
• Links:

• Martin@ClariFit.com

• http://www.TalkApex.com

• http://www.ClariFit.com

1

•Been developing web based applications for over 10 years. Focus primarily on Oracle

and APEX over the past 5 years.

•Author of Oracle APEX blog: http://www.TalkApex.com

•Recently designated Oracle ACE

2

• Co-authored the following books:

• Beginning Oracle Application Express 4: http://goo.gl/NxHoF

• Expert Oracle Application Express: http://goo.gl/tXm3P

• More info about this book:

http://jes.blogs.shellprompt.net/2011/03/30/expert-oracle-

application-express

3

•ClariFit is a Oracle APEX and PL/SQL consulting and training firm based out of Calgary,

Alberta, Canada

•For more information please visit http://www.ClariFit.com or email: info@ClariFit.com

4

5

•Assumptions:

•Have used APEX before

•Have seen or used a bit of JavaScript

•If you’re really new to JavaScript don’t worry, you should be able to

follow along

6

7

• Premise behind doing this presentation

• I’ve heard many statements such as “APEX Sucks because ….” or “APEX can’t

do …”

• Not the right attitude to take towards the problem

• APEX is a framework that just produces HTML

• No different than PHP or .NET

• Yes we face issues with APEX

• Some tools better for different types of jobs

• Ex: Interactive Reports has some major benefits over other reporting

options in .NET and PHP

• Need to work around them

• Get paid to turn business problems into technical solutions

• This is the difference between programmers and developers

8

9

• Code Instrumentation
• Helps with debugging and resolve production issues
• Tom Kyte is a huge supporter

• In PL/SQL it’s really easy to do.
• Tyler Muth’s logger package for PL/SQL code is an excellent tool

• https://www.samplecode.oracle.com/sf/projects/logger
• APEX_DEBUG_MESSAGE for some APEX code
• http://download.oracle.com/docs/cd/E17556_01/doc/apirefs.40/e15519/apex_debug.htm

• What about JavaScript code?
• When you write plugins or any JavaScript code to enhance your application they’re several

ways to do this
• Can write the standard console.log()

• Can’t easily control when to enable/disable
• If browser doesn’t support (older browsers or disabled) can cause JS errors and crash

your app
• apex.debug

• JavaScript (not officially supported in the APEX API documentation yet, but will be
soon)

• Will only run when the application is run in debug mode
• Can only take in a single message.

• Console Wrapper
• http://consolewrapper.clarifit.com

• Open source (project hosted on code.google.com)
• Will run when APEX application is in debug mode

• or you can manually enable it (see web page for more info)
• Can leverage most of the features available to console

• See the “Additional Resources” section on the web page
• Can take it several messages
• Supports chaining
• Auto Log function Params

• This is a huge time saver
• Demo

• In a few slides

10

• Suppose you had a bug with your JS code

11

• What you would do is instrument the code with console.log() calls to help find the

issues

• In this case it’s pretty simple code but in more complex JavaScript calls you’ll

need to see what is going on

12

• When you run the code, the console.log statements will output what is happening

• This information can really help resolve issues quickly

13

• In the past after resolving the issue what you needed to do was remove all the

console.log statements since some browsers did not support it and would crash the

application

• Note: The recent version of all major browsers now support it

14

//You’ll need to include the console wrapper JS file in your application somewhere
//Go to: http://consolewrapper.clarifit.com to download it

// Run on Page 1
console.log('hello');
apex.debug('hello');
$.console.log('hello'); //This refers to the console wrapper
// Notice how only 1 “hello” was displayed?

// Run the app in debug mode
console.log('hello');
apex.debug('hello');
$.console.log('hello');
// You should now see all 3 “hello”

//Won’t be comparing “console.log()” calls any more

//Now get a bit more advanced
var x = {start: 'hello', end: 'goodbye'};
apex.debug(x);
$.console.log(x);
//Note: both worked and displayed proper JSON object

//What about multiple variables. This can help save some lines
var x = {start: 'hello', end: 'goodbye'};
var y = 123;
apex.debug(x,y);
$.console.log(x,y);

//Only way to use the apex.debug would be for multiple lines
apex.debug(x);
apex.debug(y);

//Going to highlight some more neat features in Console

//Grouping
var x = {start: 'hello', end: 'goodbye‘};
var y = 123;
$.console.group('Group Header');
$.console.log('hello');
$.console.log(x, y);
$.console.groupEnd('Group Header');
$.console.log('after group');

//Chaining
$('#P1_REPORT_SEARCH').val('123');
apex.debug('changed value');
apex.debug($('#P1_REPORT_SEARCH'));
//Notice how this took 3 lines to write?

//This only takes 1 line
$('#P1_REPORT_SEARCH').val('123').log('changed value');

//Function Arguments
//Suppose you had the following function:
function myFn(x, y, z){
//...
return x + y + z;

}

//Using apex.debug you’d need to write out all the parameters manually
//This can take a while
function myFn(x, y, z){
apex.debug('Parameters: x: ' + x + ', y: ' + y + ', z: ' + z);

//...
return x + y + z;

}

//Run The code
myFn('a','b','c');

//Works well but what about complex objects?
myFn('a','b',{d: 123, e: 456});
//Notice that it doesn’t tell you much “just the object”

//What about “extra parameters”
myFn('a','b','c','d');
//Doesn’t catch the extra “d”

//Better way?
//Yes there is: the logParams function which is included in the console wrapper

function myFn(x, y, z){
$.console.logParams();

//...
return x + y + z;

}

//These are the same cases as above. Notice how it resolves each of the issues?
myFn('a','b','c');
myFn('a','b',{d: 123, e: 456});
myFn('a','b','c','d');

15

• Summary

• Try to avoid direct calls to console.log

• Main reason right now is it will always display to the user in their console

window

• apex.debug is good for basic debugging

• By no means am I putting it down

• If you don’t want to use the Console Wrapper at lease use apex.debug

• Console Wrapper

• Expands your code instrumentation tool set to

• Allows you to apply debug code quicker

16

• Current way to search in standard reports is enter a value then click the “Go” button

17

• Once the page is submitted a lot of things can occur

• This results in extra server time and time spent by client waiting

18

• You then get your results back

• If you need to refine your search again you have to do it all over again

• Wouldn’t it be better if you could see results as you typed?

19

• Google Instant

• Search while you type

• Can be helpful if searching for a name and don’t know full spelling etc

20

• Links:

• http://plugins.clarifit.com

• Blog links include installation instructions and detailed background information

• Note: that in APEX 4.1 the plugin will change significantly to leverage the new 4.1

features

21

• Last year talked about APEX page errors

• Odds are you’re getting them but just don’t know/realize it

• More info

• http://www.talkapex.com/2010/10/apex-region-errors-part-1.html

• http://www.talkapex.com/2010/10/apex-region-errors-part-2.html

• http://www.talkapex.com/2010/09/custom-error-messages-in-

apex.html

• Note: The solutions listed above will change dramatically when APEX 4.1

comes out due to it’s new way to handle page errors

22

• What about Region Errors?

• Odds are you have them in your application as well

• Starting in APEX 4.0 there’s a way to find out about them

23

• Story

• Here is the video (YouTube video) of the story I gave: http://goo.gl/jmUH8

• What it emphasizes is that:

• When/if users reports a problem you sometimes get very vague

information

• You may not be able to resolve the bug with such little

information

• Worse, is if users try to come up with “magical” solutions themselves

which aren’t correct

24

• For demo on how to detect APEX region errors that leverages the FeedBack tool

please read:

• http://www.talkapex.com/2011/07/apex-region-errors-part-3.html

25

• Try to avoid saying “No” the first time you hear a problem

• There’s usually a simple way to resolve it

• APEX has it’s limitations but by being creative you can get around them

26

• Links:

• Martin@ClariFit.com

• http://www.TalkApex.com

• http://www.ClariFit.com

27

