Excel

YEAR

Mathematics Revision \& Exam Workbook

Free-to-download sample pages with answers
ESSENTIAL

Get the Resultis You Wantd

Chapter 7

Coordinate geometry

UNIT 1: The distance between two points

QUESTION 1 Write down the distance between each pair of points.

a	$A(3,6)$ and $B(7,6)$	$A B=$		b	$C(5,2)$ and $D(5,7)$	$C D=\square$
\mathbf{c}	$E(-3,5)$ and $F(-3,0)$	$E F=$		d	$G(5,4)$ and $H(9,4)$	$G H=\square$
\mathbf{e}	$I(7,2)$ and $J(11,2)$	$I J=$		f	$K(-1,2)$ and $L(2,2)$	$K L=$
g	$M(1,1)$ and $N(1,8)$	$M N=$		h	$O(4,4)$ and $P(4,9)$	$O P=$

Question 2 Use Pythagoras' theorem to find the distance $A B$ in each diagram. Leave your answers in surd (square root) form where necessary.
a

b

c

Question 3 Use Pythagoras' theorem to find the length of each interval. Leave your answers in surd form where necessary.
a

b

c

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question $4 \quad A B C D$ is a rectangle. Find:
a the coordinates of the vertex A \qquad
the length of the interval
i $A B$ \qquad ii $B C$
iii $C D$ \qquad iv $D A$
v $B D$ \qquad vi $A C$
\qquad

c The perimeter of $A B C D$ \qquad d The area of $A B C D$

Coordinate geometry

UNIT 2: The distance formula

QUESTION 1 Use the distance formula $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ to calculate the distance between the following pairs of points. Leave your answers in surd form where necessary.
a $A(1,3)$ and $B(5,7)$
b $\quad A(4,2)$ and $B(11,1)$
c $\quad C(-2,3)$ and $D(5,2)$
\qquad
\qquad
\qquad
d $E(5,1)$ and $F(8,2)$
e $\quad G(3,9)$ and $H(5,12)$
f $I(3,8)$ and $J(2,5)$
\qquad
\qquad
\qquad
\qquad
\qquad

QUESTION 2 Calculate the distance between the following pairs of points correct to one decimal place.
a $\quad A(5,8)$ and $B(-1,-2)$
\qquad
\qquad
d $\quad G(3,7)$ and $H(9,15)$
\qquad
\qquad

Question 3

a What is the square of the distance between the points $A(-3,4)$ and $B(1,9)$?
\qquad
\qquad
b Find the perimeter of the triangle whose vertices are $A(6,0), B(9,6)$ and $C(1,0)$.
\qquad
\qquad

Question 4 The points $A(-2,3), B(5,3), C(5,-1)$ and $D(-2,-1)$ are the vertices of a rectangle. Find:
a the length $A B=$ \qquad b the length $B C=$
c the length $C D=$ \qquad d the length $D A=$
e the exact length $A C=$ \qquad f the exact length $B D=$

Coordinate geometry

UNIT 3: The midpoint of an interval

Question 1

a What number is halfway between 6 and 10?
b What is the average of 6 and 10 ? \qquad
c Find $\frac{6+10}{2}$
d What number is halfway between -2 and 12 ?
e What is the average of -2 and 12? \qquad
f Find $\frac{-2+12}{2}$

QUESTION 2 What number is halfway between the point A and the point B on each number line?

b

QUESTION 3 Find the number that is halfway between:

a 0 and 16=	b 4 and $12=$	c	2 and $10=$
d 3 and $15=$	e 1 and $13=$	f	-1 and $7=$
g -2 and $6=$	h -4 and $4=$	i	2 and $18=$
-5 and $15=$	k 3 and $17=$		1 and $19=$

QUeStion 4 Consider the points $P(4,10)$ and $Q(6$ and -2$)$.
a Use the x-coordinates of the points P and Q to find the number halfway between 4 and 6 .
b Use the y-coordinates of the points P and Q to find the number halfway between 10 and -2 .
c What are the coordinates of the point M, which is halfway between P and Q ?

Coordinate geometry

UNIT 4: The midpoint formula

QUESTION 1 Use the midpoint formula $\frac{x_{1}+x_{2}}{2}$ and $\frac{y_{1}+y_{2}}{2}$ to find the midpoint of the interval joining each of the following sets of points.
a $\quad A(0,6), B(0,10)$
b $\quad A(2,7), B(8,9)$
c $C(-2,-5), D(-7,9)$
\qquad
\qquad
\qquad
d $E(4,9), F(8,3)$
e $G(8,8), H(6,0)$
f $I(0,8), J(4,4)$

QUESTION 2 Use the midpoint formula to find the midpoints of the intervals joining the following points:
a $\quad P(2,-5), Q(8,5)$
b $\quad R(9,3), S(7,5)$
c $\quad A(5,13), B(11,11)$
\qquad
\qquad
d $\quad C(4,5), D(6,9)$
e $E(-3,-6), F(1,4)$
f $G(-4,6), H(8,-2)$
\qquad
\qquad
\qquad
\qquad
\qquad
Question 3 The points $O(0,0), A(1,4), B(6,4)$ and $C(5,0)$ are the vertices of a parallelogram.
a Find the coordinates of the midpoint of $O B$. b Find the coordinates of the midpoint of $A C$.
\qquad
\qquad
c Are the midpoints of $O B$ and $A C$ the same? \qquad
d What can you say about the diagonals of the parallelogram?
QUESTION 4 Find the coordinates of the centre of the circle if the endpoints of a diameter are:

a $A(-2,9), B(9,6)$	b	$C(6,0), D(4,2)$	c	$E(3,11), F(9,9)$
d $G(5,6), H(7,10)$	e	$I(-5,-8), J(-1,2)$	f	$K(-5,5), L(7,-3)$

QUESTION 5 The vertices of a triangle $A B C$ are $A(2,13), B(14,15)$ and $C(-3,5)$. Find the midpoint of each side.

QUESTION 6 Prove that the midpoint of $A(5,-8)$ and $B(-5,8)$ is the origin.

Coordinate geometry

UNIT 5: Finding an end point

QUESTION 1 For each diagram, find the coordinates of A, given that M is the midpoint of $A B$.
a

b

QUESTION 2 The coordinates of the midpoint M of an interval and one of its end points A, are given. Find the coordinates of the other end point B.
a $M(4,7)$ and $A(1,6)$
b $M(5,9)$ and $A(1,7)$
c $M(6,-3)$ and $A(4,1)$
d $\quad M(0,8)$ and $A(4,10)$
e $\overline{M(5,9) \text { and } A(1,7)}$
\qquad

i $\quad M(2,1)$ and $A(5,-5)$
j $\quad M(4,9)$ and $A(0,2)$
k $\quad M(8,4)$ and $A(5,2)$
l $M(8,0)$ and $A(7,3)$
\qquad
\qquad
\qquad

QUESTION 3 Given the coordinates of the centre C of a circle, and one end point B of a diameter, find the coordinates of the other end point A of the diameter.
a $\quad C(2,4)$ and $B(0,1)$
b $\quad C(3,7)$ and $B(2,6)$
c $\quad C(-1,2)$ and $B(-4,4)$
\qquad
d $\quad C(-2,5)$ and $B(-6,4)$
e $\quad C(0,0)$ and $B(-4,-6)$
f $C(6,9)$ and $B(4,6)$
g $C(-1,8)$ and $B(-4,3)$
h $C(-3,1)$ and $B(-7,0)$
\qquad
\qquad
\qquad
\qquad

Question 4

a $(3,6)$ is the midpoint of $A B$ and A is the point $(0,2)$. Find the coordinates of B. \qquad
b If the midpoint of (a, b) and $(9,9)$ is $(6,2)$. What are the values of a and b ? \qquad
c If the midpoint of $(5, p)$ and $(7,-4)$ is $(6,3)$. What is the value of p ? \qquad
d If the midpoint of $(x, 5)$ and $(9, y)$ is $(1,6)$. What are the values of x and y ? \qquad

Coordinate geometry

UNIT 6: The gradient of a line

QUESTION 1 State whether the gradient of the line $<$ is positive or negative.
a

b

c

d

Question 2 Find the gradient of each line.

\qquad
\qquad
d

e

\qquad
\qquad
h

i

Coordinate geometry

UNIT 7: The gradient formula

QUESTION 1 Use the gradient formula $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ to find the gradient of the straight line passing through:
a $\quad A(3,5)$ and $B(7,-1)$
b $\quad C(2,5)$ and $D(-2,1)$
c $E(0,7)$ and $F(4,3)$
\qquad
\qquad
d $G(1,-1)$ and $H(6,4)$
e $I(1,0)$ and $J(4,9)$
f $\quad K(0,0)$ and $L(5,8)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 2 Find the gradient of the line between:
a $A(-2,-3)$ and $B(3,2)$
b $C(0,5)$ and $D(5,0)$
c $\quad E(6,0)$ and $F(1,-5)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
d $G(5,5)$ and $H(2,-5)$
e $\quad I(4,3)$ and $J(1,4)$
f $\quad K(6,8)$ and $L(1,-1)$
\qquad
\qquad
\qquad
\qquad
\qquad

QUESTION 3 Show that $A(0,-5), B(3,1)$ and $C(-2,-9)$ are collinear.
\qquad
\qquad

Question 4 A line passes through the points $A(1,3)$ and $B(x, 7)$ and its gradient is 1 . Find the value of x.
\qquad
\qquad
QUESTION 5 Show that the four points $A(-2,-3), B(-5,2), C(0,4)$ and $D(3,-1)$ are the vertices of a parallelogram.
\qquad
\qquad
QUESTION 6 Which of the following sets of points is collinear?
a $(3,7),(0,4)$ and $(8,2)$ \qquad
b $(0,1),(-1,-1)$ and $(2,5)$ \qquad

Coordinate geometry

UNIT 8: Gradient and \boldsymbol{y}-intercept of the line $\boldsymbol{y}=\boldsymbol{m x} \boldsymbol{+} \boldsymbol{b}$

For each of the graphs drawn below, write:
a the y-intercept
b the gradient
c whether the gradient is positive or negative
d whether the line is leaning to the right or to the left.

\qquad
b
\qquad
d
3

\qquad
b
\qquad
d \qquad
5

a
b
\qquad
d \qquad

2

a
b \qquad
c \qquad
d
4

a
b \qquad
c \qquad
d \qquad
6

a
b \qquad
c \qquad
d \qquad

Coordinate geometry

UNIT 9: More on gradient and \boldsymbol{y}-intercept of the line $\boldsymbol{y}=\boldsymbol{m x} \boldsymbol{+} \boldsymbol{b}$

For each of the equations given below,
a Complete a table of values.
c Write the gradient of the line.
e State whether the line is leaning to the left or to the right.
g Is it the same as the gradient?
i Is it the same as the constant term of the equation?

Question 1
a $y=x-3$

x	0	1	2
y			

b

\qquad
d \qquad
e \qquad
\qquad
g \qquad
h \qquad
i \qquad
b

Question 2

a $y=-2 x+3$

x	0	1	2
y			

c \qquad
d \qquad
e \qquad
f \qquad
g \qquad
h \qquad
i \qquad
b Draw the graph of the line.
d State whether it is positive or negative.
f Write the coefficient of x.
h Write the y-intercept.

Question 3 For each of the lines given below write:
i the gradient ii the y-intercept.
a $y=8 x-5$
i
ii \qquad
b $y=2 x+3$
i ii \qquad
c $y=-3 x+7$
i
ii \qquad

Coordinate geometry

UNIT 10: Different forms of linear equations

QUESTION 1 Write each of the following equations in general form.
a $3 x+5 y=9$
—
b $2 x-y=7$
c $y=3 x-4$
d $4 x-3 y=8$ \qquad e $9 x-y=7$
f $y=-2 x-6$
g $9 x-5=7 y$ \qquad h $4 x-13 y=-18$ \qquad i $y=\frac{x}{5}+2$
\qquad
\qquad
\qquad
QUESTION 2 Write each of the following equations in the gradient-intercept form.
a $10+y=6 x$
b $4 y=8 x+32$
c $3 y=-2 x+1$
d $6 y-3 x=12$ \qquad e $y+5 x=0$ \qquad f $9 x-4 y=12$
g $x+y=2$ \qquad h $3 x-2 y=7$ \qquad i $\quad 4 y=3 x-8$
\qquad
\qquad
\qquad

QUESTION 3 Write down the gradient (m) and the y-intercept (b) for each of the following.
a $y=3 x+1$ \qquad b $y=9 x-5$ \qquad c $y=-x-3$
d $y=-4 x+7$ \qquad e $\quad y=\frac{2}{3} x-5$ \qquad f $y=\frac{1}{4} x-2$
\qquad
\qquad

QUESTION 4 Write the equation of the line in the gradient-intercept form when the gradient (m) and the y-intercept (b) are given.
a $\quad m=3, b=2$
b $m=9, b=-3$
c $m=-1, b=7$
\qquad
d $m=\frac{3}{4}, b=5$ \qquad e $m=-\frac{2}{3}, b=1$ \qquad f $m=-7, b=8$ \qquad

QUestion 5 Write the equation in the form $y=m x+b$ of the line that passes through the given point and has the given gradient.
a $\quad \mathrm{A}(-3,2), m=4$
b $\mathrm{A}(4,-1), m=2$
c $\mathrm{A}(1,5), m=\frac{1}{2}$
d $\mathrm{A}(1,8), m=\frac{2}{3}$ \qquad e $\mathrm{A}(2,5), m=-\frac{1}{3}$ \qquad f $\mathrm{A}(0,8), m=-3$
\qquad
\qquad
\qquad
\qquad

Coordinate geometry

UNIT 11: Determining whether or not a point lies on a line
Question 1
a Show that the point $(-2,3)$ lies on the line $y=x+5$ \qquad
\qquad
b Does the point $(0,-3)$ lie on the line $3 x-2 y=6$? \qquad
\qquad
c Show that the line $2 x-y+3=0$ passes through the points $(0,3),(2,7)$ and $(-4,-5)$ \qquad
\qquad

QUESTION 2 State whether the point given after each linear equation lies on that line:
a $2 x+y=4(1,2)$ \qquad b $3 x-y=6(0,-6)$
c $y=4 x-5(-1,-9)$ \qquad d $3 x-4 y=12(4,-2)$
e $\quad 2 x+5 y=10 \quad(0,2)$ \qquad f $y=-2 x+3 \quad(-2,1)$

Question 3 Does the line pass through the origin (0,0)?
a $3 x-4 y=12$ \qquad b $7 x-2 y=0$
c $9 x=4 y$ \qquad d $\quad 2 x-7 y=8$
e $y=-5 x$ \qquad f $y=4 x-7$
\qquad
\qquad
\qquad

QUESTION 4 Find the missing coordinates to make each of the following points satisfy the equation $y=2 x-5$
a ($0, ~)$ \qquad b (, -1) \qquad c (3,) \qquad
d $(-2$, \qquad e (1,) \qquad f $(, 5)$ \qquad
a If the point $(-3,-5)$ lies on the line $p x-y+4=0$ find the value of p \qquad
\qquad
b The straight line $y=m x+6$ passes through the point $(-3,3)$. Find the value of m \qquad

Coordinate geometry

TOPIC TEST
Time allowed: 15 minutes

1 The gradient of the line that passes through the points $(0,5)$ and $(2,9)$ is
(A) 3
(B) -3
(C) 2
(D) 4

2 The slope of the line $y=\frac{1}{3} x+5$ is
(A) 5
(B) -5
(C) $\frac{1}{3}$
(D) $-\frac{1}{3}$

3 The gradient of the line $2 x-5 y=10$ is
(A) 2
(B) 5
(C) $\frac{2}{5}$
(D) $\frac{5}{2}$

4 The point $(9,-1)$ lies on which of these lines?
(A) $3 x+y-6=0$
(B) $3 x-y+6=0$
(C) $x+3 y-6=0$
(D) $x+3 y+6=0$

5 The distance, in units, between the two points $\mathrm{A}(0,2)$ and $\mathrm{B}(8,8)$ is
(A) 6
(B) 8
(C) 10
(D) 12

6 The equation $2 y-3 x=6$ expressed in general form is
(A) $2 y-3 x+6=0$
(B) $2 y-3 x-6=0$
(C) $-3 x+2 y-6=0$
(D) $3 x-2 y+6=0$

7 The equation $6 x-y=7$ expressed in gradient-intercept form is
(A) $6 x=y+7$
(B) $y=6 x+7$
(C) $y=6 x-7$
(D) $y=-6 x+7$

8 The midpoint of the interval joining the points $(1,-3)$ and $(-3,5)$ is
(A) $(1,-1)$
(B) $(-1,1)$
(C) $(1,1)$
(D) $(-1,-1)$

9 The gradient of the line represented by the equation $3 x-5 y=5$ is
(A) $\frac{3}{5}$
(B) $\frac{5}{3}$
(C) 3
(D) -5

10 The distance between the points $(2,8)$ and $(-1,3)$ is
(A) $\sqrt{26}$
(B) $\sqrt{122}$
(C) $\sqrt{34}$
(D) $\sqrt{130}$

11 The line $y=5 x$ passes through which of these points?
(A) $(0,-1)$
(B) $(0,0)$
(C) $(0,1)$
(D) $(1,0)$

2 Find the distance, in units, between the origin and the point $(12,5)$
(A) $\sqrt{119}$
(B) 5
(C) 12
(D) 13

3 Find the gradient of the line represented by the equation $2 x+2 y-\frac{1}{2}=0$.
(A) $-\frac{1}{2}$
(B) $\frac{1}{2}$
(C) -1
(D) 1

14 Write $y=3 x-4$ in general form.
(A) $y-3 x=-4$
(B) $y+4=3 x$
(C) $y-3 x+4=0$
(D) $3 x-y-4=0$

15 Write $4 y-3 x=12$ in gradient-intercept form.
(A) $y=\frac{3}{4} x-3$
(B) $y=\frac{3}{4} x+3$
(C) $y=-\frac{3}{4} x-3$
(D) $y=-\frac{3}{4} x+3$

Coordinate geometry

TOPIC TEST
Instructions - This part consists of 15 questions.

- Each question is worth 1 mark.
- Write only the answer in the answer column.
- For any working use the question column.

Time allowed: $\mathbf{2 0}$ minutes
Total marks: 15

Questions

1 For the points $A(-2,6)$ and $B(3,5)$ find:
a the distance $A B$ as a square root \qquad
b the midpoint of $A B$ \qquad
c the gradient of $A B$ \qquad
d the equation of the line $A B$ is $x+5 y=28$ in general form.
e the equation of the line $A B$ in gradient-intercept form.

2 a What is the distance from $(-2,7)$ to $(-2,-3)$?
b Find the square of the distance between the point $A(-3,5)$ and $B(1,9)$
c Find the exact distance between the origin and the point $(4,8)$
d Find the midpoint of $(-5,7)$ and $(5,-7)$
e The coordinates of the midpoint of $A B$ are $(2,2)$. If A is the point $(-1,-3)$, what are the coordinates of B ?
\qquad

3 a Are the points $A(0,-4), B(1,-2)$ and $C(-3,-10)$ collinear?
b If the end points of the diameter of a circle are $(-3,4)$ and $(7,6)$, what are the coordinates of the centre?
c The midpoint of $P(2,8)$ and $Q(a, b)$ is $M(4,-4)$. Find the coordinates of point Q. \qquad
d Which of the points $(-2,-2)$ and $(2,2)$ lies on the line $y=5 x-8$?
e Find the equation of the line that has gradient $-\frac{2}{3}$ and y-intercept of 6 .

Answers
Marks
\square

Chapter 8

Linear and non-linear relationships
UNIT 1: Tables of values
QUESTION 1 Complete each table of values.
a $y=2 x+1$

x	y
0	
1	
2	
3	

d $y=5 x-4$

x	y
-1	
0	
4	
5	

b $y=3 x+2$

x	y
-2	
-1	
0	
1	

e $y=4 x+1$

x	y
-3	
-1	
1	
3	

c $y=2 x-3$

x	y
-3	
0	
3	
4	

f $y=3 x-8$

x	y
-6	
-4	
0	
2	

QUESTION 2 Complete each of the following:
a $m=2 n-5$
b $a=3 b+7$

b	a
1	
2	
3	
4	

d $s=3 t+1$
e $y=4 x-7$
f $2 x+y=3$

x	y
-2	
-1	
0	
1	

x	y
-2	
-1	
0	
1	

Linear and non-linear relationships

UNIT 2: Graphing points of intersection

QUESTION 1 Graph each pair of lines on the same number plane and find their point of intersection.
a $x=2 ; y=1$

Point of intersection: \qquad

b $x=4 ; y=-3$

Point of intersection: \qquad

QUESTION 2 Graph each pair of lines on the same number plane and find their point of intersection.
a $y=2 x+1 ; y=-2 x+1$
$y=2 x+1$

x	0	1	2
y			

$y=-2 x+1$

x	0	1	2
y			

Point of intersection: \qquad

b $y=2 x-1 ; y=x-2$

$$
y=2 x-1
$$

x	0	1	2
y			

Point of intersection:

$$
\begin{aligned}
& y=x-2 \\
& \begin{array}{|l|l|l|l|}
\hline x & 0 & 1 & 2 \\
\hline y & & & \\
\hline
\end{array}
\end{aligned}
$$

\qquad

Linear and non-linear relationships

UNIT 3: Meaning for gradient and \boldsymbol{y}-intercept

QUESTION 1 Andrew receives a fixed amount of pocket money each week. In addition, if Andrew chooses to help his mother, she gives him an extra amount per hour for the time worked. The graph shows the amount of money Andrew might receive in pocket money each week.
a What is the intercept on the vertical axis?
b What does the intercept on the vertical axis represent?
\qquad
\qquad
c What is the gradient of this line? \qquad

d What does the gradient represent? \qquad
\qquad

Question 2 Melissa intends to ride a bicycle from Baxton to Clair to raise money for the local hospital. The graph shows her expected distance from Clair in kilometres over time (in hours).
a What is the intercept on the vertical axis?
\qquad
\qquad
b What information does this intercept tell us?
\qquad
\qquad
c What is the gradient of the line? \qquad
\qquad
\qquad

d What information does the gradient tell us?
\qquad
\qquad
e What is the equation of the line?
\qquad

Linear and non-linear relationships

UNIT 4: General form of linear equations

QUESTION 1 Write each of the following linear equations in general form.
a $2 x-5 y=9$
b $3 x+4 y=8$
c $5 x-7=2 y$
d $8 y-3=4 x$
e $2 x=9-y$
f $y=8 x+7$
g $3 y-2 x=6$
h $9 y=8 x+12$
i $\quad 2 y=\frac{x}{3}+1$

QUESTION 2 Each of the following equations is in general form. Change it to gradient-intercept form, then write down its gradient and y-intercept.
a $2 x+3 y-8=0$
b $x+5 y-7=0$
c $3 x-2 y-3=0$
d $x-y+7=0$
e $2 x+y-9=0$
f $5 x-6 y+11=0$
\qquad
\qquad
\qquad
\qquad
g $3 x-2 y-6=0$
h $4 x+5 y+3=0$
i $\quad 2 x-y+6=0$
\qquad
\qquad
\qquad
\qquad

QUESTION 3 Write the equation of each line in gradient-intercept form and then change it to general form.
a $m=4, b=3$
b $m=2, b=-5$
c $m=3, b=7$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
d $m=\frac{1}{2}, b=4$
e $\quad m=\frac{2}{3}, b=6$
f $m=-\frac{5}{6}, b=3$

Linear and non-linear relationships

UNIT 5: Using graphs to solve linear equations (1)

QUESTION 1 The graph of $y=x+2$ is shown opposite. Use the graph to write the y-value for each of the following x-values.
a i $\quad x=3$
ii $x=1$
iii $x=-4$
b Use the graph to find the x-value for each of the following y-values.
i $y=6$
ii $y=-3$
iii $y=0$
\qquad
\qquad
\qquad
c In part b replace y by $x+2$ as $y=x+2$ is the equation of the graph. Use the graph to solve each of the following linear equations.
iii $x+2=0$
i $x+2=6$
ii $x+2=-3$

QUESTION 2 The graph of $y=2 x-1$ is drawn below. Use the graph to solve each of the following equations.
a $\quad 2 x-1=1$
b $2 x-1=3$
\qquad
\qquad
c $2 x-1=-3$
d $2 x-1=-5$
\qquad
\qquad
e $2 x-1=5$
f $2 x-1=0$
\qquad
\qquad
g $\quad 2 x-1=2$
h $2 x-1=4$

\qquad
\qquad
\qquad
\qquad
i $\quad 2 x-1=-2$
\qquad
\qquad

Linear and non-linear relationships

UNIT 6: Using graphs to solve linear equations (2)

Question 1

a Complete the table of values for the relation $y=3 x-5$

x	0	1	2	3
y				

b Draw the graph of $y=3 x-5$
c Use the graph to solve the following linear equations.
i $3 x-5=1$
ii $3 x-5=7$
\qquad
\qquad
\qquad
\qquad
iii $3 x-5=-2 \quad$ iv $3 x-5=-8$

Question 2

a Complete the table of values for the relation $y=-2 x+7$

x	-1	0	1	2	3
y					

b Draw the graph of $y=-2 x+7$
c Use the graph to solve the following linear equations.
i $-2 x+7=1 \quad$ ii $-2 x+7=3$
\qquad
\qquad
\qquad
\qquad
iii $-2 x+7=5$ iv $-2 x+7=-1$

\qquad
\qquad
v $-2 x+7=-3$

Linear and non-linear relationships

UNIT 7: Drawing quadratic relationships
Question 1 Complete the table of values and then, on the same number plane, draw the graphs of the following:
$y=x^{2}$
$y=3 x^{2}$
$y=\frac{1}{3} x^{2}$

	x	-3	-2	-1	0	1	2	3
i	$y=x^{2}$							
ii	$y=3 x^{2}$							
iii	$y=\frac{1}{3} x^{2}$							

QUESTION

2 Complete the table of values and then, on the same same number plane, draw the graphs of the following:
$y=x^{2}$
$y=x^{2}+3$
$y=x^{2}-3$

	x	-3	-2	-1	0	1	2	3
\mathbf{i}	$y=x^{2}$							
ii	$y=x^{2}+3$							
iii	$y=x^{2}-3$							

QUESTION 3 Complete the table of values for $y=x^{2}+1$ and sketch its graph.

x	-3	-2	-1	0	1	2	3
$y=x^{2}+1$							

a What is the equation of its axis of symmetry? \qquad

b What are the coordinates of its vertex? \qquad $-$
c What is the minimum value for $y=x^{2}+1$? \qquad
d Find the x-intercepts: \qquad
e Find the y-intercept:

Question 4 Sketch the graphs of the following on the same number plane.
a $y=x^{2}$
b $y=x^{2}+4$
c $y=x^{2}-4$
d Explain how the graphs of $y=x^{2}+4$ and $y=x^{2}-4$
 can be drawn using $y=x^{2}$ \qquad

Linear and non-linear relationships

UNIT 8: Further parabolas

QUESTION 1 The equation of each parabola is of the form $y=a x^{2}+c$. Use the features of each graph to determine the values of a and c and hence write down the equation.
a

\qquad
e

\qquad
b

c

d

\qquad
\qquad
\qquad

f

\qquad
g

h

\qquad
\qquad

QUESTION 2 A computer program was used to draw the graph of the height, $h \mathrm{~m}$, of a ball fired into the air after t seconds.
a How high is the ball after 4 seconds?
b How high is the ball after 2.8 seconds?
c How high is the ball after 14 seconds?
d What is the maximum height reached by the ball?
\qquad
e After how many seconds does the ball reach the maximum height?

f When is the ball 30 m high?
and \qquad
g After how many seconds does the ball return to the ground?

Linear and non-linear relationships

UNIT 9: Exponential curves

Question 1

a Complete the table of values for $y=2^{x}$

x	-3	-2	-1	0	1	2	3
y							

b On the number plane provided, sketch the graph of $y=2^{x}$
c What happens to the y-value as x becomes very large?
d What happens to the y-value as x decreases in value?
e What is the value of y when $x=0$? \qquad

Question 2

a Complete the table of values for $y=3^{x}$

x	-2	-1	0	1	2
y					

b On the number plane provided, sketch the graph of $y=3^{x}$
c Complete the table of values for $y=3^{-x}$

x	-2	-1	0	1	2
y					

d On the same number plane, sketch the graph of $y=3^{-x}$
e For what value of x does $3^{x}=3^{-x}$? \qquad

Question 3 Complete the tables of values and then on the same graph, sketch $y=-2^{x}$ and $y=-2^{-x}$

	x	-3	-2	-1	0	1	2	3
$y=-2^{x}$	y							
$y=-2^{-x}$	y							

Question 4 Complete the tables of values and then on the same graph, sketch $y=2^{x}$ and $y=2^{x}+1$ and $y=2^{x}-1$

	x	-3	-2	-1	0	1	2	3
$y=2^{x}$	y							
$y=2^{x}+1$	y							
$y=2^{x}-1$	y							

Linear and non-linear relationships

UNIT 10: Circles

Question 1

a What are the coordinates of the centre of this circle? \qquad
b What is the radius? \qquad
c What is the equation of the circle? \qquad
d The point $P(4,3)$ lies on the circle. Show that the coordinates of P satisfy the equation.
\qquad
\qquad

Question 2

a Use Pythagoras' theorem to find the distance from $(0,0)$ to $(6,8)$.

QUESTION 3 Write the equation for each circle.
a

b

c

d

\qquad
\qquad
\qquad
\qquad
b Write down the equation of the circle that has its centre at the origin and passes through P.
\qquad

QUESTION 4 For each equation of a circle write down the centre and the radius.
a $x^{2}+y^{2}=4$
b $x^{2}+y^{2}=49$
c $x^{2}+y^{2}=144$
d $x^{2}+y^{2}=6.25$

QUESTION 5 Sketch the graph of each of these.
a $x^{2}+y^{2}=64$
b $x^{2}+y^{2}=12.25$
c $x^{2}+y^{2}=121$
d $x^{2}+y^{2}=1$

Linear and non-linear relationships

1 The equation of the line $<$ is

(A) $x=2$
(B) $x=-2$
(C) $y=2$
(D) $y=-2$

2 Which graph best represents $y=x^{2}$?
(A)

(B)

(C)

(D)

3 Which of the following could be the equation of the graph?

(A) $y=2^{x}$
(B) $y=2^{-x}$
(C) $y=-2^{x}$
(D) $y=-2^{-x}$

4 Which of the following could be the equation of the graph?

(A) $y=0$
(B) $x=0$
(C) $y=x$
(D) $y+x=0$

5 The equation of a linear graph with y-intercept 5 and gradient 2 is
(A) $y=2 x+5$
(B) $y=5 x+2$
(C) $y=2 x-5$
(D) $y=-2 x+5$

6 The line $y=2 x-2$ has
(A) $\quad \underset{y \text {-intercept } 2}{\text { gradient }-2}$
(B) $\underset{y \text {-intercept }-2}{\text { gradient } 2}$
(C) $\begin{aligned} & \text { gradient }-2 \\ & y \text {-intercept }-2\end{aligned}$
(D) $\begin{aligned} & \text { gradient } 2 \\ & y \text {-intercept } 2\end{aligned}$

7 Which one of the following points lies on the line $3 x-4 y=12$?
(A) $(-3,8)$
(B) $(-3,-8)$
(C) $(8,3)$
(D) $(8,-3)$

8 For the equation $2 x+y=6$, find the x-intercept.
(A) $(0,6)$
(B) $(6,0)$
(C) $(0,3)$
(D) $(3,0)$

9 The coordinates of the point of intersection of the lines $x=2$ and $y=-3$ are
(A) $(-3,2)$
(B) $(3,-2)$
(C) $(-2,3)$
(D) $(2,-3)$

10 The equation $y=3-x^{2}$ represents
(A) a straight line
(B) a parabola
(C) exponential curve
(D) a circle

11 The gradient of the line $y=3-x$ is
(A) horizontal
(B) vertical
(C) negative
(D) positive

12 The equation of the line $<$ is

(A) $x-2 y-2=0$
(B) $x-2 y+2=0$
(C) $2 x-y-2=0$
(D) $2 x-y+2=0$

Linear and non-linear relationships

TOPIC TEST
Instructions - This part consists of 15 questions.

- Each question is worth 1 mark.
- Write only the answer in the answer column.
- For any working use the question column.

Time allowed: $\mathbf{2 0}$ minutes
Total marks: 15

Questions

1 a What are the coordinates of the centre of this circle?
b What is the radius?
c What is the equation of the circle?
d If the distance from $\mathrm{O}(0,0)$ to $\mathrm{P}(7,7)$ is d units, use Pythagoras' theorem to find the value of d^{2}.

e Does point P lie inside, on or outside the circle?

2 a Find the gradient of the line $<$.
b What is its y-intercept?
c Write the equation of the line $<$.
d Where does the line cut the x-axis?
e For what value of x will $y=8$?

3 a Complete the table of values
for $y=x^{2}-4$

x	-3	-2	-1	0	1	2	3
y							

b Sketch the graph of $y=x^{2}-4$
c What is the equation of its axis of symmetry?
d What are the coordinates of its vertex?
e What are the x-intercepts?

Answers
Marks

1

Chapter 9

Equations

UNIT 1：One－step equations（addition and subtraction）

QUESTION 1 Solve the following equations．
a $x+2=9$
b $a+5=16$
c $n-3=7$
d $y+3=7$
e $n+6=8$
f $k-2=15$
\qquad
g $a+9=21$
h $t+2=5$
i $x-6=8$
j $\quad m+1=10$
k $p+8=11$
l $y-1=5$

QUESTION 2 Solve the following one－step equations．
a $a-4=12$
b $x-7=21$
c $m-3=25$
d $n-5=6$
e $a-8=20$
f $\quad 17+a=24$
g $y+9=12$
h $t-8=-7$
i $y-3=-6$
j $x-5=23$
k $9+p=25$
l $m-2=-12$

QUESTION 3 Solve these equations．
a $a+8=24$
\qquad
b $x+4=18$
c $b+3=8$
d $k-6=4$
\qquad
e $n+6=10$
f $\quad a-1=25$
g $\quad m-7=27$
h $t-3=31$
i $y-4=22$
j $\quad x-9=18$
k $a-6=21$
l $14+x=51$

QUESTION 4 Solve these equations．
a $3+x=18$
b $n+7=12$
c $m-3=14$
\qquad
d $y-2=10$
e $x-1=12$
f $y+3=19$
g $m-2=12$
h $t-6=2$
i $\quad a-1 \frac{1}{2}=2 \frac{1}{2}$

Equations

UNIT 2: One-step equations (multiplication and division)
QUESTION 1 Solve the following equations.
a $3 x=9$
b $4 y=24$
c $5 t=15$
d $\frac{m}{3}=6$
\qquad
\qquad
\qquad
f $\quad \frac{a}{5}=4$
g $4 x=20$
h $\frac{y}{5}=2$
e $\frac{n}{2}=8$
j $\quad \frac{x}{4}=7$
k $\frac{x}{2}=11$
l $\frac{t}{3}=-2$

QUESTION 2 Solve the following one-step equations.
a $7 a=56$
b $\frac{a}{9}=2$
c $\frac{x}{4}=10$
d $9 x=72$
e $5 m=35$
f $\quad \frac{t}{2}=7$
g $\frac{y}{4}=8$
h $\frac{x}{7}=-3$
k $5 x=55$
l $3 t=15$
j $\frac{d}{3}=-3$

Question 3 Solve these equations.
a $\frac{x}{6}=1$
b $\frac{y}{7}=-2$
e $6 t=24$
f $5 n=35$
\qquad j $\frac{n}{5}=-14$
c $\frac{m}{8}=-1$
d $9 m=-81$
g $8 a=88$
h $\frac{p}{3}=16$
k $\frac{x}{4}=-6$
l $\frac{y}{7}=-8$
© Pascal Press ISBN 9781741252712
QUESTION 4 Solve these equations.

a $\frac{x}{2}=27$	b	$2 x=10$
$\frac{\mathscr{C}}{6}$ e $\quad 3 y=-15$	f	$\frac{m}{3}=9$
- $2 x=23$	j	$3 y=15$

c $4 x=-48$
d $6 x=-12$
g $\frac{y}{4}=8$
k $2 x=15$
l $\frac{m}{3}=-11$

Equations

UNIT 3: Two-step equations

QUESTION 1 Solve the following two-step equations.
a $3 x-1=5$
b $2 x+7=17$
c $9 y-4=23$
d $\quad 6 a-5=25$
e $\quad 8 a+7=47$
f $\frac{3 m}{2}=6$
i $\quad 3 x-2=19$
g $\quad \frac{x-3}{5}=4$
h $\frac{a}{2}-4=6$

QUESTION 2 Solve the following equations.
a $3 x+8=32$
b $8 y-3=21$
c $7 p-8=13$
\qquad
\qquad
\qquad
d $\frac{a}{3}-2=9$
e $\quad 4 a-2.5=9.5$
f $\quad 6 a+1 \frac{1}{2}=4 \frac{1}{2}$
\qquad
\qquad
\qquad
g $5 x-5=30$
h $\frac{x}{2}+7=12$
i $\quad \frac{x-3}{2}=8$
\qquad
\qquad
\qquad
\qquad

QUESTION 3 Solve these equations.
a $2 y+5=35$
b $7 y-3=4$
c $8 x-6=26$
d $\quad 5 t-2=8$
e $m-34=5$
f $2 x-1=17$
g $3 y+2=5$
h $5 y-4=26$
\qquad
\qquad
\qquad
\qquad
i $\quad 2 x-5=11$
j $x-34=6$
k $2 y+8=-2$
l $4 p-6=-10$

Equations

UNIT 4: Equations with pronumerals on both sides

Question 1 Solve the following equations.
a $5 a-9=3 a+11$
b $9 x+5=7 x-9$
c $\quad 2 x+3=x-7$
d $\quad 6 a-13=9 a-15$
e $8 t+11=7 t-4$
f $\quad 11 a+3=9 a+1$
\qquad
\qquad
g $4 y+10=7 y-2$
h $\quad 6 a+9=2 a-7$
i $\quad 6-5 t=9-2 t$

QUESTION 2 Solve these equations.
a $4 m-11=7 m-13$
b $4 x+6=5 x-9$
c $6 a+13=27+3 a$
d $\quad 5 x-4=x+12$
e $\quad 10 a-5=7 a-2$
f $2 x-20=9 x-6$
\qquad
\qquad
\qquad
g $\quad 13 x-29=31-7 x$
h $5 m-3=4 m+12$
i $\quad x-15=2 x+11$

QUESTION 3 Solve these equations.
a $7 x+15=-3-2 x$
b $9 a-20=7 a+32$
c $x-13=2 x-12$
d $7 x-28=4 x-10$
e $3 y+1=2 y-4$
f $9 y-6=7 y+10$
g $3 y+8=2 y+9$
h $\quad 5 y-7=4 y+8$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
i $12 t-12=13 t+33$
j $\quad 4 t+7=7 t+7$
k $32 x+18=-20 x-10$
l $5 y+2=3 y-8$
\qquad
\qquad
\qquad
\qquad
m $8 a-9=5 a+21$
n $x-13=7 x+5$
o $4 x-5=3 x+7$

Equations

UNIT 5：Equations with grouping symbols

QUESTION 1 Solve the following equations．
a $2(x+3)=12$
b $3(y+1)=15$
c $7(m-4)=14$
d $4(x+5)=32$
e $8(2 x-1)=64$
\qquad
\qquad
g $6(x-2)=18$
h $-2(3 x-1)=20$
i $\quad-3(y+1)=15$
\qquad
\qquad
\qquad

QUESTION 2 Solve these equations．
a $2(4 x-3)=30$
b $\quad 5(m-4)=35$
c $3(2 t+1)=21$
\qquad
d $-3(p-4)=21$
e $\quad 5(2 x+3)=25$
\qquad
\qquad
g $\quad 6(2 x-1)=5(x+3)$
h $4(a-2)=3(a+2)$
i $6(x-8)=5(x-1)$

QUESTION 3 Solve these equations．
a $6(m+3)+m+12=0$
b $4(x-3)=3(x+2)$
c $\quad 5(4 a+1)=2 a+3$
d $\quad 5(a+3)=4(7+a)$
e $8(m-1)=7(m-3)$
f $\quad 9(t+2)=7(t+3)$
\qquad
\qquad
g $\quad 5(a+1)+2 a+7=33$
h $\quad 5(n+3)=4(n-1)$
i $\quad 4(5 a-3)=38$
\qquad
\qquad
j $7(x-8)=-28$
k $8(y-3)=7(y+1)$
l $5(a+4)=4(a-2)$

Equations

TOPIC TEST

1 If $2 x-3=17$ then x equals
(A) 7
(B) 10
(C) 14
(D) 20

2 If $\frac{m}{3}-2=4$ then m equals
(A) 2
(B) 6
(C) 14
(D) 18

3 If $5 x-3=60$, what is the value of x ?
(A) 12
(B) 57
(C) 63
(D) $\frac{63}{5}$

4 If $4(3 m-5)=6 m-14$ then m equals
(A) 2
(B) 1
(C) -2
(D) -1

5 Solve for $x, 2 x-5=23$
(A) 8
(B) 9
(C) 14
(D) 28

6 Solve $4(x-2)-3(x-1)=0$
(A) -5
(B) 5
(C) -11
(D) 11

7 Solve $5(x-1)-1=24$
(A) 5
(B) 6
(C) 10
(D) 26

8 If $12 x-4=8$, then x is equal to
(A) $\frac{1}{3}$
(B) $\frac{2}{3}$
(C) 1
(D) -1

9 Solve $\frac{x-2}{5}=4$.
(A) 6
(B) 20
(C) 22
(D) 30

10 When $2(a+3)=10$, the value of a is
(A) 2
(B) 5
(C) 7
(D) 8

11 Three more than twice the number equals the number plus 7 . What is the number?
(A) 2
(B) 4
(C) 5
(D) 10

12 Find the value of x in the equation $3 x-75=0$
(A) 3
(B) 5
(C) 25
(D) 75

13 Given that $P=2 L+2 B$, find L when $P=50$ and $B=15$
(A) 10
(B) 20
(C) 25
(D) 30

14 Find the solution of $\frac{x+3}{2}=8$
(A) $x=16$
(B) $x=13$
(C) $x=-16$
(D) $x=-13$

15 The solution of $x+5=4$ is
(A) $x=1$
(B) $x=9$
(C) $x=-1$
(D) $x=-9$

Equations

TOPIC TEST
Instructions - This part consists of 15 questions.

- Each question is worth 1 mark.
- Write only the answer in the answer column.
- For any working use the question column.

Time allowed: $\mathbf{2 0}$ minutes
Total marks: 15

Questions

1 Solve the following equations.

215 more than 4 times a number equals the number plus 45 .
What is the number? \qquad
3 Given that $S=\frac{n}{2}(a+l)$, find:
a S when $n=20, a=6$ and $l=240$
b n when $S=680, a=5$ and $l=75$
\qquad
\qquad
\qquad

Chapter 10

Trigonometry

UNIT 1: Naming the sides of a right-angled triangle

QUESTION 1 In each of the following triangles, state whether x, y and z are the opposite side, adjacent side or hypotenuse, with reference to the angle marked.
a

b

c

QUESTION 2 Name each side of the following triangles as opposite (opp), adjacent (adj) or hypotenuse (hyp), with reference to the angle marked.
a

b

c

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
d

e

f

\qquad
\qquad
\qquad
\qquad

Question 3 Name the hypotenuse in each triangle.

b

c

e

Trigonometry

UNIT 2: The trigonometric ratios (1)

QUESTION 1 Complete the following by writing the correct ratio.
a

$$
=\frac{\text { opposite }}{\text { hypotenuse }}
$$

b \qquad $=\frac{\text { adjacent }}{\text { hypotenuse }}$
c \qquad

QUESTION 2 For each triangle write value of $\sin A$ as a fraction. All lengths are in millimetres.
a

b

c

$$
\sin A=
$$

$\sin A=$ \qquad $\sin A=$ \qquad

QUESTION 3 Find the value of $\cos A$ in each triangle as a fraction. All lengths are in millimetres.
a

b

c

$$
\cos A=
$$

\qquad
$\cos A=$
\qquad
$\cos A=$
\qquad

QUESTION 4 Find the value of $\tan A$ in each triangle as a fraction. All lengths are in millimetres.
a

b

c

$\tan A=$ \qquad $\tan A=$
$\tan A=$
Question 5 Write as fractions.
a $\sin P=$ \qquad
d $\cos P=$ \qquad
b $\cos Q=$ \qquad
c $\tan Q=$ \qquad
e $\sin Q=$ \qquad
f $\tan P=$ \qquad

Question 6 Complete:
a $\tan 32^{\circ}=$ \qquad
d $\cos 58^{\circ}=$ \qquad
b $\sin 58^{\circ}=$ \qquad c $\cos 32^{\circ}=$ \qquad
e $\tan 58^{\circ}=$ \qquad
f $\sin 32^{\circ}=$ \qquad © Pascal Press ISBN 9781741252712

Trigonometry

UNIT 3: The trigonometric ratios (2)

QUESTION 1 Name the angle of each triangle that has the given sine ratio.
a

$\sin \square=\frac{30}{50}$
$\sin \square=\frac{40}{50}$
cese
$\sin \square=\frac{8}{17}$
$\sin \square=\frac{15}{17}$
$\sin \square=\frac{5}{\sqrt{34}}$

$$
\sin \square=\frac{3}{\sqrt{34}}
$$

QUESTION 2 Name the angle of each triangle that has the given cosine ratio.
a

b

$\cos \square=\frac{8}{17}$
$\cos \square=\frac{15}{17}$
c

$\cos \square=\frac{5}{13}$
$\cos \square=\frac{12}{13}$
$\cos \square=\frac{4}{5}$
$\cos \square=\frac{3}{5}$

QUESTION 3 Name the angle of each triangle that has the given tangent ratio.
a

b

c

$\tan \square=\frac{60}{11}$
$\tan \square=\frac{11}{60}$
\tan
$\square=\frac{30}{40}$
$\tan \square=\frac{40}{30}$

$$
\begin{aligned}
& \tan \square=\frac{25}{60} \\
& \tan \square=\frac{60}{25}
\end{aligned}
$$

QUESTION 4 Write the correct trig ratio to complete these statements.
a

b

c

$\left[37^{\circ}=\frac{x}{4}\right.$

$70^{\circ}=\frac{x}{5}$

e

$-36^{\circ}=\frac{x}{19}$
f

$$
\ldots 61^{\circ}=\frac{x}{33}
$$

h

Trigonometry

UNIT 4: Use of a calculator in trigonometry

QUESTION 1 Find the value of the following correct to two decimal places.
a $\sin 34^{\circ}=$ \qquad b $\tan 70^{\circ}=$ \qquad c $\cos 15^{\circ}=$ \qquad
d $\cos 59^{\circ}=$ \qquad e $\cos 40^{\circ}=$ \qquad f $\sin 38^{\circ}=$ \qquad
g $\tan 83^{\circ}=$ \qquad h $\sin 30^{\circ}=$ \qquad i $\tan 64^{\circ}=$ \qquad

QUESTION 2 Find the value of the following correct to three decimal places.
a $\frac{\sin 35^{\circ}}{2}=$ \qquad b $\frac{\cos 64^{\circ}}{8}=$ \qquad c $\frac{18.9}{\cos 35^{\circ}}=$
d $\frac{\cos 38^{\circ} 42^{\prime}}{2.5}=$ \qquad e $\frac{\sin 29^{\circ} 43^{\prime}}{8.4}=$ \qquad f $\frac{20.5}{\sin 53^{\circ} 27^{\prime}}=$
g $\frac{\tan 29^{\circ} 18^{\prime}}{7.25}=$ \qquad h $\frac{\tan 68^{\circ} 25^{\prime}}{7.1}=$ \qquad i $\frac{829}{\tan 28^{\circ} 15^{\prime}}=$
\qquad
\qquad
\qquad

QUESTION 3 Find the value of the following correct to three significant figures.
a $3.9 \tan 23^{\circ}=$ \qquad b $\tan 56^{\circ} 8^{\prime}=$ \qquad c $\cos 35^{\circ} 29^{\prime}=$
d $7 \sin 35^{\circ}=$ \qquad e $\sin 25^{\circ} 19^{\prime}=$ \qquad f $\sin 69^{\circ} 18^{\prime}=$
g $\cos 61^{\circ} 38^{\prime}=$ \qquad h $8.4 \cos 65^{\circ} 23^{\prime}=$ \qquad i $\tan 23^{\circ} 46^{\prime}=$

QUeStion $4 \quad A$ is an acute angle. Find its size to the nearest degree.
a $\sin A=0.6325$ \qquad
b $\cos A=0.3787$
\qquad c $\tan A=2.538$
d $\cos A=0.5783$ \qquad e $\tan A=0.7938$ \qquad f $\sin A=0.7613$ \qquad
g $\tan A=1.6928$ \qquad h $\sin A=0.2831$ \qquad i $\quad \cos A=0.9852$ \qquad

QUESTION $5 \quad A$ is an acute angle. Find its size to the nearest degree.
a $\sin A=0.5$
b $\tan A=0.5832$ \qquad c $\sin A=0.7681$
d $\cos A=0.3876$ \qquad e $\cos A=0.5$ \qquad f $\tan A=2.1075$
\qquad

QUESTION 6 Find the size of the acute angle B to the nearest degree.
a $\tan B=\frac{16}{23}$
b $\cos B=\frac{5}{13}$
-
c $\quad \sin B=\frac{8.3}{14.5}$
d $\sin B=\frac{1}{2}$
e $\quad \tan B=\frac{8}{9}$
$\ldots \quad \mathbf{f} \quad \cos B=\frac{11.3}{14.8}$

Trigonometry

UNIT 5: Using trigonometric ratios to find sides

QUESTION 1 Use the sine ratio to find the value of x to one decimal place.
a

b

c

\qquad

QUESTION 2 Use the cosine ratio to find the value of x to one decimal place.
a

b

c

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 3 Use the tangent ratio to find the value of x to one decimal place.
a

b

c

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QUESTION 4 Find the value of x to two decimal places.

b

Trigonometry

UNIT 6: Finding an unknown side

QUESTION 1 Find the value of the unknown side correct to one decimal place.
a

b

c

QUESTION 2 Find the value of the pronumeral in the following triangles correct to two decimal places.
a

b

c

QUESTION 3 Find the value of the pronumeral correct to two decimal places.
a

b

c

d

e

f

\qquad
\qquad
\qquad
\qquad
\qquad

Trigonometry

UNIT 7: Finding the hypotenuse

Question 1 Find the length of the hypotenuse correct to one decimal place.
a

b

c

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QUESTION 2 Find the length of the hypotenuse correct to two decimal places.
a

b

c

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 3 Find the length of the hypotenuse correct to one decimal place.
a

b

c

\qquad
\qquad

e

Trigonometry

UNIT 8: Mixed questions on finding sides

QUESTION 1 Which ratio (\sin , \cos or \tan) would be the best to use to find the value of x if the size of the marked angle was known?
a

b

c

d

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QUESTION 2 Find the length of side $A B$ of each triangle correct to one decimal place.
a

b

c

d

e

\qquad
\qquad
f

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QUESTION 3 Find the value of x to two decimal places.
a

b

c

\qquad

Trigonometry

UNIT 9: Finding an unknown angle

QUESTION 1 Find the size of the angle marked with the pronumeral to the nearest degree.
a

b

c

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QUESTION 2 Find the size of the angle marked to the nearest degree.
a

b

c

\qquad
\qquad
\qquad
\qquad
\qquad

QUESTION 3 Find the size of the angle marked to the nearest degree.
a

b

c

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
d

e

f

QUESTION 4 Find the size of the marked angle. Give the answer to the nearest minute.
a

b

c

Trigonometry

UNIT 10: Problem solving

QUESTION 1 A piece of wood 2.5 m long leans against a vertical wall, making an angle of 51° with the floor. How far up the wall, to the nearest centimetre, is the top of the wooden piece?

Question 2 Find the value of x.

QUESTION 3 In $\triangle P Q R, \angle R=90^{\circ}, Q R=8.2 \mathrm{~cm}$ and $P R=6.7 \mathrm{~cm}$, find $\angle P$ to the nearest degree.
\qquad
\qquad
\qquad

QUESTION 4 In $\triangle P Q R, \angle R=90^{\circ}, \angle P=48^{\circ}$ and $P Q=8.6 \mathrm{~cm}$, find $P R$ correct to two decimal places.
\qquad
\qquad
\qquad

Question $5 A B C D$ is a rectangle with $A C=24 \mathrm{~cm}$ and $A D=10 \mathrm{~cm}$. Find $\angle A C D$ correct to the nearest degree.
\qquad
\qquad
\qquad
\qquad

Question 6 In $\triangle A B C, \angle A=90^{\circ}, \angle B=58^{\circ}$ and $A B=23 \mathrm{~m}$, find $B C$ correct to the nearest metre.
\qquad
\qquad
\qquad
\qquad

Trigonometry

TOPIC TEST
PART A
Time allowed: 15 minutes
Total marks: 15

1 Use your calculator to find $\cos 48^{\circ}$ correct to two decimal places.
(A) 0.74
(B) 1.11
(C) 0.67
(D) none of these

Marks

1
2 Evaluate $25 \tan 63^{\circ}$ correct to two decimal places.
(A) 1.96
(B) 49.07
(C) 29.38
(D) 22.28

3 Find the value of $\frac{\cos 32^{\circ}}{43.27}$ correct to two decimal places.
(A) 0.01
(B) 0.02
(C) 0.03
(D) 0.0196

4 If $\sin =\frac{5}{9}$, calculate the size of angle to the nearest degree.
(A) 33°
(B) 34°
(C) 35°
(D) 36°
$5 \sin 56^{\circ} 45^{\prime}$ is closest to
(A) 0.8334
(B) 0.8363
(C) 0.7071
(D) 0.7185

6 If $\cos =\frac{1}{2}$, find the size of angle .
(A) 30°
(B) 45°
(C) 60°
(D) 72°
$7 \quad 28.65^{\circ}$ equals
(A) $29^{\circ} 5^{\prime}$
(B) $28^{\circ} 39^{\prime}$
(C) $29^{\circ} 39^{\prime}$
(D) $28^{\circ} 5^{\prime}$

8 If $\tan \theta=0.468$ then, to the nearest minute, $\theta=$
(A) $25^{\circ} 8^{\prime}$
(B) $25^{\circ} 7^{\prime}$
(C) $25^{\circ} 5^{\prime}$
(D) $25^{\circ} 4^{\circ}$
9 Find the size of angle to the nearest degree.
(D) 58°

1

10 In a $\triangle A B C$, the angle B is $90^{\circ}, A B$ is 8 m and $A C$ is 10 m . Find the size of angle A correct to the nearest degree.
(A) 36°
(B) 37°
(C) 53°
(D) 39°

11 A road rises uniformly 30.6 m for every 600 m along the road. Find the angle of elevation of this road correct to the nearest degree.
(A) 1°
(B) 2°
(C) 3°

12 Find the hypotenuse of this triangle in centimetres correct to 1 decimal place.
(A) 9 cm
(B) 15.1 cm
(C) 12.8 cm
(D) none of these

13 Use your calculator to find $7.9 \cos 63^{\circ}$ correct to three significant figures.
(A) 3.58
(B) 3.59
(C) 7.03
(D) 7.04

14 Evaluate $\frac{\sin 54^{\circ}}{28.65}$ correct to two decimal places.
(A) 0.02
(B) 0.03
(C) 0.04
(D) 0.05

15 Find the size of the acute angle to the nearest degree if $\tan =\frac{12.5}{19.34}$
(A) 40°
(B) 32°
(C) 33°
(D) none of these

Trigonometry

TOPIC TEST

Instructions - This part consists of 15 questions.

- Each question is worth 1 mark.
- Write only the answer in the answer column.
- For any working use the question column.

Time allowed: $\mathbf{2 0}$ minutes
Total marks: 15

Questions

Marks
1
a Find the value of each expression correct to two decimal places.
i $\frac{\cos 72^{\circ}}{8.93}=$ \qquad
ii $\frac{72.54}{\tan 68^{\circ}}=$ \qquad
iii $\frac{34.20}{\sin 56^{\circ}}=$ \qquad
b Find acute angle A to the nearest degree.
i $\sin A=0.6835$ \qquad
ii $\tan A=1.4862$ \qquad
2 Find the value of the pronumeral in each triangle correct to two decimal places.

3 The diagonal of a square is 12.5 cm long.
a What type of triangle is $\triangle B C D$? \qquad
b What is the size of $\angle B D C$?
c Find the length of $B C$ to the nearest mm .
d Find $\sin \angle B D C$ to three decimal places.
e Find $\tan \angle A B D$. \qquad

Chapter 11

Geometry

UNIT 1: Polygons

QUESTION 1 Write the special name for the polygon with the following number of sides.
a 3 \qquad
e 7 \qquad
b 4 \qquad c 5
d 6
f 8 \qquad
g 9
\qquad
\qquad

QUESTION 2 State whether each of the following shapes is a polygon or not, and if it is, name it.
a

b

c

QUESTION 3 State whether each of the following shapes is a polygon or not, and if it is, name it and state whether it is a regular or an irregular polygon.
a

b

c

\qquad
\qquad
\qquad
\longrightarrow
e

f

g

QUESTION 4 Name each polygon and state whether it is a convex or a non-convex polygon.
a

d
b

\qquad
\qquad
\qquad
e

\qquad
\qquad
\qquad
\qquad
\qquad

Geometry

UNIT 2: The angle sum of a polygon

QUESTION 1 Divide each polygon into triangles by drawing all the diagonals from vertex A .
a

b

c

QUESTION 2 Complete the following table.

Name	Number of sides	Number of Δ s formed	Angle sum of the interior angles
Triangle			
Quadrilateral			
Pentagon			
Hexagon			
Heptagon			
Octagon			
Nonagon			
Decagon			

QUESTION 3 Use the angle sum formula $S=(n-2) \times 180^{\circ}$ to find the sum of the interior angles of a polygon with:
a 12 sides
b 18 sides
c 24 sides.
\qquad
\qquad
\qquad
\qquad
\qquad

QUESTION 4 Find the number of sides of a polygon whose interior angle sum is:
a 540°
b 1080°
c 1440°

QUESTION 5 Find the size of the unknown angle x in each polygon.
a

b

c

\qquad
\qquad
\qquad

Geometry

UNIT 3: Regular polygons

QUESTION 1 Calculate the size of each interior angle and each exterior angle in each polygon.
a

b

c

\qquad
\qquad
\qquad
\qquad
\qquad

QUESTION 2 Find the size of each interior angle of a regular polygon.
a 10 sides
b 15 sides
c 20 sides
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QUESTION 3 Find how many sides a regular polygon has if each interior angle is:
a 135°
b 144°
c 150°
\qquad

QUESTION 4 Find the size of each interior angle of a regular
a hexagon
b nonagon
c dodecagon
\qquad
\qquad
\qquad
\qquad
\qquad

QUESTION 5 The sum of the interior angles of a regular polygon is 3600°.
a Find the number of sides the polygon has.
b Find the size of each interior angle.

Geometry

UNIT 4: The exterior angle sum of a polygon

Question 1 Find the value of x.
a

\qquad
b

QUESTION 2 Find the size of each exterior angle of a regular
a hexagon \qquad b octagon \qquad c decagon \qquad
\qquad
\qquad

QUESTION 3 If each exterior angle of a regular polygon is 72°, find:
a the number of sides of the polygon \qquad
\qquad
b the size of each interior angle \qquad
\qquad
c the sum of the interior angles. \qquad
\qquad

Question 4 For a regular polygon of 24 sides, find the following:
a the size of each exterior angle \qquad
\qquad
b the size of each interior angle \qquad
\qquad
c the sum of the interior angles. \qquad
\qquad
Question 5 For a regular hexagon below, find the following:
a the size of each exterior angle \qquad
b the size of each interior angle \qquad
c the sum of the interior angles.

Geometry

UNIT 5: Recognising congruent triangles

QUESTION 1 By measuring, find all pairs of congruent triangles.

QUESTION 2 In the following pairs of congruent triangles:
i name all pairs of corresponding angles ii name all pairs of corresponding sides
a

b

c

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
e

f

QUESTION 3 In the following shapes, name different pairs of congruent triangles.
© Pascal Press ISBN 9781741252712

b

Geometry

UNIT 6: Tests for congruent triangles

QUESTION 1 Complete the following statements.
a The symbol for congruence is \qquad
b Two triangles are congruent if three sides of one triangle are equal to of the other triangle.
c Two triangles are congruent if two angles and a side of one triangle are equal to
\qquad of the other triangle.
d Two triangles are congruent if two sides and the included angle of one triangle are equal to
\qquad of the other triangle.
e Two right-angled triangles are congruent if the hypotenuse and one side of one triangle are equal to
\qquad of the other triangle.

QUESTION 2 In each pair of triangles, write the congruency test that would be used to prove that the triangles are congruent.
a

b

c

d

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QUESTION 3 In the diagram, O is the centre of the circle. $O C$ is drawn perpendicular to $A B$.
a Name the common side in $\triangle O A C$ and $\triangle O B C$.
b Name the pair of sides that are equal.
c Are the triangles congruent?
\qquad
d If they are congruent, name the test you can use to prove it.

Geometry

TOPIC TEST

1 The angle sum of a triangle is always equal to
(A) 90°
(B) 180°
(C) 270°
(D) 360°

2 What name is given to a polygon with 7 sides?
(A) hexagon
(B) heptagon
(C) nonagon
(D) noptagon

3 How many sides does a dodecagon have?
(A) 9
(B) 10
(C) 11
(D) 12

4 Which is NOT a test for congruent triangles?
(A) AAA
(B) AAS
(C) SAS
(D) SSS

5 What is the angle sum of an octagon?
(A) 1080°
(B) 1260°
(C) 1350°
(D) 1440°

6 The angle sum of a quadrilateral is always equal to
(A) 90°
(B) 180°
(C) 270°
(D) 360°

7 The number of sides in a quadrilateral is
(A) 2
(B) 3
(C) 4
(D) 5

8 The exterior angles of a regular pentagon are each
(A) 36°
(B) 54°
(C) 72°
(D) 108°

9 The minimum number of sides in a polygon is
(A) 2
(B) 3
(C) 4
(D) 5

10 The sum of the exterior angles of any polygon is equal to
(A) 90°
(B) 180°
(C) 270°
(D) 360°

11 If a triangle has all three sides equal, find the size of each angle.
(A) 30°
(B) 45°
(C) 60°
(D) 90°

12 Referring to the diagram, what correctly completes this sentence: $\triangle A B C=\Delta$ \qquad -
(A) $\triangle D E C$
(B) $\triangle D C E$
(C) $\triangle E C D$
(D) $\triangle E D C$

13 If all the sides and angles of a polygon are equal, it is what type of polygon
(A) open
(B) closed
(C) regular
(D) irregular

14 If all the interior angles of a polygon are less than 180°, the polygon is called
(A) open
(B) closed
(C) convex
(D) concave

15 A three-sided regular polygon is what type of triangle?
(A) right-angled
(B) scalene
(C) isosceles
(D) equilateral

Geometry

TOPIC TEST

Instructions - This part consists of 15 questions.

- Each question is worth 1 mark.
- Write only the answer in the answer column.
- For any working use the question column.

Time allowed: $\mathbf{2 0}$ minutes
Total marks: 15

Questions

1 In the quadrilateral $P S=P Q$ and $S R=Q R$.
a Complete $\triangle P S R \equiv \Delta$
b Which test is used to show the triangles congruent?

2 Draw a regular hexagon $A B C D E F$ and from vertex (A) draw all the diagonals.
a How many diagonals are drawn?
b How many triangles are formed?
c What is the sum of the interior angles of a hexagon?
d Find the size of each interior angle. \qquad
e Find the size of each exterior angle. \qquad
3 For a regular polygon with 20 sides,
a are all the angles equal?
b what is the sum of the exterior angles of this polygon?
c find the size of each exterior angle.
d find the size of each interior angle.
e find the sum of the interior angles of the polygon.
$4 A B C D E$ is a regular pentagon.
a Which test is used to show $\triangle A E D \equiv \triangle A B C$?
b What is the size of $\angle A D C$?

5 Find the value of x.
\qquad
\qquad
\qquad

Answers	Marks
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
PART B	

Answers

Chapter 7 - Coordinate geometry

Page $581 \mathbf{a} 4$ units $\mathbf{b} 5$ units $\mathbf{c} 5$ units d 4 units $\mathbf{e} 4$ units $\mathbf{f} 3$ units $\mathbf{g} 7$ units $\mathbf{h} 5$ units $2 \mathbf{a} \sqrt{52}$ units $\mathbf{b} \sqrt{41}$ units $\mathbf{c} \sqrt{65}$ units $\mathbf{3}$ a 10 units $\mathbf{b} \sqrt{41}$ units $\mathbf{c} \sqrt{117}$ units $\mathbf{4} \mathbf{a}(-3,4) \mathbf{b}$ i 5 units ii 6 units iii 5 units iv 6 units $\mathbf{v} \sqrt{61}$ units vi $\sqrt{61}$ units c 22 units d 30 units 2
Page $591 \mathbf{a} \sqrt{32}$ units $\mathbf{b} \sqrt{50}$ units $\mathbf{c} \sqrt{50}$ units $\mathbf{d} \sqrt{10}$ units $\mathbf{e} \sqrt{13}$ units $\mathbf{f} \sqrt{10}$ units $\mathbf{2}$ a 11.7 units $\mathbf{b} 6.4$ units c 10.8 units d 10.0 units $\mathbf{e} 4.5$ units $\mathbf{f} 1.4$ units $\mathbf{3}$ a $41 \mathbf{b}(15+\sqrt{45})$ units $\mathbf{4} \mathbf{a} 7$ units $\mathbf{b} 4$ units $\mathbf{c} 7$ units $\mathbf{d} 4$ units e $\sqrt{65}$ units $\mathbf{f} \sqrt{65}$ units
 $\mathbf{c}(5,4) 5$ a 12 b $3 \mathbf{c} 9 \mathbf{d} 7 \mathbf{e} 5 \mathbf{f} 4 \mathbf{g} 2 \mathbf{h} 2 \mathbf{i} 1 \mathbf{j} 7 \mathbf{k}-4 \mathbf{l}-5$
Page $61 \mathbf{1} \mathbf{a}(0,8) \mathbf{b}(5,8) \mathbf{c}\left(-4 \frac{1}{2}, 2\right) \mathbf{d}(6,6) \mathbf{e}(7,4) \mathbf{f}(2,6) \mathbf{2} \mathbf{a}(5,0) \mathbf{b}(8,4) \mathbf{c}(8,12) \mathbf{d}(5,7) \mathbf{e}(-1,-1) \mathbf{f}(2,2)$ $\mathbf{3} \mathbf{a}(3,2) \mathbf{b}(3,2) \mathbf{c}$ yes \mathbf{d} bisect each other $\mathbf{4} \mathbf{a}\left(3 \frac{1}{2}, 7 \frac{1}{2}\right) \mathbf{b}(5,1) \mathbf{c}(6,10) \mathbf{d}(6,8) \mathbf{e}(-3,-3) \mathbf{f}(1,1) \mathbf{5}(8,14),\left(5 \frac{1}{2}, 10\right)$, $\left(-\frac{1}{2}, 9\right) \mathbf{6}(5-5)=0 ;(-8+8)=0$; so $(0,0)$
Page $62 \mathbf{1} \mathbf{a}(2,5) \mathbf{b}(-3,6) \mathbf{2} \mathbf{a}(7,8) \mathbf{b}(9,11) \mathbf{c}(8,-7) \mathbf{d}(-4,6) \mathbf{e}(9,11) \mathbf{f}(8,6) \mathbf{g}(7,13) \mathbf{h}(10,13) \mathbf{i}(-1,7) \mathbf{j}(8,16)$ $\mathbf{k}(11,6) \mathbf{l}(9,-3) \mathbf{3} \mathbf{a}(4,7) \mathbf{b}(4,8) \mathbf{c}(2,0) \mathbf{d}(2,6) \mathbf{e}(4,6) \mathbf{f}(8,12) \mathbf{g}(2,13) \mathbf{h}(1,2) \mathbf{4} \mathbf{a}(6,10) \mathbf{b}(3,-5) \mathbf{c} p=10$ d $x=-7, y=7$
Page 631 a negative \mathbf{b} positive c positive d negative $2 \mathbf{a}-\frac{3}{4} \mathbf{b} \frac{3}{5} \mathbf{c} \frac{5}{6} \mathbf{d} 2 \mathbf{e} \frac{5}{4} \mathbf{f}-\frac{4}{3} \mathbf{g} \frac{5}{7} \mathbf{h} 1 \mathbf{i}-\frac{1}{2}$
Page $641 \mathbf{a}-\frac{3}{2} \mathbf{b} 1 \mathbf{c}-1$ d 1 e $3 \mathbf{f} \frac{8}{5} \mathbf{2} \mathbf{a} 1 \mathbf{b}-1$ c $1 \mathbf{d} \frac{10}{3} \mathbf{e}-\frac{1}{3} \mathbf{f} \frac{9}{5} \mathbf{3}$ the gradient (2) is the same for the three lines $4 x=55 A B$ and $C D$ have the same gradient of $-\frac{5}{3} ; B C$ and $A D$ have the same gradient of $\frac{2}{5} 6(0,1),(-1,-1)$ and $(2,5)$
Page $651 \mathbf{a} 4 \mathbf{b} 2 \mathbf{c}$ positive d right $2 \mathbf{a} 0 \mathbf{b} 1 \mathbf{c}$ positive d right $\mathbf{3} \mathbf{a}-2 \mathbf{b} \frac{1}{3} \mathbf{c}$ positive d right $\mathbf{4} \mathbf{a} 6 \mathbf{b}-\frac{3}{2} \mathbf{c}$ negative d left $5 \mathbf{a} 0 \mathbf{b}-1 \mathbf{c}$ negative \mathbf{d} left $\mathbf{6} \mathbf{a}-2 \mathbf{b}-\frac{2}{3} \mathbf{c}$ negative \mathbf{d} left
Page $661 \mathbf{a}-3,-2,-1 \mathbf{b}$

c $1 \mathbf{d}$ positive \mathbf{e} right $\mathbf{f} 1 \mathbf{g}$ yes $\mathbf{h}-3 \mathbf{i}$ yes

2 a $3,1,-1 \mathbf{b}$

$\mathbf{c}-2 \mathbf{d}$ negative \mathbf{e} left $\mathbf{f}-2 \mathbf{g}$ yes $\mathbf{h} 3 \mathbf{i}$ yes 3 a i 8 ii -5 bi2 ii $3 \mathbf{c i}-3 \mathbf{i i} 7$

Page 671 a $3 x+5 y-9=0$ b $2 x-y-7=0$ c $3 x-y-4=0$ d $4 x-3 y-8=0$ e $9 x-y-7=0 \mathbf{f} 2 x+y+6=0$ $\mathbf{g} 9 x-7 y-5=0 \mathbf{h} 4 x-13 y+18=0 \mathbf{i} x-5 y+10=02$ a $y=6 x-10$ b $y=2 x+8 \mathbf{c} y=-\frac{2}{3} x+\frac{1}{3} \mathbf{d} y=\frac{1}{2} x+2$ e $y=-5 x$ $\mathbf{f} y=\frac{9}{4} x-3 \mathbf{g} y=-x+2 \mathbf{h} y=\frac{3}{2} x-\frac{7}{2} \mathbf{i} y=\frac{3}{4} x-2 \mathbf{3}$ a $m=3, b=1 \quad \mathbf{b} m=9, b=-5 \quad \mathbf{c} m=-1, b=-3 \quad \mathbf{d} m=-4, b=7$ e $m=\frac{2}{3}, b=-5 \mathbf{f} m=\frac{1}{4}, b=-24$ a $y=3 x+2$ b $y=9 x-3$ c $y=-x+7$ d $y=\frac{3}{4} x+5$ e $y=-\frac{2}{3} x+1$ f $y=-7 x+8$ 5 a $y=4 x+14$ b $y=2 x-9$ c $y=\frac{1}{2} x+\frac{9}{2}$ d $y=\frac{2}{3} x+\frac{22}{3}$ e $y=-\frac{1}{3} x+\frac{17}{3} \mathbf{f} y=-3 x+8$
Page $681 \mathbf{b}$ yes 2 a yes \mathbf{b} yes \mathbf{c} yes \mathbf{d} no e yes \mathbf{f} no $\mathbf{3} \mathbf{a}$ no \mathbf{b} yes \mathbf{c} yes \mathbf{d} no e yes \mathbf{f} no $\mathbf{4} \mathbf{a}(0,-5) \mathbf{b}(2,-1) \mathbf{c}(3,1)$ $\mathbf{d}(-2,-9) \mathbf{e}(1,-3) \mathbf{f}(5,5) \mathbf{5} \mathbf{a} p=3 \mathbf{b} m=1$
Page 691 C 2 C 3 C 4 C 5 C 6 D 7 C 8 B 9 A 10 C 11 B 12 D 13 C 14 D 15 B
Page $701 \mathbf{a} \sqrt{26}$ units $\mathbf{b}\left(\frac{1}{2}, 5 \frac{1}{2}\right) \mathbf{c}-\frac{1}{5} \mathbf{d} x+5 y-28=0$ e $y=-\frac{1}{5} x+\frac{28}{5} \mathbf{2}$ a 10 units $\mathbf{b} 32 \mathbf{c} \sqrt{80}$ units $\mathbf{d}(0,0) \mathbf{e}(5,7)$ 3 a yes $\mathbf{b}(2,5) \mathbf{c}(6,-16) \mathbf{d}(2,2)$ e $y=-\frac{2}{3} x+6$

Chapter 8 - Linear and non-linear relationships

Page 71

1 a $y=2 x+1$
b $y=3 x+2$
c $y=2 x-3$
d $y=5 x-4$
e $y=4 x+1$
f $y=3 x-8$

Answers

x	y
0	1
1	3
2	5
3	7

2 a $m=2 n-5$

n	m
-1	-7
0	-5
1	-3
2	-1

x	y
-2	-4
-1	-1
0	2
1	5

b $a=3 b+7$

b	a
1	10
2	13
3	16
4	19

x	y
-3	-9
0	-3
3	3
4	5

x	y
-1	-9
0	-4
4	16
5	21

x	y
-3	-11
-1	-3
1	5
3	13

x	y
-6	-26
-4	-20
0	-8
2	-2

c $p=2 q+10$
d $s=3 t+1$

q	p
-1	8
0	10
1	12
2	14

t	s
-1	-2
0	1
1	4
2	7

e $y=4 x-7$

x	y
-2	-15
-1	-11
0	-7
1	-3

$\mathbf{f} 2 x+y=3$
x
:---:
-1
0
1

Page 72

1 a $x=2$

x	2	2	2
y	0	1	2

$y=1$

x	0	1	2
y	1	1	1

Point of intersection $(2,1)$
2 a $y=2 x+1$

$y=-2 x+1$

x	0	1	2
y	1	-1	-3

Point of intersection $(0,1)$
b $x=4$

x	4	4	4
y	0	1	2

$y=-3$

x	0	1	2
y	-3	-3	-3

Point of intersection $(4,-3)$
b $y=2 x-1$

x	0	1	2
y	-1	1	3

$y=x-2$

x	0	1	2
y	-2	-1	0

Point of intersection $(-1,-3)$
Page 731 a $5 \mathbf{b}$ the fixed amount of pocket money per week, $\$ 5$ c $5 \mathbf{d}$ The rate that Andrew's mother pays him per hour when he helps. $2 \mathbf{a} 90 \mathbf{b}$ Clair is 90 km from Baxton $\mathbf{c}-15 \mathbf{d}$ Melissa rides at a constant speed of $15 \mathrm{~km} / \mathrm{h} \mathbf{e} d=-15 t+90$
PAGE 741 a $2 x-5 y-9=0$ b $3 x+4 y-8=0$ c $5 x-2 y-7=0$ d $4 x-8 y+3=0$ e $2 x+y-9=0$ f $8 x-y+7=0$
g $2 x-3 y+6=0 \mathbf{h} 8 x-9 y+12=0 \mathbf{i} x-6 y+3=0 \mathbf{2} \mathbf{a} y=-\frac{2}{3} x+\frac{8}{3} ; m=-\frac{2}{3}, b=\frac{8}{3} \mathbf{b} y=-\frac{1}{5} x+\frac{7}{5} ; m=-\frac{1}{5}, b=\frac{7}{5}$
$\mathbf{c} y=\frac{3}{2} x-\frac{3}{2} ; m=\frac{3}{2}, b=-\frac{3}{2} \mathbf{d} y=x+7 ; m=1, b=7$ e $y=-2 x+9 ; m=-2, b=9 \mathbf{f} y=\frac{5}{6} x+\frac{11}{6} ; m=\frac{5}{6}, b=\frac{11}{6}$
g $y=\frac{3}{2} x-3 ; m=\frac{3}{2}, b=-3 \mathbf{h} y=-\frac{4 x}{5}-\frac{3}{5} ; m=-\frac{4}{5}, b=-\frac{3}{5} \mathbf{i} y=2 x+6 ; m=2, b=6 \mathbf{3} \mathbf{a} y=4 x+3 ; 4 x-y+3=0$
b $y=2 x-5 ; 2 x-y-5=0 \mathbf{c} y=3 x+7 ; 3 x-y+7=0 \quad \mathbf{d} y=\frac{1}{2} x+4 ; x-2 y+8=0 \quad \mathbf{e} y=\frac{2}{3} x+6 ; 2 x-3 y+18=0$
f $y=-\frac{5}{6} x+3 ; 5 x+6 y-18=0$
Page 751 a i 5 ii 3 iii -2 b i 4 ii -5 iii -2 c i $x=4$ ii $x=-5$ iii $x=-22$ a $x=1$ b $x=2$ c $x=-1 \mathbf{d} x=-2$ e $x=3$ f $x=\frac{1}{2} \quad \mathbf{g} x=\frac{3}{2} \quad \mathbf{h} x=\frac{5}{2} \quad \mathbf{i} x=-\frac{1}{2}$
Page $76 \quad 1 \mathbf{a}-5,-2,1,4 \mathbf{b}$

c i $x=3$ ii $x=2$ iii $x=1$ iv $x=4$ v $x=5$

Answers

Page 77

1

	x	-3	-2	-1	0	1	2	3
i	$y=x^{2}$	9	4	1	0	1	4	9
ii	$y=3 x^{2}$	27	12	3	0	3	12	27
iii	$y=\frac{5}{6} x^{2}$	3	$\frac{4}{3}$	$\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{4}{3}$	3

2

		-3	-2	-1	0	1	2	3
\mathbf{i}	$y=x^{2}$	9	4	1	0	1	4	9
$\mathbf{i i}$	$y=x^{2}+3$	12	7	4	3	4	7	12
$\mathbf{i i i}$	$y=x^{2}-3$	6	1	-2	-3	-2	1	6

3 | x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y=x^{2}+1$ | 10 | 5 | 2 | 1 | 2 | 5 | 10 |

$\mathbf{a} x=0 \quad \mathbf{b}(0,1) \mathbf{c} y=1 \mathbf{d}$ no x-intercepts e $y=1$

d The graph $y=x^{2}$ can be moved up and down the vertical axis by adding a constant $C(-4$ or +4$)$

Page 781 a $y=x^{2}$ b $y=x^{2}+1$ c $y=2 x^{2} \mathbf{d} y=-x^{2}$ e $y=x^{2}-4$ f $y=1-x^{2} \mathbf{g} y=\frac{1}{2} x^{2} \mathbf{h} y=2 x^{2}+3 \mathbf{2}$ a 64 m b 48 m c 84 m d 100 m e $10 \mathrm{~s} \mathbf{f} 1.6 \mathrm{~s}$ and 18.4 s g 20 s
Page 791 a $\frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1,2,4,8$ b
 c becomes very large d gets closer and closer to 0 e 1

2 a $\frac{1}{9}, \frac{1}{3}, 1,3,9$ b and \mathbf{d}

c $9,3,1, \frac{1}{3}, \frac{1}{9}$ e $x=0 \mathbf{3}\left(y=-2^{x}\right)-\frac{1}{8},-\frac{1}{4},-\frac{1}{2},-1,-2,-4,-8 ;$ $\left(y=-2^{-x}\right)-8,-4,-2,-1,-\frac{1}{2},-\frac{1}{4},-\frac{1}{8} ;$

$4\left(y=2^{x}\right) \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1,2,4,8 ;\left(y=2^{x}+1\right) 1 \frac{1}{8}, 1 \frac{1}{4}, 1 \frac{1}{2}, 2,3,5,9 ;\left(y=2^{x}-1\right)-\frac{7}{8},-\frac{3}{4},-\frac{1}{2}, 0,1,3,7 ;$

Page $801 \mathbf{a}(0,0)$ b $5 \mathbf{c} x^{2}+y^{2}=25 \mathbf{d} 4^{2}+3^{2}=252 \mathbf{a} 10 \mathbf{b} x^{2}+y^{2}=100 \mathbf{3} \mathbf{a} x^{2}+y^{2}=36 \mathbf{b} x^{2}+y^{2}=9 \mathbf{c} x^{2}+y^{2}=16$

Answers

$\mathbf{d} x^{2}+y^{2}=814 \mathbf{a}(0,0), 2 \quad \mathbf{b}(0,0), 7 \mathbf{c}(0,0), 12 \mathbf{d}(0,0), 2.5$
5 a

Page 811 C 2 B 3 B 4 C 5 A 6 B 7 C 8 D 9 D 10 B 11 C 12 A
Page $821 \mathbf{a}(0,0) \mathbf{b} 10$ units $\mathbf{c} x^{2}+y^{2}=100 \mathbf{d} 98$ e inside $2 \mathbf{a} 2 \mathbf{b}-4 \mathbf{c} y=2 x-4 \mathbf{d} x=2$ e $x=6$
3 a

x	-3	-2	-1	0	1	2	3
$y=x^{2}-4$	5	0	-3	-4	-3	0	5

$\mathbf{c} x=0 \mathbf{d}(0,-4) \quad \mathbf{e}(-2,0)$ and $(2,0)$

Chapter 9 - Equations

Page $831 \mathbf{a} x=7 \mathbf{b} a=11 \mathbf{c} n=10 \mathbf{d} y=4 \mathbf{e} n=2 \mathbf{f} k=17 \mathbf{g} a=12 \mathbf{h} t=3 \mathbf{i} x=14 \mathbf{j} m=9 \mathbf{k} p=3 \mathbf{l} y=6 \mathbf{2} a=16$ $\mathbf{b} x=28 \mathbf{c} m=28 \mathbf{d} n=11 \mathbf{e} a=28 \mathbf{f} a=7 \mathbf{g} y=3 \mathbf{h} t=1 \mathbf{i} y=-3 \mathbf{j} x=28 \mathbf{k} p=16 \mathbf{l} m=-10 \mathbf{3} \mathbf{a} a=16 \mathbf{b} x=14 \mathbf{c} b=5$ $\mathbf{d} k=10 \mathbf{e} n=4 \mathbf{f} a=26 \mathbf{g} m=34 \mathbf{h} t=34 \mathbf{i} y=26 \mathbf{j} x=27 \mathbf{k} a=27 \mathbf{l} x=37 \mathbf{4} \mathbf{a} x=15 \mathbf{b} n=5 \mathbf{c} m=17 \mathbf{d} y=12 \mathbf{e} x=13$ f $y=16 \mathbf{g} m=14 \mathbf{h} t=8 \mathbf{i} a=4$
Page $841 \mathbf{a} x=3 \mathbf{b} y=6 \mathbf{c} t=3 \mathbf{d} m=18 \mathbf{e} n=16 \mathbf{f} a=20 \mathbf{g} x=5 \mathbf{h} y=10 \mathbf{i} x=12 \mathbf{j} x=28 \mathbf{k} x=22 \mathbf{l} t=-6 \mathbf{2} \mathbf{a} a=8$ $\mathbf{b} a=18 \mathbf{c} x=40 \mathbf{d} x=8 \mathbf{e} m=7 \mathbf{f} t=14 \mathbf{g} y=32 \mathbf{h} x=-21 \mathbf{i} x=3 \mathbf{j} d=-9 \mathbf{k} x=11 \mathbf{l} t=5 \mathbf{3} \mathbf{a} x=6 \mathbf{b} y=-14 \mathbf{c} m=-8$ $\mathbf{d} m=-9 \mathbf{e} t=4 \mathbf{f} n=7 \mathbf{g} a=11 \mathbf{h} p=48 \mathbf{i} x=14 \mathbf{j} n=-70 \quad \mathbf{k} x=-24 \quad \mathbf{l} y=-56 \mathbf{4} \quad x=54 \mathbf{b} x=5 \mathbf{c} x=-12 \quad \mathbf{d} x=-2$ $\mathbf{e} y=-5 \mathbf{f} m=27 \quad \mathbf{g} y=32 \mathbf{h} a=-63 \mathbf{i} x=11 \frac{1}{2} \mathbf{j} y=5 \mathbf{k} x=7 \frac{1}{2} \quad \mathbf{l} m=-33$
Page $851 \mathbf{a} x=2 \mathbf{b} x=5 \mathbf{c} y=3 \mathbf{d} a=5 \mathbf{e} a=5 \mathbf{f} m=4 \mathbf{g} x=23 \mathbf{h} a=20 \mathbf{i} x=7 \mathbf{2} \mathbf{a} x=8 \mathbf{b} y=3 \mathbf{c} p=3 \mathbf{d} a=33$ e $a=3 \mathbf{f} a=\frac{1}{2} \mathbf{g} x=7 \mathbf{h} x=10 \mathbf{i} x=19 \mathbf{3} \mathbf{a} y=15 \mathbf{b} y=1 \mathbf{c} x=4 \mathbf{d} t=2 \mathbf{e} m=39 \mathbf{f} x=9 \mathbf{g} y=1 \mathbf{h} y=6 \mathbf{i} x=8 \mathbf{j} x=40$ $\mathbf{k} y=-5 \mathbf{l} p=-1$
Page $86 \quad 1$ a $a=10 \mathbf{b} x=-7 \quad \mathbf{c} x=-10 \quad \mathbf{d} a=\frac{2}{3} \mathbf{e} t=-15 \quad \mathbf{f} a=-1 \quad \mathbf{g} y=4 \quad \mathbf{h} a=-4 \mathbf{i} t=-12$ a $m=\frac{2}{3} \quad \mathbf{b} x=15 \quad \mathbf{c} a=\frac{14}{3}$
$\mathbf{d} x=4$ e $a=1 \mathbf{f} x=-2 \mathbf{g} x=3 \mathbf{h} m=15 \mathbf{i} x=-26 \mathbf{3} \mathbf{a} x=-2 \mathbf{b} a=26 \mathbf{c} x=-1 \mathbf{d} x=6$ e $y=-5 \mathbf{f} y=8$ g $y=1 \mathbf{h} y=15$ $\mathbf{i} t=-45 \mathbf{j} t=0 \mathbf{k} x=-\frac{7}{13} \mathbf{l} y=-5 \mathbf{m} a=10 \quad \mathbf{n} x=-3 \quad \mathbf{o} x=12$
Page $871 \mathbf{a} x=3 \stackrel{13}{\mathbf{b}} y=4 \mathbf{c} m=6 \mathbf{d} x=3$ e $x=4 \frac{1}{2} \mathbf{f} x=3 \mathbf{g} x=5 \mathbf{h} x=-3 \mathbf{i} y=-62 \mathbf{a} x=4 \frac{1}{2} \mathbf{b} m=11 \mathbf{c} t=3 \mathbf{d} p=-3$ e $x=1$ f $a=-32 \mathbf{g} x=3 \quad \mathbf{h} a=14 \mathbf{i} x=43 \mathbf{3} \mathbf{a} m=-4 \frac{2}{7} \mathbf{b} x=18 \quad \mathbf{c}-\frac{1}{9} \mathbf{d} a=13 \mathbf{e} m=-13 \mathbf{f} t=1 \frac{1}{2} \mathbf{g} a=3 \mathbf{h} n=-19 \mathbf{i} a=2 \frac{1}{2}$ $\mathbf{j} x=4 \mathbf{k} y=31 \mathbf{l} a=-28$
Page 881 B 2 D 3 D 4 B 5 C 6 B 7 B 8 C 9 C 10 A 11 B 12 C 13 A 14 B 15 C
Page 891 a $x=35 \mathbf{b} x=7$ c $y=-72$ d $m=48$ e $x=\sqrt[+]{3}$ f $x=-\frac{1}{3} \mathbf{g} p=15 \quad \mathbf{h} x=-\frac{1}{8} \mathbf{i} x=-9 \mathbf{j} x=29 \quad \mathbf{k} x=-2 \frac{2}{9} \mathbf{l} m=15$ $2 x=103$ a $S=2460 \mathbf{b} n=17$

Chapter 10 - Trigonometry

Page $901 \mathbf{a} x=\operatorname{opp}, y=\operatorname{adj}, z=\operatorname{hyp} \mathbf{b} x=\operatorname{hyp}, y=\operatorname{adj}, z=\operatorname{opp} \mathbf{c} x=\operatorname{adj}, y=\operatorname{hyp}, z=\operatorname{opp} 2 \mathbf{a} a=\operatorname{opp}, b=\operatorname{adj}, c=\operatorname{hyp}$ $\mathbf{b} d=\mathrm{opp}, e=\operatorname{adj}, f=\mathrm{hyp} \mathbf{c} g=\mathrm{opp}, i=\operatorname{adj}, h=\operatorname{hyp} \mathbf{d} k=\mathrm{opp}, l=\operatorname{adj}, j=\operatorname{hyp} \mathbf{e} n=\mathrm{opp}, m=\operatorname{adj}, o=\operatorname{hyp} \mathbf{f} r=\mathrm{opp}, q=\mathrm{adj}$, $p=$ hyp 3 a $A B$ b $D F \mathbf{c} G I$ d $J K$ e $M N$ f $P Q$
Page $911 \mathbf{a} \sin \mathbf{b} \cos \mathbf{c} \tan 2 \mathbf{a} \frac{40}{41} \mathbf{b} \frac{5}{13} \mathbf{c} \frac{8}{17} \mathbf{3} \mathbf{a} \frac{4}{5} \mathbf{b} \frac{15}{17} \mathbf{c} \frac{3}{\sqrt{58}} \mathbf{4} \mathbf{a} \frac{1}{3} \mathbf{b} \frac{5}{2} \mathbf{c} \frac{5}{12} \mathbf{5} \mathbf{a} \frac{12}{37} \mathbf{b} \frac{12}{37} \mathbf{c} \frac{35}{12} \mathbf{d} \frac{35}{37} \mathbf{e} \frac{35}{37} \mathbf{f} \frac{12}{35}$ $6 \mathbf{a} \frac{a}{b} \mathbf{b} \frac{b}{c} \mathbf{c} \frac{b}{c} \mathbf{d} \frac{a}{c} \mathbf{e} \frac{b}{a} \mathbf{f} \frac{a}{c}$
Page 921 a $\sin A, \sin B \mathbf{b} \sin D, \sin E \mathbf{c} \sin P, \sin Q 2 \mathbf{a} \cos B, \cos A \mathbf{b} \cos D, \cos E \mathbf{c} \cos P, \cos Q \mathbf{3}$ a $\tan A$, $\tan B$ $\mathbf{b} \tan D, \tan E \mathbf{c} \tan P, \tan Q \mathbf{4} \mathbf{a} \sin \mathbf{b} \cos \mathbf{c} \tan \mathbf{d} \tan \mathbf{e} \cos \mathbf{f} \sin \mathbf{g} \tan \mathbf{h} \sin \mathbf{i} \cos$
Page $931 \mathbf{a} 0.56$ b 2.75 c 0.97 d 0.52 e 0.77 f 0.62 g 8.14 h 0.50 i $2.05 \mathbf{2} \mathbf{a} 0.287$ b 0.055 c 23.073 d 0.312 e 0.059 f $25.519 \mathbf{g} 0.077 \mathbf{h} 0.356 \mathbf{i} 1542.844 \mathbf{3} \mathbf{a} 1.66 \mathbf{b} 1.49 \mathbf{c} 0.814 \mathbf{d} 4.02$ e $0.428 \mathbf{f} 0.935$ g $0.475 \mathbf{h} 3.50 \mathbf{i} 0.4404 \mathbf{4} 39^{\circ} \mathbf{b} 68^{\circ}$

Answers

c 68° d 55° e 38° f 50° g 59° h 16° i 10° 5a 30° b 30° c 50° d 67° e 60° f 65° 6at 35° b 67° c 35° d 30° e 42° f 40°
Page 941 a 3.5 b 3.9 c 4.42 a 16.1 b 27.0 c 24.93 a 9.9 b 5.6 c 12.64 a 8.86 b 24.93 c 11.08
Page $951 \mathbf{a} x=4.2 \mathbf{b} a=4.9 \mathbf{c} p=5.3 \mathbf{2} \mathbf{a} n=7.56 \mathbf{b} m=9.77 \mathbf{c} p=10.64 \mathbf{3} \mathbf{a} q=3.35 \quad \mathbf{b} t=9.18 \mathbf{c} l=7.49$
$\mathbf{d} c=5.58 \mathbf{e} d=23.90 \mathbf{f} k=5.45$
Page $96 \quad 1$ a 16.6 cm b 15.6 cm c 16.7 cm 2 a 16.00 cm b 14.15 cm c $19.30 \mathrm{~cm} \mathrm{3a} 31.4 \mathrm{~cm}$ b 34.7 cm c 24.4 cm d 20.2 cm e 12.0 cm f 19.5 cm
Page $971 \mathbf{a} \sin \mathbf{b} \tan \mathbf{c} \cos \mathbf{d} \sin 2 \mathbf{a} 2.5 \mathrm{~m} \mathbf{b} 4.7 \mathrm{~m} \mathbf{c} 8.8 \mathrm{~m} \mathbf{d} 11.1 \mathrm{~m} \mathbf{e} 3.3 \mathrm{~m} \mathbf{f} 2.8 \mathrm{~m} \mathbf{3}$ a $2.97 \mathbf{b} 8.06 \mathbf{c} 49.10$
Page $981 \mathbf{a} \theta=31^{\circ} \mathbf{b} \alpha=57^{\circ} \mathbf{c} \beta=76^{\circ} \mathbf{2 a} \beta=68^{\circ} \mathbf{b} \theta=24^{\circ} \mathbf{c} \alpha=37^{\circ}$ 3 a $\beta=71^{\circ} \mathbf{b} \alpha=35^{\circ} \mathbf{c} \theta=60^{\circ} \mathbf{d} \theta=74^{\circ}$ e $\alpha=69^{\circ}$ f $\beta=23^{\circ} 4$ a $45^{\circ} 34^{\prime}$ b $61^{\circ} 56^{\prime}$ c $48^{\circ} 35^{\prime}$
Page $9911.94 \mathrm{~m} 2 x=24 \mathrm{~cm} 3 \angle P=51^{\circ} 45.75 \mathrm{~cm} 5 \angle A C D=25^{\circ} 643 \mathrm{~m}$
Page 1001 C 2 B 3 B 4 B 5 B 6 C 7 B 8 C 9 A 10 B 11 C 12 B 13 B 14 B 15 C
Page 1011 ai 0.03 ii 29.31 iii 41.25 bi 43° ii $56^{\circ} 2 \mathbf{a} x=8.06 \mathrm{~cm}$ b $m=14.38 \mathrm{~cm}$ c $y=9.73 \mathrm{~cm} \mathbf{d} h=20.71 \mathrm{~cm}$ $\mathbf{e} c=15.34 \mathrm{~cm} 3$ a right-angled isosceles $\mathbf{b} 45^{\circ} \mathbf{c} 8.8 \mathrm{~cm} \mathbf{d} 0.707$ e 1

Chapter 11 - Geometry

Page 1021 a triangle \mathbf{b} quadrilateral \mathbf{c} pentagon \mathbf{d} hexagon \mathbf{e} heptagon \mathbf{f} octagon \mathbf{g} nonagon \mathbf{h} decagon $\mathbf{2} \mathbf{a}$ no bes, kite c yes, hexagon d no $\mathbf{3}$ a pentagon, regular \mathbf{b} no \mathbf{c} square, regular \mathbf{d} no \mathbf{e} equilateral triangle, regular \mathbf{f} parallelogram, irregular \mathbf{g} octagon, regular \mathbf{h} scalene triangle, irregular $\mathbf{4}$ a hexagon, convex \mathbf{b} rectangle, convex \mathbf{c} hexagon, non-convex d quadrilateral, non-convex e kite, convex \mathbf{f} pentagon, non-convex

Page 1031 a

b

2

Name	Number of sides	Number of $\boldsymbol{\Delta}$ s formed	Angle sum of the interior angles
Triangle	3	1	180°
Quadrilateral	4	2	360°
Pentagon	5	3	540°
Hexagon	6	4	720°
Heptagon	7	5	900°
Octagon	8	6	1080°
Nonagon	9	7	1260°
Decagon	10	8	1440°

3 a 1800° b 2880° c $3960^{\circ} 4$ a 5 b 8 c $105 \mathbf{a} x=158$ b $x=132$ c $x=132$
Page 1041 a $108^{\circ}, a=72$ b $120^{\circ}, a=60$ c $135^{\circ}, a=45 \mathbf{2}$ a 144° b 156° c $162^{\circ} \mathbf{3} \mathbf{a} 8$ sides b 10 sides $\mathbf{c} 12$ sides 4 a 120° b 140° c $150^{\circ} 5$ a 22 e 163.6°
Page 1051 a 60° b $110^{\circ} 2$ a 60° b 45° c $36^{\circ} 3$ a 5 sides b 108° c 540° 4a 15° b 165° c $3960^{\circ} \mathbf{5 a} 60^{\circ}$ b 120° c 720°
Page $1061 \triangle A B C$ and $\triangle M L P ; \triangle G H I$ and $\triangle Y Z A ; \triangle M N O$ and $\triangle J K L ; \triangle V W X$ and $\triangle P R Q ; \triangle D E F$ and $\triangle S U T 2$ a i $\angle A$ and $\angle C$;
$\angle A D B$ and $\angle C D B ; \angle A B D$ and $\angle C B D$ ii $A D=C D ; A B=C B ; B D=B D$ b i $\angle E=\angle G, \angle E H F=\angle G F H, \angle E F H=\angle G H F$
ii $E H=F G, E F=H G, H F=H F$ c i $\angle I=\angle K, \angle I L J=\angle K J L, \angle I J L=\angle K L J$ ii $I J=K L, I L=K J, L J=J L$
d i $\angle P=\angle N, \angle P M O=\angle N O M, \angle P O M=\angle N M O$ ii $M N=O P, M P=O N, M O=O M$
e i $\angle Q T S=\angle Q T R, \angle S=\angle R, \angle S Q T=\angle R Q T$ ii $Q S=Q R, Q T=Q T, S T=R T$
f i $\angle U=\angle X, \angle U W V=\angle X V W, \angle U V W=\angle X W V$ ii $U V=X W, V W=W V, U W=X V$
$3 \mathbf{a} \triangle A O D \equiv \triangle C O B ; \triangle A O B \equiv \triangle C O D ; \triangle A D C \equiv \triangle C B A ; \triangle A B D \equiv \triangle C D B \quad \mathbf{b} \triangle A B C \equiv \triangle A E D$ and $\triangle A B D \equiv \triangle A E C$
Page $1071 \mathbf{a} \equiv \mathbf{b}$ three sides \mathbf{c} two angles and a side \mathbf{d} two sides and the included angle \mathbf{e} the hypotenuse and one side
2 a RHS b SAS c AAS d SSS 3 a $O C$ b $O A=O B$ c yes d RHS
Page 1081 B 2 B 3 D 4 A 5 A 6 D 7 C 8 C 9 B 10 D 11 C 12 D 13 C 14 C 15 D
Page 1091 a $P Q R$ b SSS 2 E a b b 4 c 720° d 120° e 60° 3a yes b 360° c 18° d 162° e 3240°
4 a SAS b $72^{\circ} 545^{\circ}$

