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@ Existing methods for estimating treatment heterogeneity:

o Observe and specify moderating variables
e You have theory about moderation

@ Divide data into subsamples
e You want to explore possible moderation

@ Find heterogeneous subsamples via tree-based methods
@ Select effective moderators via variable selection
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@ Clustering as estimation strategy:
e Model with individual-specific effects
e Data-driven clustering of individuals
@ Cluster assignment
@ Number of clusters
o Effects:
@ Common within clusters
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Proposed Workflow for Empirical Research

@ Estimate the average treatment effect (ATE)

e Experimental study: Difference-in-means
o Observational study: Regression, matching, instrumental
variable, regression discontinuity...

© Discover heterogeneity using the proposed method
e Large heterogeneity = warning sign

© Explore possible moderating mechanisms

Q Change theory and write a paper!

© Collect more data and test new hypotheses
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Outcome  Treatment ATE  Covariates predicting outcome

~+ ATE is common across observations

@ Model for treatment heterogeneity:

Yi=T 7 +Ximi+ Xoivei +... e
~—

Effect for i Prediction for i

~~ Individual-specific effects:
Unidentifiable—fundamental problem of causal inference
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Estimated?luster for J Likelihood
x p(iis in cluster k)

Prior

@ Likelihood: More accurate prediction is preferred ~~ more
clusters

@ Prior: Simpler model is preferred ~~ fewer clusters

@ Balance between likelihood and prior
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Model and Intuition

Prior Leading to Fewer Clusters

@ Chinese restaurant process with tuning parameter «

@ / creates a new cluster with probability m

@ More individuals ~ smaller probability of a new cluster
@ Encourages larger and fewer clusters
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Empirical Example

Effect of Indiscriminate Violence

@ Lyall (2009) JCR
@ Does indiscriminate violence reduce insurgent attacks?

Shiraito (Princeton) Uncovering Treatment Heterogeneity March 10, 2017 11/ 21



Empirical Example

Effect of Indiscriminate Violence

@ Lyall (2009) JCR
@ Does indiscriminate violence reduce insurgent attacks?

@ Example of natural experiment
@ Russian artillery randomly shelled Chechen villages
@ Indiscriminate because anyone in shelled villages can be

harmed

© Data: Shelled (treated) villages and matched nonshelled
villages

© Diff-in-diff design: Diff in # of attacks before and after
shelling

Shiraito (Princeton) Uncovering Treatment Heterogeneity March 10, 2017

11/ 21



Empirical Example

Effect of Indiscriminate Violence

Lyall (2009) JCR
Does indiscriminate violence reduce insurgent attacks?

Example of natural experiment

@ Russian artillery randomly shelled Chechen villages

@ Indiscriminate because anyone in shelled villages can be
harmed

© Data: Shelled (treated) villages and matched nonshelled
villages

© Diff-in-diff design: Diff in # of attacks before and after
shelling

Lyall concludes artillery attacks decrease insurgent attacks
Controversial implication—is the effect heterogeneous?

Shiraito (Princeton) Uncovering Treatment Heterogeneity March 10, 2017 11/ 21



Empirical Example

Effect of Indiscriminate Violence

Lyall (2009) JCR
Does indiscriminate violence reduce insurgent attacks?

Example of natural experiment

@ Russian artillery randomly shelled Chechen villages

@ Indiscriminate because anyone in shelled villages can be
harmed

© Data: Shelled (treated) villages and matched nonshelled
villages

© Diff-in-diff design: Diff in # of attacks before and after
shelling

Lyall concludes artillery attacks decrease insurgent attacks
Controversial implication—is the effect heterogeneous?

Regression model:

Shiraito (Princeton) Uncovering Treatment Heterogeneity March 10, 2017 11/ 21



Empirical Example

Effect of Indiscriminate Violence

Lyall (2009) JCR
Does indiscriminate violence reduce insurgent attacks?

Example of natural experiment

@ Russian artillery randomly shelled Chechen villages

@ Indiscriminate because anyone in shelled villages can be
harmed

© Data: Shelled (treated) villages and matched nonshelled
villages

© Diff-in-diff design: Diff in # of attacks before and after
shelling

Lyall concludes artillery attacks decrease insurgent attacks
Controversial implication—is the effect heterogeneous?

Regression model:
e Treatment: Russian artillery attacks
e Covariates: Village level variables used by Lyall (2009)
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Empirical Example
Exploring the Source of Heterogeneity
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Effect Size
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Exploring the Source of Heterogeneity

©
<}

-0.5

Effect Size

-1.5
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Date of Attack

@ Change in mid-2002
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Exploring the Source of Heterogeneity

©
<}

-0.5

Effect Size

-1.5

o Sep 1
2000 2001 2002 2003 2004 2005
Date of Attack

@ Change in mid-2002
@ What happened?
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Empirical Example

Possible Mechanism
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@ Ground patrols by pro-Russian Chechens introduced in
2002 (Lyall 2010)
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@ Ground patrols by pro-Russian Chechens introduced in
2002 (Lyall 2010)

@ New hypothesis!
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Simulation Setup
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Simulation

Simulation Setup

@ When does the method work, and when does not?
e N = 300,500, 1000,10000

@ Binary treatment

@ Three covariates: binary, discrete, and continuous

@ Model: Y; = Titx + Xyiv1ik + Xoivek + Xaivak + €

@ Unobserved moderator

@ Binary
@ Continuous
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Simulation

Simulation Results: Binary Moderator

@ Binary U; Lk Bernoulli(.5)

it + Xaivik+ €
DT+ )+ X+ 61) + -+
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1T 1T 1T 71T 1 —r T T 1 1
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Simulation

Simulation Results: Continuous Moderator
@ Continuous U; kg N(0,4)

Yi=Ti(m + Up) + Xui(y1 + Uid1) + - + €
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Simulation

When Things Can Go Wrong
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Simulation

When Things Can Go Wrong

@ No information in the covariate-outcome relationship:
Yi=Ti(r+Up)+ Xy + -+ + €

@ No moderation but heterogeneous relationships
Yi=Tit+ Xii(v1 + Uid1) + - + ¢
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Simulation

When Things Can Go Wrong

@ No information in the covariate-outcome relationship:
Yi=Ti(r+Up)+ Xy + -+ + €

@ No moderation but heterogeneous relationships
Yi = Tir + X4i(y1 + Uidr) + -+ + ¢

@ Misspecification:

e Model
@ Distribution of error
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Simulation

No Moderation with Model Misspecification

@ Model Misspecification

Yi=Tir + (X3 = 3% XP)ye+ -+ e, k=1,...,5
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Simulation

No Moderation with Model and Error Misspecification

@ Model and Error Misspecification

Yi=Tir+ (X3 —3x X))y +--+2 -, k=1,...,5
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Conclusion

Conclusion

@ Researchers generally believe causal effects are
heterogeneous
Existing methods require them to know and observe
moderators
Proposed method: Mixture with DP prior
e Uncovers heterogeneity under unobserved moderators
e Applicable to many situations
Other applications
e Joint distribution of treatment effects in conjoint experiment
e Fuzzy regression discontinuity
e Instrumental variable
e Regression discontinuity with multiple cutoffs

Package in development: DPMfx

More Bayesian nonparametrics, e.g. topic models for text
analysis
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