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Abstract

Quality attributes of large software systems are to a large
extent determined the system’s software architecture, i.e. qual-
ities such as performance and modifiability depend at least as
much on the overall architecture as on the code level implemen-
tation. Our experience shows that there are conflicts between
modifiability and performance. The largest conflicts occur
when there is a requirement that it should be possible to modify
the system by run-time reconfigurations. Consequently, there is
a need for providing tradeoffs between modifiability and
performance when designing the system’s architecture.

Based on experiences from five industrial projects we
define eight design guidelines and a small taxonomy for some
performance related quality attributes as well as for attributes
related to the modifiability of the system. We also incorporate
the guidelines in a design method, thus making it clear how and
when the guidelines should be used. 

1 Introduction
Perhaps the most complex activity during application devel-

opment is the transformation of a requirement specification into
an application architecture. The other phases also are chal-
lenging activities, but they are better understood and more
methodological and technological support is available. The
process of architectural design is less formalized and often
more like intuitive craftsmanship than rational engineering.

The domain of software architecture has received consider-
able attention during recent years. This is, at least to some
extent, because especially quality requirements (QRs) are
heavily influenced by the architecture of the system. Some QR
are conflicting, thus making it necessary to find an architecture
that provides an appropriate compromise. Architectural design
is a typical multiple objective design activity where the soft-
ware engineer has to balance the various requirements during
architectural design. Although there are methods for analyzing
specific quality attributes, these analyses have typically been
done in isolation [12][14][18].

In this paper we present our experiences from a number of
architecture design projects, ranging from telecommunication
applications to embedded systems. Based on the accumulated
experience from these projects, we define a set of guidelines
and outline a design method that make it possible to obtain a
reasonable balance between different QR. At this point we
provide guidelines for performance related quality attributes,
i.e. throughput and response time, as well as guidelines related
to modifiability, i.e. the cost for modifying and reconfiguring
the system after initial deployment, in the maintenance phase.

2 Experiences
In this section describe five industrial systems that we have

studied and summarize some of the experiences from these
projects. A more detailed description of the systems can be
found in [2][3][6][8][9].

2.1 Billing Gateway (BGw)

2.1.1 System description

BGw collects billing information about calls from mobile
phones [8]. The system has been developed by Ericsson. BGw
is written in C++ (approximately 100,000 lines of code) using
object-oriented design, and the parallel execution has been
implemented using Solaris threads. 

BGw transfers, filters and translates raw billing information
from Network Elements (NE), such as switching centers and
voice mail centers, in the telecommunication network to billing
systems and other Post Processing Systems (PPS). Customer
bills are then issued from the billing systems. The raw billing
information consists of Call Data Records (CDRs). The CDRs
are continuously stored in files in the network elements. With
certain time intervals or when the files have reached a certain
size, these files are sent to the BGw.

 
Figure 1: BGw configuration window.

There is a graphical user interface connected to BGw. In this
interface the different streams of information going through the
gateway are visualized as a directed graph. Figure 1 shows an
application where there are two network elements producing
billing information (the two leftmost nodes). These are called
“MSC - New York” and “MSC - Boston” (MSC = Mobile
Switching Center). The CDRs from these two MSCs are sent to
a filter called “isBillable”. There is a function associated with
each filter, and in this case the filter function evaluates to true
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for CDRs which contain proper information about billable
services. CDRs which do not contain information about billable
services are simply filtered out. The other CDRs are sent to
another filter called “isRoaming”. In this case, there are two
streams going out from the filter.

The function associated with “isRoaming” evaluates to true
if the CDR contains information about a roaming call (a
roaming call occurs when a customer is using a network oper-
ator other than his own, e.g when travelling in another country).
In this case, the record is forwarded to a formatter, and then to
a billing system for roaming calls, otherwise the record is sent
to a formatter and billing system for non-roaming calls.

The record format used by the billing systems differs from
the format produced by the MSCs. This is why the CDRs
coming out of the last filter have to be reformatted before they
can be sent to the billing systems. The graph in Figure 1 is only
one example of how billing applications can be configured.

Figure 2 shows the major threads for the application in
Figure 1. When there is no flow of data through the BGw, the
system contains a number of static threads. When there is a flow
of information going through the system, additional threads are
created dynamically. When a NE sends a billing file to the BGw
a data collection thread is created. This thread reads the file
from the network and stores it on disk. When the complete file
has been stored the data collection thread terminates. 

Data processing, i.e. the part of BGw that does the actual
filtering and formatting, is implemented in a different way, i.e.
there is one data processing thread for each NE node in the
configuration (see Figure 2). 

2.1.2 Experiences

The system architecture is parallel and we expected good
multiprocessor speedup. However, the speedup was very disap-
pointing; in the first version the performance dropped when the
number of processors increased. The reason for this was that the
dynamic memory management was a major bottleneck. 

The designers of BGw wanted a flexible system where new
CDR formats could be handled without changing the system.
One major component in BGw was a very flexible parser that
could handle data formats specified using ASN.1. This parser
uses a lot of dynamic memory.

In order to increase the flexibility even more, a new
language which makes is possible to define more complex
filters and formatters was defined. The new language makes it
easier to adapt BGw to new environments and configurations.
However, the introduction of the new language led to a very
intensive use of dynamic memory, even for small configura-
tions. Consequently, the excessive use of dynamic memory
stemmed from the efforts of building a flexible and config-
urable system. 

It turned out that the performance problems due to dynamic
memory management could be removed relatively easy. By
replacing the standard memory management routines in Solaris
with a multiprocessor implementation called ptmalloc, the
performance was improved significantly. By investing in a
redesign effort of 1-2 weeks the performance was improved
with approximately a factor of eight for the sequential case and
a factor of more than 100 when using a multiprocessor. The
major part of the redesign was to introduce memory pools for
commonly used objects.

2.2 Fraud Control Centers (FCC)

2.2.1 System description

When cellular operators first introduce cellular telephony in
an area, their primary concern is to establish capacity, coverage
and signing up customers. However, as their network matures
financial issues become more important, e.g lost revenues due
to fraud.

Software in the switching centers, provides real-time sur-
veillance of suspicious activities, e.g. irregular events associat-
ed with a call. The idea is to identify potential fraud calls and
have them terminated. However, one single indication is not

Figure 2: The thread structure of Billing Gateway.
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enough for call termination. FCC allows the cellular operator to
decide certain criteria that have to be fulfilled before a call is
terminated, e.g. the number of indications that has to be detect-
ed within a certain period of time before any action is taken.
The events are continuously stored in files in the cellular net-
work. With certain time intervals or when the files contain a
certain amount of events, these files are sent to the FCC. 

The FCC consists of four major software modules (see Fig-
ure 3). The TMOS module is an Ericsson propriety platform
and handles the interaction with the switching network. The
collected events are passed on to the main module of FCC. In
the Main module the event files are parsed and divided into sep-
arate events. The events are then stored and checked against the
pre-defined rules using the database. If an event triggers a rule,
the action module is notified. This module is responsible for ex-
ecuting the action associated with a rule, e.g. to send terminat-
ing messages to the switching network.

A central part of FCC is data storage and data processing. A
commercial RDBMS (Sybase) was used in the implementation.
In order to improve performance, FCC has implemented paral-
lel execution, using Solaris threads.

The processing within the Main module is based on threads.
Figure 3 shows how the threads are communicating. A listener
thread receives the event file (3a) and creates a parser thread
(3b). After it has created the parser thread, the lister thread is
ready to receive the next file. The parser threads extract the
events from the file and insert the separate events into an event
queue (3c), where they are waiting for further processing.
When all events in a file have been extracted, the parser thread
terminates. The number of simultaneous parser threads is dy-
namic. The parser in FCC is designed in a way which makes it
flexible. It is very important for FFC to quickly support new
types of events when a new network release often introduce
new, or change the format of old, events. However, the flexible
design results in frequent use of dynamic memory.

The Main module has a configurable number of connections
toward the database server (3d). Each connection is handled by
a dbclient thread. A dbclient thread handles one event at the

time by popping the first event of the event queue (3e) and then
processing it. The interaction with the database is made through
SQL commands via a C-API provided by Sybase. Each SQL
command is constructed before it is send to the database mod-
ule. Since the final size of a SQL command is unknown dynam-
ic memory has to be used for its construction. The dbclient
thread is also responsible to initiate actions caused by the event
(3f,3g) before it processes the next event. 

2.2.2 Experiences

One important conclusion from the industrial Ericsson FCC
project is that the present and future performance requirements
of this kind of telecommunication systems can only be meet
with multiprocessor systems.

Dynamic memory management was a performance bottle-
neck also for FCC. There are two reasons why FCC has an in-
tensive use of dynamic memory: the object oriented design of
the parser and the use of a string library for dynamic construc-
tion of database requests, respectively. By optimizing dynamic
memory management the speedup was increased significantly. 

We used two different approaches for optimizing the dy-
namic memory handling in FCC. One approach was to replace
the standard memory handler with a parallel memory handler
called ptmalloc. The other approach was to split the client into
two or three Unix processes (Unix processes have different
memory images). The performance characteristics of these two
approaches were very similar.

2.3 Generic Database Systems

2.3.1 System description

In some database applications there is a need for very high
flexibility. One may want to change the number of properties
(columns) associated with an object (record) at run-time or one
may want to do very flexible searches, e.g. give me all objects
for which some property has the value Red. These type of func-
tionality cannot easily be supported with a regular (standard)
database design. Having a high degree of flexibility, i.e. making

Figure 3: The architecture of FCC.
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the system configurable, will in many cases decrease the main-
tainability cost, since a lot of changes that would require rede-
sign in a regular database system can be made by the user in a
configurable system. We have investigated one such flexible
application - the Promis database system [6]. 

Promis is based on a standard RDBMS (Oracle). The
purpose of the system is to maintain information about telecom-
munication products and services. The development of the
system was a joint effort between Swedish Telia, Dutch PTT
and Swiss PTT. In order to obtain the desired flexibility a meta-
data approach was used (this is very similar to the Reflection
architectural design pattern <ref>).

In Promis there are four tables for meta data. The actual data
is stored in two tables independent of the record format, i.e. no
matter how many record types we have there are only two tables
for data. The information about the record format is stored in
the meta data tables.

2.3.2 Experiences

Measurements on a production database showed that the
Promis approach increased the average access time with
approximately a factor of 20 compared to a regular database
implementation, i.e. there was a slow of approximately 20.
Consequently, the price for the flexibility was dramatic (and
unacceptable) reduction of performance.

However, by identifying the most common cases (e.g.
reading an object was 450 times more common than creating an
object), we were able to optimize the implementation in such a
way that the performance degradation compared to a regular
database implementation was limited to factor of two (roughly).
The optimization introduced some controlled redundancy in the
database. This resulted in somewhat longer times for creating
an object. However, the time for reading an object was reduced
significantly. Due to the optimizations the average performance
could be improved from a slow down of approximately 20 to a
slow down of 2-3.

2.4 Haemo dialysis Machines

2.4.1 System description

The aim of a dialysis system is to remove water and certain
natural waste products from the patient’s blood. Patients that
have kidney problems and consequently produce little or no
urine use this type of system.

The project aimed at designing a new software architecture
for the dialysis machines produced by Althin Medical. The
software of the existing generation products was exceedingly
hard to maintain and certify.

An overview of a dialysis system is presented in Figure 4.
The system is physically separated into two parts by the dialysis
membrane. On the left side the dialysis fluid circuit takes the
water from a supply of a certain purity, dialysis concentrate is
added using a pump. A sensor monitors the concentration of the
dialysis fluid and the measured value is used to control the
pump. A second pump maintains the flow of dialysis fluid,
whereas a third pump increases the flow and thus reduces the
pressure at the dialysis fluid side. This is needed to pull the
waste products from the patient’s blood through the membrane

into the dialysis fluid. A constant flow of dialysis fluid is main-
tained by the hydro mechanic devices (rectangle with a curl).

On the right side of Figure 4, the extra corporal circuit, i.e.
the blood-part, has a pump for maintaining a specified blood
flow on its side of the membrane. The patient is connected to
this part through two needles. The extra corporal circuit uses a
number of sensors, e.g. for identifying bubbles, and actuators.

Figure 4: Schematic view of Haemo Dialysis Machine.

The dialysis process, or treatment, is by no means a standard
process. A fair collection of treatments exists including, for
example, Haemo Dialysis Filtration (HDF) and Ultra Filtration
(UF) and other variations, such as single needle/single pump,
double needle/single pump. Treatments are changed due to new
research results but also since the effectiveness of a particular
treatment decreases when it is used too long for a patient.
Although the abstract function of a dialysis system is constant,
a considerable set of variations exists already. Based on expe-
rience we anticipated several additional changes to the soft-
ware, hardware and mechanical parts of the system that will be
necessary in response to developments in medical research.

2.4.2 Experiences

We learned a number of lessons during this project:
• Quality requirements without context: Different from 

functional requirements, quality requirements are often 
rather hard to specify. For instance, one of the driving qual-
ity requirements in this project was maintainability. The re-
quirement from Althin Medical, however, was that 
maintainability should be “as good as possible” and “con-
siderably better than the current system”. 

• Too large assessment efforts: For each of the driving qual-
ity requirements of the dialysis system architecture, re-
search communities exist that have developed detailed 
assessment and evaluation methods for their quality at-
tribute. In our experience, these techniques suffer from 
three major problems in the context of architecture assess-
ment. First, they focus on a single quality attribute and ig-
nore other, equally important, attributes. Second, they tend 
to be very detailed and elaborate in the analysis, requiring, 
sometimes, excessive amounts of time to perform a com-
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plete analysis. And finally the techniques are generally in-
tended for the later design phases and often require detailed 
information not yet available during architecture design.

• Architecting is iterative: After the design of the dialysis 
system architecture, but also based on earlier design expe-
riences, we have come to the conclusion that designing ar-
chitectures is necessarily an iterative activity and that it is 
impossible to get it completely right the first time. We de-
signed the software architecture in two types of activities, 
i.e. individual design and group meeting design. We learned 
that group meetings and design teams meeting for two-three 
hours were extremely efficient compared to merging single 
individuals designs. Although one or two were responsible 
for putting things on paper and dealing with the details, vir-
tually all creative design and redesign work was performed 
during these meetings.

• Are we done?: We found it hard to decide when the design 
of the software architecture had reached its end criteria. One 
important reason is that software engineers are generally in-
terested in technically perfect solutions and that each design 
is approaching perfectness asymptotically, but never reach-
es it completely. A second important reason making it hard 
to decide whether a design is finished is that a detailed eval-
uation giving sufficient insight in the attributes of an archi-
tecture design is expensive, consuming considerable time 
and resources. Engineers often delay the detailed evaluation 
until it is rather certain that the architecture fulfils its re-
quirements. 

2.5 Measurement Systems

2.5.1 System description

Measurement systems [3] are a class of systems used to
measure the relevant values of a process or product. A measure-
ment system is used for quality control on produced products
that then can be used to separate acceptable from unacceptable
products or to categorize the products in quality categories. One
example of a measurement system is a system for sorting out
bad pieces of wood in a floor manufacturing process.

Although a measurement system contains considerable
amounts of software, a substantial part of these systems is hard-
ware since it is connected to the real-world through sensors and
actuators. These developments in the domain of sensors and
actuators changes measurement systems from small, single
processor systems that are developed close to the hardware to
distributed computing systems since modern sensors and actu-
ators often contain their own processors. However, although the
increased functionality of the sensors and actuators reduces the
complexity of constructing measurement systems, the
increased demands on these systems and the resulting increase
in size make that the construction of measurement systems is a
complex activity. We have been involved in the design of an
object-oriented framework for measurement systems. In Figure
5, the architecture of a simple measurement system is shown. It
consists of five entities that communicate with each other to
achieve the required functionality.

Figure 5: Architecture of a simple measurement system

1. The trigger triggers the abstract factory when a physical item
enters the system.

2. The abstract factory creates a representation of the physical
object in the software, i.e. the measurement item.

3. The measurement item requests the sensor to measure the
physical object.

4. The sensor sends back the result to the measurement item
which stores the results.

5. After collecting the required data, the measurement item
compares the measured values with the ideal values.

6. The measurement item sends a message to the actuator re-
questing the actuation appropriate for the measured data.

Measurement systems have to fulfil a number of quality
requirements:

• Intuitive: As any type of system the designed framework 
should be based on concepts that have a direct correspon-
dence in the application domain. The way these concepts 
are used and combined should be logically consistent with 
the view of a domain expert.

• Reusable: The framework should provide reusable compo-
nents for the construction of measurement systems. This re-
quires a delicate balance between generality and speciality. 
It also means that the components and decomposition di-
mensions have to be chosen such that relatively general 
components from different dimensions can be composed to 
form specific components that can be used in real system 
with minimal extensions.

• Flexible: The requirements on the flexibility of measure-
ment systems are higher than average. As described, the ac-
tual composition of the system from its components, the 
analysis process and the reaction by the system based on the 
analysis results needs to be easily adaptable both during ap-
plication development as well as during system operation.

• Real-time constraints: Although most traditional system 
construction approaches deal with real-time constraints by 
running tests on the system and measuring the system re-
sponses, we already discussed the advantages of expressing 
real-time constraints directly as part of the system. The dif-
ficulty with both real-time and concurrency is the platform 
dependence of the implementation of these techniques.
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2.5.2 Experiences

The following experiences were collected from the measure-
ment systems project:
• Quality attributes harder than functionality: Although 

designing the system to include the correct functionality is 
not trivial, much of the architecture design effort was direct-
ed to achieving the quality attributes. In [1], we discuss the 
development of a measurement system into an object-ori-
ented framework for measurement systems. Most of the 
transformations of the architecture were taken to improve 
quality attributes.

• Boundary: Designing a framework for a domain may seem 
like a well-defined task, but in practice we found that draw-
ing the boundary for the framework is extremely difficult. 
In our early discussions, we constantly were extending the 
framework since we all agreed that the framework would be 
even better when it would include yet another feature. We 
soon realised that the size of the framework would be un-
manageable, but prioritizing features is difficult.

3 Balancing Quality Attributes
The experiences from the applications in Section 2, and

some other systems that we have worked with, has given us
valuable insights regarding the implications certain quality
attributes have on the software architecture. Some quality
attributes favor the same (or at least similar) architectural solu-
tions, whereas other quality requirements favor architectural
solutions that are conflicting or at least not easy to combine.

In Section 3.1 we present a simple categorization of quality
attributes. In Section 3.2 the software architecture design
method that we have developed is briefly introduced. Although
most of the reasoning presented in this paper is of qualitative
nature, the presented design method provides, at least to some
extent, means to perform quantitative assessments of the
quality attributes of a software architecture. The architectural
implications caused by quality requirements are discussed in
Section 3.3. Section 3.4 and 3.5 discuss the relation between
architecture, implementation and performance and maintain-
ability, respectively. Based on this, Section 3.6 presents a set of
design guidelines. These guidelines support the selection of
appropriate architecture transformations.

3.1 Categorizing Quality Attributes

There are a number of possibilities for categorizing quality at-
tributes [10]. In Figure 6 we suggest a categorization of a subset
of quality attributes. The reason for selecting this particular cat-
egorization is that our experience enables us to define how and
where the conflicts occur between these attributes.

First we divide the attributes into two major categories, viz.
performance and modifiability that is concerned with the effort
needed to redesign the system. Further, we separate the require-
ment of high throughput from the requirement of response time.
Finally, modifiability is decomposed into two quality attributes,
i.e. maintainability and configurability. As part of our future
work, we intend to incorporate other attributes, e.g. reusability,
usability and availability. 

There are at least two different ways of meeting the need for
future changes in the system. If it is required that an (advanced)
user should be able to do a certain modification, we have a
configurability requirement, i.e. although the system’s behavior
is modified, the executable program is not. For instance, in the
BGw system the input formats and the way the input data is
processed can be configured by the user, by drawing graphs like
the ones in Figure 1. Another example of run time config-
urability is the Promis database system, which allows the user
to define any record formats.

If we have a requirement that a certain modification should
be inexpensive to perform for a designer, we refer to this as a
maintainability requirement, i.e. in this case we will redesign
the system. Consequently, configurability and maintainability
both address the need for modifying the system to meet certain
future changes. However, in the case of configurability the
program should not be redesigned, whereas the maintainability
requirement states that the redesign of the program should be
cost effective.

3.2 Design Method Outline

Previously, we have developed a method for designing the
architecture [1][4], presented graphically in Figure 7. The
method starts with the requirement specification. From this
input data, the architect synthesizes an architecture primarily
based on the functional requirements. This first version of the
architecture contains the initial archetypes. Our definition and
usage of the term ‘archetype’ differs from [17]. We define the

Figure 6: Taxonomy of quality requirements
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archetype as a basic abstraction, which is used to model the
application architecture. The archetypes generally evolve
through the design iterations.

The architecture is evaluated through the use of different
evaluation techniques. The method uses four evaluation
approaches. Scenario-based evaluation is techniques where the
software qualities are expressed as typical or likely scenarios.
Using simulation the architecture is modeled in a simulation
environment and its behavior is used to predict the software
quality attribute. Mathematical modeling (including metrics &
statistics) is a technique where product and process data are
used to make predictions about the potential qualities of a
resulting product or task. Experience-based reasoning employs
experienced designers that often intuitively identifies designs
that are not addressing certain quality requirements adequately.

If the results show that the potential for the software quali-
ties is sufficient, the architecture design is finished. Generally,
the evaluation of the initial architecture reveals a number of
deficiencies. To address these, the designer transforms the
architecture into a new version, using a set of available trans-
formations. Four categories of transformations are identified.
Applying an architecture style result in changes to the overall
structure. Applying an architecture pattern adds certain behav-
ioral rules to the architecture, e.g. Periodic Objects [11].
Applying design patterns impacts only a few elements of the
architecture. Converting quality requirement to functionality,
e.g. handling robustness by introducing exception handling.

These transformations primarily reorganize the domain
functionality and affect only the software quality attributes of
an architecture. After a set of transformations, architecture
evaluation is repeated and the process is iterated until the
quality requirements are fulfilled.

Our architecture design method has similarities to the
Architecture Tradeoff Analysis Method (ATAM) proposed by
Kazman et al [13]. Although several differences exist, one
major difference is that we include concrete guidelines on how
to transform the architecture in order to meet certain quality
requirements, whereas ATAM concentrates on identifying so
called tradeoff points, e.g. design decisions that will affect a
number of quality attributes. However, in ATAM there are no
guidelines on how to modify the software architecture.

Figure 7: Outline of the architectural design method

3.3 Architectures for Meeting Quality Attributes

Our experience shows that there is generally a large conflict be-
tween configurability and performance (throughput as well as
response time). However, there does not have to be any major
conflicts between maintainability and performance. Due to the
commonly used implementation techniques there can, howev-
er, be a conflict between maintainability and performance.

 Run-time configurability is typically obtained by some
interpreter like structure that operates on meta data. One typical
example is the Reflection pattern [5]. There are a number of
reasons why these kinds of software architectures cause perfor-
mance problems. First, it is well known that interpretation is
more costly than executing the same functionality directly on
the target hardware. However, the interpreter structure will also
generate heavy use of dynamic memory. The reason for this is
that the structures on which the interpreter operates is, at least
partly, unknown at compile time, i.e. in order to configure the
system dynamically at run-time we need to use dynamic data
structures. The object oriented design paradigm, which is
prevailing today, tends to intensify the use of dynamic data
structures even more [8]. Frequent use of dynamic data struc-
tures can easily generate serious performance problems when
using multiprocessor platforms. The reason for this is that the
dynamic memory handling often becomes a performance
bottleneck [8][9].

Experience from the FCC project and some other projects
that we have studied shows that the distinction between
throughput and response time is important when selecting a
suitable architecture. Our experience, particularly from FCC,
shows that in order to obtain good throughput we need to
process large chunks of data at the same time. This will,
however, lead to poor response times. Based on this observation
and experiences from various architectural styles, particularly
the black board and the pipes and filters architecture styles, we
conclude that pipes and filters tend to be more “fair” than the
blackboard architecture in the sense that the variations in
response times are smaller. However, the black board architec-
ture often improves throughput since this architecture opens up
the possibility to process chunks of data that do not arrive at
system at (exactly) the same time, e.g. we may check some rule
in FCC (and similar systems) on a group of data at the same
time.

3.4 Architecture, Implementation and Performance

It is well known that the implementation techniques have a
strong impact on performance, e.g. the performance difference
between different sorting algorithms can be substantial [15].
The relation between performance and the software architec-
ture is not that obvious. However, our experience shows that
some architectural decisions have performance implications
that cannot be fully compensated by clever implementation
techniques; in particular those decisions that are caused by con-
figurability requirements.

As discussed previously, experiences from the BGw and
FCC projects show that a consequence of using object-oriented
methods and a configurable design is extremely heavy use of
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dynamic memory. This resulted in very poor performance; in
particular when using a multiprocessor system. This perfor-
mance problem can be reduced by optimizing the routines for
allocating and deallocating dynamic memory, e.g. by replacing
the standard memory handler with a memory handler which
was optimized for shared memory multiprocessors.

In the Promis database project we were able to reduce the
performance problems due to using meta data. This was done
by using controlled redundancy and optimizing the common
cases. However, the performance was still less than half of a
standard implementation (i.e. an implementation that does not
use meta data), even after these optimizations.

Consequently, some of the performance problems due to
configurability requirements, can be solved at the implementa-
tion level. However, some performance problems remain even
when using highly optimized implementations. This means that
the performance requirements should not be completely post-
pone to the implementation phase, at least not if performance is
a major issue. However, the implementation techniques will
always have a large impact on performance.

3.5 Architecture, Implementation and Modifiability

Similar to performance, also modifiability is influenced consid-
erably by the implementation. Nevertheless, the top-level de-
composition of a system, i.e. its architecture, plays a principal
role in achieving modifiable systems. The primary principle for
the architecture should be that new requirements should affect
as few components as possible. Thus, the more likely that a par-
ticular requirement will be added in the future, the more easy it
should be to incorporate this requirement.

As discussed in Section 3.1, maintainability and config-
urability are both located under the modifiability heading. The
advantage of exploiting configurability is that the cost of incor-
porating new requirements is very small, and it can be done by
an (advanced) user. Two important disadvantages exist,
though. First, the new requirement needs to be implemented
already during the initial product development, i.e. one is incor-
porating potential requirements that may never be demanded.
Even though this is acceptable if the cost of incorporating the
requirement during the initial development is small compared
to adding it during maintenance and the likelihood of the
requirement is high, there is a certain risk taking involved.
Second, run-time configurability often leads to decreased
performance.

3.6 Design Guidelines

Our experiences this far can be formulated as a set of guide-
lines. These guidelines can be categorized according to the
quality requirements. In Figure 6, the quality requirements
studied in this paper are presented in a taxonomy. With each
quality attribute in the hierarchy, one or more guidelines may
be associated.

These guidelines are used during the architecture transfor-
mation phase of our architecture design method that was
discussed in Section 3.2 (see Figure 7). The phase is entered
after architecture assessment since the analyzed architecture
did not fulfil its quality requirements. We suggest that the

quality requirements are categorized and formulated according
to the categories shown in Figure 6.

Architecture transformations can be performed using
several different architectural styles, architectural patterns and
design patterns. Based on the studied cases described in Section
2, we have formulated a number of guidelines concerned with
the appropriate selection of transformations with respect to the
quality requirements. 

The guidelines are graphically shown in Figure 8 (N.B.
Figure 8 corresponds to the architecture transformation phase in
Figure 7). If the estimation phase in our method indicates that
a quality requirement is unfulfilled we enter the architecture
transformation phase. The guidelines are associated with
quality attributes, and indicate suitable transformations that
positively affect the unfulfilled quality attribute.

GL1. If incorporating new requirements in fielded systems is
a competitive advantage convert modifiability and main-
tainability requirements to configurability requirements.

Rationale: Configurability allows for easy, e.g. run-time, in-
corporation of new requirements. This can be achieved by
changing system settings or by distributing a binary compo-
nent that, after installation, is automatically incorporated
into the system. Since this can be performed at the user site
and, generally, by the user against minimal effort, this pro-
vides an advantage over competing products, especially in
’feature-race’ products such as mobile phones. In the dialy-
sis system case, one would like to simplify software evolu-
tion of fielded system through remote access which is
typically achieved through reconfiguring the system and
adding new components. However, performance and safety
were affected negatively by this and the requirement was
not incorporated in the first version of the architecture.

GL2. If the performance requirements are not fulfilled, con-
vert modifiability requirements to maintainability require-
ments. In addition, renegotiate configurability requirements
to convert these to maintainability requirements.

Rationale: Configurability solutions, such as the interpreter ar-
chitectural style, generally lead to considerable perfor-
mance overhead whereas maintainability solutions do not.
Implementing modifiability requirements as maintainabili-
ty requirements will, consequently, lead to better perfor-
mance. The dialysis system case discussed above gives one
example.

GL3. If throughput is the primary performance requirement,
then use the blackboard architectural style.

Rationale: Experiences from FCC indicate that throughput of
the blackboard style in that, but also other systems, is better
than the pipes and filters architectural style.

GL4. If response time is the primary performance require-
ment, then use the pipes and filters architectural style.

Rationale: Experiences from FCC indicate that the response
time of individual events is higher and has less variation
when using the pipes and filters style compared to the
blackboard architectural style.
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GL5. If the configurability requirement is not fulfilled, use the
interpreter architectural style.

Rationale: Configurability is concerned with being able to
adapt the system to future situations that cannot be specified
at this point. A solution that deals with this is to convert the
base-level functionality into a meta-model of the domain
covering that and related functionality. The meta-model can
be interpreted using an interpreter. Since the meta-model
can be changed and extended easily, the system becomes
much more configurable. However, there is generally a
considerable performance penalty for using this architectur-
al style. Typical examples of this can be found in the BGw
and FCC systems where a parser was used as an interpreter
to describe the system behavior.

GL6. If the maintainability requirement is not fulfilled (and
cannot be converted into a configurability requirement due
to performance requirements), employ abstract factory [7]
and strategy design patterns to factor out behavior that is
likely to be affected by future requirements.

Rationale: In the measurement and dialysis systems, maintain-
ability was improved by separating stable functionality
from functionality that was judged to be likely to be
changed in the future. Factoring out code that is likely to be
changed increases maintainability since rather than editing
existing code, it often suffices to define new subclasses and
instantiating those instead of the previous classes.

GL7. If the performance requirement is not fulfilled, convert
dynamic object instantiation to static object allocation,
where possible.

Rationale: As described earlier in the almost all systems de-
scribed in Section 2, considerable amounts of dynamic ob-
jects are created and destroyed. Our studies, e.g. [8], show
that object memory management requires substantial com-
putational resources. Avoiding dynamic object creation and
removal especially in frequently iterated execution paths
will lead to substantial performance improvements.

GL8. If the performance requirement is not fulfilled, try to in-
crease the granularity of the object definitions, e.g. by
avoiding defining objects in terms of numerous sub-objects.
Moreover, try to declare sub-objects by value and not by
reference in composite aggregations [16]. 

Rationale: As described earlier in the almost all systems de-
scribed in Section 2, considerable amounts of dynamic ob-
jects are created and destroyed. When objects are defined in
terms of sub-objects that are declared by reference, i.e. cre-
ated in the constructor of the aggregating object, this will
lead to a large number of dynamic memory allocations for
each creation of an aggregating object. N.B. there is a po-
tential conflict between this guideline and GL 6, since GL 6
often results in a division of objects into a larger number of
sub-objects. Consequently, the tradeoff between GL6 and
GL 8 depends on the degree of unfulfillment of the main-
tainability and performance requirements respectively.

Figure 8: Guideline-based architecture transformation

4 Conclusions
We have presented experiences from five industrial applica-
tions. The experience from each individual project shows that
modifiability as well as performance are important issues. Per-
formance evaluations of the BGw, FCC and Promis projects
show that there is a conflict between introducing concepts that
will increase the modifiability, e.g. the new language in BGw
and the meta data model in Promis, and obtaining high perfor-
mance. The most serious conflicts typically occur between the
configurability requirement and the performance requirement. 

Based on the joint experience from all five projects, we have
formulated eight design guidelines and defined a small
taxonomy for some important quality attributes. Each such
guideline is associated with a quality requirement in the
taxonomy. We have also incorporated the guidelines in an
existing design method, thus making it clear how and when the
guidelines should be used.

Our experiences show that performance and to some extent
modifiability are affected by the implementation techniques.
Some of our performance problems, e.g. performance problems
caused by excessive dynamic memory management in BGw
and FCC, could, to a large extent, be compensated by appro-
priate implementation techniques. However, some architectural
decisions have (negative) performance implications that cannot
be fully compensated in the implementation phase, e.g. the
meta data model in Promis. It is, therefore, important to avoid,
or at least not unknowingly adopt, some architectural styles if
performance is a major issue. The modifiability of a system is
to an even larger extent than performance decided by the top
level architectural decomposition. Consequently, it is important
to obtain a reasonable balance between the different quality
requirements in the top level architectural design.

Hitherto we have only considered performance and modifi-
ability. However, in the future we plan to extent our guidelines
and method to other quality requirements, e.g. reusability and
availability.
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