. Characteristic exponent z as a function of y for x =1/2.
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Figure 6b. Average transition probability as a function of y (w )
for x=1/2 (c=1/4, w=1).
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Figure 7a. Characteristic exponent z as a functionof y for x =1,
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Figure 7b. Average transition probability as a function of y for
x =1
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Figure 8a. Characteristic exponent z as a function of y for x = 3.
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Figure 8b. Average transition probability as a function of y for x = 3.
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.O
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Figure 9a. Characteristic exponent z as a functionof y for
w=x=x'"=0,6, 6 =0,

Figure 9b. Average transition probability as a function of y for
w=x=x'=0.6, 8§ =0,
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