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Abstract: We report the first experimental observation of parabolic non-
diffracting beams, the fourth fundamental family of propagation-invariant
optical fields of the Helmholtz equation. We generate the even and odd
stationary parabolic beam and with them we are able to produce traveling
parabolic beams. It is observed that these fields exhibit a number of unitary
in–line vortices that do not interact on propagation. The experimental
transverse patterns show an inherent parabolic structure in good agreement
with the theoretical predictions. Our results exhibit a transverse energy flow
of traveling beams never observed before.
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Propagation-invariant optical fields (PIOFs) are of interest since, ideally, their transverse in-
tensity distribution remains unchanged upon propagation. Because of this feature, their spatial
evolution has been extensively studied and numerous applications have been proposed. It is
known that plane waves, Bessel beams [1, 2, 3] and Mathieu beams [4, 5, 6] correspond to
three different fundamental families of PIOFs, each associated to a corresponding solution of
the Helmholtz equation (HE) in Cartesian, circular cylindrical, and elliptic cylindrical coordi-
nates, respectively. Recently, the existence of parabolic beams (PBs), the fourth and last fun-
damental family of PIOFs, was demonstrated theoretically [7]. Contrary to Bessel and Mathieu
beams, even for low order, PBs can have a large number of vortices of unitary charge and ro-
tating in the same direction, all of them are aligned along the symmetry axis and whose phase
gradient between any two vortices is zero. This makes them propagate without interaction, that
is contrary to other observed vortices embedded in arbitrary background fields reported in the
literature [8, 9, 10, 11].

In this paper, we present the first experimental observation of nondiffracting PBs. We gen-
erate finite versions of stationary zero–order and high–order, even and odd PBs, and analyze
their behavior upon propagation. A suitable superposition of these high-order stationary beams
allow us to build a new kind of traveling parabolic beams whose phase travels following con-
focal parabolic trajectories [7]. On free space propagation the transverse energy flow presents a
very interesting parabolic twisting behavior never observed before in wavefields, to the best of
our knowledge. It is observed that PBs exhibit a number of unitary in–line vortices that do not
interact on propagation.

Fundamental PIOFs of the HE are written as U(r) = exp(−ikzz)u(rt), where rt denotes the
transverse coordinates. The transverse field u(r t) can be expressed in terms of the Whittaker
integral

u(rt) =
∫ π

−π
A(ϕ)exp [−ikt (xcosϕ + ysinϕ)] dϕ , (1)

where A(ϕ) is the angular spectrum of the PIOF and the transverse and longitudinal wave vector
components satisfy the relation k2 = k2

t + k2
z . By defining the parabolic cylindrical coordinates

rt = (ξ ,η) as x = (η2 − ξ 2)/2, y = ξ η , where ξ ∈ [0,∞) , and η ∈ (−∞,∞), the transverse
field distributions of the even and odd stationary PBs are found to be [7]

ue(rt ;a) =
|Γ1|2
π
√

2
Pe (σξ ;a)Pe (ση ;−a) , (2)

uo(rt ;a) =
2 |Γ3|2
π
√

2
Po (σξ ;a)Po (ση ;−a) , (3)

where σ ≡ (2kt)1/2, Γ1 ≡ Γ(1/4+ ia/2), and Γ3 ≡ Γ(3/4+ ia/2). Having failed to find a better
term, we will term the continuous parameter a ∈ (−∞,∞) the order of the beam. Here, P e(v;a)
and Po(v;a) are the even and odd real solutions of the parabolic cylinder differential equation
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(d2/dx2 + x2/4−a)P(x;a) = 0. Angular spectra for the PBs in Eqs. (2) and (3) are given by

Ae(ϕ ;a) =
1

2(π |sinϕ |)1/2
exp

(
ia ln

∣∣∣tan
ϕ
2

∣∣∣
)

, (4)

Ao(ϕ ;a) =
1
i

{ −Ae(ϕ ;a), ϕ ∈ (−π ,0)
Ae(ϕ ;a), ϕ ∈ (0,π) , (5)

respectively. Transverse theoretical patterns of stationary PBs are shown in Ref. [7] for several
values of the parameter a.

High-order Bessel beams and Mathieu beams [6] have a phase that rotates circularly and el-
liptically about the propagation axis, respectively. Following the same approach, using a proper
linear combination of the parabolic stationary solutions Eqs. (2) and (3) we have constructed
the traveling PBs

TU±(r;a) = [ue(rt ;a)± iuo(rt ;a)]exp(−ikzz) , (6)

whose overall phase now travels around the semiplane (x ≥ 0,z) for a > 0. When observed at
fixed transverse planes the phase seems to follow confocal parabolic trajectories. The sign in
Eq. (6) defines the traveling direction. For a > 0, the transverse intensity pattern consists of
well-defined nondiffracting parabolic fringes with a dark parabolic region around the positive x
axis [7]. From Eqs. (4) and (5), the angular spectra of the traveling PBs are given by A ±(ϕ ;a) =
Ae(ϕ ;a)± iAo(ϕ ;a).

Our approach for the generation of PIOFs aimed at a reliable technique for consistently
producing their angular spectra. Subsequent Fourier transformation by a corrected lens of radius
R and focal distance f resulted in the desired field distribution. Evidently, the aperture of the
lens imposes a boundary for the spatial extent of the beam while ideally, its propagation is
strictly invariant only if the beam would be of infinite transverse extension.

In the particular case of the zero-order PBs, the angular spectrum in Eq. (4) is real and
positive for all values of ϕ . Based on the McCutchen theorem [12], one can thus construct the
corresponding angular spectrum by means of a thin annular slit modulated by A e(ϕ ;a = 0) in
a variation of the setup originally used by Durnin et al. [1, 2] for generating Bessel beams,
and more recently used by Gutiérrez-Vega et al.[5] for Mathieu beams. We used an annular slit
with radius r0 = 0.5 mm and thickness ∆r0 = 25 µm. The angular modulation was accounted
for by a properly exposed photographic film with the angular function A e(ϕ ;a = 0). In this
case, additional spatial bounds are determined by the finite thickness of the annular slit. For
the odd beam a tilted glass plate, introduced in the half-region ϕ ∈ (−π ,0), makes up for the
required relative phase-shift of π radians. A larger ring (r 0 = 1.0 mm, ∆r0 = 47 µm) was used
in this case to make more accurate the positioning placing of the glass plate. The resulting
diffractive optical element is then illuminated by a plane wave from a He–Ne 15 mW laser
source (λ = 632.8 nm). In Fig. 1, the experimental transverse intensity profiles of the even and
odd zero-order PBs are observed at different distances along the propagation axis. The resulting
patterns clearly exhibit well defined parabolic nodal lines, and are symmetrical along the x and
y axes. As expected, the odd mode vanishes along the x axis. Note that within the sampled
distance, the beam is practically invariant and changes in the intensity distribution are only
minor.

For high-order stationary and traveling PBs, the phase of the spectrum in Eqs. (4) and (5)
becomes a rapidly varying function. Attempting to generate the spectrum by means of the same
approach used for zero-order beams showed to be impractical. Instead, we made use of blazed
phase computer-generated holograms (CGH). The holograms were photoreduced and subse-
quently bleached to attain a higher diffraction efficiency [6, 13]. The corresponding stationary
transverse intensity profiles are shown in Fig. 2 for the even and odd beams with a = 4. Notice
that the value of a is not restricted to take integer values[7]. Here, further spatial limits are
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Fig. 1. Experimental transverse intensity profiles of the (a) even and (b) odd PBs for a = 0.
For the even beam f = 30 cm and R = 4.5 cm, whereas for the odd beam f = 15 cm,
R = 2.5 cm and z is the distance from the lens.

imposed by the size of the CGH, however, the profiles remain nearly unchanged as the beam
propagates. The similarity with the theoretical patterns is remarkable.

Traveling PBs can be generated with a suitable superposition of stationary PBs. The prop-
agating behavior of the traveling fields is expected to be different from that of the stationary
fields. Due to its phase distribution, transverse energy flow must occur along parabolic trajec-
tories. As with the other families of PIOFs these PBs remain invariant within a conical volume
for the setup used. In our experiment, the spatial extent of the fields is limited by the physical
boundaries of the CGH and the finite aperture of the lens. Such behavior for the transverse
energy flow of the traveling PB TU −(η ,ξ ;a = 4) is clearly observed in the photographic se-
quence shown in Fig. 3(a). Note that the energy flows within the parabolic nodal lines and
around the positive x axis. The light intensity moves away from the region originally occupied
by the beam, this is well observed at the upper section (y > 0) the corresponding parabolae have
apparently vanished. In the far–field, the intensity pattern of the TU −(η ,ξ ;a = 4) beam tends
to acquire the shape of its angular spectrum, namely a semi-circular ring whose amplitude is
proportional to |Ae(ϕ ;a)|2 for ϕ ∈ (−π ,0) and vanishes elsewhere.

In order to verify the dynamic behavior of the traveling PBs, the three-dimensional spatial
evolution of the field was numerically calculated by solving the Helmholtz equation and using
the corresponding initial condition. We show in Fig. 3(b) the simulated transverse intensity
distributions. The results shown in Fig. 3 are of particular relevance since they clearly illustrate
the behavior of the transverse energy flow occurring in the traveling PBs. Even though this
effect also takes place in high-order Bessel and traveling Mathieu beams for which their nodal
lines are closed, in the case of PBs these never close making this effect more significant.
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Fig. 2. Experimental transverse intensity profiles of the even (a) and odd (b) high–order
PBs for a = 4.0 at different distances along the propagation axis.

Fig. 3. a) Photographic sequence of the propagation of a bounded traveling PB
TU−(η,ξ ;a = 4). (b) Computer simulated propagation.
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The phase structure of the PBs can be studied by interfering it with a plane wave. For a
traveling PB with a > 0 the principal branch of vortices occurs along the positive x axis (ξ = 0)
at points x j = η2

j /2, where j = 1,2, ...,∞, and η j are the zeros of the even parabolic function
Pe (ση ;−a) in the interval η ∈ [0,∞) . The phase of an ideal PB then has an infinite number
of in-line vortices lying along the positive x axis, each with unitary topological charge. The
interferogram between the initial traveling beam in Fig. 3 and a plane wave is shown in Fig. 4.
As predicted by the zeros of the function Pe (ση ;−a), after the first two vortices, the spacing
between phase dislocations becomes nearly constant. Increasing the value of a has the effect
of displacing the locus of the first vortex towards larger values of x, and increasing the spacing
between adjacent vortices.

Since the electromagnetic fields presented here belong to the families of PIOFs their vortices
must remain in their position as long as the condition for invariance is fulfilled [3]. In other
words, the vortices have zero phase gradient between them that results in neither attraction nor
repulsion between each other. A question that arises from looking at the vortex structure and the
overall phase, is about what kind of relation links optical and mechanical angular momentum
of these beams? The answer to this question is beyond the scope of the present paper, however
the results of such study will be presented elsewhere.

In conclusion, we have successfully generated a new family of propagation invariant optical
fields. They are the parabolic beams that constitute the fourth and last family of fundamental
PIOFs of the Helmholtz equation. In particular, we analyzed the evolution of traveling PBs
whose transverse energy flow follows confocal parabolic helices. These fields have a large
number of inline co-rotating vortices, its number depending either on the order mode or on the
extent of our initial condition, i.e., the extent of the input aperture. Similar to Bessel beams
[14, 15], the PBs presented here can be applied to optical tweezers and atom traps, to study the
transfer of angular momentum to microparticles or atoms [16], in lithography [17], and optical
communications [18].

Fig. 4. Interference pattern between the generated traveling beam TU−(η,ξ ;a = 4) and
a reference plane wave. A number of in-line vortices lying along the positive x axis are
observed.
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de Monterrey grant CAT-007. S.Chávez-Cerda acknowledges support by Tecnológico de Mon-
terrey.

(C) 2005 OSA 4 April 2005 / Vol. 13,  No. 7 / OPTICS EXPRESS  2369
#6622 - $15.00 US Received 17 February 2005; revised 14 March 2005; accepted 16 March 2005


