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A GENERAL PRINCIPLE FOR LIMIT THEOREMS IN
FINITELY ADDITIVE PROBABILITY
BY
RAJEEVA L. KARANDIKAR

ABSTRACT. In this paper we formulate and prove a general principle which enables
us to deduce limit theorems for sequences of independent random variables in a
finitely additive setting from their analogues in the conventional countably additive
setting.

1. Introduction. The first a.s. limit theorems in the finitely additive strategic
setting were proved by Purves and Sudderth [10] and included a version of the
strong law and the martingale convergence theorem. Chen [4, 5] proved some a.s.
limit theorems for a sequence of independent random variables in the finitely
additive strategic setting. Ramakrishnan [11] has proved the central limit theorem in
the same set-up. In many of these proofs, the main technique was to ‘approximate’
the given sequence {Y,} of independent random variables by a sequence {Z,} such
that each Z, takes only finitely many values. Behind these approximations, there is a
general principle which we isolate and prove. Given the sequence {Y,} as above, we
construct an independent sequence {X,} on a countably additive probability space
which is ‘very close’ to {Y¥,} in distribution. To be more precise, we show that we
can approximate {Y; } by {Z,} and { X, } by {W,} such that {Z,} and {W,} have the
same distribution. Our main result is that ‘a limit theorem’ holds for {Y,} if and
only if it holds for {X,}. The formulation of this result is similar to Aldous’
formulation of the ‘subsequence principle’ [1]. We show how to deduce the usual
results like SLIN, WLLN, LIL, CLT and Donsker’s and Strassen’s invariance
principles from our result. It should be pointed out that our method, although quite
general, does not apply to prove results about martingales.

We now describe the finitely additive set-up with which we will be working.

Let I be a nonempty set. Let {y,: n =1} be a sequence of finitely additive
probability measures on all subsets of I. Let H = I* be equipped with the product
of discrete topologies and let 4 be the Borel o field of H. Using the methods of
Dubins and Savage [6, 7] and Purves and Sudderth [10] it is possible to get a finitely
additive probability o on 4 (unique subject to certain regularity conditions) having
the following desirable properties:

@) o(A;, XA, X -+ )= v(A4y), A, C 1.
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(i) If 4, is a sequence of o fields on I such that y; = y, restricted to 4, is
countably additive, then o =y’ on 4’ where 4' = ®, 4, and Y/ = ®,y{ (usual
product measure). B - -

(i) Let A, C I and let B,={(h€ H: h, € A,} (h= (h,h,,...) € H). Then
o(Ny_, U¥_,B,) =0 if and only if 23 ,6(B,) < co. Further if > ,0(B,) < o,
then o(U_, B,) = 0 as k - 0.

(1) and (iii) follow from (ii). (i) is a special case of Theorem 1, Purves and
Sudderth [10).

2. Preliminaries and statement of the main result. Let p be a finitely additive
probability measure on (R, Bg) which is tight (i.e. lim, p((—n,n]) = 1). We will
associate with p a unique couatably additive measure v as follows:

f— [fdp defines a positive linear functional on the space of bounded continuous
functions from R into itself. It follows easily from tightness of pu and Dini’s theorem
that this linear functional is o-smooth (i.e. f,10 implies [f,dp— 0). Thus by
Daniell’s theorem [9, p. 60] there exists a unique countably additive probability
measure v on By such that

Jrau=[rav

for all bounded continuous functions f. The measure v thus obtained is called the
countably additive probability associated with u. The referee has pointed out that
the countably additive measure v is the “conventional companion” of Dubins and
Savage [7, p. 190].

Let f be a positive continuous function. Then for each n,

f(f/\n)dp,=f(f/\n)dv.

But
f fdp = lim f (fAn)dp (definition)
and
f fdv= lirxln f (fA n)dv (monotone convergence theorem).

Thus [fdp = [fdv.

From this it follows that, for a continuous function f, f fdp is well defined if and
only if [fdvis and then [fdp = [fdv.

Let F(x) = p((— 00,x]), and G(x) = v((— 00,x]); we claim that F(x) = G(x) if x
is a continuity point of F or G. To see this, fix x and for each n =1 let f,, g, be
continuous functions such that

l(—oo,x—l/n] sf;l < ](—oo,x] < 8n < ](—oo,x+l/n]‘

Then

F(x—%) Sffndp.sF(x)ngndp.<F(x+%)
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and

1 1
G.(x —;1-) sffndv< G(x) Qfgndvs G(x +;).
Further, [f, dp = [f,dv and g, dun = (g, dv for all n. Thus if x is a continuity point
of F (or G), F(x) = G(x).

Before we proceed to state our main result, we define convergence in distribution
for ‘random-elements’ on a finitely additive probability space.

Let H be a nonempty set, 4 be a o field on H and o be a finitely additive
probability measure on 4. Let S be a metric space. Let ¢ « H — S be a sequence of
random elements in S (i.e. £; 'B € 4 for all Borel sets in S) and let A be a countably
additive probability measure on S.

DEFINITION. Say £, converge in distribution to A if 6(§, € B) — A(B) for all Borel
sets B in S such that A(0B) = 0.

The proof of the following theorem on equivalent conditions for convergence in
distribution is the same as in the countably additive case (see [2, p. 11]) and hence is
omitted.

THEOREM 1. Let {£,} be S valued random elements on a finitely additive probability
space (H, A, o) and let X be a countably additive probability measure on S.

Then the following are equivalent:

(i) [ (&) do — [ fdAN for all bounded continuous functions f.

(@) [f(&,) do — [ fdA for all bounded uniformly continuous functions f.

(iii) lim sup, 6(§, € F) < A(F) for all closed sets F C S.

(iv) liminf, o(£, € G) = N(G) for all open sets G C S.

(v) &, = A in distribution.

The following proposition follows easily from the equivalence of (ii) and (v) in
Theorem 1.

PROPOSITION 2. Let {£,}, {n,} be random elements in S (on (H, 4,0)) and let
d(£¢,,m,) = 0 in o-probability. Then &, converges in distribution to \ implies that 7,
converges in distribution to \.

Let I, {v,}, H, 4, o be as in the introduction. Let { f,: k = 1} be a sequence of
mappings from I into R. Let Y, (h) = f(h,) be the coordinate map on H induced
by f, (here h = (hy, h,,...) € H). Let p, be the distribution of Y, i.e. u,(A4) =
o(Y, € A), A € Bg. Assume that p, is tight for each k (i.e. (| Y, |= n) - 0 Vk). Let
v, be the countably additive measure associated with p,. Let (2, F, P) be a
(countably additive) probability space supporting a sequence { X, } of il_ldependent
random variables such that PX;' = v, for all k.

Let Y = (Y}, Y,,...) and X = (X,, X,,...) be the random vectors taking values in
R* corresponding to the sequence {Y,} and { X, } respectively.
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THEOREM 3. Fix 0 < p < 0.
(a) Let A € B* (Borel o field of R*) be such that

o0
(1) x€EA and 3 |x;— x| <o impliesx € A.

i=1
ThenY € Aa.s.oifandonlyif X € A a.s. P.
(b) Let (S,d) be a separable metric space and {g,: k =1} be a sequence of
measurable mappings from R into S such that

@ A(54(x). 5x)) < 3 Coyl =P

where C, ; are positive constants bounded by 1 such that for each i, lim, C, ; = 0.
Let s € S. Then g,(Y) — s in o-probability if and only if g,(X) — s in P-probability.
(c) Let A be a countably additive probability measure on S and {g,} be as in (b)
satisfying (2). Then g,(Y') — X in distribution if and only if g,(X) — X in distribution.

REMARK 1. If {g,} satisfy (2), then 4 = {x: g,(x) — s} satisfies (1) and hence (a)
implies that g,(Y) - s a.s. o if and only if g,(X) —» s a.s. P.

3. Proofs. The idea of the proof is to approximate Y =(Y,,Y,,...) by Z =
(Z,,2,,...) and X = (X}, X,,...) by W= (W, W,,...) such that the distribution
of Z under o is the same as the distribution of W under P.

Let Fi(x) = pp((— o0, x]), Gi(x) = v ((— o0, x]) and D, = {x: x is a continuity
point of F, }. Then as observed earlier F,(x) = G,(x) for all x € D,.

For each k = 1, choose numbers {a, ;: 0 <;j < n,} belonging to D, such that

() F(ag,,,) — Flaxp) =1 — 1/2* and

(i) 0<a,;—ap,_ <172k 1<j<n,.

This can be done as for each k, lim,_ , Fi(x) =1, lim,,_,F(x) =0 and D,
complement is at most countable.

Define Z = (Z,, Z,,...) and W = (W}, W,,...) by

Zy(h) =ary if Yi(h) <ayy,
=a,,; fifa, ;<Y(h)<a ;. :0<j<n,,
=a,, ifa,, <Y/(h),
and
Wi(w) =a,, if Xi(w) <ay,
ifa, ;<X (w)<a;+:0<j<n,
=ay, ifa,, < X, (w).
LEMMA 1. 6(Z € B) = P(W € B) for all Borel sets B in R™.
ProoF. First observe that, for each k,
O(Zk = ak,j) = Fk(ak,j+l) - Fk(ak,j) = Gk(ak,j+l) - Gk(ak,j)
=P(W,=a,;), 1<j<n,.

Similarly o(Z, = a, o) = P(W), = ayp) ando(Z, = aq,, ) = P(W, = a;, )
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For each k, let 4, be the finite field on I generated by the sets {f, <a,,},
{fe> arn ) (ar; <fe < a4 ;41). Let v} be v, restricted to 4,. Then (trivially) v is
countably additive. Let 4’ = ® 4, and y = ®1y; (the usual product measure on
(H, A’)). Then by usual ngumen_ts, it follows that y'(Z € B) = P(W € B) for all
Borel sets B in R*®. Since ¢ agrees with ¥’ on A’ (property (ii) of o) the proof is
complete.

The next lemma shows that Z(W') approximates Y( X) ‘nicely’.

LEMMA 2. For0<p < o0

@2, | Y, — Z,P < o0 a.s.o.

) 2P, | Xy — Wi P <ooa.s. P.

(©) d(g(Y), 8(Z)) - 0 in o-probability.

(d) d(gi(X), g(W)) = 0 in P-probability.

PrROOF. (a) o(| Y, — Z,|= 1/2%) < Fi(a,,) — Fi(a,o) <1/2% hence by the
Borel-Cantelli lemma (property (iii) of o)

Now (a) follows from this.
(b) follows similarly as P(| X, — W, |=1/2F) < 1/2%
(c) By the Borel-Cantelli lemma (property (iii) of o),

o(| Y, — Z,|=1/2* forsome k =n) >0 asn— co.
We now show that this and (2) imply (c). Given ¢ > 0 and § > 0 choose N such that

)

! <% and o(lYk—Zk|>51;forsomek>N) <.

2NP(1 — 27P) 2
For each i, since the distribution of Y, — Z; is tight and lim, C; ; = 0 for each i,
N
ol 3 ck,,.|y,.—z,.y’>§ 50 ask— .
i=1

Choose k large enough such that

N
of 2 CulY-2ZpP>3 sg if k= k.
i=1
Then for k = k,
o0
o(d(8(Z),84(Y)) = ¢) <"’( 2 Ceil Y- Z.|p>£)
i=1
ud € 8
so(ZCk,|)’i—Zi|P>— +5<98
i=1 2 2

Hence d(g,(Z), g,(Y)) — 0 in o-probability.
(d) follows similarly.
The theorem now follows easily from these two lemmas.
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PROOF OF THE THEOREM.
(a) YEAas.o=Z€E Aas.o by(1)and Lemma 2(a)
osWeAdas. P byLemmal
< X€E€Aas. P by (1)and Lemma 2(b).
(b) g(Y) - sin o probability « g,(Z) — s in o-probability by Lemma 2(c)
< g,(W) - sin P-probability by Lemma 1
« g,(X) - sin P-probability by Lemma 2(d).
(¢) g(Y) - Ain distribution < g,(Z) — A in distribution by Lemma 2(c)
< g,(W) - XAin distribution by Lemma 1
< g,(X) - Ain distribution by Lemma 2(d).

4. Consequences. We have already observed that [ f(Y,)do = [ f(X,) dP (if either
of the two integrals is well defined) for all continuous functions f. Thus limit
theorems for the sequence { X, } whose hypotheses involve only the moments of { X, }
follow for the sequence {Y,} by virtue of our theorem. (With the additional
assumption that each ‘Y,’ is tight. In most of the situations, the other conditions will
imply tightness of ‘Y,’.) This includes Kolmogorov’s strong law, Khinchin’s weak
law (in the finitely additive setting, strong law does not imply weak law!) and the
Hartman-Wintner law of iterated logarithm. We illustrate by an example.

THEOREM (CHEN) SLLN. Let {Y,} be identically distributed (p, = p, for all k),
[1Y,|do<ooand [Y do =0. Then

Y+ +7Y,
%—)0 a.s.o.

PrROOF. Take 4 = {x E R®: (x; + --- +x,)/n - 0}.
Check that A satisfies (1) of Theorem 3. Then, Y € 4 as. o if and only if X € 4
a.s. P. Further p, = p, V k implies X, are identically distributed,

[1x1dP =[] dP < oo, [xdpP = [Y,do=0.

Hence (by Kolmogorov’s strong law—countably additive version [3, p. 52]) X € 4
a.s. P. This implies that Y € 4 as. o.

In many other situations, say the Lindeberg-Feller central limit theorem or
Kolmogorov’s three series theorem, the conditions on X, can be transformed into
equivalent conditions involving [f(X,)dP for some continuous functions f and
hence again the finitely additive versions can be derived from their countably
additive analogues. We illustrate this by an example.

THEOREM (RAMAKRISHNAN) (CLT). Let [ Y, do = 0, and let v} = [ Y2 do, s} = v}
+ -+ 402 Then

@)Y, + ---+Y,)/s, > N(,)) in distribution and

(ii) max, <,(v}/s7) > 0
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if and only if the Lindeberg condition (L) holds for Y,
l n
(L) = 2

/ | Y, |*do >0 asn— oo foralle > 0.
Sp k=1"{1Yi|=esn}

PROOF. Let g, (x) = (x; + -+ - +x,) /s, for x € R*. Then

k
4 l ’
ng(x)—gk(x)|§2 ;;|xi_xi|-

i=1
Thus if s2 — oo, then (2) holds with C, ;= (1/s;). Thus, if s > oo, then by
Theorem 3, g,(Y) - N(0,1) in distribution if and only if g,(X) - N(0,1) in distribu-
tion.
For each n = 1, ¢ > 0, fix a continuous function f, . such that

XX )y pimesy < f. o X) < X2U(X)(y: pimes2s,)-
Then
| Y, Pdo <f, (Y,)do < [ | Y, > do
(1Yd>e/25,)

and hence (L) holds for Y (respectively X) if and only if (L") holds for Y
(respectively X)), where (L") is

‘/;I}'k|>€sn}

) L2 2 ff,,,,(Yk)do—»o for all e > 0.
Sn k=1

But (L’) holds for Y if and only if (L") holds for X. Thus (L) holds for Y if and
only if (L) holds for X.

Now, the result follows from the Lindeberg-Feller theorem—countably additive
case [8, p. 280].

We now show that Donsker’s invariance principle and Strassen’s invariance
principle can be proved in the finitely additive setting.

THEOREM (DONSKER’S INVARIANCE PRINCIPLE). For each n, define g,: R* — C[0, 1]
as follows:

4ot
g.(x)(t) = _{‘_1_‘/__’1—’% ift= %, linear elsewhere.

Let Y,, Y,,... have identical distributions, [Y,do =0, [ Y2do = 1. Then g,(Y)
converges in distribution to the Wiener measure.

PrOOF. Observe that

’ ’ < 1 ’
d(8,(x), 8,(x")) = sup | g.(x)(1) — 8 (¥)(1) < Z =% — x| -
t k=1 \/;
Thus g, satisfies (2).
Now, by Donsker’s theorem (countably additive version [2, p. 68]), g,(X) con-
verges in distribution to Wiener measure and hence by Theorem 3, so does g,(Y).
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THEOREM (STRASSEN’S INVARIANCE PRINCIPLE). Let Y|, Y,,... have identical
distributions, [Y,do =0, [Y!do=1. Then a.s. o, the sequence of functions
g8.(Y)/\loglog n is relatively compact in C[0,1] and its set of limit points is K =
{f € C[0,11: f absolutely continuous, f(0) = 0 and [; f'(u)* du < 1} (here g, are as in
the previous theorem).

PROOF. Let 4 = {x: g,(x)/ /loglog n is relatively compact in C[0, 1] and set of
its limit point is K'}.

Then, it can be seen that A satisfies (1) and thus the result follows from Strassen’s
invariance principle (countably additive version [12]) and Theorem 3.

REMARK. Let F, be a sequence of nondecreasing functions on R such that
lim,, _F(x)=0 and lim _,F,(x)=1. Let C be the field of subsets of R
generated by the family {(a,b]: —0 <a<b <_oo}. Each F, defines a unique
finitely additive ‘tight’ probability measure on the field C by the formula
wil(— o0, b)) = F(b).

Consider the field D of subsets of R* defined by

D= U ®fik

where the union is taken over all sequences {4, } of finite subfields of C. For such a
sequence {4, }, each p, restricted to 4, is (trivially) countably additive. Let A, be the
usual countably additive product measure on ® « A; with marginals p, (restricted to
- A,). It can be easily seen that these measures are consistent and hence determine a
unique finitely additive measure A on D. Let o be any extension of A to B®. Then (by
construction of A) it follows that B B

(i)’ For any sequence {4,} of finite subfields of C, o restricted to ®, 4, agrees
with ® ) where p) is u, restricted to 4,. B B

Now let Y, be the coordinate random variables on (R*, B>, o).

Let G,(x) =lim, , F(y) for x ER, k=1, and let (82, F, P) be a probability
space supporting a sequence { X, } of independent random variables with P( X, < x)
= Gy(x)forallx ER, k= 1.

Then it follows easily (by using the property (ii)’ of o instead of (ii)) that Theorem
3 (and hence its consequences) is true in this setting as well.

5. Let (S, d) be a separable metric space and p be a finitely additive tight
probability measure on Bg. f —» [fdp defines a o-smooth positive linear functional
on the space of bounded continuous functions from S into R and hence by Daniell’s
theorem [9, p. 60] there exists a unique countably additive probability measure v on
Bg such that [ fdu = [fdvfor all f € C,(S). Theorem 1 implies that u(A4) = v(A4) if
v(34) = 0.

Let (H, A, 0) be as in the introduction. Let f,: I — S, and Y, (h) = f(h,). Let
p(B) = o(_Yk € B). Assume g, is tight for each k. Let v, be the countably additive
measure associated with p, as above. Let {X,} be an independent sequence of S
valued random elements on a countably additive probability space (£, F, P) such
that v,(B) = P(X, € B). B

The following theorem is an analogue of Theorem 3.



LIMIT THEOREMS IN FINITELY ADDITIVE PROBABILITY 549

THEOREM. Fix 0 < p < c0.
(a) Let A C S® be a Borel set such that

[o}
(1) x€A and I (d(x;,x]))’ < oo impliesx’ € A.
i=1
ThenY € Aa.s.oifandonlyif X € Aa.s. P.
(b) Let (S,,d,) be a separable metric space and g, be a sequence of measurable
mappings from S* into S, such that

00
(2) di(g(x), g(x)) < Zl Ck,i(d(xi’x;))p’ x,x' €8%,
i=
where C, ; are positive constants bounded by 1 such that lim, C, ; = 0 for each i.
Lets € S,.
Then g(Y') — s in o-probability if and only if g,(X) — s in P-probability.
(c) Let {g,) be as in (b) satisfying (2) and let A be a countably additive measure on
S|. Then g,(Y) — A in distribution if and only if g,(X) — X in distribution.

The proof of this theorem is exactly the same as in the case S = R except for the
following lemma. The sets B,, B,,...,B,, satisfying conditions (i), (ii) and (iii) below
for A =v, and e = 1/2* replace the intervals (a1 ax ), 1 <j<n,, in the
construction of Z, and W,.

LEMMA. Let S be a separable metric space and let N be a countably additive tight
probability measure on S. Then for each € > 0, there exist finitely many disjoint Borel
sets B,,...,B,, such that:

OMUL,B)=1—¢

(ii) M(@B;) = 0.

(iii) x,, x, € B, implies d(x,, x,) < € for all i.

PROOF. Let K be a compact set such that A(K) =1 — &. Let 4,,...,4,, be balls of
radius ¢/4 covering K. For any Borel set B in S let B* = {x € S: d(x, B) <¢}.
Then 0B° C {x € S: d(x, B) = ¢}. Hence, for each i, choose ¢;, 0 <¢; <e/4, such
that A(345) = 0. Let B, = A5 N (U} A4%). Then B; satisfy the required condi-
tions.

REMARK. Let p, be a sequence of tight finitely additive measures on R. Consider
the restriction p of the independent strategic measure with marginals g, to B®. Then
p is tight. Let v, v, be the countably additive measures associated with g, p P
respectively. Thenv = ®, v,.
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