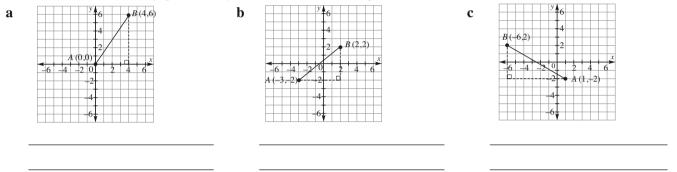
Excel

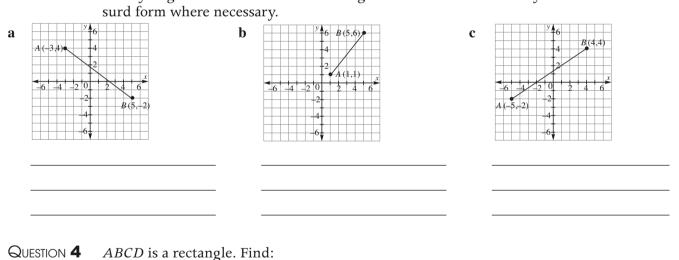
Mathematics Revision & Exam Workbook

Free-to-download sample pages with answers

ESSENTIAL SITE Sector S


CHAPTER 7 Coordinate geometry

UNIT 1: The distance between two points


QUESTION 1 Write down the distance between each pair of points.

a	<i>A</i> (3, 6) and <i>B</i> (7, 6)	<i>AB</i> =	b	C(5, 2) and $D(5, 7)$	<i>CD</i> =
c	<i>E</i> (-3, 5) and <i>F</i> (-3, 0)	<i>EF</i> =	d	<i>G</i> (5, 4) and <i>H</i> (9, 4)	<i>GH</i> =
e	<i>I</i> (7, 2) and <i>J</i> (11, 2)	IJ =	f	<i>K</i> (-1, 2) and <i>L</i> (2, 2)	<i>KL</i> =
g	<i>M</i> (1, 1) and <i>N</i> (1, 8)	<i>MN</i> =	h	<i>O</i> (4, 4) and <i>P</i> (4, 9)	<i>OP</i> =

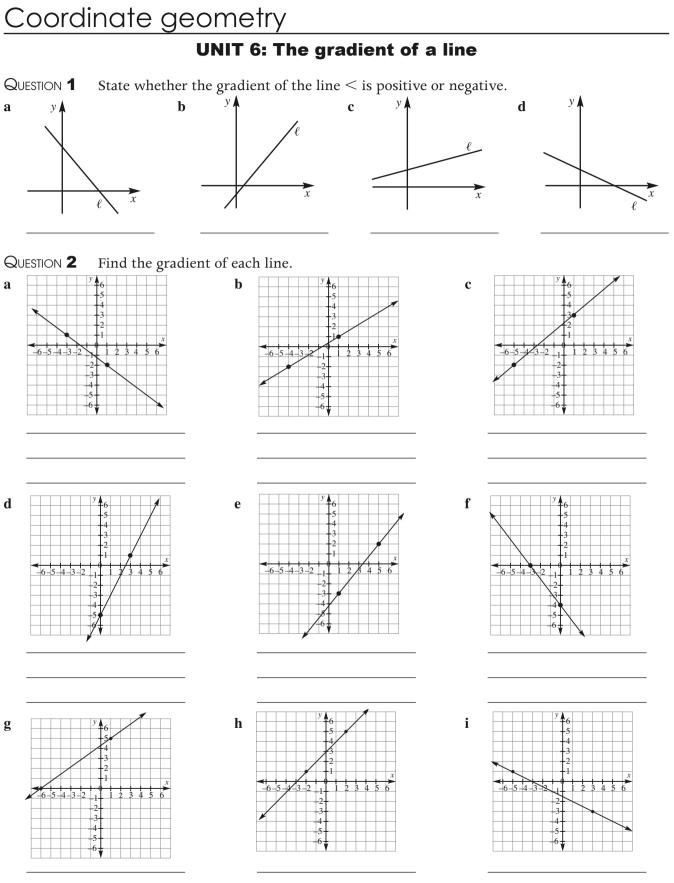
QUESTION 2 Use Pythagoras' theorem to find the distance AB in each diagram. Leave your answers in surd (square root) form where necessary.

Use Pythagoras' theorem to find the length of each interval. Leave your answers in QUESTION 3 surd form where necessary.

N a	the coordinates of the vertex A			<u> </u>
	the length of the interval			A B (2, 4)
74125271 q	i AB	ii BC		
ISBN 978 17	iii CD	iv DA		
	v <i>BD</i>	vi AC		D (-3, -2)
Press				
Pascal Press				
© C	The perimeter of ABCD		d The area of <i>ABCD</i>	

UNIT 2: The distance formula

		line ionowing	P Dall'S OL D	oints. Leave your answer	's in sura io	rm where necessary.
	A(1, 3) and			A(4, 2) and B(11, 1)		<i>C</i> (-2, 3) and <i>D</i> (5, 2)
 	E(5, 1) and	<i>F</i> (8, 2)	- e	<i>G</i> (3, 9) and <i>H</i> (5, 12)	f	<i>I</i> (3, 8) and <i>J</i> (2, 5)
 !UE:	stion 2	Calculate the decimal plac		etween the following pa	– irs of points	s correct to one
A _	A(5, 8) and	<i>B</i> (-1, -2)	-	<i>C</i> (4, 9) and <i>D</i> (9, 5)	с —	<i>E</i> (6, 7) and <i>F</i> (0, –2)
(G(3, 7) and	<i>H</i> (9, 15)	e	<i>I</i> (5, 6) and <i>J</i> (7, 10)	f	<i>K</i> (1, 6) and <i>L</i> (2, 5)
_			_		_	
	STION 3 What is the	square of the o	- distance betw	ween the points $A(-3, 4)$ and	d <i>B</i> (1, 9)?	
V 	What is the	- 		ween the points $A(-3, 4)$ and se vertices are $A(6, 0)$, $B(9, 3)$		0).
	What is the	rimeter of the t	riangle who	se vertices are $A(6, 0), B(9,$	6) and <i>C</i> (1,	
• F 	What is the	rimeter of the t The points A Find:	riangle who	se vertices are <i>A</i> (6, 0), <i>B</i> (9, 5, 3), <i>C</i> (5, -1) and <i>D</i> (-2, -	-1) are the v	
V F ?UE: t1	Find the pe	rimeter of the t The points A Find: AB = -	riangle who A(-2, 3), B(5	se vertices are <i>A</i> (6, 0), <i>B</i> (9, 5, 3), <i>C</i> (5, -1) and <i>D</i> (-2, - b the length	-1) are the v BC =	

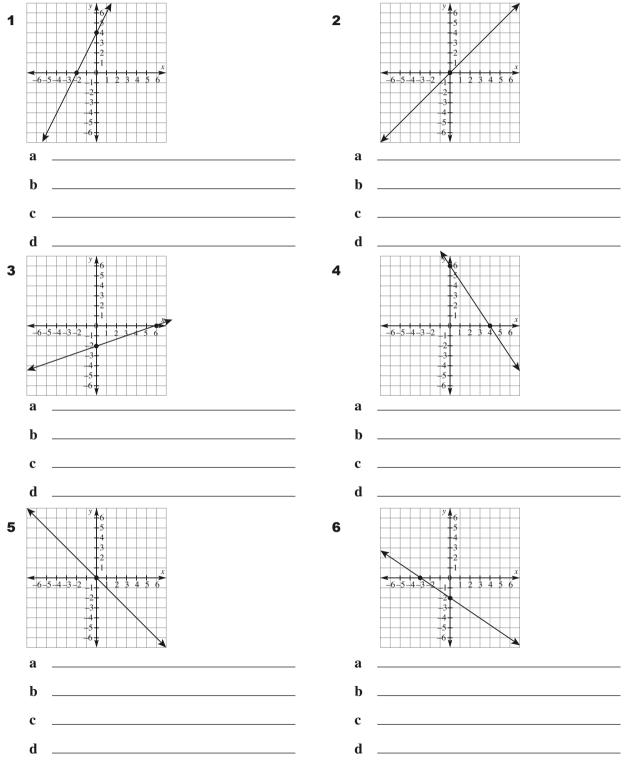

	Qı	JESTION 1
	a	What number is halfway between 6 and 10?
	b	What is the average of 6 and 10?
	c	Find $\frac{6+10}{2}$
	d	What number is halfway between -2 and 12?
	e	What is the average of -2 and 12?
	f	$\operatorname{Find}_{\frac{-2+12}{2}}$
	a	JESTION 2 What number is halfway between the point A and the point B on each number line? $\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{array} \qquad b \qquad \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & - \end{array}$ $\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & - \end{array}$
		JESTION 3 Find the number that is halfway between:
	a	0 and $16 = $ b 4 and $12 = $ c 2 and $10 = $
	d	3 and 15 = e 1 and 13 = f -1 and 7 =
	g	-2 and 6 = h $-4 and 4 = $ i $2 and 18 =$
	j	-5 and 15 = k $3 and 17 = $ l $1 and 19 =$
	Qu a b	Use the <i>x</i> -coordinates of the points <i>P</i> (4, 10) and <i>Q</i> (6 and -2). Use the <i>x</i> -coordinates of the points <i>P</i> and <i>Q</i> to find the number halfway between 4 and 6. Use the <i>y</i> -coordinates of the points <i>P</i> and <i>Q</i> to find the number halfway between 10 and -2. What are the coordinates of the point <i>M</i> , which is halfway between <i>P</i> and <i>Q</i> ?
ISBN 978 1 74125 271 2		JESTION 5 If x_1 and x_2 are given, find the value of x when $x = \frac{x_1 + x_2}{2}$ $x_1 = 3$ and $x_2 = 21$ b $x_1 = -2$ and $x_2 = 8$
1 7412		1 2 1 2
. 826 N	c	$x_1 = 5 \text{ and } x_2 = 13$ d $x_1 = 4 \text{ and } x_2 = 10$
ss ISB	e	$x_1 = 1 \text{ and } x_2 = 9$ f $x_1 = -6 \text{ and } x_2 = 14$
cal Press		$x_1 = -4 \text{ and } x_2 = 8$ h $x_1 = -6 \text{ and } x_2 = 10$
© Pascal	i	$x_1 = -5 \text{ and } x_2 = 7$ \mathbf{j} $x_1 = -2 \text{ and } x_2 = 16$
5	k	$x_1 = -7 \text{ and } x_2 = -1$ l $x_1 = -8 \text{ and } x_2 = -2$

UNIT 3: The midpoint of an interval

~		_	- x + x = y + y = -		
Qı	JESTION 1 Use the midue of the f	ooint formu ollowing se	$\lim_{x \to 1} \frac{x_1 + x_2}{2} \text{ and } \frac{y_1 + y_2}{2} \text{ to find}$	l the midpo	oint of the interval joining
a	<i>A</i> (0, 6), <i>B</i> (0, 10)	b	<i>A</i> (2, 7), <i>B</i> (8, 9)	с _	<i>C</i> (-2, -5), <i>D</i> (-7, 9)
d	<i>E</i> (4, 9), <i>F</i> (8, 3)	- e	<i>G</i> (8, 8), <i>H</i> (6, 0)	f	<i>I</i> (0, 8), <i>J</i> (4, 4)
Qı	JESTION 2 Use the midy points:	– point formu	la to find the midpoints	– of the inter	vals joining the following
a	<i>P</i> (2, -5), <i>Q</i> (8, 5)	-	<i>R</i> (9, 3), <i>S</i> (7, 5)	с _	<i>A</i> (5, 13), <i>B</i> (11, 11)
d	<i>C</i> (4, 5), <i>D</i> (6, 9)	e	<i>E</i> (-3, -6), <i>F</i> (1, 4)	– f	G(-4, 6), H(8, -2)
Qı	-	. , .	4), <i>B</i> (6, 4) and <i>C</i> (5, 0) are of <i>OB</i> . b Find the c		
Qı	1	. , .			
Qu a	Find the coordinates of the	e midpoint o		oordinates o	of the midpoint of AC.
Qu a c	Find the coordinates of the Are the midpoints of <i>OB</i> a	e midpoint o	b Find the c	oordinates o	of the midpoint of <i>AC</i> .
Qu a c d	Find the coordinates of the Are the midpoints of <i>OB</i> a What can you say about the	and AC the she diagonals	of OB. b Find the c ame?	oordinates o	of the midpoint of <i>AC</i> .
Q (a c d	Find the coordinates of the Are the midpoints of <i>OB</i> a What can you say about th JESTION 4 Find the coo	and AC the some diagonals rdinates of b	of <i>OB</i> . b Find the c	oordinates o	of the midpoint of <i>AC</i> .

UNIT 5: Finding an end point

Q	UESTION 1 For each	diagra	am, find t	the coordina	ites of	A, given	that <i>M</i> is t	he mio	dpoint of <i>AB</i> .
a	(-1,3) (-4,1) B V				b		(0, 2) (3, -2)		
Q							and one of	its end	l points A, are given.
a	Find the <i>M</i> (4, 7) and <i>A</i> (1, 6)			the other er and $A(1, 7)$	-		and <i>A</i> (4, 1)	d	<i>M</i> (0, 8) and <i>A</i> (4, 10)
e	<i>M</i> (5, 9) and <i>A</i> (1, 7)	f	<i>M</i> (4, 3) :	and $A(0, 0)$	g	M(3, 9) a	and $A(-1, 5)$	- h	<i>M</i> (7, 9) and <i>A</i> (4, 5)
i	<i>M</i> (2, 1) and <i>A</i> (5, –5)	j	<i>M</i> (4, 9) a	and $A(0, 2)$	k	M(8, 4) a	and $A(5, 2)$	- 1 -	<i>M</i> (8, 0) and <i>A</i> (7, 3)
Q a				ther end po	int A	of the dia	ameter.	-	<i>B</i> of a diameter, find) and $B(-4, 4)$
d	<i>C</i> (-2, 5) and <i>B</i> (-6, 4)		e	<i>C</i> (0, 0) and	B(4, -	-6)	- f (C(6, 9)	and <i>B</i> (4, 6)
g	<i>C</i> (-1, 8) and <i>B</i> (-4, 3)		h	<i>C</i> (-3, 1) and	d <i>B</i> (−7	, 0)	-		
Q a	UESTION 4 (3, 6) is the midpoint		and A is th	ne point (0, 2)			linates of <i>B</i> .		
b	If the midpoint of (<i>a</i> ,	b) and	(9, 9) is (6, 2). What a	re the v	values of a	and b?		
c	If the midpoint of (5,	p) and	(7, –4) is	(6, 3). What	is the v	alue of p	?		
d	If the midpoint of $(x,$	5) and	(9, y) is (1	l, 6). What ar	e the v	values of <i>x</i>	and y?		

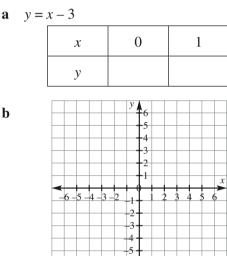

			UNIT	7: The gradient	formula	
Q	JESTION 1	Use the gradi through:	ent formul	a $m = \frac{y_2 - y_1}{x_2 - x_1}$ to find the g	radient of t	he straight line passing
a	A(3, 5) and	e	b -	<i>C</i> (2, 5) and <i>D</i> (–2, 1)	с 	<i>E</i> (0, 7) and <i>F</i> (4, 3)
d	G(1, -1) an	d <i>H</i> (6, 4)	e	<i>I</i> (1, 0) and <i>J</i> (4, 9)	f	<i>K</i> (0, 0) and <i>L</i> (5, 8)
	JESTION 2 A(-2, -3) a			line between: <i>C</i> (0, 5) and <i>D</i> (5, 0)	_	<i>E</i> (6, 0) and <i>F</i> (1, -5)
a	A(-2, -3) a	$\operatorname{Ind} B(3, 2)$	-		C	E(0, 0) and $F(1, -3)$
d	G(5, 5) and	H(2, -5)	e	<i>I</i> (4, 3) and <i>J</i> (1, 4)	f	<i>K</i> (6, 8) and <i>L</i> (1, -1)
Q	JESTION 3	Show that A(- [0, -5], B(3,	1) and <i>C</i> (–2, –9) are co	llinear.	
Q	JESTION 4	A line passes Find the valu		ne points A(1, 3) and B(.	x, 7) and its	gradient is 1.
Q	Jestion 5	Show that the parallelogram	e four poin 1.	ts A(−2, −3), B(−5, 2), C	(0, 4) and <i>L</i>	P(3, -1) are the vertices of a
	Jestion 6 (3, 7), (0, 4		U	sets of points is collinea	ar?	

UNIT 8: Gradient and y-intercept of the line y = mx + b

For each of the graphs drawn below, write:

a the *y*-intercept

- **b** the gradient
- **c** whether the gradient is positive or negative
- **d** whether the line is leaning to the right or to the left.

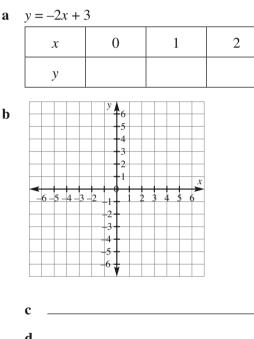

UNIT 9: More on gradient and y-intercept of the line y = mx + b

For each of the equations given below,

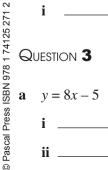
- Complete a table of values. a
- Write the gradient of the line. с
- State whether the line is leaning to the left e or to the right.
- Is it the same as the gradient? g
- Is it the same as the constant term of the equation? i

QUESTION 1

b



6

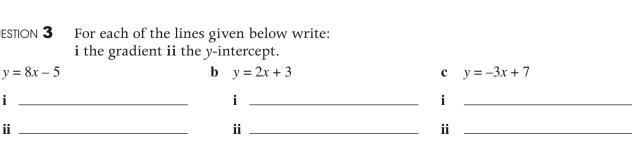

- **b** Draw the graph of the line.
- d State whether it is positive or negative.
- Write the coefficient of *x*. f
- **h** Write the *y*-intercept.

QUESTION 2

2

d e f g h i

с


d

e

f

g

h

Q	UESTION 1 W	rite each of the f	follov	ving equations	in general form.		
	3x + 5y = 9			0 1	(y = 3x - 4	
d	4x - 3y = 8		e	9x - y = 7	f	y = -2x - 6	
g	9x - 5 = 7y		h	4x - 13y = -18	i	$y = \frac{x}{5} + 2$	
Q	UESTION 2 W	rite each of the f	follov	ving equations	in the gradient-inte	ercept form.	
a	10 + y = 6x		b	4y = 8x + 32	0	2x = -2x + 1	
d	6y - 3x = 12		e	y + 5x = 0	f	9x - 4y = 12	
g	x + y = 2		h	3x - 2y = 7	i	4y = 3x - 8	
Q	UESTION 3 W	rite down the gr	adiei	nt (<i>m</i>) and the y	-intercept (b) for ea	ach of the follow	wing.
a	y = 3x + 1		b	y = 9x - 5	0	y = -x - 3	
d	y = -4x + 7		e	$y = \frac{2}{3}x - 5$	f	$y = \frac{1}{4}x - 2$	
Q		rite the equation e y-intercept (b)		0	radient-intercept fo	orm when the g	radient (<i>m</i>) and
a			0		0	m = -1, b = 7	
d	$m = \frac{3}{4}, b = 5$		e	$m = -\frac{2}{3}, b = 1$	f	m = -7, b = 8	
Q		rite the equation of the second se			a + b of the line that	t passes throug	h the given
a	A(-3, 2), m = 4	4	b	A(4, -1), $m = 2$	e o	$A(1, 5), m = \frac{1}{2}$	<u>1</u> 2
d	A(1, 8), $m = \frac{2}{3}$		e	A(2, 5), $m = -\frac{1}{3}$	f	A(0, 8), m = -	-3

UNIT 10: Different forms of linear equations

UNIT 11: Determining whether or not a point lies on a line

QUESTION 1

- **a** Show that the point (-2, 3) lies on the line y = x + 5
- **b** Does the point (0, -3) lie on the line 3x 2y = 6?
- **c** Show that the line 2x y + 3 = 0 passes through the points (0, 3), (2, 7) and (-4, -5) _____

Q	JESTION 2 State whether the	point given after ea	ch linear equation lies on	that line:
a	2x + y = 4 (1, 2)	b	3x - y = 6 (0, -6)	
c	y = 4x - 5 (-1, -9)	d	3x - 4y = 12 (4, -2)	
e	2x + 5y = 10 (0, 2)	f	y = -2x + 3 (-2, 1)	
Q	JESTION 3 Does the line pass	through the origin	(0, 0)?	
a	3x - 4y = 12	b	7x - 2y = 0	
c	9 <i>x</i> = 4 <i>y</i>	d	2x - 7y = 8	
e	<i>y</i> = -5 <i>x</i>	f	y = 4x - 7	
Q	JESTION 4 Find the missing equation $y = 2x - 2x$		each of the following poir	nts satisfy the
a	(0,)	b (, -1)	 c (3,)
d	(-2,)	e (1,)	f (,	5)
	JESTION 5 If the point $(-3, -5)$ lies on the 1		the value of <i>p</i>	
b	The straight line $y = mx + 6$ pas			

Coordinate geometry TOPIC TEST

PARTA

	Time allowed: 15 minutes	Total ma	nrks: 15
_	The analient of the line that masses through t	the points $(0, 5)$ and $(2, 0)$ is	Marks
1	The gradient of the line that passes through t (A) 3 (B) -3	$(C \ 2 \ D \ 4$	1
2	The slope of the line $y = \frac{1}{3}x + 5$ is (A) 5 (B) -5	C $\frac{1}{3}$ D $-\frac{1}{3}$	1
3	The gradient of the line $2x - 5y = 10$ is (A) 2 (B) 5	$\bigcirc \frac{2}{5} \qquad \bigcirc \frac{5}{2}$	1
4	The point $(9, -1)$ lies on which of these lines (A) $3x + y - 6 = 0$ (B) $3x - y + 6 = 0$		1
5	The distance, in units, between the two point (A) 6 (B) 8	$\begin{array}{c} \text{ ints } A(0, 2) \text{ and } B(8, 8) \text{ is} \\ \hline \mathbf{C} 10 \\ \end{array} \qquad \qquad$	1
6	The equation $2y - 3x = 6$ expressed in generative (A) $2y - 3x + 6 = 0$ (B) $2y - 3x - 6 = 0$	ral form is = 0 (C) $-3x + 2y - 6 = 0$ (D) $3x - 2y + 6 = 0$	1
7	The equation $6x - y = 7$ expressed in gradier (A) $6x = y + 7$ (B) $y = 6x + 7$	nt-intercept form is (C) $y = 6x - 7$ (D) $y = -6x + 7$	1
8	The midpoint of the interval joining the point (A) (1, -1) (B) (-1, 1)	nts $(1, -3)$ and $(-3, 5)$ is (D $(-1, -1)$	1
9	The gradient of the line represented by the end $(A) = \frac{3}{5}$ (B) $\frac{5}{3}$	equation $3x - 5y = 5$ is (C) 3 (D) -5	1
10	The distance between the points (2, 8) and (- (A) $\sqrt{26}$ (B) $\sqrt{122}$	(-1, 3) is (D) $\sqrt{34}$	1
11	The line $y = 5x$ passes through which of thes (A) $(0, -1)$ (B) $(0, 0)$	se points? ($\hat{\mathbf{C}}$ (0, 1) ($\hat{\mathbf{D}}$ (1, 0)	1
12	Find the distance, in units, between the original $(A) \sqrt{119}$ $(B) 5$	(c) 12 (b) 13	1
13	Find the gradient of the line represented by t (A) $-\frac{1}{2}$ (B) $\frac{1}{2}$	the equation $2x + 2y - \frac{1}{2} = 0.$ (D) 1	1
14	Write $y = 3x - 4$ in general form. (A) $y - 3x = -4$ (B) $y + 4 = 3x$	(C) $y - 3x + 4 = 0$ (D) $3x - y - 4 = 0$	1
15	Write $4y - 3x = 12$ in gradient-intercept form (A) $y = \frac{3}{4}x - 3$ (B) $y = \frac{3}{4}x + 3$	m. (C) $y = -\frac{3}{4}x - 3$ (D) $y = -\frac{3}{4}x + 3$	
		Total marks achieved for PART A	15

TOPIC TEST

- **Instructions** This part consists of 15 questions.
 - Each question is worth 1 mark.
 - Write only the answer in the answer column.
 - For any working use the question column.

Time allowed: 20 minutes

Total marks: 15

		Questions	Answers	Marks
1	Fo	r the points $A(-2, 6)$ and $B(3, 5)$ find:		
	a	the distance <i>AB</i> as a square root		1
	b	the midpoint of <i>AB</i>		1
	c	the gradient of <i>AB</i>		1
	d	the equation of the line <i>AB</i> is $x + 5y = 28$ in general form.		1
	e	the equation of the line AB in gradient-intercept form.		1
2	a	What is the distance from $(-2, 7)$ to $(-2, -3)$?		1
	b	Find the square of the distance between the point $A(-3, 5)$ and $B(1, 9)$		1
	с	Find the exact distance between the origin and the point (4, 8)		
	L			1
	d	Find the midpoint of $(-5, 7)$ and $(5, -7)$		
	e	The coordinates of the midpoint of <i>AB</i> are (2, 2). If <i>A</i> is the point $(-1, -3)$, what are the coordinates of <i>B</i> ?		1
3	a	Are the points <i>A</i> (0, –4), <i>B</i> (1, –2) and <i>C</i> (–3, –10) collinear?		1
	b	If the end points of the diameter of a circle are $(-3, 4)$ and $(7, 6)$, what are the coordinates of the centre?		1
	c	The midpoint of $P(2, 8)$ and $Q(a, b)$ is $M(4, -4)$. Find the coordinates of point Q .		1
	d	Which of the points $(-2, -2)$ and $(2, 2)$ lies on the line $y = 5x - 8$?		1
	e	Find the equation of the line that has gradient $-\frac{2}{3}$ and y-intercept of 6.		1
		Total marks achieve	ed for PART B	

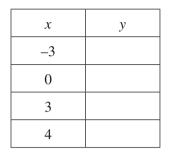
© Pascal Press ISBN 978 1 74125 271 2

15

CHAPTER 8 Linear and non-linear relationships

UNIT 1: Tables of values

QUESTION **1** Complete each table of values.


a y = 2x + 1

b y = 3x + 2

c y = 2x - 3

X	у
0	
1	
2	
3	

x	У
-2	
-1	
0	
1	

x	у
-6	
-4	
0	
2	

 $\mathbf{d} \quad y = 5x - 4$

e y = 4x + 1

x	у
-1	
0	
4	
5	

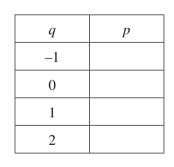
x	У
-3	
-1	
1	
3	

QUESTION **2** Complete each of the following:

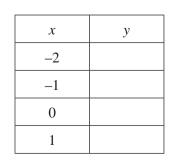
a m = 2n - 5

b a = 3b + 7

n	т
-1	
0	
1	
2	


d s = 3t + 1

t	S
-1	
0	
1	
2	


e y = 4x - 7

x	у
-2	
-1	
0	
1	

c p = 2q + 10

f 2x + y = 3

UNIT 2: Graphing points of intersection

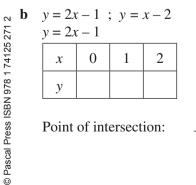
QUESTION 1 Graph each pair of lines on the same number plane and find their point of intersection. **a** x = 2; y = 1

Point of intersection:

b x = 4; y = -3

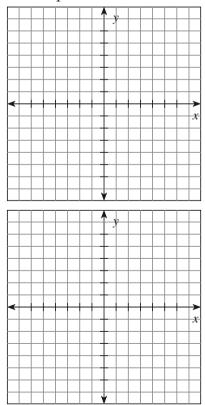
Point of intersection:

		- v	+ + -	-
		1		
	+	-	+ $+$	-
		-		-
		_		<u> </u>
≺				┢⋗
		-		x
				1.0
		+		
		+ +		
		-+		
		♥		
				-
		A v		
		↓ y		
		^ ,		
		^ y		
		x y		
		y		
		y		
		• y		
		• y		
		• y		
		• y		
		× y		
		• y		1 · 1
		× ,		→ x
		× y		1 · 1
				1 · 1
				1 · 1
				1 · 1
				1 · 1
				1 · 1
→ → → → → → → → → → → → → → → → → → →				1 · 1
				1 · 1
				1 · 1


QUESTION 2 Graph each pair of lines on the same number plane and find their point of intersection.

y = 2x + 1; y = -2x + 1a y = 2x + 1

y = 2x + 1						
x	0	1	2			
у						


y = -2x + 1					
x	0	1	2		
у					

Point of intersection:

Point of intersection:

y = x - 2					
x	0	1	2		
y					

UNIT 3: Meaning for gradient and y-intercept

- QUESTION **1** Andrew receives a fixed amount of pocket money each week. In addition, if Andrew chooses to help his mother, she gives him an extra amount per hour for the time worked. The graph shows the amount of money Andrew might receive in pocket money each week.
- What is the intercept on the vertical axis? a 40 35 Pocketmoney What does the intercept on the vertical axis represent? 25 b 20 15 10 5 What is the gradient of this line? С 0 2 3 4 5 6 7 8 1 Time (hours) What does the gradient represent? d QUESTION 2 Melissa intends to ride a bicycle from Baxton to Clair to raise money for the local
- QUESTION 2 Melissa intends to ride a bicycle from Baxton to Clair to raise money for the local hospital. The graph shows her expected distance from Clair in kilometres over time (in hours).
- **a** What is the intercept on the vertical axis?
- **b** What information does this intercept tell us?
- c What is the gradient of the line?

d What information does the gradient tell us?

e What is the equation of the line?

UNIT 4: General form of linear equations

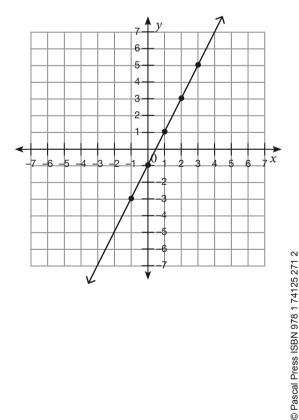
QUESTION **1** Write each of the following linear equations in general form.

a	2x - 5y = 9	b	3x + 4y = 8	c	5x - 7 = 2y
d	8y - 3 = 4x	e	2x = 9 - y	f	y = 8x + 7
g	3y - 2x = 6	h	9y = 8x + 12	i	$2y = \frac{x}{3} + 1$

QUESTION **2** Each of the following equations is in general form. Change it to gradient-intercept form, then write down its gradient and *y*-intercept.

a	2x + 3y - 8 = 0	b	x + 5y - 7 = 0	c	3x - 2y - 3 = 0
				_	
d	x - y + 7 = 0	e	2x + y - 9 = 0	f	5x - 6y + 11 = 0
				_	
g	3x - 2y - 6 = 0	h	4x + 5y + 3 = 0	i	2x - y + 6 = 0
				_	

QUESTION **3** Write the equation of each line in gradient-intercept form and then change it to general form.


a	m = 4 , $b = 3$	b	m = 2 , $b = -5$	c	m = 3, $b = 7$
		-		_	
74125 271 2		-		_	
~	$m = \frac{1}{2}$, $b = 4$	e	$m = \frac{2}{3}$, $b = 6$	f	$m = -\frac{5}{6}$, $b = 3$
al Press IS		-		_	
© Paso		-		_	

UNIT 5: Using graphs to solve linear equations (1)

- QUESTION **1** The graph of y = x + 2 is shown opposite. Use the graph to write the *y*-value for each of the following *x*-values.
- **a** i x = 3 ii x = 1 iii x = -4
- **b** Use the graph to find the *x*-value for each of the following *y*-values.
 - **i** y = 6 **ii** y = -3 **iii** y = 0
- **c** In part **b** replace y by x + 2 as y = x + 2 is the equation of the graph. Use the graph to solve each of the following linear equations.

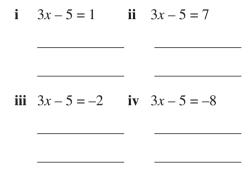
i x + 2 = 6 **ii** x + 2 = -3 **iii** x + 2 = 0

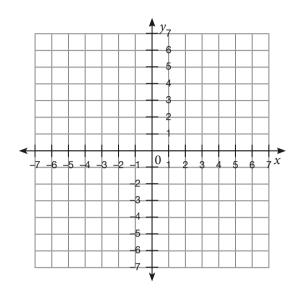
- QUESTION **2** The graph of y = 2x 1 is drawn below. Use the graph to solve each of the following equations.
- a 2x 1 = 1b 2x - 1 = 3c 2x - 1 = -3d 2x - 1 = -5 e 2x - 1 = 5f 2x - 1 = 0 g 2x - 1 = 2h 2x - 1 = 4 i 2x - 1 = -2

0

x

Excel ESSENTIAL SKILLS Year 9 Mathematics Revision & Exam Workbook


UNIT 6: Using graphs to solve linear equations (2)

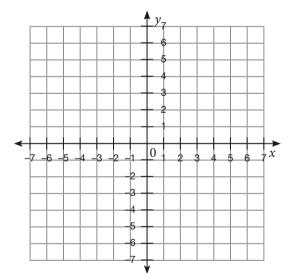

QUESTION 1

a Complete the table of values for the relation y = 3x - 5

x	0	1	2	3
у				

- **b** Draw the graph of y = 3x 5
- **c** Use the graph to solve the following linear equations.

QUESTION 2

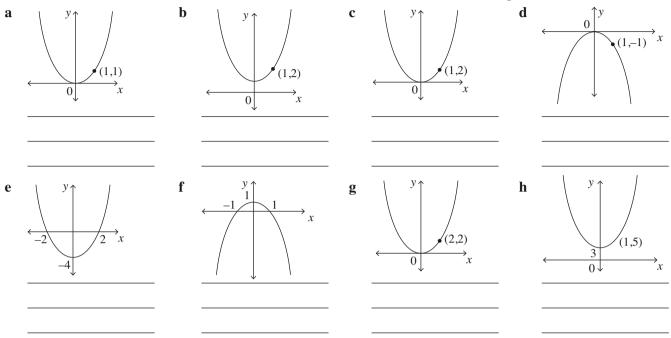

a Complete the table of values for the relation y = -2x + 7

x	-1	0	1	2	3
y					

- **b** Draw the graph of y = -2x + 7
- **c** Use the graph to solve the following linear equations.
 - **i** -2x + 7 = 1 **ii** -2x + 7 = 3

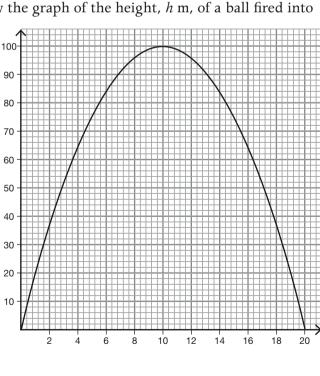
iii -2x + 7 = 5 iv -2x + 7 = -1

v -2x + 7 = -3



QUESTION 1 Complete the table of values and then, on the same number plane, draw the graphs of the following: $y = x^{2}$ _3 -2-1 0 1 2 3 х $v = 3x^{2}$ i $y = x^2$ $v = \frac{1}{2}x^{2}$ ii $y = 3x^{2}$ $y = \frac{1}{3}x^2$ iii QUESTION 2 Complete the table of values and then, on the same same number plane, draw the graphs of the following: $v = x^2$ -3 -2-1 0 1 2 3 х $y = x^2 + 3$ i $y = x^2$ $v = x^2 - 3$ ii $y = x^2 + 3$ **iii** $y = x^2 - 3$ QUESTION 3 Complete the table of values for $y = x^2 + 1$ and sketch its graph. -3 -1 0 2 x -21 3 $y = x^2 + 1$ What is the equation of its axis of symmetry? a What are the coordinates of its vertex? b What is the minimum value for $y = x^2 + 1$? С Find the *x*-intercepts: d Find the y-intercept: e QUESTION 4 Sketch the graphs of the following on the same number plane. $y = x^2$ a b $y = x^2 + 4$ $y = x^2 - 4$ с Explain how the graphs of $y = x^2 + 4$ and $y = x^2 - 4$ d can be drawn using $y = x^2$ _____

UNIT 7: Drawing quadratic relationships


UNIT 8: Further parabolas

QUESTION 1 The equation of each parabola is of the form $y = ax^2 + c$. Use the features of each graph to determine the values of *a* and *c* and hence write down the equation.

QUESTION 2 A computer program was used to draw the graph of the height, h m, of a ball fired into the air after t seconds. h

- How high is the ball after 4 seconds? a
- How high is the ball after 2.8 seconds? b
- How high is the ball after 14 seconds? С
- What is the maximum height reached by d the ball?
- After how many seconds does the ball reach e the maximum height?

When is the ball 30 m high? f

and

After how many seconds does the ball return to the ground? g

UNIT 9: Exponential curves

QUESTION 1

a	Complete the table of values for $y = 2^x$									
	x	-3	-2	-1	0	1	2	3		
	y									

b On the number plane provided, sketch the graph of $y = 2^x$

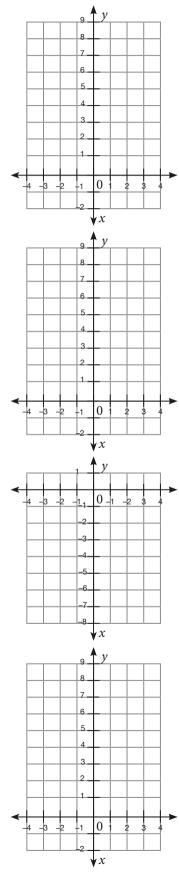
- **c** What happens to the *y*-value as *x* becomes very large?
- **d** What happens to the *y*-value as *x* decreases in value?
- e What is the value of y when x = 0?

QUESTION 2

a Complete the table of values for $y = 3^x$

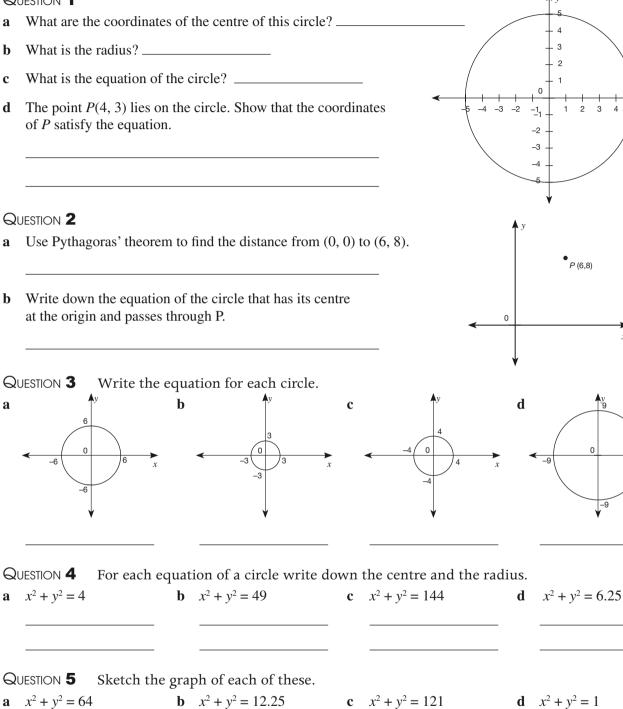
x	-2	-1	0	1	2
у					

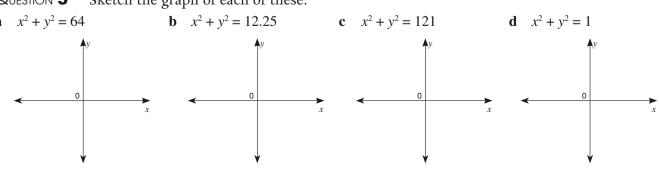
- **b** On the number plane provided, sketch the graph of $y = 3^x$
- **c** Complete the table of values for $y = 3^{-x}$

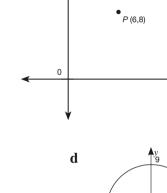

x	-2	-1	0	1	2
y					

- **d** On the same number plane, sketch the graph of $y = 3^{-x}$
- e For what value of x does $3^x = 3^{-x}$?
- QUESTION **3** Complete the tables of values and then on the same graph, sketch $y = -2^x$ and $y = -2^{-x}$

	x	-3	-2	-1	0	1	2	3
$y = -2^x$	y							
$y = -2^{-x}$	y							

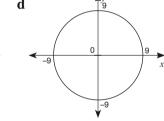

QUESTION 4 Complete the tables of values and then on the same graph, sketch $y = 2^x$ and $y = 2^x + 1$ and $y = 2^x - 1$

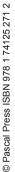

	x	-3	-2	-1	0	1	2	3
$y=2^x$	y							
$y = 2^x + 1$	y							
$y = 2^x - 1$	y							



UNIT 10: Circles

QUESTION 1





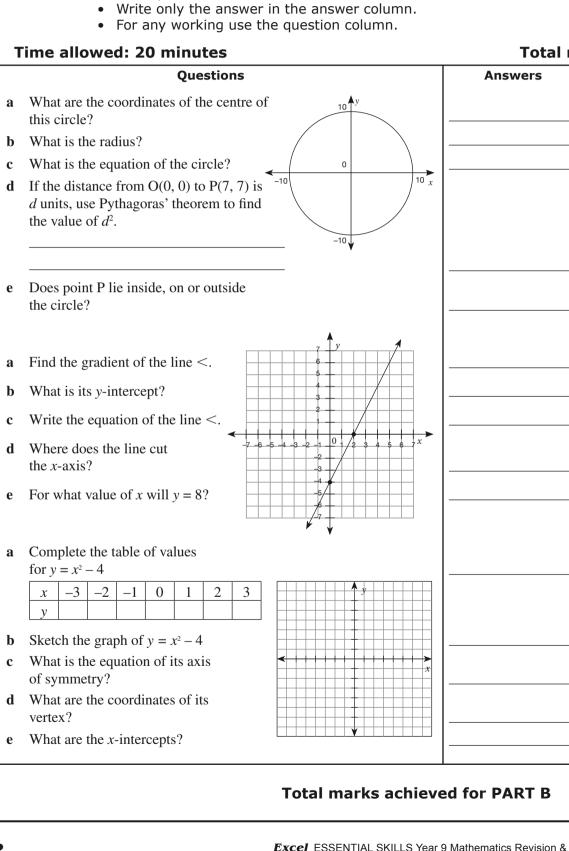
3

Л

TOPIC TEST

PARTA

	Tin	ne allowed: 1	5 min	utes				Total ma	arks: 12
				2					Marks
1	The e	equation of the line	< is	$\downarrow \qquad \qquad$					
	A	x = 2	B	x = -2	\bigcirc	<i>y</i> = 2	D	y = -2	1
2	Whic	ch graph best repres	sents y :	$= x^2?$		1 ^y		y† /	
	A	\xrightarrow{y}_{x}	B	$^{y}_{x}$	\bigcirc		D		1
3	Whic	th of the following	could b	e the equation	of the grap	h?			
	A	$y = 2^x$	B	$y = 2^{-x}$	\bigcirc	$y = -2^x$	\bigcirc	$y = -2^{-x}$	1
4	Whic	ch of the following	could b	e the equation	of the grap	h?			
	A	y = 0	B	x = 0	\bigcirc	y = x	D	y + x = 0	1
5	The e	equation of a linear	graph	with y-intercep	ot 5 and grad	lient 2 is			
	A	y = 2x + 5	B	y = 5x + 2	\bigcirc	y = 2x - 5	\bigcirc	y = -2x + 5	1
6	The l	ine $y = 2x - 2$ has							
	A	gradient –2 y-intercept 2	B	gradient 2 y-intercept –2	C	gradient –2 y-intercept –2	D	gradient 2 y-intercept 2	1
7	Whic	ch one of the follow	ing poi	nts lies on the	line $3x - 4y$	v = 12?			
	A	(-3, 8)	B	(-3, -8)	\bigcirc	(8, 3)	D	(8, -3)	1
8	For t	he equation $2x + y$	= 6, fin	d the <i>x</i> -interce	pt.				
	A	(0, 6)	B	(6, 0)	\bigcirc	(0, 3)	D	(3, 0)	1
9	The c	coordinates of the p	oint of	intersection of	the lines x	= 2 and $y = -3$ are			
	A	(-3, 2)	B	(3, -2)	C	(-2, 3)	D	(2, -3)	1
10	The e	equation $y = 3 - x^2$	represe	nts					
	A	a straight line	B	a parabola	\bigcirc	exponential curve	D	a circle	1
11	The s	gradient of the line	v = 3 -	x is					
	A	horizontal	B	vertical	0	negative	D	positive	1
12	The e	equation of the line	< is		$\frac{l}{2}x$				
	(A)	x - 2y - 2 = 0		x - 2y + 2 = 0) (C)	2x - y - 2 = 0	(D)	2x - y + 2 = 0	1
	<u> </u>		<u> </u>		Ŭ		<u> </u>		
					Total m	arks achieved	l for	PART Δ	
									1 / 12


Linear and non-linear relationships **TOPIC TEST**

• Each question is worth 1 mark.

Instructions • This part consists of 15 questions.

•

PART B

Total marks: 15

Marks

CHAPTER 9

Equations

UNIT 1: One-step equations (addition and subtraction)

	JESTION 1 Solve th $x + 2 = 9$	e follov	wing equations. b $a + 5 = 16$			с	<i>n</i> – 3 =	7
J						£		15
a	<i>y</i> + 3 = 7		e $n + 6 = 8$			I	<i>k</i> – 2 =	15
g	a + 9 = 21		h $t + 2 = 5$			i	<i>x</i> – 6 =	8
j	m + 1 = 10		k <i>p</i> + 8 = 11			l	y – 1 =	5
	JESTION 2 Solve th							
a	<i>a</i> – 4 = 12	b	x - 7 = 21	c	m - 3 = 25		d	<i>n</i> – 5 = 6
e	a - 8 = 20	f	17 + a = 24	g	<i>y</i> + 9 = 12		h	t - 8 = -7
i	y - 3 = -6	j	x - 5 = 23	k	9 + <i>p</i> = 25		1	m - 2 = -12
Q	JESTION 3 Solve th	ese equ	lations.					
a	<i>a</i> + 8 = 24	b	x + 4 = 18	c	<i>b</i> + 3 = 8		d	k - 6 = 4
e	n + 6 = 10	f	a - 1 = 25	g	m - 7 = 27		h	t - 3 = 31
i	y - 4 = 22	j	x - 9 = 18	k	a - 6 = 21		1	14 + x = 51
	JESTION 4 Solve th $3 + x = 18$	ese equ	b $n+7=12$			C	<i>m</i> – 3 =	: 14
u						c		
d	y - 2 = 10		e $x - 1 = 12$			f	<i>y</i> + 3 =	19
g	m - 2 = 12		h $t-6=2$			i	$a - 1\frac{1}{2} =$	$=2\frac{1}{2}$

UNIT 2: One-step equations (multiplication and division)

QUESTION 1	Solve the following	equations.
------------	---------------------	------------

Q	JESTION 1 Solv	e the follow	ving equations.				
a	3 <i>x</i> = 9		4 <i>y</i> = 24	с 	5 <i>t</i> = 15	d	$\frac{m}{3} = 6$
e	$\frac{n}{2} = 8$	f	$\frac{\frac{a}{5}}{\frac{a}{5}} = 4$	g	4x = 20	h	$\frac{y}{5} = 2$
i	$\frac{x}{4} = 3$	j	$\frac{x}{4} = 7$	k	$\frac{x}{2} = 11$	l	$\frac{t}{3} = -2$
Q			ving one-step eq				
a	7a = 56	b	$\frac{a}{9} = 2$	c	$\frac{x}{4} = 10$	d	9x = 72
e	5 <i>m</i> = 35	f	$\frac{t}{2} = 7$	g	$\frac{y}{4} = 8$	h	$\frac{x}{7} = -3$
i	12x = 36	j	$\frac{d}{3} = -3$	k	5x = 55	l	$\overline{3t} = 15$
	JESTION 3 Solve $\frac{x}{6} = 1$	ve these equ b	$\frac{y}{7} = -2$	c	$\frac{\frac{m}{8} = -1}{2}$	d	9 <i>m</i> = -81
e	6 <i>t</i> = 24	f	5 <i>n</i> = 35	g	8 <i>a</i> = 88	h	$\frac{p}{3} = 16$
i	$\frac{x}{2} = 7$	j	$\frac{n}{5} = -14$	k	$\frac{x}{4} = -6$	l	$\frac{y}{7} = -8$
	JESTION 4 Solv	 ve these equ	ations				
	$\frac{x}{2} = 27$		2x = 10	c	4x = -48	d	6x = -12
a a i	3y = -15	f	$\frac{m}{3} = 9$	g	$\frac{y}{4} = 8$	h	$\frac{a}{7} = -9$
i i	2x = 23	j	3 <i>y</i> = 15	k	2x = 15	1	$\frac{m}{3} = -11$
~							

UNIT 3: Two-step equations

3x - 1 = 5	b	-step equations. 2x + 7 = 17	с _	9y – 4 =	= 23
d $6a - 5 = 25$	e	8 <i>a</i> + 7 = 47	- f	$\frac{3m}{2} = 6$	
$\frac{x-3}{5} = 4$	h	$\frac{a}{2} - 4 = 6$	- i	$\frac{1}{3x-2} =$	= 19
QUESTION 2 Solve a $3x + 8 = 32$		ations. 8y - 3 = 21	- c		= 13
			_		
$\frac{a}{3} - 2 = 9$	e	4a - 2.5 = 9.5	f _	$6a + 1\frac{1}{2}$	$= 4\frac{1}{2}$
5x - 5 = 30	h	$\frac{x}{2} + 7 = 12$	- -	$\frac{x-3}{2} = 8$	3
QUESTION 3 Solve	these equations.		_		
2y + 5 = 35	b $7y - 3 =$	4 c $8x - 6 = 2$	6	d 	5t - 2 = 8
m - 34 = 5	f $2x - 1 =$	17 g $3y + 2 = 5$		h 	5 <i>y</i> – 4 = 26
2x - 5 = 11	j x - 34 =	6 k $2y + 8 = -$	2	l	4p - 6 = -10

UNIT 4: Equations with pronumerals on both sides

	JESTION 1 Solve the $5a - 9 = 3a + 11$	followin	-	ations. 9x + 5 = 7.	x – 9		c	2 <i>x</i> + 3 =	= <i>x</i> – 7
d	6a - 13 = 9a - 15		e	8t + 11 = 7	7 <i>t</i> – 4		f	<u>11a + 3</u>	b = 9a + 1
g	4y + 10 = 7y - 2		h	6a + 9 = 2	a – 7		i	6-5t =	= 9 – 2 <i>t</i>
	JESTION 2 Solve the $4m - 11 = 7m - 13$	-		4x + 6 = 5	x – 9		c	6 <i>a</i> + 13	b = 27 + 3a
d	5x - 4 = x + 12		e	10a - 5 = 10a - 5 = 10a	7 <i>a</i> – 2		f	2x-20	= 9x - 6
g	$\frac{13x - 29 = 31 - 7x}{13x - 29 = 31 - 7x}$		h	5m - 3 = 4	- <i>m</i> + 12		i	<u>x - 15 =</u>	= 2 <i>x</i> + 11
	JESTION 3 Solve the $7x + 15 = -3 - 2x$	_		= 7 <i>a</i> + 32	с	x - 13 = 2x	- 12	d	7x - 28 = 4x - 10
e	3y + 1 = 2y - 4	f 9y	-6=	7 <i>y</i> + 10	g	3y + 8 = 2y	+ 9	- h	5y - 7 = 4y + 8
i	12t - 12 = 13t + 33	\mathbf{j} $4t$	+7=	7 <i>t</i> + 7	k	32x + 18 = -	-20 <i>x</i> -	_ 10 l	5y + 2 = 3y - 8
m	$\boxed{8a-9=5a+21}$	n <i>x</i> –	- 13 =	7 <i>x</i> + 5	0	$\frac{1}{4x-5=3x}$	+ 7	_	

UNIT 5: Equations with grouping symbols

QUESTION 1 Solve the following	quations.	
a $2(x+3) = 12$	b $3(y+1) = 15$	c $7(m-4) = 14$
d $4(x+5) = 32$	e $8(2x-1) = 64$	f $2(5x-1) = 28$
g $6(x-2) = 18$	h $-2(3x-1) = 20$	i $-3(y+1) = 15$
QUESTION 2 Solve these equation a $2(4x - 3) = 30$	5. b $5(m-4) = 35$	c $3(2t+1) = 21$
d $-3(p-4) = 21$	e $5(2x+3) = 25$	f $5(a+4) = 4(a-3)$
g $6(2x-1) = 5(x+3)$	h $4(a-2) = 3(a+2)$	i $6(x-8) = 5(x-1)$
QUESTION 3 Solve these equation a $6(m+3) + m + 12 = 0$	5. b $4(x-3) = 3(x+2)$	c $5(4a+1) = 2a+3$
d $5(a+3) = 4(7+a)$	e $8(m-1) = 7(m-3)$	f $9(t+2) = 7(t+3)$
g $5(a+1) + 2a + 7 = 33$	h $5(n+3) = 4(n-1)$	i $\overline{4(5a-3)} = 38$
j $7(x-8) = -28$	k $8(y-3) = 7(y+1)$	1 $5(a+4) = 4(a-2)$
QUESTION 3 Solve these equation a $6(m + 3) + m + 12 = 0$ d $5(a + 3) = 4(7 + a)$ g $5(a + 1) + 2a + 7 = 33$	S. b $4(x-3) = 3(x+2)$ e $8(m-1) = 7(m-3)$ h $5(n+3) = 4(n-1)$	c $5(4a + 1) = 2a + 3$ f $9(t + 2) = 7(t + 3)$ i $4(5a - 3) = 38$

Equations **PARTA** TOPIC TEST Time allowed: 15 minutes Total marks: 15 Marks If 2x - 3 = 17 then x equals 1 1 7 **(B)** 10 14 20 (\mathbf{A}) (C) (D) If $\frac{m}{3} - 2 = 4$ then *m* equals 2 2 **B**) 6 14 18 1 (\mathbf{A}) \mathbf{C} (\mathbf{D}) If 5x - 3 = 60, what is the value of x? 3 63 1 **(A)** 12 **(B)** 57 **C** 63 (D) 5 If 4(3m - 5) = 6m - 14 then *m* equals 4 2 1 **(B)** (**A**) 1 -2D -1 Solve for x, 2x - 5 = 235 **(A)** 8 **(B)** - 9 28 1 14 (D) Solve 4(x-2) - 3(x-1) = 06 **(A)** −5 1 **(B)** 5 11 (\mathbf{C}) -11(D) Solve 5(x - 1) - 1 = 247 1 5 **(B)** 6 10 26 (**A**) (C) (D) If 12x - 4 = 8, then x is equal to 8 $\frac{2}{3}$ 1 1 (A) **(B)** (\mathbf{C}) 1 (\mathbf{D}) -13 Solve $\frac{x-2}{5} = 4$. 9 1 20 22 30 (B) D **10** When 2(a + 3) = 10, the value of *a* is **(A)** 2 (\mathbf{B}) 5 1 7 8 (C) (D) 11 Three more than twice the number equals the number plus 7. What is the number? **(B)** 4 1 (\mathbf{A}) 2 (\mathbf{C}) 5 (\mathbf{D}) 10 **12** Find the value of x in the equation 3x - 75 = 03 5 25 1 (\mathbf{A}) (**B**) 75 (**C**) (D) **13** Given that P = 2L + 2B, find L when P = 50 and B = 1510 (\mathbf{B}) 20 (\mathbf{C}) 25 30 1 (**A**) (D) **14** Find the solution of $\frac{x+3}{2} = 8$ *x* = 16 **(B)** x = 13 (\mathbf{C}) 1 (**A**) x = -16(**D** x = -13**15** The solution of x + 5 = 4 is 1 x = 1 $(\mathbf{B}) \quad x = 9$ (**C**) x = -1x = -9(**A**) (D)

Total marks achieved for PART A

© Pascal Press ISBN 978 1 74125 271 2

15

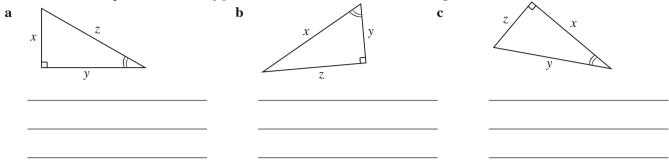
Equations **TOPIC TEST**

PART B

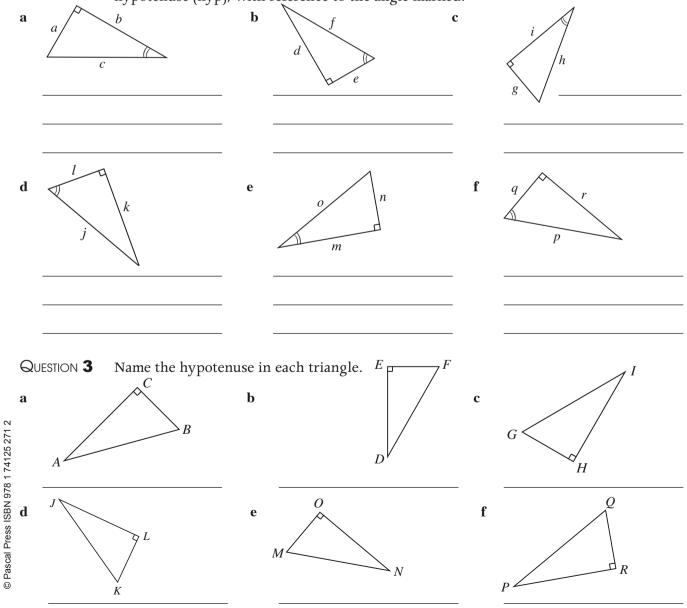
- **Instructions** This part consists of 15 questions.
 - Each question is worth 1 mark.
 - Write only the answer in the answer column.
 - For any working use the question column.

Time allowed: 20 minutes

Total marks: 15

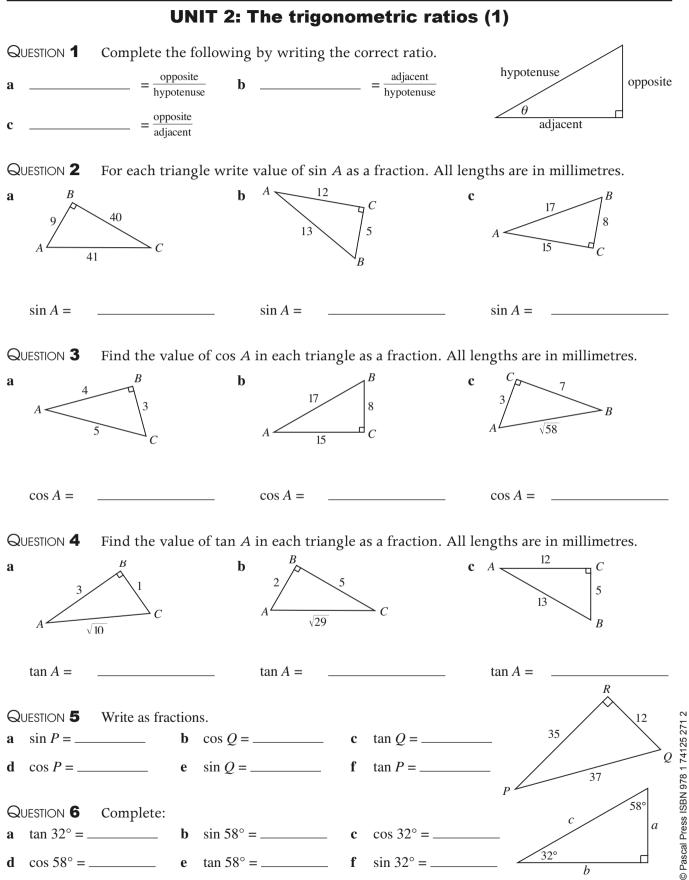

		Qu	Answers	Marks		
1	So	lve the following equations.				
	a	x - 11 = 24	b	x + 3 = 10		
	c	$\frac{y}{8} = -9$	d	$\frac{m}{2} - 8 = 16$		1
	e	$4x^2 - 12 = 0$	f	3(x+2) = 5		1
	g	5p - 7 = 4p + 8	h	$\frac{8x-5}{3} = -2$		
	i	$\frac{4x}{9} = 5 + x$	— — j	$20 = \frac{3x - 7}{4}$		
		9 	_	4		1
	k	5(3x - 2) = 3(2x - 10)	1	4m - 3(m+2) = 9		
						1
2		more than 4 times a number enat is the number?	equals tl	ne number plus 45.		1
3	Giv	ven that $S = \frac{n}{2}(a+l)$, find:				
		S when $n = 20$, $a = 6$ and $l = 240$	b	<i>n</i> when $S = 680$, $a = 5$ and $l = 75$		
				Total marks achiev	ed for PART B	

CHAPTER 10

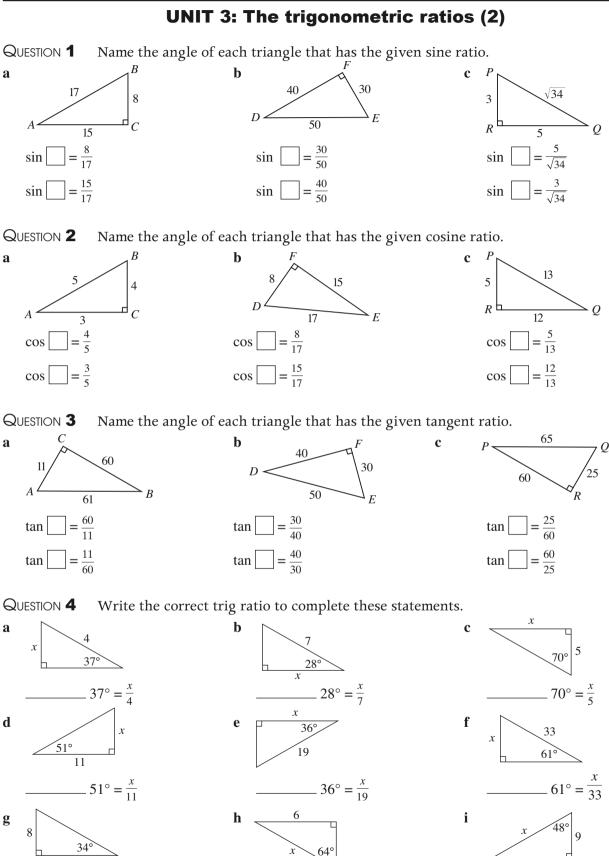

Trigonometry

UNIT 1: Naming the sides of a right-angled triangle

QUESTION **1** In each of the following triangles, state whether x, y and z are the opposite side, adjacent side or hypotenuse, with reference to the angle marked.



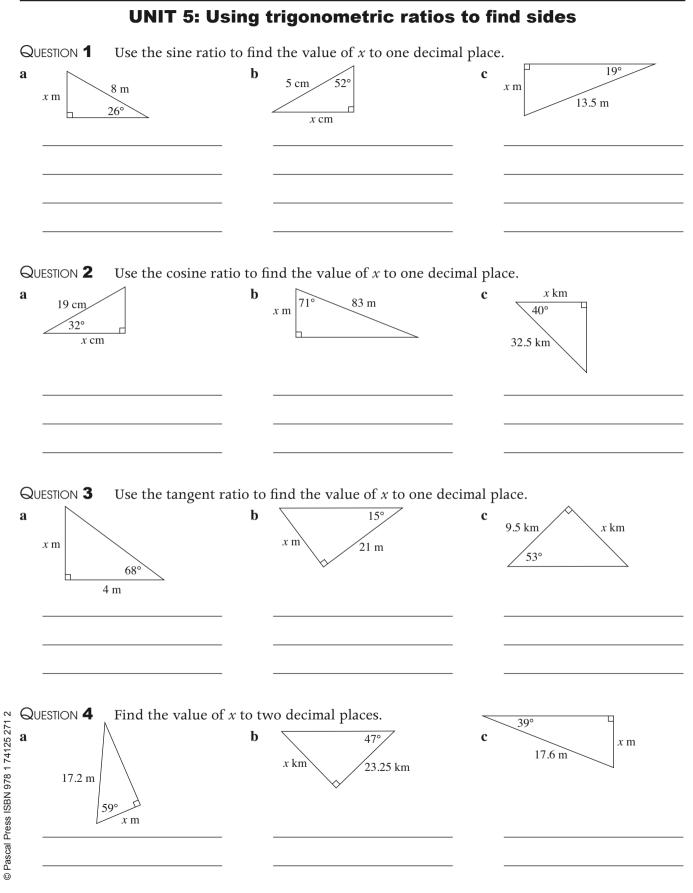
QUESTION **2** Name each side of the following triangles as opposite (opp), adjacent (adj) or hypotenuse (hyp), with reference to the angle marked.



Excel ESSENTIAL SKILLS Year 9 Mathematics Revision & Exam Workbook

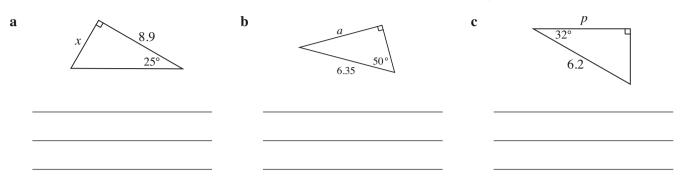
Trigonometry

Trigonometry

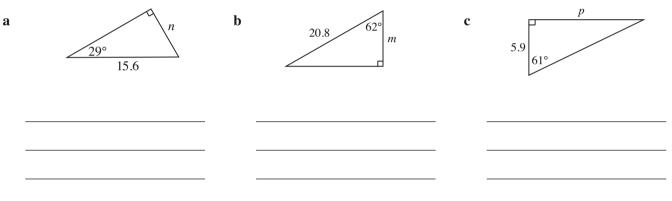

 $64^\circ = \frac{6}{r}$

Excel ESSENTIAL SKILLS Year 9 Mathematics Revision & Exam Workbook

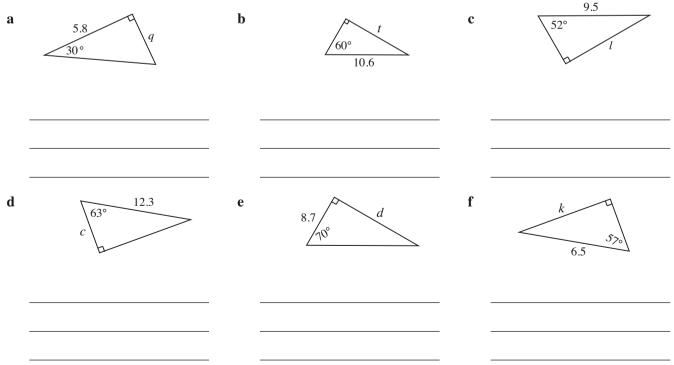
 $48^\circ = \frac{9}{r}$

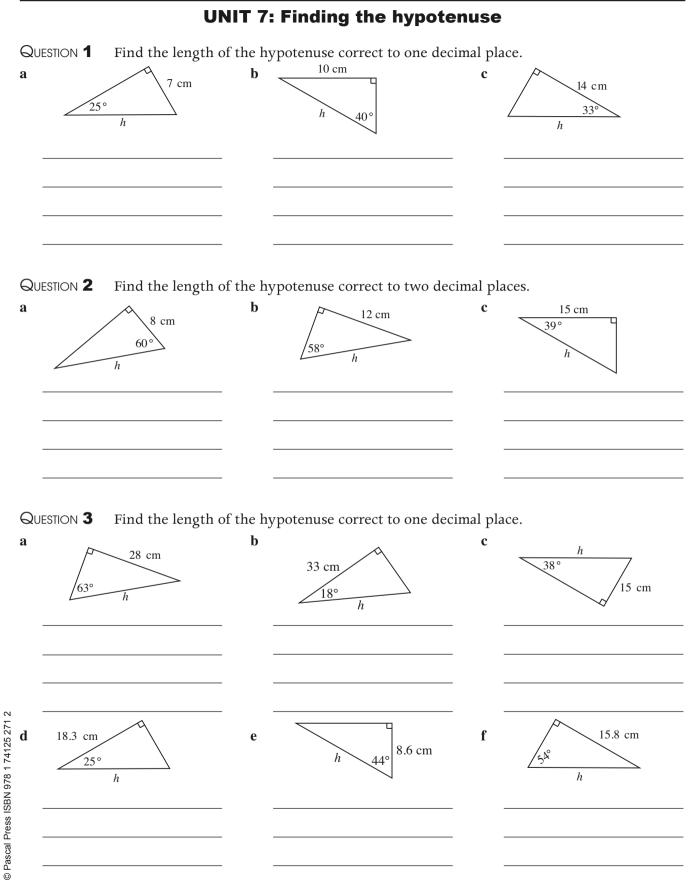

 $34^{\circ} = \frac{8}{r}$

UNIT 4: Use	e of a calculator in trigo	onometry
QUESTION 1 Find the value of the	following correct to two decimal p	places.
a $\sin 34^\circ =$	b $\tan 70^\circ =$	c $\cos 15^\circ =$
d $\cos 59^\circ =$	$e \cos 40^\circ =$	f $\sin 38^\circ =$
g $\tan 83^\circ =$	n $\sin 30^\circ =$	i $\tan 64^\circ =$
QUESTION 2 Find the value of the	following correct to three decimal	places.
a $\frac{\sin 35^{\circ}}{2}$ =	$\mathbf{p} \frac{\cos 64^\circ}{8} = \qquad$	c $\frac{18.9}{\cos 35^\circ} =$
d $\frac{\cos 38^{\circ}42'}{2.5}$ =	$\frac{\sin 29^{\circ}43'}{8.4} =$	f $\frac{20.5}{\sin 53^{\circ}27'}$ =
g $\frac{\tan 29^{\circ}18'}{7.25} =$ 1	n $\frac{\tan 68^{\circ}25'}{7.1} =$	$i = \frac{829}{\tan 28^{\circ}15'} = $
QUESTION 3 Find the value of the	following correct to three significa	ant figures.
a 3.9 tan 23° =	$tan 56^{\circ}8' =$	c $\cos 35^{\circ}29' =$
d $7 \sin 35^\circ =$	$\sin 25^{\circ}19' =$	f sin 69°18' =
g $\cos 61^{\circ}38' =$ l	n 8.4 cos 65°23' =	i tan 23°46' =
QUESTION 4 A is an acute angle. F	ind its size to the nearest degree.	
a $\sin A = 0.6325$	$\cos A = 0.3787$	c $\tan A = 2.538$
d $\cos A = 0.5783$	$a \tan A = 0.7938$	f $\sin A = 0.7613$
g $\tan A = 1.6928$ l	n $\sin A = 0.2831$	i $\cos A = 0.9852$
QUESTION 5 <i>A</i> is an acute angle. F	ind its size to the nearest degree.	
a $\sin A = 0.5$	tan A = 0.5832	c $\sin A = 0.7681$
d $\cos A = 0.3876$	$e \cos A = 0.5$	f $\tan A = 2.1075$
QUESTION 6 Find the size of the ac	rute angle <i>B</i> to the nearest degree.	
a $\tan B = \frac{16}{23}$	b $\cos B = \frac{5}{13}$	c $\sin B = \frac{8.3}{14.5}$
d $\sin B = \frac{1}{2}$	$e \tan B = \frac{8}{9} \qquad \qquad$	f $\cos B = \frac{11.3}{14.8}$

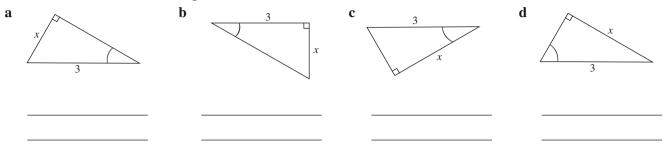


UNIT 6: Finding an unknown side


QUESTION **1** Find the value of the unknown side correct to one decimal place.

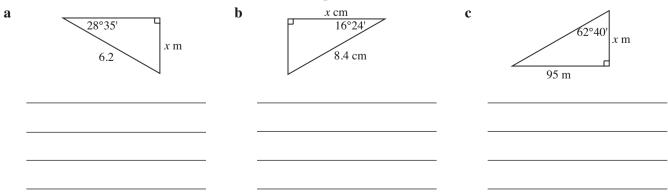


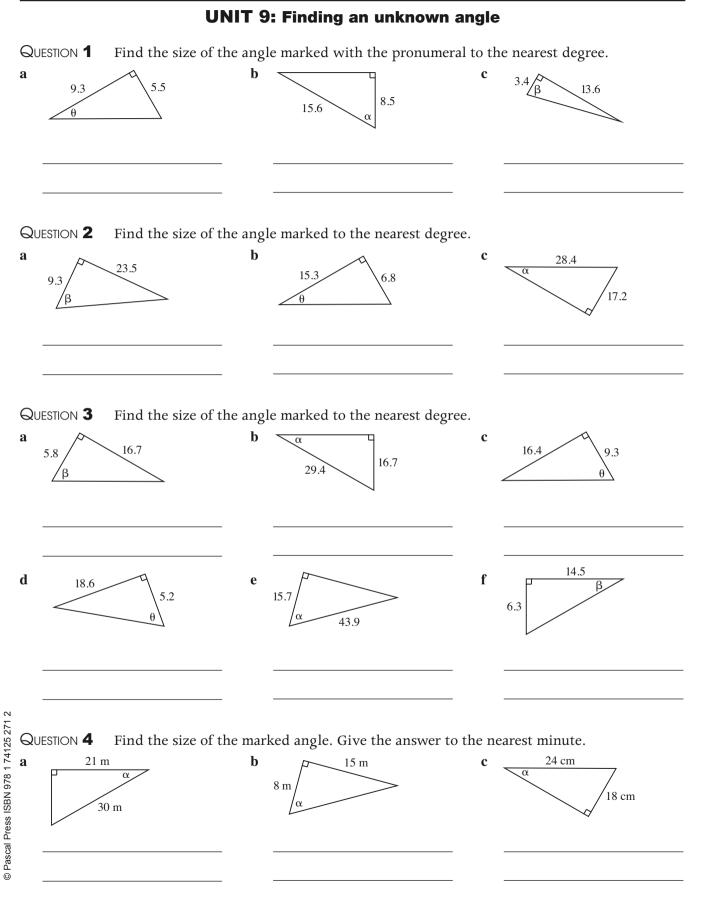
QUESTION **2** Find the value of the pronumeral in the following triangles correct to two decimal places.


QUESTION **3** Find the value of the pronumeral correct to two decimal places.



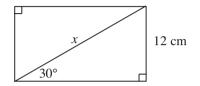
UNIT 8: Mixed questions on finding sides


QUESTION **1** Which ratio (sin, cos or tan) would be the best to use to find the value of x if the size of the marked angle was known?



QUESTION **2** Find the length of side *AB* of each triangle correct to one decimal place.

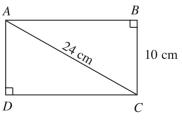
QUESTION **3** Find the value of x to two decimal places.



UNIT 10: Problem solving

QUESTION **1** A piece of wood 2.5 m long leans against a vertical wall, making an angle of 51° with the floor. How far up the wall, to the nearest centimetre, is the top of the wooden piece?

QUESTION **2** Find the value of x.



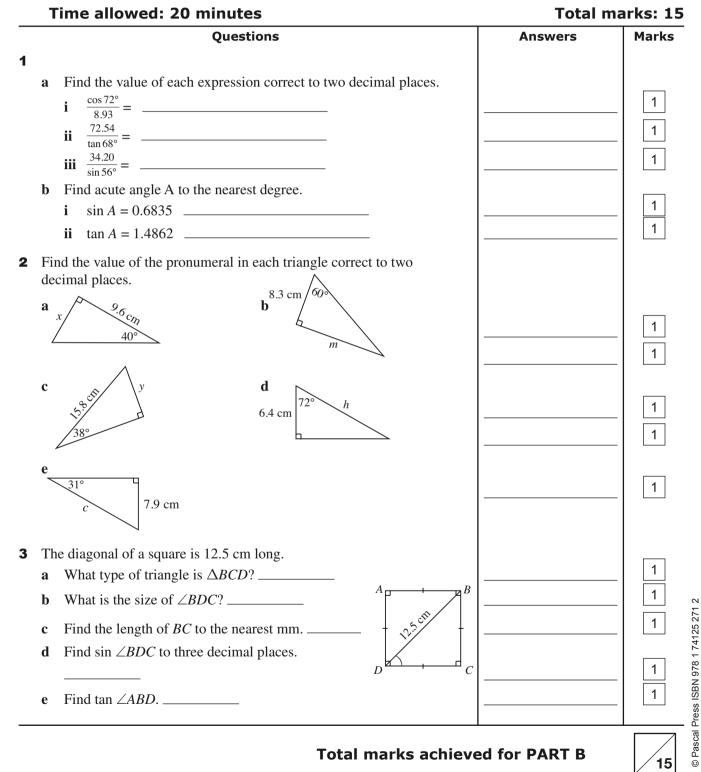
QUESTION **3** In $\triangle PQR$, $\angle R = 90^{\circ}$, QR = 8.2 cm and PR = 6.7 cm, find $\angle P$ to the nearest degree.

QUESTION **4** In $\triangle PQR$, $\angle R = 90^\circ$, $\angle P = 48^\circ$ and PQ = 8.6 cm, find *PR* correct to two decimal places.

QUESTION 5 ABCD is a rectangle with AC = 24 cm and AD = 10 cm. Find $\angle ACD$ correct to the nearest degree.

QUESTION 6 In $\triangle ABC$, $\angle A = 90^\circ$, $\angle B = 58^\circ$ and AB = 23 m, find *BC* correct to the nearest metre.

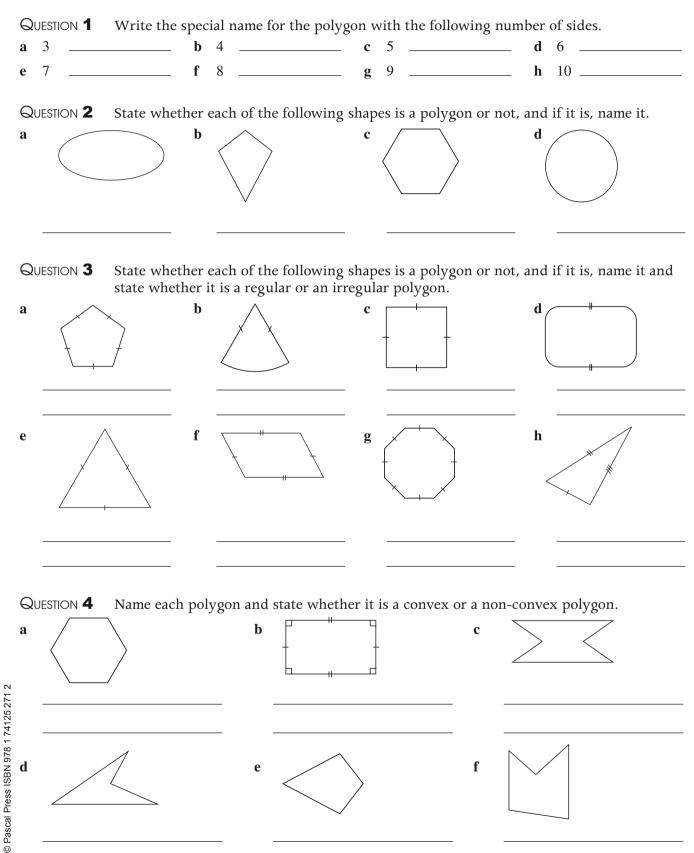
TOPIC TEST


PARTA

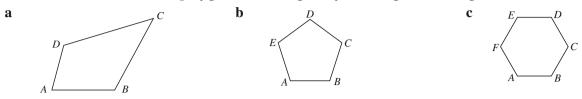
	Tir	me allowed: 1	L5 min	utes				Total ma	arks: 15
	* *	1 1	6 1	400					Marks
1	Use :	your calculator to 0.74	find cos	48° correct to tw 1.11	o decimal	0.67	D	none of these	1
2	Eval	uate 25 tan 63° co	rrect to t	wo decimal plac	es.				
	(\mathbf{A})	1.96	B	49.07	\bigcirc	29.38	D	22.28	1
3	Find	the value of $\frac{\cos 32^\circ}{43.27}$	- correct	to two decimal p	places.		_		
	A	0.01	B		C	0.03	D	0.0196	1
4	If sin	$=\frac{5}{9}$, calculate th	e size of		earest degr				
	(\mathbf{A})	33°	(\mathbf{B})	34°	(\mathbf{C})	35°	(\mathbf{D})	36°	
5	\sim	6°45' is closest to							
	(\mathbf{A})	0.8334	(B)	0.8363	(\mathbf{C})	0.7071	(\mathbf{D})	0.7185	
6	If co	$s = \frac{1}{2}$, find the size	e of ang				\sim		
	(\mathbf{A})	30°	(B)	45°	C	60°	D	72°	
7	28.6	5° equals							
	(A)	29°5'	(B)	28°39'	C	29°39'	D	28°5'	
8	\frown	$\theta = 0.468$ then, to	\sim					• • • •	
	(A)	25°8'	B	25°7'	C	25°5'	D	25°4'	
9	Find	the size of angle	\sim	-		100		<u><u><u></u><u></u><u></u><u></u><u></u><u>10.23</u></u></u>	
	(A)	40°	(B)	41°	C	42°	D	58°	
10		$\triangle ABC$, the angle <i>b</i>	B is 90°,	AB is 8 m and A	<i>C</i> is 10 m	. Find the siz	e of angle A	correct to the	
	$\mathbf{\Delta}$	est degree. 36°	(B)	37°	\bigcirc	53°		39°	1
		ad rises uniformly	\bigcirc		along the				
		correct to the near		•	along the	ioau. Finu ui		evation of this	
	A	1°	B	2°	\bigcirc	3°	D	4°8 cm	1
12	Find	the hypotenuse of	this tria	ngle in centimet	res correct	t to 1 decima	l place. 🧹	32°	
	A	9 cm	B	15.1 cm	\bigcirc	12.8 cm	D	none of these	1
13	Use	your calculator to	find 7.9	cos 63° correct t	o three sig	nificant figur	res.		
	(\mathbf{A})	3.58	B	3.59	C	7.03	D	7.04	1
14	Eval	uate $\frac{\sin 54^\circ}{28.65}$ correct	to two de	ecimal places.					
	(\mathbf{A})	0.02	B	0.03	C	0.04	D	0.05	1
15	Find	the size of the act	ite angle	to the nearest of	degree if ta	an $=\frac{12.5}{19.34}$			
	A	40°	B	32°	\bigcirc	33°	D	none of these	1
				-	rotal m	arks achi	eved for	PART A	15

Trigonometry **TOPIC TEST**

PART B


- **Instructions** This part consists of 15 questions.
 - Each question is worth 1 mark.
 - Write only the answer in the answer column.
 - For any working use the question column.

CHAPTER 11


Geometry

UNIT 1: Polygons

UNIT 2: The angle sum of a polygon

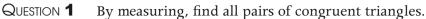
QUESTION **1** Divide each polygon into triangles by drawing all the diagonals from vertex A.

QUESTION **2** Complete the following table.

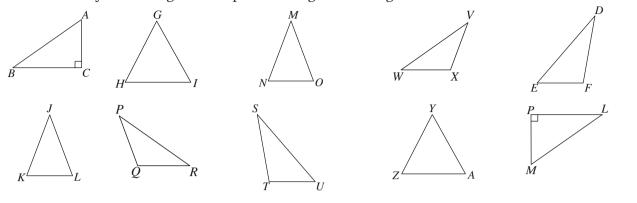
Name	Number of sides	Number of Δs formed	Angle sum of the interior angles
Triangle			
Quadrilateral			
Pentagon			
Hexagon			
Heptagon			
Octagon			
Nonagon			
Decagon			

QUESTION **3** Use the angle sum formula $S = (n-2) \times 180^{\circ}$ to find the sum of the interior angles of a polygon with:

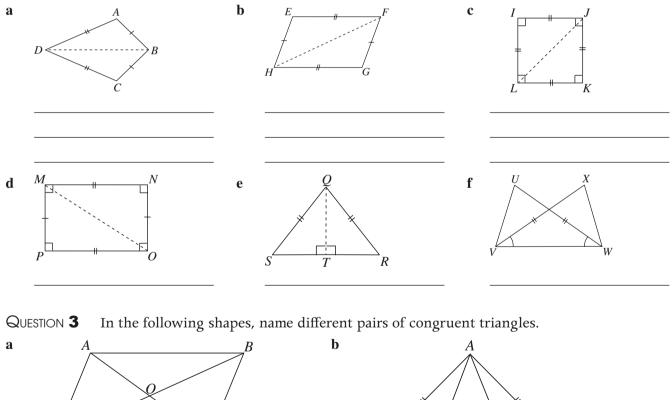
a	12 sides	_	b	18 sides	c	24 sides.	
			-				
	Jestion 4 540°	Find the number		es of a polygon v 1080°	vhose interior angle c	1 1 1 0 0	
			-				
Q	Jestion 5	Find the size of	the unk	nown angle <i>x</i> in	each polygon.		


a		\mathbf{b} $\sqrt{105^{\circ}}$ \mathbf{z}	c 150°
	92 ³ x° 110°	128° 145°	x° 160°
	<u>(4 110</u>)	x°	93° 145° 130°

UNIT 3: Regular polygons


QUESTION 1	Calculate the size of each interior angle and each e	xterior angle in each polygon.
a	b	c d°
QUESTION 2 a 10 sides	Find the size of each interior angle of a regular pol b 15 sides	lygon. c 20 sides
QUESTION 3 a 135°	Find how many sides a regular polygon has if each b 144°	• interior angle is: • 150°
QUESTION 4 a hexagon	Find the size of each interior angle of a regular b nonagon	c dodecagon
QUESTION 5 a Find the nu	The sum of the interior angles of a regular polygon umber of sides the polygon has. b Find the size	n is 3600°. e of each interior angle.

	UNIT 4: The exterior angle sum of a polygon
Qu a	JESTION 1 Find the value of <i>x</i> . b $3x^{\circ}$ b 75°
Qı a	JESTION 2 Find the size of each exterior angle of a regular hexagon b octagon c decagon
Qı a	JESTION 3 If each exterior angle of a regular polygon is 72°, find: the number of sides of the polygon
b	the size of each interior angle
c	the sum of the interior angles.
	JESTION 4 For a regular polygon of 24 sides, find the following: the size of each exterior angle
b	the size of each interior angle
c	the sum of the interior angles.
Qı a	JESTION 5 For a regular hexagon below, find the following: the size of each exterior angle
b	the size of each interior angle
c	the sum of the interior angles.


UNIT 5: Recognising congruent triangles

C

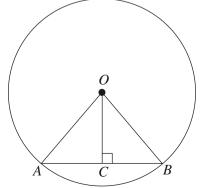
QUESTION 2 In the following pairs of congruent triangles: i name all pairs of corresponding angles ii name all pairs of corresponding sides

© Pascal Press ISBN 978 1 74125 271 2

(

D

Ε


UNIT 6: Tests for congruent triangles

Qı	JESTION 1 Complete the following statements.
a	The symbol for congruence is
b	Two triangles are congruent if three sides of one triangle are equal to
c	Two triangles are congruent if two angles and a side of one triangle are equal to
	of the other triangle.
d	Two triangles are congruent if two sides and the included angle of one triangle are equal to
	of the other triangle.
e	Two right-angled triangles are congruent if the hypotenuse and one side of one triangle are equal to
	of the other triangle.
Qı	JESTION 2 In each pair of triangles, write the congruency test that would be used to prove that the triangles are congruent.
a	b c d d d d d d d d d d d d d d d d d d

QUESTION **3** In the diagram, *O* is the centre of the circle. *OC* is drawn perpendicular to *AB*. **a** Name the common side in $\triangle OAC$ and $\triangle OBC$.

- **b** Name the pair of sides that are equal.
- **c** Are the triangles congruent?

d If they are congruent, name the test you can use to prove it.

TOPIC TEST

PARTA

	Tir	ne allowed:	15 min	utes				Total	marks: 15
_	The			11	4				Marks
1	A	angle sum of a tr 90°	B	180°	to (C)	270°	D	360°	1
2	Wha	t name is given t	to a polygo	on with 7 sid	es?				
	A	hexagon	B	heptagon	C	nonagon	D	noptagon	
3	\sim	many sides doe		-			~		
	(\mathbf{A})	9	B	10	C	11	D	12	
4	\sim	ch is NOT a test	õ	-	s?		\sim		
	(\mathbf{A})	AAA	B	AAS	C	SAS	D	SSS	
5	\frown	t is the angle sur		-		10500			
	(A)	1080°	B	1260°	C	1350°	(D)	1440°	
6	\sim	angle sum of a q 90°		-	-	2700		2(0)	
	(A)		B	180°	(\mathbf{C})	270°	D	360°	
7	The I	number of sides 2		ilateral is 3		4	D	5	
-	(A)		(B)		(C)	4	U	5	
8	The e	exterior angles o 36°	of a regular	pentagon ar 54°	re each	72°	D	108°	
•	\bigcirc		\bigcirc		\bigcirc	12	U	100	
9	$\widehat{\Delta}$	minimum numbo 2	(\mathbf{B})	in a polygon		4	D	5	
10	The	sum of the exter	\bigcirc		ic aqual to			-	
10	(\mathbf{A})	90°		180°	(\mathbf{C})	270°	(\mathbf{D})	360°	
11	\bigcirc	riangle has all th	\bigcirc		O		e		
	(\mathbf{A})	30°	(B)	45°	(\mathbf{C})	60°	(D)	90°	
12	Refe	rring to the diag	ram. what	correctly cor	mpletes this s	entence:		D	
		$BC = \Delta$, , , , , , , , , , , , , , , , , , ,	1			E	
	(\mathbf{A})	ΔDEC	B	ΔDCE	\bigcirc	ΔECD	D	ΔEDC	
13	If all	the sides and ar			equal, it is wh		oolygon		
	(\mathbf{A})	open	B	closed	C	regular	D	irregular	
14	\frown	the interior ang	<u> </u>		ss than 180° , t		\sim		
	(A)	open	B	closed	C	convex	D	concave	
15	\frown	ree-sided regular		• •	Ĩ			1. 1	
	(A)	right-angled	(B)	scalene	(\mathbf{C})	isosceles	D	equilateral	
						_			
					Total m	arks ac	hieved for	PART A	15

Geometry TOPIC TEST

PART B

Instructions • This part consists of 15 questions.

- Each question is worth 1 mark.
- Write only the answer in the answer column.
- For any working use the question column.

Time allowed: 20 minutes Total marks: 15 Marks **Ouestions** Answers **1** In the quadrilateral PS = PQ and SR = QR. 0 1 **a** Complete $\Delta PSR \equiv \Delta$ _____ **b** Which test is used to show 54 1 the triangles congruent? **2** Draw a regular hexagon *ABCDEF* and from vertex (*A*) draw all the diagonals. 1 **a** How many diagonals are drawn? 1 **b** How many triangles are formed? 1 С What is the sum of the interior angles of a hexagon? 1 **d** Find the size of each interior angle. 1 e Find the size of each exterior angle. For a regular polygon with 20 sides, 3 1 **a** are all the angles equal? 1 **b** what is the sum of the exterior angles of this polygon? 1 find the size of each exterior angle. С 1 **d** find the size of each interior angle. 1 e find the sum of the interior angles of the polygon. ABCDE is a regular pentagon. 4 **a** Which test is used to 1 show $\triangle AED \equiv \triangle ABC$? **b** What is the size of $\angle ADC$? 1 Find the value of *x*. 5 1 Total marks achieved for PART B 15

CHAPTER 7 – Coordinate geometry

PAGE 58 1 a 4 units b 5 units c 5 units d 4 units e 4 units f 3 units g 7 units h 5 units 2 a $\sqrt{52}$ units b $\sqrt{41}$ units $\mathbf{c}\sqrt{65}$ units 3 a 10 units b $\sqrt{41}$ units $\mathbf{c}\sqrt{117}$ units 4 a (-3, 4) b i 5 units ii 6 units iii 5 units iv 6 units v $\sqrt{61}$ units vi $\sqrt{61}$ units c 22 units d 30 units²

PAGE 59 1 a $\sqrt{32}$ units b $\sqrt{50}$ units c $\sqrt{50}$ units d $\sqrt{10}$ units e $\sqrt{13}$ units f $\sqrt{10}$ units 2 a 11.7 units b 6.4 units **c** 10.8 units **d** 10.0 units **e** 4.5 units **f** 1.4 units **3 a** 41 **b** $(15 + \sqrt{45})$ units **4 a** 7 units **b** 4 units **c** 7 units **d** 4 units $e\sqrt{65}$ units $f\sqrt{65}$ units

PAGE 60 1 a 8 b 8 c 8 d 5 e 5 f 5 2 a 3 b 1 c 5 d 3 3 a 8 b 8 c 6 d 9 e 7 f 3 g 2 h 0 i 10 j 5 k 10 l 10 4 a 5 b 4 c (5, 4) 5 a 12 b 3 c 9 d 7 e 5 f 4 g 2 h 2 i 1 j 7 k - 4 l - 5

PAGE 61 1 a (0, 8) b (5, 8) c $(-4\frac{1}{2}, 2)$ d (6, 6) e (7, 4) f (2, 6) 2 a (5, 0) b (8, 4) c (8, 12) d (5, 7) e (-1, -1) f (2, 2) 3 a (3, 2) b (3, 2) c yes d bisect each other 4 a $(3\frac{1}{2}, 7\frac{1}{2})$ b (5, 1) c (6, 10) d (6, 8) e (-3, -3) f (1, 1) 5 (8, 14), $(5\frac{1}{2}, 10)$, $(-\frac{1}{2}, 9)$ **6** (5-5) = 0; (-8+8) = 0; so (0, 0)

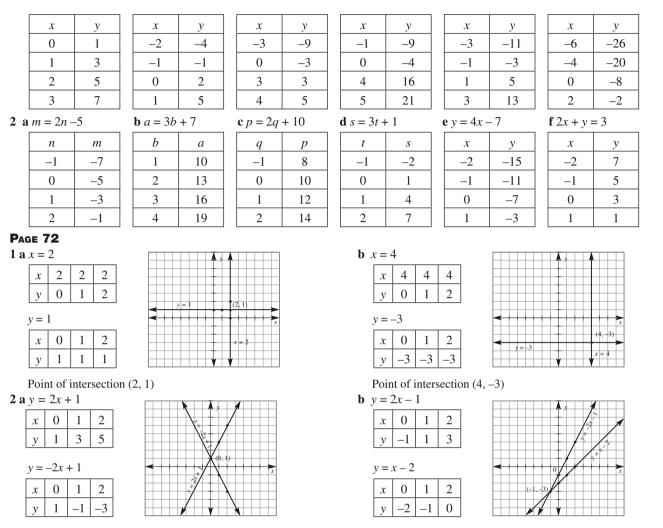
PAGE 62 1 a (2, 5) b (-3, 6) 2 a (7, 8) b (9, 11) c (8, -7) d (-4, 6) e (9, 11) f (8, 6) g (7, 13) h (10, 13) i (-1, 7) j (8, 16) \mathbf{k} (11, 6) \mathbf{l} (9, -3) 3 \mathbf{a} (4, 7) \mathbf{b} (4, 8) \mathbf{c} (2, 0) \mathbf{d} (2, 6) \mathbf{e} (4, 6) \mathbf{f} (8, 12) \mathbf{g} (2, 13) \mathbf{h} (1, 2) 4 \mathbf{a} (6, 10) \mathbf{b} (3, -5) \mathbf{c} p = 10**d** x = -7, y = 7

PAGE 63 1 a negative b positive c positive d negative 2 $\mathbf{a} - \frac{3}{4} \mathbf{b} \frac{3}{5} \mathbf{c} \frac{5}{6} \mathbf{d} 2 \mathbf{e} \frac{5}{4} \mathbf{f} - \frac{4}{3} \mathbf{g} \frac{5}{7} \mathbf{h} \mathbf{1} \mathbf{i} - \frac{1}{2}$

PAGE 64 1 $\mathbf{a} - \frac{3}{2} \mathbf{b} + \mathbf{c} - \mathbf{1} \mathbf{d} + \mathbf{e} + \mathbf{3} \mathbf{f} + \frac{8}{5} \mathbf{2} \mathbf{a} + \mathbf{b} - \mathbf{1} \mathbf{c} + \mathbf{d} + \frac{10}{3} \mathbf{e} - \frac{1}{3} \mathbf{f} + \frac{9}{5} \mathbf{3}$ the gradient (2) is the same for the three lines 4 x = 5 5 AB and CD have the same gradient of $-\frac{5}{3}$; BC and AD have the same gradient of $\frac{2}{5}$ 6 (0, 1), (-1, -1) and (2, 5)

PAGE 65 1 a 4 b 2 c positive d right 2 a 0 b 1 c positive d right 3 a -2 b $\frac{1}{3}$ c positive d right 4 a 6 b $-\frac{3}{2}$ c negative d left 5 a 0 b -1 c negative d left 6 a -2 b $-\frac{2}{3}$ c negative d left

PAGE 66 1 a -3, -2, -1 b c 1 d positive e right f 1 g yes h -3 i yes


						4 3 2					Ζ	Ż
6-	5 -	4 -	3	2		+		7	Z	F		
					2	Z	Z					
F				Ζ	4- 5-		F		_			
		Z	Ĺ		° i	ï						

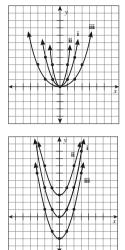
c - 2 d negative e left f - 2 g yes h 3 i yes **2** a 3, 1, -1 b 3 a i 8 ii - 5 b i 2 ii 3 c i - 3 ii 7

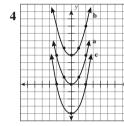
Page 67 1 a 3x + 5y - 9 = 0 b 2x - y - 7 = 0 c 3x - y - 4 = 0 d 4x - 3y - 8 = 0 e 9x - y - 7 = 0 f 2x + y + 6 = 0 $\mathbf{g} 9x - 7y - 5 = 0$ $\mathbf{h} 4x - 13y + 18 = 0$ $\mathbf{i} x - 5y + 10 = 0$ $\mathbf{2}$ $\mathbf{a} y = 6x - 10$ $\mathbf{b} y = 2x + 8$ $\mathbf{c} y = -\frac{2}{3}x + \frac{1}{3}$ $\mathbf{d} y = \frac{1}{2}x + 2$ $\mathbf{e} y = -5x$ $\mathbf{f} y = \frac{9}{4}x - 3$ $\mathbf{g} y = -x + 2$ $\mathbf{h} y = \frac{3}{2}x - \frac{7}{2}$ $\mathbf{i} y = \frac{3}{4}x - 2$ $\mathbf{3}$ $\mathbf{a} m = 3, b = 1$ $\mathbf{b} m = 9, b = -5$ $\mathbf{c} m = -1, b = -3$ $\mathbf{d} m = -4, b = 7$ $\mathbf{e} \ m = \frac{2}{3}, \ b = -5 \ \mathbf{f} \ m = \frac{1}{4}, \ b = -2 \ \mathbf{4} \ \mathbf{a} \ y = 3x + 2 \ \mathbf{b} \ y = 9x - 3 \ \mathbf{c} \ y = -x + 7 \ \mathbf{d} \ y = \frac{3}{4}x + 5 \ \mathbf{e} \ y = -\frac{2}{3}x + 1 \ \mathbf{f} \ y = -7x + 8 \ \mathbf{c} \ y = -\frac{2}{3}x + 1 \ \mathbf{f} \ y = -7x + 8 \ \mathbf{c} \ y = -\frac{2}{3}x + 1 \ \mathbf{f} \ y = -7x + 8 \ \mathbf{c} \ y = -\frac{2}{3}x + 1 \ \mathbf{f} \ y = -7x + 8 \ \mathbf{c} \ y = -\frac{2}{3}x + 1 \ \mathbf{f} \ y = -7x + 8 \ \mathbf{c} \ y = -\frac{2}{3}x + 1 \ \mathbf{f} \ y = -7x + 8 \ \mathbf{c} \ y = -\frac{2}{3}x + 1 \ \mathbf{f} \ y = -7x + 8 \ \mathbf{c} \ y = -\frac{2}{3}x + 1 \ \mathbf{f} \ y = -7x + 8 \ \mathbf{c} \ \mathbf{f} \ \mathbf{f} \ y = -\frac{2}{3}x + 1 \ \mathbf{f} \ \mathbf$ **5** a y = 4x + 14 b y = 2x - 9 c $y = \frac{1}{2}x + \frac{9}{2}$ d $y = \frac{2}{3}x + \frac{22}{3}$ e $y = -\frac{1}{3}x + \frac{17}{3}$ f y = -3x + 8**PAGE 68** 1 b yes 2 a yes b yes c yes d no e yes f no 3 a no b yes c yes d no e yes f no 4 a (0, -5) b (2, -1) c (3, 1) **d** (-2, -9) **e** (1, -3) **f** (5, 5) **5 a** p = 3 **b** m = 1PAGE 69 1 C 2 C 3 C 4 C 5 C 6 D 7 C 8 B 9 A 10 C 11 B 12 D 13 C 14 D 15 B **PAGE 70** 1 a $\sqrt{26}$ units b $(\frac{1}{2}, 5\frac{1}{2})$ c $-\frac{1}{5}$ d x + 5y - 28 = 0 e $y = -\frac{1}{5}x + \frac{28}{5}$ 2 a 10 units b 32 c $\sqrt{80}$ units d (0, 0) e (5, 7)3 a yes b (2, 5) c (6, -16) d (2, 2) e $y = -\frac{2}{3}x + 6$

CHAPTER 8 - Linear and non-linear relationships

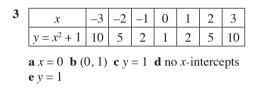
PAGE 71 **b** y = 3x + 2 **c** y = 2x - 3 **d** y = 5x - 4 **e** y = 4x + 1**1 a** y = 2x + 1f v = 3x - 8

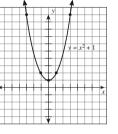
Point of intersection (0, 1)

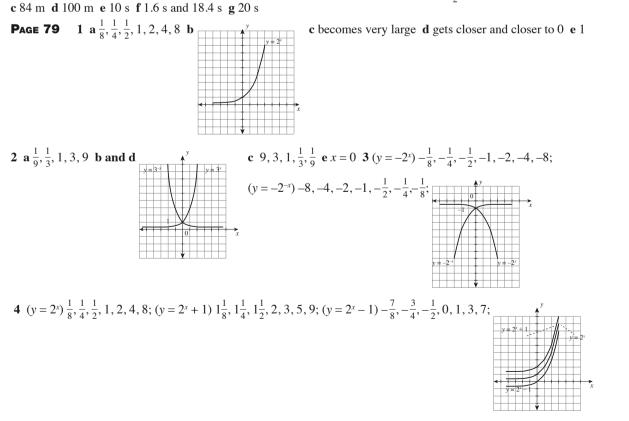

PAGE 73 1 a 5 **b** the fixed amount of pocket money per week, \$5 **c** 5 **d** The rate that Andrew's mother pays him per hour when he helps. **2 a** 90 **b** Clair is 90 km from Baxton **c** -15 **d** Melissa rides at a constant speed of 15 km/h **e** d = -15t + 90 **PAGE 74 1 a** 2x - 5y - 9 = 0 **b** 3x + 4y - 8 = 0 **c** 5x - 2y - 7 = 0 **d** 4x - 8y + 3 = 0 **e** 2x + y - 9 = 0 **f** 8x - y + 7 = 0 **g** 2x - 3y + 6 = 0 **h** 8x - 9y + 12 = 0 **i** x - 6y + 3 = 0 **2 a** $y = -\frac{2}{3}x + \frac{8}{3}$; $m = -\frac{2}{3}$, $b = \frac{8}{3}$ **b** $y = -\frac{1}{5}x + \frac{7}{5}$; $m = -\frac{1}{5}$, $b = \frac{7}{5}$ **c** $y = \frac{3}{2}x - \frac{3}{2}$; $m = \frac{3}{2}$, $b = -\frac{3}{2}$ **d** y = x + 7; m = 1, b = 7 **e** y = -2x + 9; m = -2, b = 9 **f** $y = \frac{5}{6}x + \frac{11}{6}$; $m = \frac{5}{6}$, $b = \frac{11}{6}$ **g** $y = \frac{3}{2}x - 3$; $m = \frac{3}{2}$, b = -3 **h** $y = -\frac{4x}{5}$, $-\frac{3}{5}$; $m = -\frac{4}{5}$, $b = -\frac{3}{5}$ **i** y = 2x + 6; m = 2, b = 6 **3 a** y = 4x + 3; 4x - y + 3 = 0 **b** y = 2x - 5; 2x - y - 5 = 0 **c** y = 3x + 7; 3x - y + 7 = 0 **d** $y = \frac{1}{2}x + 4$; x - 2y + 8 = 0 **e** $y = \frac{2}{3}x + 6$; 2x - 3y + 18 = 0 **f** $y = -\frac{5}{6}x + 3$; 5x + 6y - 18 = 0 **PAGE 75 1 a i** 5 **ii** 3 **iii** -2 **b i** 4 **ii** -5 **iii** -2 **c i** x = 4 **ii** x = -5 **iii** x = -2 **2 a** x = 1 **b** x = 2 **c** x = -1 **d** x = -2 **e** x = 3 **f** $x = \frac{1}{2}$ **g** $x = \frac{3}{2}$ **h** $x = \frac{5}{2}$ **i** $x = -\frac{1}{2}$ **PAGE 76 1 a** -5, -2, 1, 4 **b 1 a b a b b a b b b b a b b c b a c a b a c b a c a a c i i a i i i i** x = 1 **i i i** x = 1 **i** x = 4 **i i** x = 1 **i** x = 4 **i** x = 5 **i i** x = 4 **v** x = 5


Page 77

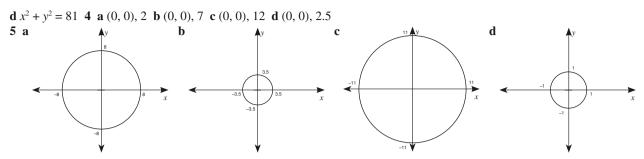
PAGE 78


•								
	x	-3	-2	-1	0	1	2	3
i	$y = x^2$	9	4	1	0	1	4	9
ii	$y = 3x^{2}$	27	12	3	0	3	12	27
iii	$y = \frac{5}{6}x^2$	3	$\frac{4}{3}$	$\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{4}{3}$	3

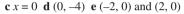

2			-3	-2	-1	0	1	2	3
	i	$y = x^2$	9	4	1	0	1	4	9
	ii	$y = x^2 + 3$	12	7	4	3	4	7	12
	iii	$y = x^2 - 3$	6	1	-2	-3	-2	1	6

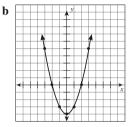


d The graph $y = x^2$ can be moved up and down the vertical axis by adding a constant *C* (-4 or + 4)



a $y = x^2$ b $y = x^2$	$-x^2$ e $y = x^2 - 4$ f $y = 1 - 4$	x^2 g $y = \frac{1}{2}x^2$ h $y = 2x^2 + \frac{1}{2}x^2$	3 2 a 64 m b 48 m


PAGE 80 1 a (0,0) b 5 c $x^2 + y^2 = 25$ d $4^2 + 3^2 = 25$ 2 a 10 b $x^2 + y^2 = 100$ 3 a $x^2 + y^2 = 36$ b $x^2 + y^2 = 9$ c $x^2 + y^2 = 16$


3

PAGE 81 1 C 2 B 3 B 4 C 5 A 6 B 7 C 8 D 9 D 10 B 11 C 12 A **PAGE 82 1 a** (0, 0) **b** 10 units **c** $x^2 + y^2 = 100$ **d** 98 **e** inside **2 a** 2 **b** -4 **c** y = 2x - 4 **d** x = 2 **e** x = 6

a	X	-3	-2	-1	0	1	2	3
	$y = x^2 - 4$	5	0	-3	-4	-3	0	5

CHAPTER 9 - Equations

PAGE 83 1 $\mathbf{a} x = 7$ $\mathbf{b} a = 11$ $\mathbf{c} n = 10$ $\mathbf{d} y = 4$ $\mathbf{e} n = 2$ $\mathbf{f} k = 17$ $\mathbf{g} a = 12$ $\mathbf{h} t = 3$ $\mathbf{i} x = 14$ $\mathbf{j} m = 9$ $\mathbf{k} p = 3$ $\mathbf{l} y = 6$ $\mathbf{2} \mathbf{a} a = 16$ $\mathbf{b} x = 28 \mathbf{c} m = 28 \mathbf{d} n = 11 \mathbf{e} a = 28 \mathbf{f} a = 7 \mathbf{g} y = 3 \mathbf{h} t = 1 \mathbf{i} y = -3 \mathbf{j} x = 28 \mathbf{k} p = 16 \mathbf{l} m = -10 \mathbf{3} \mathbf{a} a = 16 \mathbf{b} x = 14 \mathbf{c} b = 5$ dk = 10 en = 4 fa = 26 gm = 34 ht = 34 iy = 26 jx = 27 ka = 27 lx = 37 4ax = 15 bn = 5 cm = 17 dy = 12 ex = 13f y = 16 g m = 14 h t = 8 i a = 4

PAGE 84 1 ax = 3 by = 6 ct = 3 dm = 18 en = 16 fa = 20 gx = 5 hy = 10 ix = 12 jx = 28 kx = 22 lt = -6 2aa = 8 $\mathbf{b} a = 18 \mathbf{c} x = 40 \mathbf{d} x = 8 \mathbf{e} m = 7 \mathbf{f} t = 14 \mathbf{g} y = 32 \mathbf{h} x = -21 \mathbf{i} x = 3 \mathbf{j} d = -9 \mathbf{k} x = 11 \mathbf{l} t = 5 \mathbf{3} \mathbf{a} x = 6 \mathbf{b} y = -14 \mathbf{c} m = -8$ $\mathbf{d}m = -9 \mathbf{e}t = 4 \mathbf{f}n = 7 \mathbf{g}a = 11 \mathbf{h}p = 48 \mathbf{i}x = 14 \mathbf{j}n = -70 \mathbf{k}x = -24 \mathbf{l}y = -56 \mathbf{4}\mathbf{a}x = 54 \mathbf{b}x = 5 \mathbf{c}x = -12 \mathbf{d}x = -2$

e y = -5 **f** m = 27 **g** y = 32 **h** a = -63 **i** $x = 11\frac{1}{2}$ **j** y = 5 **k** $x = 7\frac{1}{2}$ **l** m = -33 **PAGE 85 1 a** x = 2 **b** x = 5 **c** y = 3 **d** a = 5 **e** a = 5 **f** m = 4 **g** x = 23 **h** a = 20 **i** x = 7 **2 a** x = 8 **b** y = 3 **c** p = 3 **d** a = 33

 $e a = 3 f a = \frac{1}{2} g x = 7 h x = 10 i x = 19 3 a y = 15 b y = 1 c x = 4 d t = 2 e m = 39 f x = 9 g y = 1 h y = 6 i x = 8 j x = 40$ **k** v = -5 **l** p = -1

PAGE 86 1 a a = 10 b x = -7 c x = -10 d $a = \frac{2}{3}$ e t = -15 f a = -1 g y = 4 h a = -4 i t = -1 2 a $m = \frac{2}{3}$ b x = 15 c $a = \frac{14}{3}$ $\mathbf{d} x = 4 \mathbf{e} a = 1 \mathbf{f} x = -2 \mathbf{g} x = 3 \mathbf{h} m = 15 \mathbf{i} x = -26 \mathbf{3} \mathbf{a} x = -2 \mathbf{b} a = 26 \mathbf{c} x = -1 \mathbf{d} x = 6 \mathbf{e} y = -5 \mathbf{f} y = 8 \mathbf{g} y = 1 \mathbf{h} y = 15$

i t = -45 j t = 0 k $x = -\frac{7}{13}$ l y = -5 m a = 10 n x = -3 o x = 12 **PAGE 87** 1 a x = 3 b y = 4 c m = 6 d x = 3 e $x = 4\frac{1}{2}$ f x = 3 g x = 5 h x = -3 i y = -6 2 a $x = 4\frac{1}{2}$ b m = 11 c t = 3 d p = -3 $\mathbf{e} x = 1$ $\mathbf{f} a = -32$ $\mathbf{g} x = 3$ $\mathbf{h} a = 14$ $\mathbf{i} x = 43$ $\mathbf{3} \mathbf{a} m = -4\frac{2}{7}$ $\mathbf{b} x = 18$ $\mathbf{c} -\frac{1}{9}$ $\mathbf{d} a = 13$ $\mathbf{e} m = -13$ $\mathbf{f} t = 1\frac{1}{2}$ $\mathbf{g} a = 3$ $\mathbf{h} n = -19$ $\mathbf{i} a = 2\frac{1}{2}$ j x = 4 k y = 31 l a = -28**PAGE 88** 1 B 2 D 3 D 4 B 5 C 6 B 7 B 8 C 9 C 10 A 11 B 12 C 13 A 14 B 15 C **PAGE 89** 1 a x = 35 b x = 7 c y = -72 d m = 48 e x = $\frac{1}{\sqrt{3}}$ f x = $-\frac{1}{3}$ g p = 15 h x = $-\frac{1}{8}$ i x = -9 j x = 29 k x = $-2\frac{2}{9}$ l m = 15

2 x = 10 **3 a** S = 2460 **b** n = 17

CHAPTER 10 – Trigonometry

PAGE 90 1 a x = opp, y = adj, z = hyp b x = hyp, y = adj, z = opp c x = adj, y = hyp, z = opp 2 a a = opp, b = adj, c = hyp**b** d = opp, e = adj, f = hyp **c** g = opp, i = adj, h = hyp **d** k = opp, l = adj, j = hyp **e** n = opp, m = adj, o = hyp **f** r = opp, q = adj, q = adj, d = $p = hyp \ \mathbf{3} \ \mathbf{a} \ AB \ \mathbf{b} \ DF \ \mathbf{c} \ GI \ \mathbf{d} \ JK \ \mathbf{e} \ MN \ \mathbf{f} \ PQ$

1 a sin **b** cos **c** tan **2 a** $\frac{40}{41}$ **b** $\frac{5}{13}$ **c** $\frac{8}{17}$ **3 a** $\frac{4}{5}$ **b** $\frac{15}{17}$ **c** $\frac{3}{\sqrt{58}}$ **4 a** $\frac{1}{3}$ **b** $\frac{5}{2}$ **c** $\frac{5}{12}$ **5 a** $\frac{12}{37}$ **b** $\frac{12}{37}$ **c** $\frac{35}{12}$ **d** $\frac{35}{37}$ **e** $\frac{35}{37}$ **f** $\frac{12}{25}$ PAGE 91 6 $\mathbf{a} \frac{a}{b} \mathbf{b} \frac{b}{a} \mathbf{c} \frac{b}{a} \mathbf{d} \frac{a}{a} \mathbf{e} \frac{b}{a} \mathbf{f} \frac{a}{a}$

PAGE 92 1 a sin A, sin B b sin D, sin E c sin P, sin Q 2 a cos B, cos A b cos D, cos E c cos P, cos Q 3 a tan A, tan B **b** tan D, tan E **c** tan P, tan Q **4 a** sin **b** cos **c** tan **d** tan **e** cos **f** sin **g** tan **h** sin **i** cos

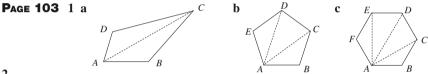
PAGE 93 1 a 0.56 b 2.75 c 0.97 d 0.52 e 0.77 f 0.62 g 8.14 h 0.50 i 2.05 2 a 0.287 b 0.055 c 23.073 d 0.312 e 0.059 f 25.519 g 0.077 h 0.356 i 1542.844 3 a 1.66 b 1.49 c 0.814 d 4.02 e 0.428 f 0.935 g 0.475 h 3.50 i 0.440 4 a 39° b 68°

c 68° d 55° e 38° f 50° g 59° h 16° i 10° 5 a 30° b 30° c 50° d 67° e 60° f 65° 6 a 35° b 67° c 35° d 30° e 42° f 40° PAGE 94 **1 a** 3.5 **b** 3.9 **c** 4.4 **2 a** 16.1 **b** 27.0 **c** 24.9 **3 a** 9.9 **b** 5.6 **c** 12.6 **4 a** 8.86 **b** 24.93 **c** 11.08 PAGE 95 **1** a x = 4.2 b a = 4.9 c p = 5.3 **2** a n = 7.56 b m = 9.77 c p = 10.64 **3** a q = 3.35 b t = 9.18 c l = 7.49**d** c = 5.58 **e** d = 23.90 **f** k = 5.45

PAGE 96 1 a 16.6 cm b 15.6 cm c 16.7 cm 2 a 16.00 cm b 14.15 cm c 19.30 cm 3 a 31.4 cm b 34.7 cm c 24.4 cm **d** 20.2 cm **e** 12.0 cm **f** 19.5 cm

PAGE 97 **1 a** sin **b** tan **c** cos **d** sin **2 a** 2.5 m **b** 4.7 m **c** 8.8 m **d** 11.1 m **e** 3.3 m **f** 2.8 m **3 a** 2.97 **b** 8.06 **c** 49.10 **PAGE 98** 1 a $\theta = 31^{\circ}$ b $\alpha = 57^{\circ}$ c $\beta = 76^{\circ}$ 2 a $\beta = 68^{\circ}$ b $\theta = 24^{\circ}$ c $\alpha = 37^{\circ}$ 3 a $\beta = 71^{\circ}$ b $\alpha = 35^{\circ}$ c $\theta = 60^{\circ}$ d $\theta = 74^{\circ}$ $e \alpha = 69^{\circ} f \beta = 23^{\circ} 4 a 45^{\circ}34' b 61^{\circ}56' c 48^{\circ}35'$

1 1.94 m **2** x = 24 cm **3** $\angle P = 51^{\circ}$ **4** 5.75 cm **5** $\angle ACD = 25^{\circ}$ **6** 43 m PAGE 99


PAGE 100 1 C 2 B 3 B 4 B 5 B 6 C 7 B 8 C 9 A 10 B 11 C 12 B 13 B 14 B 15 C

PAGE 101 1 a i 0.03 ii 29.31 iii 41.25 b i 43° ii 56° 2 a x = 8.06 cm b m = 14.38 cm c y = 9.73 cm d h = 20.71 cm $\mathbf{e} c = 15.34 \text{ cm} \mathbf{3} \mathbf{a}$ right-angled isosceles $\mathbf{b} 45^\circ \mathbf{c} 8.8 \text{ cm} \mathbf{d} 0.707 \mathbf{e} 1$

CHAPTER 11 – Geometry

2

PAGE 102 1 a triangle b quadrilateral c pentagon d hexagon e heptagon f octagon g nonagon h decagon 2 a no b yes, kite c yes, hexagon d no 3 a pentagon, regular b no c square, regular d no e equilateral triangle, regular f parallelogram, irregular g octagon, regular h scalene triangle, irregular 4 a hexagon, convex b rectangle, convex c hexagon, non-convex d quadrilateral, non-convex e kite, convex f pentagon, non-convex

Name	Number of sides	Number of Δs formed	Angle sum of the interior angles
Triangle	3	1	180°
Quadrilateral	4	2	360°
Pentagon	5	3	540°
Hexagon	6	4	720°
Heptagon	7	5	900°
Octagon	8	6	1080°
Nonagon	9	7	1260°
Decagon	10	8	1440°

3 a 1800° b 2880° c 3960° **4** a 5 b 8 c 10 **5** a x = 158 b x = 132 c x = 132

PAGE 104 1 a 108° , a = 72 b 120° , a = 60 c 135° , a = 45 2 a 144° b 156° c 162° 3 a 8 sides b 10 sides c 12 sides **4 a** 120° **b** 140° **c** 150° **5 a** 22 **e** 163.6°

PAGE 105 1 a 60° b 110° 2 a 60° b 45° c 36° 3 a 5 sides b 108° c 540° 4 a 15° b 165° c 3960° 5 a 60° b 120° c 720° **PAGE 106** 1 $\triangle ABC$ and $\triangle MLP$; $\triangle GHI$ and $\triangle YZA$; $\triangle MNO$ and $\triangle JKL$; $\triangle VWX$ and $\triangle PRQ$; $\triangle DEF$ and $\triangle SUT$ 2 a i $\angle A$ and $\angle C$; $\angle ADB$ and $\angle CDB$; $\angle ABD$ and $\angle CBD$ ii AD = CD; AB = CB; BD = BD b i $\angle E = \angle G$, $\angle EHF = \angle GFH$, $\angle EFH = \angle GHF$ ii EH = FG, EF = HG, HF = HF c i $\angle I = \angle K$, $\angle ILJ = \angle KJL$, $\angle IJL = \angle KLJ$ ii IJ = KL, IL = KJ, LJ = JL**d** i $\angle P = \angle N$, $\angle PMO = \angle NOM$, $\angle POM = \angle NMO$ ii MN = OP, MP = ON, MO = OMe i $\angle QTS = \angle QTR$, $\angle S = \angle R$, $\angle SQT = \angle RQT$ ii QS = QR, QT = QT, ST = RT**f** $\mathbf{i} \angle U = \angle X, \angle UWV = \angle XVW, \angle UVW = \angle XWV$ $\mathbf{ii} UV = XW, VW = WV, UW = XV$ **3** a $\triangle AOD \equiv \triangle COB$; $\triangle AOB \equiv \triangle COD$; $\triangle ADC \equiv \triangle CBA$; $\triangle ABD \equiv \triangle CDB$ b $\triangle ABC \equiv \triangle AED$ and $\triangle ABD \equiv \triangle AEC$ **PAGE 107** 1 $\mathbf{a} \equiv \mathbf{b}$ three sides c two angles and a side d two sides and the included angle e the hypotenuse and one side 2 a RHS b SAS c AAS d SSS 3 a OC b OA = OB c yes d RHS

PAGE 108 1 B 2 B 3 D 4 A 5 A 6 D 7 C 8 C 9 B 10 D 11 C 12 D 13 C 14 C 15 D

PAGE 109 1 a *POR* b SSS 2 **a** 3 **b** 4 **c** 720° **d** 120° **e** 60° **3 a** yes **b** 360° **c** 18° **d** 162° **e** 3240° D **4** a SAS b 72° **5** 45° C