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A GENERAL PRINCIPLE FOR LIMIT THEOREMS IN

FINITELY ADDITTVE PROBABILITY

BY

RAJEEVA L. KARANDIKAR

Abstract. In this paper we formulate and prove a general principle which enables

us to deduce limit theorems for sequences of independent random variables in a

finitely additive setting from their analogues in the conventional countably additive

setting.

1. Introduction. The first a.s. limit theorems in the finitely additive strategic

setting were proved by Purves and Sudderth [10] and included a version of the

strong law and the martingale convergence theorem. Chen [4, 5] proved some a.s.

limit theorems for a sequence of independent random variables in the finitely

additive strategic setting. Ramakrishnan [11] has proved the central limit theorem in

the same set-up. In many of these proofs, the main technique was to 'approximate'

the given sequence {Yk} of independent random variables by a sequence {Zk} such

that each Zk takes only finitely many values. Behind these approximations, there is a

general principle which we isolate and prove. Given the sequence {Yk} as above, we

construct an independent sequence {Xk} on a countably additive probability space

which is 'very close' to {Yk} in distribution. To be more precise, we show that we

can approximate {Yk} by {Zk} and {Xk} by {Wk} such that {Zk} and [Wk] have the

same distribution. Our main result is that 'a limit theorem' holds for [Yk) if and

only if it holds for {Xk). The formulation of this result is similar to Aldous'

formulation of the 'subsequence principle' [1]. We show how to deduce the usual

results like SLIN, WLLN, LIL, CLT and Donsker's and Strassen's invariance

principles from our result. It should be pointed out that our method, although quite

general, does not apply to prove results about martingales.

We now describe the finitely additive set-up with which we will be working.

Let 7 be a nonempty set. Let {y„: n s» 1} be a sequence of finitely additive

probability measures on all subsets of 7. Let 77 = 700 be equipped with the product

of discrete topologies and let A be the Borel a field of 77. Using the methods of

Dubins and Savage [6, 7] and Purves and Sudderth [10] it is possible to get a finitely

additive probability a on A (unique subject to certain regularity conditions) having

the following desirable properties:

(i) a(Ax XA2X---) = ï[f=xyk(Ak), Ak C I.
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(ii) If Ak is a sequence of a fields on 7 such that y'k = yk restricted to Ak is

countably additive, then a = y' on A' where A' ~ ®kAk and y' = ®ky'k (usual

product measure).

(hi) Let A„ C 7 and let Bn = {h E 77: h„ E An) (h = (hx,h2,...) E 77). Then

o(njL, U^BJ = 0 if and only if 2,?=,o-(7i„) < oo. Further if l™=xo(B„) < oo,

then a(U^kBn) -+ 0 as A -* oo.

(i) and (hi) follow from (ii). (ii) is a special case of Theorem 1, Purves and

Sudderth [10].

2. Preliminaries and statement of the main result. Let p be a finitely additive

probability measure on (R,BR) which is tight (i.e. lim„p([—n,n]) — 1). We will

associate with p a unique countably additive measure v as follows:

/ -» //dp defines a positive hnear functional on the space of bounded continuous

functions from R into itself. It follows easily from tightness of p and Dini's theorem

that this hnear functional is a-smooth (i.e. fni0 imphes jfndp-^Q). Thus by

Daniell's theorem [9, p. 60] there exists a unique countably additive probabihty

measure v on BR such that

ffdp=ffdv

for all bounded continuous functions /. The measure v thus obtained is called the

countably additive probability associated with p. The referee has pointed out that

the countably additive measure v is the "conventional companion" of Dubins and

Savage [7, p. 190].

Let/be a positive continuous function. Then for each n,

J(fAn)dp=f(fAn)dv.

But

ffdp — hm f(f A n)dp   (definition)

and

j fdv = lim / (/ A n) dv   (monotone convergence theorem).

Thus jj"dp = ¡fdv.

From this it follows that, for a continuous function/, ff dp is well defined if and

only if j fdv is and then Jfdp = ¡fdv.

Let F(x) = p(( — oo,x]), and G(x) = v(( — oo,x]); we claim that F(x) = G(x)if x

is a continuity point of F or G. To see this, fix x and for each « > 1 let /„, g„ be

continuous functions such that

\-x,x-\/n) *^fn ^ \-od,x] ** gn ^ \-x,x+ l/n] •

Then

F(X ~ n ) <//"* * F(x) */*»* < F(x + Í)
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and

G(X~l) ^{fn^^G^)^fgndv^G(x + ^]).

Further, //„ dp. — //„ dv and/g„ dp. — jgn dv for all n. Thus if x is a continuity point

ofF(orG),F(x) = G(x).

Before we proceed to state our main result, we define convergence in distribution

for ' random-elements' on a finitely additive probabihty space.

Let 77 be a nonempty set, A be a a field on 77 and a be a finitely additive

probabihty measure on A. Let S be a metric space. Let £k: 77 -» S be a sequence of

random elements in S (i.e. £kxB E A for all Borel sets in 5) and let À be a countably

additive probability measure on S.

Definition. Say £k converge in distribution to A if o(£k E B) -» \(B) for all Borel

sets B in S such that X(dB) = 0.

The proof of the following theorem on equivalent conditions for convergence in

distribution is the same as in the countably additive case (see [2, p. 11]) and hence is

omitted.

Theorem 1. Let {£..} be S valued random elements on a finitely additive probability

space (H,A,o) and let Xbe a countably additive probability measure on S.

Then the following are equivalent:

(i) ff(£k)do -» j f dX for all bounded continuous functions f.

(h) Jf(èk) da -» / fdXfor all bounded uniformly continuous functions f.

(hi) lim sup,. a(ikE F)^X(F)for all closed sets F Ç S.

(iv) lim inf* o(Ík EG)> X(G)for all open sets G Ç S.

(v) ak -» X in distribution.

The following proposition follows easily from the equivalence of (ii) and (v) in

Theorem 1.

Proposition 2. Let {£,.}, {tj*} be random elements in S (on (H,A,a)) and let

d(ik,t\k) -* 0 in a-probability. Then £k converges in distribution to X implies that t\k

converges in distribution to X.

Let 7, {y„), 77, A, o be as in the introduction. Let {fk : k > 1} be a sequence of

mappings from 7 into R. Let Yk(h) = fk(hk) be the coordinate map on 77 induced

by fk (here h = (/.,, h2,...) E 77). Let \ik be the distribution of Yk, i.e. pk(A) =

a(Yk EA),A E BR. Assume that pk is tight for each A (i.e. o(\ Yk | > n) -» 0 VA). Let

vk be the countably additive measure associated with pk. Let (il, F, P) be a

(countably additive) probability space supporting a sequence (A^} of independent

random variables such that PXkx = vk for all k.

Let F = (7,, y2,...) and X = (Xx, X2,...) he the random vectors taking values in

Ä°° corresponding to the sequence {Yk} and {Xk) respectively.
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Theorem 3. Fix 0 < p < oo.

(a) Let A E B°° ( Borel a field of R°° ) be such that

00

(1) x E A    and     2 | x, — x- p' < oo    implies x' E A.
i=i

Then YEA a.s. a if and only if X E A a.s. P.

(b) Let (S,d) be a separable metric space and {gk: k > 1} be a sequence of

measurable mappings from R°° into S such that

00

(2) d(gk(x),gk(x'))^^CkJXi-x'J
/-i

where Cki are positive constants bounded by 1 such that for each i, lim,. CkJ = 0.

Let s E S. Then gk(Y) -* s in a-probability if and only ifgk(X) -» s in P-probability.

(c) Let X be a countably additive probability measure on S and {gk} be as in (b)

satisfying (2). Then gk(Y) -» X in distribution if and only if gk(X) -* X in distribution.

Remark 1. If {gk} satisfy (2), then A — (x: gk(x) -» s] satisfies (1) and hence (a)

imphes that gk(Y) -» s a.s. a if and only if gk(X) -* s a.s. P.

3. Proofs. The idea of the proof is to approximate Y = (Yx, Y2,...) by Z =

(Z,, Z2,...) and X = (Xx, X2,...) by W = (H7,, JF2,...) such that the distribution

of Z under a is the same as the distribution of W under P.

Let Fk(x) = nk((—oo, x]), Gk(x) = vk((~ oo, x]) and Dk = {x: x is a continuity

point of Fk). Then as observed earlier Fk(x) = G^x) for all x G 7),..

For each k > 1, choose numbers (a,. •: 0 <j < «,.} belonging to 7)* such that

(i)F,(a,,„t)-F,(aM)^ 1-1/2* and

(ii) 0 < akJ - akJ_x < 1/2*, 1 <j < nk.

This can be done as for each k, lim^^F^) = 1, hmx^-00FÄ:(x) = 0 and Dk

complement is at most countable.

Define Z = (Z,, Z2,...) and W = (Wx, W2,...) by

tk{h) = akfi     UYk(h)<akfi,

ü"kj<Yk(h)<ak,J + x:0*íj<nk,

if ak.<Yk(h),

ak,j

and

wM = <*k»     iixk(w)^akß,

* a/tj     if **,, < ^w) * a*.y+ ': ° ^J < "*'

= «*,».    «i «*.«*< •**(w)-

Lemma 1. a(Z e 73) = PÍH7 E B) for all Borel sets B in Rx.

Proof. First observe that, for each k,

°(zk = akj) = Fk("kj+\) - Fk(akj) = Gk(akj+X) - Gk(akj)

= P(Wk = akJ),        Kj<nk.

Similarly a(Zk = ak0) = P(Wk = akja) and a(Zk = ak„k) = P(Wk = ak    ).
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For each A, let Ak be the finite field on 7 generated by the sets {fk < ak0),

{fk > «*.»*}• tak,j <fk< akj+\}- Let y'k be Y* restricted to Ak. Then (trivially) y'k is

countably additive. Let A' = ®Ak and y = ®y'k (the usual product measure on

(77, £)). Then by usual arguments, it follows that y'(Z E 77) = P(W E B) for all

Borel sets B in Rx. Since a agrees with y' on 4' (property (ii) of a) the proof is

complete.

The next lemma shows that Z(W) approximates Y(X) 'nicely'.

Lemma 2. For 0 < p < oo

(a)2t=x\Yk-Zkf<oca.s.o.

(b)2£=l\Xk-Wkf< oo a.s. P.
(c) d(gk(Y), gk(Z)) - 0 in a-probability.

(d) d(gk(X), gk(W)) - 0 m P-probability.

Proof, (a) o(| 7, - Zfc |> 1/2*) < Frfo^) - F«(flM) < 1/2*; hence by the

Borel-Cantelli lemma (property (hi) of a)

o(\Yk-Zk\>±i.o.)=Q.

Now (a) follows from this.

(b) follows similarly as P(\ Xk-Wk\> l/2*)< 1/2*.

(c) By the Borel-Cantelli lemma (property (iii) of a),

a(\ Yk- Zk\^ 1/2* for some k > n) ^ 0   as n ^ oo.

We now show that this and (2) imply (c). Given e > 0 and 8 > 0 choose N such that

E 1 , .    „\    s
\Yk- Zk\>-^ for some A s* N   <2^(1 - 2~p)     2 V 2fc /      2 '

For each /', since the distribution of F, — Z, is tight and lim* Cki — 0 for each i,

°   2CJi;-Z(p>|    -0   asA-o).

Choose A0 large enough such that

a(SQ,|y,.-Z,r>f)<|    ifA>A0.

Then for k> k0,

00

o(d(gk(Z),gk(Y)) ^ e) < a    £ Q, | F,. - Ztf > e
\ ¿=l

<^2Q,|y,-z,r>f) t|:<:*.

Hence d(gk(Z), gk(Y)) -> 0 in a-probability.

(d) follows similarly.

The theorem now follows easily from these two lemmas.
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Proof of the theorem.

(a) y E A a.s. a « Z E A a.s. a   by ( 1 ) and Lemma 2(a)

<=> W E A a.s. P    by Lemma 1

** X E A a.s. P    by (1) and Lemma 2(b).

(b) gk(Y) -* i in a probability <=> gk(Z) -> i in a-probability   by Lemma 2(c)

** g*(^) "* Ä m P-probability   by Lemma 1

<=> g,.( X) -» í in P-probabihty    by Lemma 2(d).

(c) gk(Y) -» X in distribution » gk(Z) -» A in distribution   by Lemma 2(c)

** gi.(W/) -» X in distribution   by Lemma 1

<=> g¿( A') -» X in distribution   by Lemma 2(d).

4. Consequences. We have already observed that }f(Yk)da = jf(Xk) dP (if either

of the two integrals is well defined) for all continuous functions /. Thus limit

theorems for the sequence {A*.} whose hypotheses involve only the moments of {A*}

follow for the sequence [Yk] by virtue of our theorem. (With the additional

assumption that each lYk is tight. In most of the situations, the other conditions will

imply tightness of lYk.) This includes Kolmogorov's strong law, Khinchin's weak

law (in the finitely additive setting, strong law does not imply weak law!) and the

Hartman-Wintner law of iterated logarithm. We illustrate by an example.

Theorem (Chen) SLLN. Let {Yk) be identically distributed (pk = p, for all A),

/ | y, | da < oo and f Yx d a = 0. Then

Yx + ---+Yn
0   a.s. a.

n

Proof. Take,4 = {x E Ä00: (x, + • • • +xn)/n «* 0}.

Check that A satisfies (1) of Theorem 3. Then, YEA a.s. a if and only if X E A

a.s. P. Further pk — p, V A implies Xk are identically distributed,

(\Xx\dP = f\Yx\dP< oo,    fxxdP = JYxdo = 0.

Hence (by Kolmogorov's strong law—countably additive version [3, p. 52]) X E A

a.s. P. This implies that YEA a.s. a.

In many other situations, say the Lindeberg-Feller central limit theorem or

Kolmogorov's three series theorem, the conditions on Xk can be transformed into

equivalent conditions involving Jf(Xk)dP for some continuous functions / and

hence again the finitely additive versions can be derived from their countably

additive analogues. We illustrate this by an example.

Theorem (Ramakrishnan) (CLT). Let J Ykda = 0, and let v\ = j Yk da, si = v\

+ ■■■ +v\. Then

(i) (y, + • ■ • + Yn)/s„ -* N(0,l) in distribution and

(ü) maxk^„(v2k/s2n) - 0
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if and only if the Lindeberg condition (L) holds for Yn:

1    "    r
(L) T 2   / \Yk\2do-*0   as n - oo for all e > 0.

*; *=i-V*i»«„}

Proof. Let gk(x) = (x, + • • • +xk)/sk for x E 7*°°. Then

*    1

ls*(*)-**(*') I«= 2 H*''~*<l-
(=1  ÓA:

Thus if s^ -* oo, then (2) holds with Cki = (l/sk). Thus, if si -» oo, then by

Theorem 3, g*(y) -» jV(0,1) in distribution if and only if gk( X) -» iV(0,l) in distribu-

tion.

For each n s* 1, e > 0, fix a continuous function/, e such that

x2l(x){>,:ly|&eJ„} </„,e(x) < J^Kflt^w»/*».)-

Then

/ \Yk\*dü<fn¿Yk)do<íj \Yk\2da

and hence (L) holds for  Y (respectively A") if and only if (L') holds for  Y

(respectively A), where (L') is

(I/) \ 2 ffn,e(Yk)da - 0    for aU e > 0.
Sn  k=l

But (L') holds for Y if and only if (L') holds for X. Thus (L) holds for Y if and

only if (L) holds for A.
Now, the result follows from the Lindeberg-Feller theorem—countably additive

case [8, p. 280].
We now show that Donsker's invariance principle and Strassen's invariance

principle can be proved in the finitely additive setting.

Theorem (Donsker's invariance principle). For each n, define g„: Rœ -» C[0,1]

as follows:

g„(x)(t) =-—-     ift = —, linear elsewhere.

Let F,, Y2,...  have identical distributions, j Yxda = 0, ¡Yxda— 1. Then g„(Y)

converges in distribution to the Wiener measure.

Proof. Observe that

d(g„(x), g„(x')) = sup | g„(x)(0 - g„(x')(0 |< 2 4- I *k - 4 I •
t k=\ in

Thus gk satisfies (2).

Now, by Donsker's theorem (countably additive version [2, p. 68]), g^A") con-

verges in distribution to Wiener measure and hence by Theorem 3, so does gk(Y).
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Theorem (Strassen's invariance principle). Let Yx, Y2,... have identical

distributions, JYxda = 0, JY2da=l. Then a.s. a, the sequence of functions

gn(Y)/Jloglogn is relatively compact in C[0,1] and its set of limit points is K =

(/ E C[0,1]: f absolutely continuous, /(0) = O and ¡¿ f'(u)2 du < 1} (here gn are as in

the previous theorem).

Proof. Let A = {x: g„(x)/ ^log log n is relatively compact in C[0,1] and set of

its limit point is K).

Then, it can be seen that A satisfies (1) and thus the result follows from Strassen's

invariance principle (countably additive version [12]) and Theorem 3.

Remark. Let Fk be a sequence of nondecreasing functions on R such that

limx__00F„(x) = 0 and limx^xFn(x) — 1. Let C be the field of subsets of R

generated by the family {(a, b]: —oo<a<b< oo}. Each Fk defines a unique

finitely additive 'tight' probability measure on the field C by the formula

p*((-oo, b]) = Fk(b).

Consider the field D of subsets of R00 defined by

D=  U   <S>Ak
k

where the union is taken over all sequences {Ak} of finite sub fields of C. For such a

sequence {Ak}, each pk restricted to Ak is (trivially) countably additive. Let X0 be the

usual countably additive product measure on (&k Ak with marginals ¡xk (restricted to

Ak). It can be easily seen that these measures are consistent and hence determine a

unique finitely additive measure X on D. Let a be any extension of X to B °°. Then (by

construction of X) it follows that

(ii)' For any sequence {Ak) of finite subfields of C, a restricted to ®k Ak agrees

with ®k p'k where p'k is pk restricted to Ak.

Now let Yk be the coordinate random variables on (7?°°, B/°, a).

Let Gk(x) - limylxFk(y) for x E R, k > 1, and let (ñ, F, P) be a probability

space supporting a sequence {Xk} of independent random variables with P(Xk ^ x)

= Gk(x) for all x ER,k>l.

Then it follows easily (by using the property (ii)' of a instead of (ii)) that Theorem

3 (and hence its consequences) is true in this setting as well.

5. Let (S, d) be a separable metric space and p be a finitely additive tight

probabihty measure on B^. / -> / fd¡i defines a a-smooth positive linear functional

on the space of bounded continuous functions from S into R and hence by Daniell's

theorem [9, p. 60] there exists a unique countably additive probability measure v on

Bj such that ffdp = ¡fdv for all/ E Cb(S). Theorem 1 implies that n(A) = v(A) if

¡7(3/1) = 0.
Let (H,A,a) be as in the introduction. Let fk: I -» S, and Yk(h) — fk(hk). Let

pk(B) = a(Yk E 7i). Assume ¡ik is tight for each A. Let vk be the countably additive

measure associated with pk as above. Let {A^.} be an independent sequence of S

valued random elements on a countably additive probability space (il, F, P) such

that vk(B) = P(Xk E 73).

The following theorem is an analogue of Theorem 3.
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Theorem. Fix 0 < p < oo.

(a) Let A C Sx be a Borel set such that

00

(F) x E A    and     2 (d(x¡, x'/))p < oo    implies x'E A.
i=i

Then YEA a.s. a if and only if X E A a.s. P.

(b) Let (Sx, dx) be a separable metric space and gk be a sequence of measurable

mappings from S°° into Sx such that

00

(2') dx(gk(x'), gk(x)) < 2 C,,(¿(x„x;)r,        x, x' E S°°,
.= 1

where Cki are positive constants bounded by 1 such that lim.. Ckl — Ofor each i.

Let s E Sx.

Then gk(Y) -> j in a-probability if and only ifgk(X) -» s in P-probability.

(c) Let {gk} be as in (b) satisfying (2') and let X be a countably additive measure on

Sx. Then gk(Y) -» X in distribution if and only if gk(X) -* X in distribution.

The proof of this theorem is exactly the same as in the case S = R except for the

following lemma. The sets Bx, B2,...,Bm satisfying conditions (i), (ii) and (hi) below

for X = vk and e= 1/2* replace the intervals (ak ■_,, ak ■], 1 <_/<«,., in the

construction of Zk and Wk.

Lemma. Let S be a separable metric space and let X be a countably additive tight

probability measure on S. Then for each e > 0, there exist finitely many disjoint Borel

sets 73,,... ,Bm such that:

(i)X(U,1,73;)>l-e.

(ii)X(373,) = 0.
(hi) x,, x2 E 73, implies d(xx, x2) < e for all i.

Proof. Let A"be a compact set such that X(K) > 1 — s. Lety4,,.. .,Am be balls of

radius e/4 covering K. For any Borel set 73 in S let 73£ = {x E S: d(x, 73) < e}.

Then 373e C (x E S: d(x, B) — e}. Hence, for each i, choose e,, 0 < e, < e/4, such

that X(aA]>) = 0. Let 5, = A]' D (LT"1, Ay)c. Then 73, satisfy the required condi-

tions.

Remark. Let pk be a sequence of tight finitely additive measures on 7?. Consider

the restriction p of the independent strategic measure with marginals pk to 73 °°. Then

p is tight. Let v, vk be the countably additive measures associated with p, pk

respectively. Then v = ®kvk.
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