

International Journal of Software Engineering & Computer Sciences (IJSECS)

ISSN: 2289-8522 ,Volume 1, pp. 55-76, February 2015

©Universiti Malaysia Pahang

DOI: http://dx.doi.org/10.15282/ijsecs.1.2015.5.0005

55

IMPROVED TWO-WAYS CLASSIFICATION FOR AGENT PATTERNS

Wai Shiang Cheah, Azman Bujang, Masli, Edwin Mit, and Alfian Abdul Halin

Faculty of Computer Science and Information Technology,

Universiti Malaysia Sarawak,

94300 Kota Samarahan, Sarawak, Malaysia

Email: wscheah@fit.unimas.my

ABSTRACT

Agent technology has been used in building various domain specific applications. The agent

methodologies are proposed to aid the agent developer with the introduction of techniques,

terminology, notation and guidelines during the development of the agent system. Alternatively,

agent patterns have been introduced by sharing the experience of engineering the agent system

and allow the novices to solve the problem in a more systematic and structured way. To ease the

accessibility of agent patterns, various catalogs or pattern classifications have been introduced.

The pattern classification allows the user to find the patterns by organizing the patterns within a

particular catalog. To date, various styles of pattern classification have been introduced. We

argue that those styles are still insufficient to classify the current pools of agent patterns. This

paper presents a classification scheme for agent patterns. It is an improvement of the existing

pattern classifications. The improved classification was able to classify 204 agent patterns, which

indirectly will ease of pattern selection in multi agent system development. In addition, we show

the usage of pattern classification in determine the quality of the agent patterns. In fact, it is the

first report that shows the quality of the agent patterns to date.

Keywords: Word agent patterns; classification; design quality.

INTRODUCTION

Agent technology has been used in building various domain specific applications. The agent

paradigm introduces a software entity (e.g. agent) that is autonomous, proactive and able to

interact with other agents for task accomplishment (Gonzalez and Luck, 2004; Henderson and

Giorgini, 2005). This kind of software supports sophisticated applications like ambient

intelligence, e-business, peer-to-peer, bioinformatics which demand the software to be robust

(Ren and Anumba, 2004), effective (Marik and McFarlane, 2005), co-operative to wide

environments (González et al., 2009), customizable to support user needs (Sánchez et al., 1998;

Pavlıcek et al., 2007), secure, and to evolve over time to cope with changing requirements

(Henderson and Giorgini, 2005; Munroe et al., 2006).

Lot of agent methodologies is proposed to aid the agent developer with the introduction

of technique, terminology, notation and guideline during the development of the agent system

(Koutsabasis and Darzentas, 2009). For example, in ROADMAP methodology (Juan, 2002), we

first model roles and goals for an agent system. This is followed by producing interaction

models, environment models, protocol models and agent models and service models prior to

implementation. It is an iterative process to refine the models until sufficient information has

been captured for the system. The roles and goals detail high level abstraction of information

which caters to the job position and the tasks of accomplishing from the problem given. The

protocol and interaction models support the social interaction for an agent system. The

mailto:@fit.unimas.my,

Wai Shiang Cheah et.al/ International Journal of Software Engineering and Computer Sciences 1(2015) 55-76

56

environment models and knowledge models capture the sources that are required for the system.

The agent model and service model consist of a design decision on agent behaviour, classes to

implement the software agent.

Alternatively, one idea to help people start the agent development pragmatically is

through patterns (Wai Shiang, 2010). Pattern is a platform for sharing the development

experience and allow the developer to reuse the development experience that occurs again and

again. It allows the novices to rely on expert knowledge and solves the problem in a more

systematic and structured way. Patterns have shared the recurring problem and solution to

prevent the developer from reinventing the wheel for application development. The use of

patterns in agent development can reduce the development cost and time, promote reuse and

reduce the complexity when developing applications.

To support the adoption of agent patterns, researchers are working on pattern

classification. The pattern classification supports the ease of accessibility of agent patterns by

arranging the collection of agent patterns in a structured manner.

Patterns are organized and synthesized into a particular collection, classes or catalogues.

The pattern classification is used to support the ease of accessible on patterns by users and

software developers (Tichy, 1997; Coninx, 2002; Lind, 2003; Schumacher, 2003; Yan, 2004;

Sauvage, 2004). The pattern classification allows the user to search for the agent patterns for

their problem at hand and it allows the pattern designer or writer to place the pattern in a

particular class. In addition, the pattern classification supports the understanding on the domain

and application of each pattern, to identify new patterns as well as differentiating among the

patterns (Aridor, 1998).

To date, various styles of pattern classification have been introduced. We argue that those

styles are still insufficient to classify the current pools of agent patterns. This paper conducts a

survey on agent pattern classification. Based on our knowledge, it is the first paper that presents

the survey of agent pattern classification. From the survey, we present the inadequacy on current

classification and present an improved pattern classification for agent patterns. The improved

classification was able to classify 204 agent patterns. In addition, we demonstrate how the use of

the improved classification in determining the design quality of agent patterns.

Section 2 presents the classification of agent patterns. It consists of the description on

pattern classification which we ranged from three styles. They are cataloging, layered and

classification scheme. Section 3 presents the issues on current pattern classifications. We first

present the collection of agent patterns from 1992 until year 2010. It is a pool of patterns that

allow the software developer to adopt agent technology. Then, we conduct a qualitative study on

reusing those patterns and describe the gaps on recent pattern classification. From the gaps that

are identified in Section 3, we present an improved pattern classification in Section 4. In section

4, an improved pattern classification is presented. It consists of new dimensions, attributes to

analysis and classifies agent patterns. In addition, we present an example on how to analysis and

classify a pattern and the result of the classification for 204 agent patterns. It is interesting to

report that the result of the classification able to conclude the current practices on agent patterns

as described in Section 5. Also, it drives the discussion especially on the design quality of agent

patterns based on the conclusion given. This paper is concluded in Section 6.

CLASSIFICATION OF AGENT PATTERNS

Works have been done to propose the classification on agent patterns. They are Y. Aridor

(1998), Elizaberth A. Kendall (1997), Hayden et al (1999), Tahara et al (1999), Shu et al (1999),

Imp ro ved two -wa ys c la ss i f i ca t i o n fo r a g en t p a t t e rn s

57

Schelfthout et al (2002), Lind (2003), Sauvage (2004), M. Weiss (2004), Modak (2004), De

Wolf et al (2006), and Oluyomi (2007).

We grouped the existing works on agent pattern classifications into three styles based on

the nature of the discussion in the pattern classification literature. They are simple catalogs,

layered and classification scheme as further described below.

CATALOGING

Y. Aridor (1998) presents three classes for agent design patterns. They are travelling patterns,

task patterns and interaction patterns. The travelling patterns consist of patterns that share the

knowledge of mobility management. The task patterns consist of patterns that share the

knowledge of tasks delegated to an agent system and the interaction patterns share the

knowledge of agent interaction. Hayden et al (1999) group the co-ordination patterns into four

basic architecture styles- hierarchical, federated, peer to peer and agent peer. Shu et al (1999)

classify the agent design patterns into two types. They are architecture patterns and method or

component patterns. Schelfthout et al (2002) classify the agent patterns into two dimensions.

They are context and realization. The context dimension consists of categories like agent,

environment and multi agent. The realization dimension consists of categories like system and

aspect. Lind (2003) proposes seven views for agent pattern catalog. They are interaction, role,

architecture, society, system, task and environment. Sauvage (2004) classifies the patterns into

four categories. They are metapatterns, metaphoric pattern, architecture pattern and antipatterns.

The metapatterns consist of patterns at a higher conceptual level; metaphoric consists of

behaviour patterns like agent communication; architecture patterns consists of common agent

architecture like BDI and antipatterns consist of patterns that handle issues like redesign. A

mobile agent pattern catalog is presented in (Modak, 2004) and co-ordination catalogs are

presented in (Wolfm, 2006).

THE LAYER APPROACH

Elizaberth A. Kendall (1997) propose a layered agent architecture pattern for agent systems as

shown in Figure 1. An agent has been decomposed and structured into seven layers. They are

sensory, belief, reasoning, action, collaboration, translation and mobility, which demonstrate

agent system behaviour. Each layer handles the incoming and outgoing elements from the layer

above and below it and populate with corresponding agent patterns. For example, the intention

pattern falls within the action layer and the proxy pattern falls within the translation layer.

Wai Shiang Cheah et.al/ International Journal of Software Engineering and Computer Sciences 1(2015) 55-76

58

Clone, Remote reconfigurator,

Broker

Proxy

Conversation, Broker, Protocol,

Emergent Locations, Negotiator

Intention, Prioritizer,

Adaptive active object

Reactive, Deliberative, Opportunistic,

Interface, Reasoner

-

-

Layers Agent Patterns

Figure 1. The layered agent architecture patterns

Tahara et al (1999) propose three layers of architectural level to classify patterns based on high

level design and low level detailed design, as shown in Table 1. The macro-architecture level

presents the outline of the system and agent behaviour. It is generic and independent on any

specific agent platforms. The micro-architecture level and object oriented level present the detail

of the system and agent behaviour; the former is focused on a specified agent platform and the

latter is focused on program code.

Table 1. Layered agent patterns

Macroarchitecture patterns Microarchitecture patterns OO design patterns

Basic mobility----------

---No continuation

---Shallow Continuation

---Deep Continuation

Migration ------------ --Mediator, strategy, state

Itinerary and Star-Shaped- Migration-------------- --Mediator, strategy, state

--Proxy

Branching------------------

---Synchronous Fusion

---Selective Fusion

--Migration

--Copying

--Mediator, Strategy, State

--Builder, Factory Method,

Template Method

CLASSIFICATION SCHEME

Although it is not described in detail, M. Weiss (2004) suggests a classification of agent patterns

in two dimensions. The horizontal dimension focuses on the domain involved for the agent

application. The vertical dimension focuses on agent design activity like design agent internal

structure, design agent system and various design process.

In year 2007, a comprehensive pattern classification has been presented by Oluyomi et al

(Oluyomi et al., 2007). Oluyomi proposes a comprehensive framework to analyse, classify and

describe the agent pattern. A platform, attributes and process to classify and analyse agent

patterns are introduced to produce the comprehensive view of agent patterns. A platform known

as Two-ways classification scheme is introduced as shown in Table 1.

Imp ro ved two -wa ys c la ss i f i ca t i o n fo r a g en t p a t t e rn s

59

Table 1. Two ways classification scheme

The Two-ways classification scheme consists of a vertical dimension and a horizontal

dimension. The vertical dimension presents the stages of agent oriented software development.

The stages of the agent oriented software development are agent oriented analysis level,

multiagent system architecture level, agent internal architecture level and multi-agent system

realization level. The agent oriented analysis level reflects the requirement and analysis of the

agent system. Patterns that classify at this level consist of approaches to goal analysis, role

analysis, role to role relationship analysis or role to interaction relationship. The multiagent

system architecture level reflects the specification of the multi agent system design view.

Patterns that classify at this level consist of approaches to organize the structure of multi agent

system or handling interfacing with the agent interactions and environment. The agent internal

architecture level reflects the specification of the individual agent’s design view. The patterns

that classify at this level consist of approaches to identify agent components, determine agent

interaction strategy or behaviour strategy. The multi agent system (MAS) realization level

reflects the MAS detail design and implementation, however, no detailed description is provided

from the Oluyomi work.

The horizontal dimension presents the agent development tasks at each of these stages.

The tasks are further grouped into categories. At the agent oriented analysis level, the

organization category contains patterns that describe the organization of MAS into logical units.

The interactional category contains patterns that describe the decision to determine the

interaction of the members within an organization. At the multiagent system architecture level,

the category of definition contains patterns that describe approaches for mapping the role to

agents. The category of structural contains patterns that describe approaches in designing MAS

internal structure like the agent communication component.

The category of interactional contains of patterns that describe approaches for the

interaction within the logical unit modelled in the MAS system. At the agent internal architecture

level, the category of structural contains patterns that define the design of internal structure for

an individual agent. The category of interactional contains patterns that handle the agent

interaction as well as interaction of the components. The category of strategy contains patterns

that describe approach in designing agent types.

To classify an agent pattern through the Two-ways classification scheme, each dimension

is assigned with attributes. The attributes are derived from the literature on agent oriented

systems. The attributes are used in attribute-based analysis. The attribute-based analysis is used

to determine into which dimension (e.g. level and category of Two-ways classification scheme) a

pattern is belonging to based on the identification of pattern’s level attributes and identification

of pattern’s category attributes.

 Analysis processes are proposed for attribute-based analysis. It involves processes to

examine the pattern (e.g. read on the pattern description); identification of the pattern’s level

attributes; determine in which level the pattern belong to based on the result from the

identification of pattern’s level attributes; identification of the pattern’s category attributes;

Wai Shiang Cheah et.al/ International Journal of Software Engineering and Computer Sciences 1(2015) 55-76

60

determine in which category the pattern belong to based on the result from the identification of

pattern’s category attributes. During the analysis processes, identification of the attributes within

the pattern description is based on human intuition. The determination of the level and category

to which a pattern belongs to is based on the maximum number of appearances for the attributes

that have been matched within the Two-ways classification scheme.

ISSUES ON THE CLASSIFICATION SCHEME

A collection of agent patterns are compiled based on our survey of existing agent patterns

through various digital libraries as well as the World Wide Web (Wai Shiang, 2010). To ease of

adoption of those patterns, we are trying to classify them into the existing pattern classification

prior reuse and use the patterns in multi agent system development. We think it is a

straightforward process, but it is not at all. We have identified some insufficient as reporting

below.

• Some catalogs are too specific. Modak (2004)’s work is focused on mobile agent patterns

where as Dewolf work is focused on coordination patterns.

• Insufficient in Oluyomi classification scheme (Oluyomi et al., 2007):- 1) The inconsistency of

horizontal dimensions that are presented in the Two-ways classification scheme. 2) The missing

attributes of the ‘Others’ category have caused uncertainty. When conducting the analysis, one

always tends to think and guess about the ‘missing’ categories. 3) Redundancy of the attributes

that have been introduced. 4) Confusion about the intended meanings of the attributes and

dimensions.

• Some catalogs are too general. For example, does the matchmaker pattern, P11, is considered

as method patterns?

This leads to the ambiguities on adopting the patterns in multi agent system development.

The ambiguities presented above have led us to explore new dimensions and attributes for the

classification scheme. We argue that there is a need for new dimensions that can introduce a

more unified and consistent classification scheme. The dimensions must be precise in indicating

what has been done and they must introduce cross cutting concerns with other dimensions. In

other words, it should be easy to differentiate one dimension from the other to allow for easy

accessibility of the patterns.

IMPROVED CLASSIFICATION SCHEME FOR AGENT PATTERNS

Table 6. Two-ways classification scheme for pattern classification

Conceptual independent

modelling

Platform independent

design & modelling

Platform specific design &

modelling

Aspect Dimension

Information Interaction Behaviour

S
o

ft
w

a
re

 P
ro

c
e

s
s
 D

im
e

n
s
io

n

Information Interaction Behaviour

Information Interaction Behaviour

The improved Two-way classification scheme for pattern classification is shown in Table 6.

The classification scheme is structured along two dimensions analogously to Oluyomi’s Two-

Imp ro ved two -wa ys c la ss i f i ca t i o n fo r a g en t p a t t e rn s

61

ways classification scheme. Thanks to the viewpoint framework that has been proposed in

(Sterling, 2009), we can adopt the viewpoint abstraction layers and viewpoint aspects of the

framework into our context. We believe that the elements from the framework are well defined

and the researchers have put much effort into producing the framework. The viewpoint

framework consists of viewpoint abstraction layers and viewpoint aspects and presents a unified

and consistent view for engineering a socio-technical system (e.g. agent oriented software

system).

We can classify the patterns according to the software process dimension and aspect

dimension as shown in the Table 6. The software process dimension consists of three levels.

They are the levels of conceptual domain modelling or conceptual domain modelling, platform

independent computational design, and platform specific design and implementation. This is

consistent with Model Driven Architecture (MDA) and involves modelling a socio-technical

system (e.g., agent system) from a motivation layer, system design layer and deployment layer. It

includes the owner’s, designer’s and builder’s perspectives on systems engineering. The aspect

dimension of the classification scheme consists of three categories: information, interaction and

behaviour. The aspect dimension presents a crosscutting of the tasks at each level of MAS

development.

In the following discussion, we provide a description of the dimensions within the Two-

ways classification scheme. We further elaborate on the new set of dimensions for the

classification scheme and provide an informal definition for each dimension. The definition is

derived based on our study of agent oriented literature together with our effort to classify and

analyse a collection of 204 agent patterns that is presented in this paper.

SOFTWARE PROCESS DIMENSION OF THE CLASSIFICATION SCHEME

The software process dimension for the new classification scheme contains three levels. They are

the levels of conceptual domain modelling (CIM), platform independent computation design

(PIM) and platform specific design and implementation (PSM). Accordingly, the levels

correspond to how the system is motivated, how the system is designed and how the system is

designed for a specific platform and situated in an environment. The corresponding patterns are

those that record the experience in analysing the problem domain of a MAS, patterns that record

the experience in designing a MAS, and patterns that record the experience in implementing a

MAS. The definition of each of the levels is presented next. The definition further elaborates

each of the levels.

A. CONCEPTUAL DOMAIN MODELLING LEVEL

The conceptual domain modelling level reflects the early requirements and analysis for an agent

oriented system. Patterns at this level address the approaches to elicit the requirements of and

analyse the problem domain of an agent oriented system. Requirements elicitation and analysis is

a common stage among various agent oriented methodologies to model an agent system at a

higher level of abstraction and to understand and analyse the requirements for developing an

agent system. It is intended to present an overview of the system and determine its

functionalities. Ignoring it can lead to misunderstanding about the system in design. Also,

analysis normally involves the activities that provide the context in which the system is to be

designed (Bresciani, 2004).

B. PLATFORM INDEPENDENT COMPUTATIONAL DESIGN LEVEL

Wai Shiang Cheah et.al/ International Journal of Software Engineering and Computer Sciences 1(2015) 55-76

62

The platform independent computational design level (PIM) reflects the design of an agent

system. The patterns at this level record the experience in designing an agent oriented software

system. This level is also known as a system design layer. The pattern descriptions given within

this dimension are closer to the designer perspective. The pattern descriptions given do not

consider any specific tools, platforms or software architectures. The “PIM shows part of the

system design specification that does not change from one platform to the other” (Sterling,

2009).

C. PLATFORM SPECIFIC DESIGN AND IMPLEMENTATION LEVEL

The platform specific design and implementation level (PSM) reflects the detailed design of an

agent system using a specific technology, architecture or agent platform. This level can be

related to the micro-architecture level that was introduced by Tahara et al (1999) and the micro-

level by Bresciani et al (2004).

Patterns at this level record the experience in platform specific design or implementation

of an agent oriented software system. The pattern descriptions given are platform dependent in

which a platform denotes a set of subsystems and technologies that provide a coherent set of

functionality through interfaces and specific usage patterns (Sterling, 2009). The platform

specific design and implementation level provides design details that “specify how the system is

to be implemented in a specific platform, architecture and tool or programming language”

(Sterling, 2009).

In the previous description, we presented the software process dimension and the

definition of each level of the software process dimension. Generally, the conceptual domain

modelling level models how the system is motivated; the platform independent computation

design level models how the system is designed, and the platform specific design and

implementation level models how the system is implemented and situated in an environment.

Apart from knowing MAS development stages as shown within the software process

dimension, each abstraction level needs to be elaborated for MAS development. The aspect

dimension serves this purpose. The aspect dimension provides explicitness and captures various

abstractions that are introduced at each level of MAS development. Such abstractions are

reflected by agent development tasks at each of the levels in the software process dimension as

described next.

ASPECT DIMENSION OF THE CLASSIFICATION SCHEME

In the Two-ways classification scheme, the aspect dimension represents detailed tasks on each of

the levels of developing a socio-technical system (e.g., agent system). We can interpret that the

tasks are what people intend to do when modelling and designing a socio-technical system. For

example, tasks like describing the roles required in the system, the responsibilities that are

played by each role, the relationship between the roles being played in solving a problem, and so

on. Accordingly, the tasks can be grouped into three categories. They are the categories of

information, interaction and behaviour.

From the agent perspective, the information category corresponds to modelling the

domain knowledge that is required for an agent system; the interaction category is related to

modelling collaboration/interactions between agents of the system, and the behaviour category is

related to modelling internal behaviours of agents.

Imp ro ved two -wa ys c la ss i f i ca t i o n fo r a g en t p a t t e rn s

63

In the following section, we list the categories at each of the three levels. In addition, we

provide an informal definition of each category. The informal definition is derived based on our

study of agent concepts that is described within the viewpoint framework and agent concepts that

are described in various agent oriented methodologies.

A. CONCEPTUAL DOMAIN MODELLING LEVEL

The aspect dimension at this level consists of categories that classify the patterns into conceptual

domain modelling level- information patterns, conceptual domain modelling level- interaction

patterns and conceptual domain modelling level- behaviour. The categorization reflects tasks to

conceptualize an agent system. The information category at the CIM level reflects the patterns

that record experience to analyse the domain entities for an agent system; the interaction

category at the CIM level reflects the patterns that record experience to analyse the roles played

in the organization to solve a problem and the behaviour category at the CIM level reflects the

patterns that record experience to analyse agent behaviours. In the following description, we

provide an informal definition of each of the categories mentioned.

Conceptual Domain Modelling- Information Patterns

The patterns in this category record experience to analyse the domain entities for an agent

system. The patterns describe the approaches to identify and structure domain entities or

resources that are required for an agent oriented system. A resource, also known as asset or task

specific terms or use-specific knowledge type in CommonKADS, is needed by the worker to

perform a specific task or process within an organization. Resources can range through different

types such as an information system, equipment, materials, technology, patents, and rights. For

example, components, parameters, constraints and calculation values are needed for each

configuration design problem. Identification of the resources or domain entities occurs to

determine the purpose and scope of the ontology and analyse the information for use in the

ontology (Dileo, 2002).

Conceptual Domain Modelling- Interaction Patterns

The patterns in this category record experience to analyse the roles played in the organization.

The patterns describe the determination and arrangement of role(s) and the responsibilities and

organizational structure for handling an application domain. People playing role within an

organization work together in groups and grouping may happen in various structures like

hierarchical, flat, and so on. This involves study of the relationships among the people that play

roles within an organization.

Conceptual Domain Modelling- Behaviour Patterns

The patterns in this category record experience to analyse agent behaviours. The patterns

describe the identification and appliance of high level goals for solving a particular problem. For

example, in brokering, achieving the highest level goal involves activities like selecting,

broadcasting, comprising, ranking, and presenting. Those activities can be linked to sub goals

that further determine what needs to be achieved by an agent system.

Wai Shiang Cheah et.al/ International Journal of Software Engineering and Computer Sciences 1(2015) 55-76

64

B. PLATFORM INDEPENDENT COMPUTATIONAL DESIGN LEVEL

The aspect dimension at this level consists of categories that classify the patterns into platform

independent computational design level- information patterns, platform independent

computational design level- interaction patterns and platform independent computational design

level- behaviour patterns. It reflects tasks to produce the detailed computational design of an

agent system. Within the context of pattern, the information category at the PIM level reflects the

patterns that record experience in designing knowledge entities to be used by an agent system;

the interaction category at the PIM level reflects the patterns that record experience in designing

agent interaction and the behaviour category at the PIM level reflects the patterns that record

experience in designing agent behaviour. In the following description, we provide an informal

definition of each of the categories at this level.

Platform Independent Computational Design- Information Patterns

The patterns in this category describe approaches to handling the conceptualization of the

knowledge model or producing an information domain specification for the agent system. Hence,

this involves dealing with designing the ontology. The ontology design involves

conceptualization, which consists of steps like modelling of concept hierarchies, aggregation and

generalization; modelling of concept roles, class, property, modelling of class and property

hierarchies; extension of the conceptual property schema (Husemann, 2005).

Platform Independent Computational Design- Interaction Patterns

The patterns in this category describe approaches in dealing with designing agent interactions.

Issues such as handling agent collaboration, the arrangement of agents, deciding message

exchanges, managing agent interaction components, and determining interaction protocols are

taken into consideration in these patterns. Interaction protocol is a set of rules that govern the

communication or conversation between software entities (e.g. agents) (FIPA 2000). It

determines communication patterns and message sequences during agent conversation. Agents

interact through exchanging agent messages expressed in an agent communication language such

as FIPA ACL (FIPA 2000).

Platform Independent Computational Design- Behaviour Patterns

The patterns in this category describe approaches to handling the internal structure of agents

which includes the issue of “intelligence”: an agent designed to be “intelligent” or should

“intelligence” rather emerge from agent interactions. It involves the arrangement of agent

internal components, the inference steps and strategy that is used by agent. This involves

activities to decide the temporal order of and control over the actions, triggering events and

decision making points.

C. PLATFORM SPECIFIC DESIGN AND IMPLEMENTATION LEVEL

The aspect dimension at this level consists of categories that classify the patterns into platform

specific design and implementation level- information patterns, platform specific design and

implementation level- interaction patterns and platform specific design and implementation

level- behaviour patterns. It reflects tasks to produce lowest detailed design of an agent system.

These tasks involve the realization of knowledge entities, interaction components, actions and

control behaviour for an agent system. Within the context of patterns, the information category at

Imp ro ved two -wa ys c la ss i f i ca t i o n fo r a g en t p a t t e rn s

65

the PSM level reflects the patterns that record the experience in implementing agent interactions

and communication; and the behaviour category at the PSM level reflects the patterns that record

experience in implementing agent behaviours. In the following description, we provide an

informal definition of each of the categories at this level.

Platform Specific Design and Implementation- Information Patterns

The patterns in this category record experience in implementing the information required by an

agent system. The patterns record experience to conceptualize the concepts and properties of

concepts in a specific semantic language. The patterns that belong to this aspect are also known

as syntactic patterns. Syntactic patterns consist of an arrangement of representation symbols like

concept, axiom and relation according to semantic languages like OIF/FaCT language system

and F-Logic/SiLRi language system (Blomqvist, 2005).

Platform Specific Design and Implementation- Interaction Patterns

The patterns in this category provide the lowest detail design of agent interaction. For example,

agent interaction and communication are designed through method invocation, class inheritance,

and classes and attributes of object oriented technology. Another example is the pattern that

records experience to describe the type of messages exchanged (e.g., properties of the message)

in a particular message encoding language like FIPA-SL (FIPA 2000) and the use of proxy for

message delivery.

Platform Specific Design and Implementation- Behaviour Patterns

The patterns in this category address approaches to constructing agent behaviours for an agent

system. For example, behaviour patterns can record experience in designing code (e.g. Prolog

programming) that implements the control structure of inference methods. Other examples are

the realization of agent behaviours on the JADE platform through the behaviours provided by

JADE like OneShotBehaviour and SequentialBehaviour [Bellifemine’08], and the realization of

agent behaviours through Belief, Desire, and Intention (BDI) architecture.

In summary, we presented the improved Two-ways classification scheme for pattern

classification. The dimensions, software process and aspect dimension of the Two-ways

classification scheme were described together with an informal definition of each dimension. To

classify and analyse agent patterns through the Two-ways classification scheme, the attribute-

based analysis that was introduced by Oluyomi needs to be refined. The attribute-based analysis

is used by Oluyomi for classifying agent patterns according to the dimensions of the Two-ways

classification scheme. The attribute-based analysis is elaborated in the next section.

ATTRIBUTES FOR ATTRIBUTE-BASED ANALYSIS

Attribute-based analysis was proposed by Oluyomi in order to facilitate the classification and

analyse agent patterns through Two-ways classification scheme. Attribute-based analysis is

introduced to characterize and categorize the patterns through the Two-ways classification

scheme (Oluyomi, 2007). In other words, the attribute-based analysis is used for classifying

agent patterns according to the dimensions of the Two-ways classification scheme.

The attributes represent the features or common knowledge elements that fall within a

particular software process dimension and aspect dimension in the Two-ways classification

Wai Shiang Cheah et.al/ International Journal of Software Engineering and Computer Sciences 1(2015) 55-76

66

scheme. They represent the agent concepts that people use during the engineering of an agent-

oriented system. Activities to identify the attributes for the Two-ways classification scheme are

described in this section. We conducted several studies to identify the attributes to be used to

characterize the software process and aspect dimensions for the new classification scheme. As

mentioned before, the attributes reflect the agent concepts that feature in the practice of

developing agent systems. As a result, it is sensible for us to identify the attributes by studying

through conceptual space for socio-technical systems, various agent-oriented methodologies and

agent oriented software development projects.

Table 7 shows the attributes that we identified for the improved Two-ways classification

scheme. Since we had introduced new sets of dimensions for the Two-ways classification

scheme, a refinement of attribute-based analysis was required. Each dimension covers a set of

attributes that is used to classify and analyse agent patterns through attribute-based analysis.

In our work (Wai Shiang, 2010), we provide an informal definition for the attributes that

can be populated within the software process dimension and aspect dimension of the improved

Two-ways classification scheme. Reader can refer to (Wai Shiang, 2010) for the description of

each of the attributes for attribute-based analysis.

Table 7. Attributes for improved Two-ways classification scheme

Software Process

Dimension

Aspect Dimension

Information Interaction Behaviour

Conceptual domain

modelling

 Identify roles

 Assigning goals

 Identify domain

entities

 Organization of roles

 Domain entities Roles

 Organization structure

 Social policies/authority

power

 Responsibility

 Goal

 Quality goal

 Goal dependency

 Roles/actors

 Resource

Platform-independent

computational design

 Ontology/ domain

conceptualization

 Arrangement of agents

 Agents message

exchange

 Agent or module

internal activity

 Concepts

 Slot

 Relation

 Agents/ multiple agents

 Social order/

communication strategy

 Message

 Agent type

 Information type/

Service

 Reasoning/Strategy

 Proactive

 Reactive

Platform-specific design

and implementation

 Plan specification

 Interaction

specification

 Agent instantiation,

aggregation,

inheritance

 Information

specification

 Concrete object (i.e.

Belief)

 Syntax of Knowledge

representation in

language specific

 Message scheme

 Communication support

 Concrete organization

structure

 Behaviour construct

(i.e. Plan, event)

 Concrete agents/

agent instances

 Perception

 Resource

Utilization

 To analyse the patterns using attribute-based analysis, the processes of attribute-based

analysis proposed by Oluyomi (2006) are refined. To classify and analyse the patterns, we first

examine the shared experience towards discovery of its attributes. We review and observe the

shared experience (e.g. pattern) in engineering the system, to review what might be shareable

from the description (e.g. pattern description) given. This activity makes up step1. From the

Imp ro ved two -wa ys c la ss i f i ca t i o n fo r a g en t p a t t e rn s

67

observation, we proceed to the level attributes table analysis and category attributes table

analysis. This involves the activities of placing the patterns at the appropriate level and category

and indicating which of the level attributes and aspect attributes listed in the analysis table are

included by the pattern, based on the examination of the pattern. These activities make up step2

and step3. The attribute analysis tables are tools in tablet forms that are populated with attributes

within the Two-ways classification scheme. Altogether, four sets of attribute-analysis tables are

introduced. Each of the analysis tables consists of three sections. They are the knowledge source

that records the input for analysis; the level and category dimension and the attributes under the

dimension and the analysis outcome. The knowledge source consists of a pattern description that

is used for evaluation. The dimension and attributes cater for the elements that are used for

identification of the pattern’s level and category attributes.

Finally, we conclude the analysis results based on the frequent occurrence of attributes

within the dimensions of the Two-ways classification scheme. For example, from the analysis of

the patternX at the CIM level, we conclude that the attributes for the patternX include domain

entities, resource and quality goal. Hence, the patternX includes one out of one possible

attributes in the information category and two out five possible attributes in the behaviour

category. Based on the frequency of attributes` occurrence for the patternX (e.g., one out of one

in the information category), we can conclude that the patternX belongs to the CIM level-

information category.

EXAMPLE OF CLASSIFICATION ON STRUCTURE IN 5 PATTERN

The example in this section demonstrates the classification and analysis of a pattern through the

Two-ways classification scheme using attribute-based analysis.

Name: Structure in 5 Pattern

Source: (Kolp et al., 2003)

Intent: The purpose of this pattern is to present an organizational structure for an agent oriented

software system.

Solution: The Structure in 5 Pattern is shown in Figure 2. According to the pattern, the

organizational structure comprises five actors. They are the following ones: Apex, which acts on

strategy management to provide strategic objectives and direction of the organization; Middle

Agency, which performs supervision; Operational Core, which carries out basic tasks and

operations required to achieve the overall purpose of the system; Support, which works on the

logistics and co-ordination role and generate detailed plans for achieving strategic objectives.

Wai Shiang Cheah et.al/ International Journal of Software Engineering and Computer Sciences 1(2015) 55-76

68

Figure 2. Structure in 5 for organization architecture pattern

Level attributes analysis: The Structure in 5 Pattern is analysed using the level attributes table in

order to determine the level that the pattern belongs to. As shown in Figure 2, five roles have

been included by the Structure in 5 and each role is organized according to its specific

responsibilities within the organization. As a result, we can conclude based on the attributes

‘identify role’ and ‘organization of roles’ that this pattern belongs to the CIM level of the

software process dimension.

Category attributes analysis: The Structure in 5 Pattern is analysed using the category attributes

table in order to determine the category that the pattern belongs to. From the analysis, the pattern

is identified with attributes like ‘roles’ (the five roles included by the pattern), ‘organizational

structure’ (the dependencies between the roles), ‘responsibility’ (the responsibilities included by

the roles) and ‘social policy’ (the dependencies between the roles that determine the authority

relationships between them). Hence, the pattern belongs to interaction category.

We conducted the analysis and classification of the Structure in 5 Pattern. From the level

attributes analysis and category attributes analysis, we can conclude that the Structure in 5

Pattern belongs to the conceptual domain modelling level- interaction category. In other words,

this pattern records the experience of analysing the roles to be played in an agent system and the

relationships between them. Altogether the result of the classification for 204 agent patterns

through the Two-ways classification scheme is described in the next section.

CLASSIFICATION OF 204 PATTERNS THROUGH TWO-WAYS CLASSIFICATION

SCHEME

In this section, we present the result of the classification of 204 agent patterns through the Two-

ways classification scheme as shown in Table 8. The result shows to which dimensions a

particular pattern belongs. In other words, the table expresses that a pattern belongs either to the

analysis level, platform independent design level, or platform specific design and

implementation level, and that a pattern belongs to the information, interaction, or behaviour

category.

Imp ro ved two -wa ys c la ss i f i ca t i o n fo r a g en t p a t t e rn s

69

From the result of the classification, we can use and reuse the design of the general

pedagogical agent and co-learner, P62, when we want to develop agent oriented education

system; we can design the agent negotiation through agent negotiation architecture, P51, and so

on. This is the common practice among the agent developer when adopting patterns for MAS

development. On the other hand, we can identify the design quality of the agent patterns based

on the classification result as described in the following section.

Table 8. Result of the classification of 204 agent patterns through Two-ways classification

scheme

Wai Shiang Cheah et.al/ International Journal of Software Engineering and Computer Sciences 1(2015) 55-76

70

Imp ro ved two -wa ys c la ss i f i ca t i o n fo r a g en t p a t t e rn s

71

DISCUSSION

The aim of the Two-ways classification scheme is to allow people to identify from the

categorization what might be shareable. On the other hand, the results of the classification enable

us to express more clearly what might be shared from the patterns. Within the Melbourne

University AgentLab seminar, the result of the classification has been used as a tool enhancing

discussions.

The results of the classification enable us to identify the design quality of agent patterns.

Our results confirm the claim that a pattern classification allows a pattern designer to identify the

overlapping among the patterns (Hafiz, 2006) and improve the new patterns which are being

written. In addition, a classification reports on the density of agent patterns by indicating whether

there is a sufficient amount of patterns in a particular category (Yoshioka, 2008).

Table 9. Density of agent patterns

Table 9 shows the density of agent patterns by accumulating the number of patterns in

each dimension. From the Table 9, it reports the density of the agent patterns by indicating

whether there is a large amount of patterns in a particular category, a smaller amount of patterns

and more need to improve the sufficiency of a particular category. For example, there are 99

interaction patterns have been proposed across various levels of software process dimension and

it can be further categorized into 30 interaction patterns that fall under the analytical aspect of

the agent system; 56 interaction patterns that described the design view of the agent interaction

and 13 patterns that described the implementation view of the agent interaction.

It is shown that there is sufficient number of patterns that described the design level of

multi agent system development. Among them, people focus on sharing the development

experience of multi agent systems in designing agent interactions and agent behaviour. For

example, people have shared a myriad of agent interaction types like the designing of agent co-

ordination, designing an agent request message, designing agent learning behaviour, and so on.

On the other hand, we have discovered that only a few works have proposed patterns for

describing the analysis, design, and detailed design of the information aspect. Since the

information aspect focuses on ontology development as has been indicated in the MaSE (Dileo,

2002) and MESSAGE methodologies, we believe that borrowing ontology patterns can fill this

gap because ontology patterns can provide solutions for recurring modelling or conceptualization

problems. In addition, patterns at the computation independent model-behaviour aspect are also

not much described in the existing works.

In the collection of agent patterns explored, there exist several agent patterns with similar

names. For example, there are four negotiating patterns, two learning patterns, four market

patterns, three matchmaker patterns, and four meeting patterns. Although similar names have

been used, the analysis results explicitly show the differences between those patterns. For

example, Table 10 shows the result of the classification of market patterns that were introduced

by the four groups of pattern researchers identified by P7, P14, P59 and P67, respectively. As

shown in Table 10, researchers have recorded experience in solving the agent co-ordination

Wai Shiang Cheah et.al/ International Journal of Software Engineering and Computer Sciences 1(2015) 55-76

72

problem by showing how to model the structure of a market organization, how to design market-

based agent interactions, how to conceptualize market coordination mechanisms and how to

design an Aglet based market organizer.

This finding has driven our interest towards discussing the need of having a standard for

agent patterns. We propose that the agent pattern community should start thinking about

standardizing agent patterns according to the categorization dimensions of the Two-ways

classification scheme.

Table 10. Classification for market pattern

Software process

dimension

Aspect dimension

Information Interaction Behaviour

CIM P7.

PIM P59. P14.

PSM P67.

CONCLUSION

A pattern classification allows the user to find patterns by organizing the patterns within a

particular catalog. From the classification, the user will identify what might be shareable from

the patterns that are located within a particular catalog. In this paper, we review three different

styles of agent pattern classification. We conduct qualitative study and identify some inadequacy

to date.

Hence, an improved agent pattern classification, Two-ways classification scheme, is

introduced. We argue that any pattern classification must advocate various abstraction levels of

an agent system to allow the categorization of patterns in a unified and comprehensive manner.

The Two-ways classification scheme is able to support the accessibility of various patterns by

improving the comprehension of the patterns. Having a comprehensive view of agent patterns

shows the differences, similarity, and variability among the agent patterns which we believe is

difficult to achieve within the current pattern classifications. Our classification allows software

practitioners not belonging to the agent community to recognize what stage of agent-oriented

software engineering the patterns relate to and relate the patterns from one dimension to the

patterns in the other dimensions. The results of the analysis enabled us to produce a qualitative

report of the 204 agent patterns.

To sum, much works are needed to ensure the quality of the agent patterns. Reusability in

software development has brought so much benefit in term of time to develop a system, cost and

effort. Furthermore, it able to help novice designers handles unfamiliar domains by grounding

the designer with early knowledge when designing a system. Continuously from this research,

we are currently working on evaluating the design quality of agent patterns. This involves the

study of agent patterns in various case studies as well as testing the adoption of agent patterns

among wider audience through workshop.

REFERENCES

Aridor, Y. and D. B. Lange (1998). Agent design patterns: Elements of agent application design.

Proceedings of the second international conference on Autonomous agents

International Conference on Autonomous Agents archive, ACM New York, NY,

USA: 108-115.

Bellifemine, F., G. Caire, et al. (2008). Developing multi-agent systems with JADE, Springer.

Imp ro ved two -wa ys c la ss i f i ca t i o n fo r a g en t p a t t e rn s

73

Bresciani, P., A. Perini, et al. (2004). "Tropos: An agent-oriented software development

methodology." Autonomous Agents and Multi-Agent Systems 8(3): 203-236.

Blomqvist, E. and K. Sandkuhl (2005). Patterns in ontology engineering: Classification of

ontology patterns. International Conference on Enterprise Information Systems: 413–

416.

De Wolf, T. and T. Holvoet (2006). A catalogue of decentralised coordination mechanisms for

designing self-organising emergent applications. Technical Report, Department of

Computer Science, K.U. Leuven.

DiLeo, J., T. Jacobs, et al. (2002). Integrating ontologies into multiagent systems engineering.

4th International Bi-Conference Workshop on Agent Oriented Information Systems:

15-16.

Gonzalez-Palacios, J. and M. Luck (2004). A Framework for Patterns in Gaia: A case-study with

Organisations. 5th International Workshop of Agent oriented Software Engineering

NewYork, NY, USA: 174-188.

González-Vélez, H., M. Mier, et al. (2009). "HealthAgents: distributed multi-agent brain tumor

diagnosis and prognosis." Applied Intelligence 30(3): 191-202.

Hafiz, M. and R. E. Johnson (2006). Security patterns and their classification schemes, Technical

report, 2006.

Hayden, R. C., C. Carrick, et al. (1999). Architectural design patterns for multiagent

coordination. Proceeding of the 3rd International Conference on Autonomous

Agents. Seattle, WA: 230–237.

Henderson-Sellers, B. and P. Giorgini (2005). Agent-oriented methodologies, Idea Group Pub.

Husemann, B. and G. Vossen (2005). Ontology engineering from a database perspective.

Proceedings 10th Asian Computing Science Conference Kunming, China. 3818: 49-

63.

Juan, T. (2008). ROADMAP : agent oriented software engineering of intelligent systems, The

Melbourne University. PhD. Juan, T., A. Pearce, et al. (2002). ROADMAP:

extending the Gaia methodology for complex open systems. 1st ACM Joint

Conference on Autonomous Agents and Multi-Agent Systems, ACM New York,

NY, USA.

Kingston, J., N. Shadbolt, et al. (1996). CommonKADS models for knowledge based planning.

Technical report University of Edinburgh Artificial Intelligence Applications

Institute.

Kolp M., P. Giorgini, and J. Mylopoulos, 2003. "Organizational patterns for early requirements

analysis," Lecture Notes in Computer Science, pp. 617-632, 2003.

Kotis, K. and G. A. Vouros (2006). "Human-centered ontology engineering: The HCOME

methodology." Knowledge and Information Systems 10(1): 109-131.

Koutsabasis, P. and J. Darzentas (2009). "Methodologies for agent systems development:

underlying assumptions and implications for design." AI & Society 23(3): 379-407.

Lind, J. (2003). Patterns in agent-oriented software engineering. Third International Workshop of

Agent-Oriented Software Engineering. Bologna, Italy. 2585: 47-58.

Marik, V. and D. McFarlane (2005). "Industrial adoption of agent-based technologies." IEEE

Intelligent Systems: 27-35.

Modak, V. D. (2004). A model to simplify the deployment of Mobile Agent, University of South

Alabama. Master of Science.

Wai Shiang Cheah et.al/ International Journal of Software Engineering and Computer Sciences 1(2015) 55-76

74

Munroe, S., T. Miller, et al. (2006). "Crossing the agent technology chasm: Lessons, experiences

and challenges in commercial applications of agents." The Knowledge Engineering

Review 21(04): 345-392.

Oluyomi, A. (2006). Patterns and Protocols for Agent-Oriented Software Development.

Department of Computer Science and Software Engineering, The Melbourne

University. PhD.

Oluyomi, A., S. Karunasekera, et al. (2007). "A comprehensive view of agent-oriented patterns."

Autonomous Agents and Multi-Agent Systems 15(3): 337-377.

Pavlıcek, D., M. Pechoucek, et al. (2007). Multi-agent-Based Diagnostics of Automotive

Electronic Systems. Proceedings of the 3rd international conference on Industrial

Applications of Holonic and Multi-Agent Systems: Holonic and Multi-Agent

Systems for Manufacturing, Regensburg, Germany Springer-Verlag Berlin,

Heidelberg.

Ren, Z. and C. J. Anumba (2004). "Multi-agent systems in construction–state of the art and

prospects." Automation in Construction 13(3): 421-434.

Sauvage, S. (2004). Design patterns for multiagent systems design. Third Mexican International

Conference on Artificial Intelligence. Mexico City, Mexico. 2972:352-

75

