Uncovering Heterogeneous Treatment Effects

Yuki Shiraito

Department of Politics Princeton University

International Methods Colloquium

March 10, 2017

Introduction Model and Intuition Empirical Example Simulation Conclusio

Introduction

Social scientists believe effects are heterogeneous

- Social scientists believe effects are heterogeneous
- Moderation \(\simes \) heterogeneous effects:

- Social scientists believe effects are heterogeneous
- Moderation ~ heterogeneous effects:
 - Effects vary across individuals with different characteristics

• Effect of get-out-the-vote calls on voters' turnout:

- Effect of get-out-the-vote calls on voters' turnout:
 - Democrats

- Effect of get-out-the-vote calls on voters' turnout:
 - Democrats
 - Sanders supporters

- Effect of get-out-the-vote calls on voters' turnout:
 - Democrats
 - Sanders supporters
 - Gender

- Effect of get-out-the-vote calls on voters' turnout:
 - Democrats
 - Sanders supporters
 - Gender
 - Texas

- Social scientists believe effects are heterogeneous
- Moderation ~ heterogeneous effects:
 - Effects vary across individuals with different characteristics

- Social scientists believe effects are heterogeneous
- Moderation \(\simes \) heterogeneous effects:
 - Effects vary across individuals with different characteristics
- Existing methods for estimating treatment heterogeneity:

- Social scientists believe effects are heterogeneous
- Moderation ~> heterogeneous effects:
 - Effects vary across individuals with different characteristics
- Existing methods for estimating treatment heterogeneity:
 - Observe and specify moderating variables

- Social scientists believe effects are heterogeneous
- Moderation \(\simes \) heterogeneous effects:
 - Effects vary across individuals with different characteristics
- Existing methods for estimating treatment heterogeneity:
 - Observe and specify moderating variables
 - You have theory about moderation

- Social scientists believe effects are heterogeneous
- Moderation \(\simes \) heterogeneous effects:
 - Effects vary across individuals with different characteristics
- Existing methods for estimating treatment heterogeneity:
 - Observe and specify moderating variables
 - You have theory about moderation
 - Divide data into subsamples

- Social scientists believe effects are heterogeneous
- Moderation \(\simes \) heterogeneous effects:
 - Effects vary across individuals with different characteristics
- Existing methods for estimating treatment heterogeneity:
 - Observe and specify moderating variables
 - You have theory about moderation
 - Divide data into subsamples
 - You want to explore possible moderation

- Social scientists believe effects are heterogeneous
- Moderation \(\simes \) heterogeneous effects:
 - Effects vary across individuals with different characteristics
- Existing methods for estimating treatment heterogeneity:
 - Observe and specify moderating variables
 - You have theory about moderation
 - Divide data into subsamples
 - You want to explore possible moderation
 - Find heterogeneous subsamples via tree-based methods

- Social scientists believe effects are heterogeneous
- Moderation \(\simes \) heterogeneous effects:
 - Effects vary across individuals with different characteristics
- Existing methods for estimating treatment heterogeneity:
 - Observe and specify moderating variables
 - You have theory about moderation
 - Divide data into subsamples
 - You want to explore possible moderation
 - Find heterogeneous subsamples via tree-based methods
 - Select effective moderators via variable selection

- Social scientists believe effects are heterogeneous
- Moderation \(\sim \) heterogeneous effects:
 - Effects vary across individuals with different characteristics
- Existing methods for estimating treatment heterogeneity:
 - Observe and specify moderating variables
 Vary bases the arms about moderating variables.
 - You have theory about moderation
 - Divide data into subsamples
 - You want to explore possible moderation
 - Find heterogeneous subsamples via tree-based methods
 - Select effective moderators via variable selection
- Moderators can be unobserved, mismeasured, or unknown

- Effect of get-out-the-vote calls on voters' turnout:
 - Democrats
 - Sanders supporters
 - Gender
 - Texas

- Effect of get-out-the-vote calls on voters' turnout:
 - Democrats

• Education?

- Sanders supporters
- Gender
- Texas

- Effect of get-out-the-vote calls on voters' turnout:
 - Democrats
 - Sanders supporters
 - Gender
 - Texas

- Education?
- Income?

- Effect of get-out-the-vote calls on voters' turnout:
 - Democrats
 - Sanders supporters
 - Gender
 - Texas

- Education?
- Income?
- Past voting?

- Effect of get-out-the-vote calls on voters' turnout:
 - Democrats
 - Sanders supporters
 - Gender
 - Texas

- Education?
- Income?
- Past voting?
- Others?

Introduction Model and Intuition Empirical Example Simulation Conclusio

- Existing methods indirectly model heterogeneity:
 - Average effect for observationally similar individuals

- Existing methods indirectly model heterogeneity:
 - Average effect for observationally similar individuals
- Moderators are unobserved → Can't find similar individuals

- Existing methods indirectly model heterogeneity:
 - Average effect for observationally similar individuals
- Moderators are unobserved → Can't find similar individuals
- Dirichlet process (DP) mixture model:

- Existing methods indirectly model heterogeneity:
 - Average effect for observationally similar individuals
- Moderators are unobserved → Can't find similar individuals
- Dirichlet process (DP) mixture model:
 - Directly model latent heterogeneity of individuals

- Existing methods indirectly model heterogeneity:
 - Average effect for observationally similar individuals
- Dirichlet process (DP) mixture model:
 - Directly model latent heterogeneity of individuals
 - Applicable to any setting where regression models are used

- Existing methods indirectly model heterogeneity:
 - Average effect for observationally similar individuals
- Moderators are unobserved → Can't find similar individuals
- Dirichlet process (DP) mixture model:
 - Directly model latent heterogeneity of individuals
 - Applicable to any setting where regression models are used
- Clustering as estimation strategy:

- Existing methods indirectly model heterogeneity:
 - Average effect for observationally similar individuals
- Moderators are unobserved → Can't find similar individuals
- Dirichlet process (DP) mixture model:
 - Directly model latent heterogeneity of individuals
 - Applicable to any setting where regression models are used
- Clustering as estimation strategy:
 - Model with individual-specific effects

- Existing methods indirectly model heterogeneity:
 - Average effect for observationally similar individuals
- Moderators are unobserved → Can't find similar individuals
- Dirichlet process (DP) mixture model:
 - Directly model latent heterogeneity of individuals
 - Applicable to any setting where regression models are used
- Clustering as estimation strategy:
 - Model with individual-specific effects
 - Data-driven clustering of individuals
 - Cluster assignment
 - Number of clusters

- Existing methods indirectly model heterogeneity:
 - Average effect for observationally similar individuals
- Moderators are unobserved → Can't find similar individuals
- Dirichlet process (DP) mixture model:
 - Directly model latent heterogeneity of individuals
 - Applicable to any setting where regression models are used
- Clustering as estimation strategy:
 - Model with individual-specific effects
 - Data-driven clustering of individuals
 - Cluster assignment
 - Number of clusters
 - Effects:
 - Common within clusters
 - Different across clusters

- Existing methods indirectly model heterogeneity:
 - Average effect for observationally similar individuals
- Moderators are unobserved → Can't find similar individuals
- Dirichlet process (DP) mixture model:
 - Directly model latent heterogeneity of individuals
 - Applicable to any setting where regression models are used
- Clustering as estimation strategy:
 - Model with individual-specific effects
 - Data-driven clustering of individuals
 - Cluster assignment
 - Number of clusters
 - Effects:
 - Common within clusters
 - Different across clusters
- Number of clusters tend to be overestimated.

- Existing methods indirectly model heterogeneity:
 - Average effect for observationally similar individuals
- Moderators are unobserved → Can't find similar individuals
- Dirichlet process (DP) mixture model:
 - Directly model latent heterogeneity of individuals
 - Applicable to any setting where regression models are used
- Clustering as estimation strategy:
 - Model with individual-specific effects
 - Data-driven clustering of individuals
 - Cluster assignment
 - Number of clusters
 - Effects:
 - Common within clusters
 - Different across clusters
- Number of clusters tend to be overestimated
- Distribution of effects is estimated

Introduction Model and Intuition Empirical Example Simulation Conclusio

Proposed Workflow for Empirical Research

Estimate the average treatment effect (ATE)

- Estimate the average treatment effect (ATE)
 - Experimental study: Difference-in-means

- Estimate the average treatment effect (ATE)
 - Experimental study: Difference-in-means
 - Observational study: Regression, matching, instrumental variable, regression discontinuity...

Introduction

- Estimate the average treatment effect (ATE)
 - Experimental study: Difference-in-means
 - Observational study: Regression, matching, instrumental variable, regression discontinuity...
- Discover heterogeneity using the proposed method

Introduction

- Estimate the average treatment effect (ATE)
 - Experimental study: Difference-in-means
 - Observational study: Regression, matching, instrumental variable, regression discontinuity...
- Discover heterogeneity using the proposed method
 - Large heterogeneity = warning sign

- Estimate the average treatment effect (ATE)
 - Experimental study: Difference-in-means
 - Observational study: Regression, matching, instrumental variable, regression discontinuity...
- Discover heterogeneity using the proposed method
 - Large heterogeneity = warning sign
- Explore possible moderating mechanisms

- Estimate the average treatment effect (ATE)
 - Experimental study: Difference-in-means
 - Observational study: Regression, matching, instrumental variable, regression discontinuity...
- Discover heterogeneity using the proposed method
 - Large heterogeneity = warning sign
- Second in the second in the
- Change theory and write a paper!

Introduction

- Estimate the average treatment effect (ATE)
 - Experimental study: Difference-in-means
 - Observational study: Regression, matching, instrumental variable, regression discontinuity...
- Discover heterogeneity using the proposed method
 - Large heterogeneity = warning sign
- Change theory and write a paper!

- Estimate the average treatment effect (ATE)
 - Experimental study: Difference-in-means
 - Observational study: Regression, matching, instrumental variable, regression discontinuity...
- Discover heterogeneity using the proposed method
 - Large heterogeneity = warning sign
- Second in the second in the
- Change theory and write a paper!
- Collect more data and test new hypotheses

Overview of the Talk

- Model and Intuition
- 2 Empirical Example
- Simulation Study
- Conclusion

roduction Model and Intuition Empirical Example Simulation Conclusio

Model for Treatment Heterogeneity

Model for the average treatment effect (ATE):

$$\underbrace{Y_i}_{\text{Outcome}} = \underbrace{T_i}_{\text{Treatment}} \underbrace{\tau}_{\text{ATE}} + \underbrace{X_{1i}\gamma_1 + X_{2i}\gamma_2 + \dots}_{\text{Covariates predicting outcome}} + \epsilon_i$$

Model for the average treatment effect (ATE):

$$\underbrace{Y_i}_{\text{Outcome}} = \underbrace{T_i}_{\text{Treatment}} \underbrace{\tau}_{\text{ATE}} + \underbrace{X_{1i}\gamma_1 + X_{2i}\gamma_2 + \dots}_{\text{Covariates predicting outcome}} + \epsilon_i$$

→ ATE is common across observations

Model for the average treatment effect (ATE):

$$\underbrace{Y_i}_{\text{Outcome}} = \underbrace{T_i}_{\text{Treatment}} \underbrace{\tau}_{\text{ATE}} + \underbrace{X_{1i}\gamma_1 + X_{2i}\gamma_2 + \dots}_{\text{Covariates predicting outcome}} + \epsilon_i$$

→ ATE is common across observations

Model for treatment heterogeneity:

$$Y_i = T_i \underbrace{\tau_i}_{\text{Effect for } i} + \underbrace{X_{1i}\gamma_{1i} + X_{2i}\gamma_{2i} + \dots}_{\text{Prediction for } i} + \epsilon_i$$

Model for the average treatment effect (ATE):

$$\underbrace{Y_i}_{\text{Outcome}} = \underbrace{T_i}_{\text{Treatment}} \underbrace{\tau}_{\text{ATE}} + \underbrace{X_{1i}\gamma_1 + X_{2i}\gamma_2 + \dots}_{\text{Covariates predicting outcome}} + \epsilon_i$$

→ ATE is common across observations

Model for treatment heterogeneity:

$$Y_i = T_i \underbrace{\tau_i}_{\text{Effect for } i} + \underbrace{X_{1i}\gamma_{1i} + X_{2i}\gamma_{2i} + \dots}_{\text{Prediction for } i} + \epsilon_i$$

→ Individual-specific effects:
Unidentifiable—fundamental problem of causal inference

troduction Model and Intuition Empirical Example Simulation Conclusio

- Clusters of treatment effects
 - Effects are identifiable within each cluster

- Clusters of treatment effects
 - Effects are identifiable within each cluster
- If individual i is in cluster[i],

$$Y_i = T_i$$
 $\underbrace{\tau_{ ext{cluster}[i]}}_{ ext{Effect for cluster}[i]} + \underbrace{X_{1i}\gamma_{1cluster}[i]}_{ ext{Prediction for cluster}[i]} + \epsilon_i$

- Clusters of treatment effects
 - Effects are identifiable within each cluster
- If individual i is in cluster[i],

$$Y_i = T_i \underbrace{\tau_{\text{cluster}[i]}}_{\text{Effect for cluster}[i]} + \underbrace{X_{1i}\gamma_{1\text{cluster}[i]} + X_{2i}\gamma_{2\text{cluster}[i]} + \dots}_{\text{Prediction for cluster}[i]} + \epsilon_i$$

Problem: Clustering membership is not observed

- Clusters of treatment effects
 - Effects are identifiable within each cluster
- If individual i is in cluster[i],

$$Y_i = T_i \underbrace{\tau_{\text{cluster}[i]}}_{\text{Effect for cluster}[i]} + \underbrace{X_{1i}\gamma_{1\text{cluster}[i]} + X_{2i}\gamma_{2\text{cluster}[i]} + \dots}_{\text{Prediction for cluster}[i]} + \epsilon_i$$

- Problem: Clustering membership is not observed
 - Which individuals are in the same cluster?

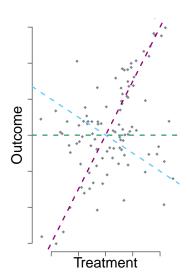
- Clusters of treatment effects
 - Effects are identifiable within each cluster
- If individual i is in cluster[i],

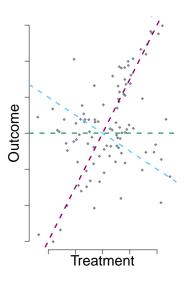
$$Y_i = T_i \underbrace{\tau_{\text{cluster}[i]}}_{\text{Effect for cluster}[i]} + \underbrace{X_{1i}\gamma_{1\text{cluster}[i]} + X_{2i}\gamma_{2\text{cluster}[i]} + \dots}_{\text{Prediction for cluster}[i]} + \epsilon_i$$

- Problem: Clustering membership is not observed
 - Which individuals are in the same cluster?
 - 2 How many clusters?

troduction Model and Intuition Empirical Example Simulation Conclusio

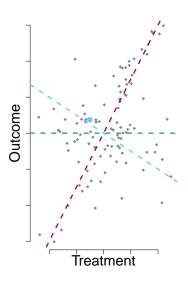
Data-driven Clustering



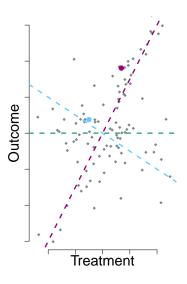


Given a fixed number of clusters:

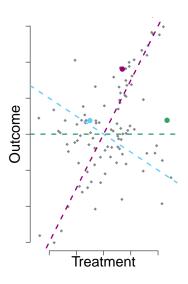
Effect for each cluster



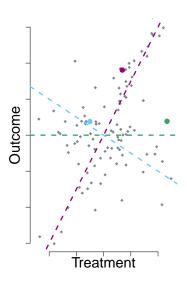
- Effect for each cluster
- Assign to the closest cluster



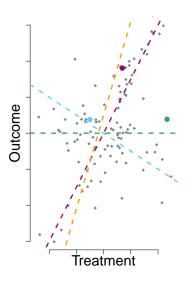
- Effect for each cluster
- Assign to the closest cluster



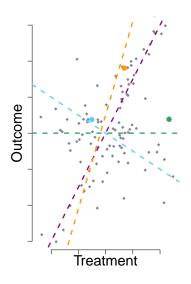
- Effect for each cluster
- Assign to the closest cluster



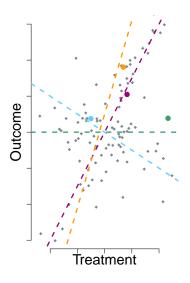
- Effect for each cluster
- Assign to the closest cluster
- Create a new cluster:



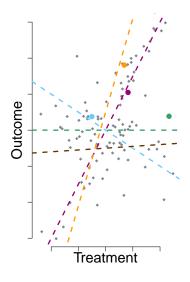
- Given a fixed number of clusters:
 - Effect for each cluster
 - Assign to the closest cluster
- Create a new cluster:
 - Effect for the new cluster



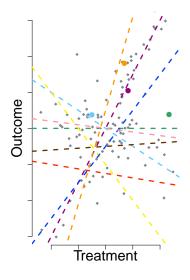
- Given a fixed number of clusters:
 - Effect for each cluster
 - Assign to the closest cluster
- Create a new cluster:
 - Effect for the new cluster
 - Reassign individuals



- Given a fixed number of clusters:
 - Effect for each cluster
 - Assign to the closest cluster
- Create a new cluster:
 - Effect for the new cluster
 - Reassign individuals
 - More clusters



- Given a fixed number of clusters:
 - Effect for each cluster
 - Assign to the closest cluster
- Create a new cluster:
 - Effect for the new cluster
 - Reassign individuals
 - More clusters
- Keep creating new clusters?



- Given a fixed number of clusters:
 - Effect for each cluster
 - Assign to the closest cluster
- Create a new cluster:
 - Effect for the new cluster
 - Reassign individuals
 - More clusters
- Seep creating new clusters?

troduction Model and Intuition Empirical Example Simulation Conclusion

Encouraging Fewer Clusters

Encouraging Fewer Clusters

Bayesian inference on clusters:

$$\underbrace{p(i \text{ is in cluster } k \mid Data)}_{\text{Estimated cluster for } i} \propto \underbrace{p(Data \mid i \text{ is in cluster } k)}_{\text{Likelihood}} \times \underbrace{p(i \text{ is in cluster } k)}_{\text{Prior}}$$

Encouraging Fewer Clusters

Bayesian inference on clusters:

$$\underbrace{p(i \text{ is in cluster } k \mid Data)}_{\text{Estimated cluster for } i} \propto \underbrace{p(Data \mid i \text{ is in cluster } k)}_{\text{Likelihood}} \times \underbrace{p(i \text{ is in cluster } k)}_{\text{Prior}}$$

 Likelihood: More accurate prediction is preferred → more clusters

Bayesian inference on clusters:

$$\underbrace{p(i \text{ is in cluster } k \mid Data)}_{\text{Estimated cluster for } i} \propto \underbrace{p(Data \mid i \text{ is in cluster } k)}_{\text{Likelihood}}$$

$$\times \underbrace{p(i \text{ is in cluster } k)}_{\text{Prior}}$$

- Likelihood: More accurate prediction is preferred ~> more clusters
- Prior: Simpler model is preferred → fewer clusters

Encouraging Fewer Clusters

Bayesian inference on clusters:

$$\underbrace{p(i \text{ is in cluster } k \mid Data)}_{\text{Estimated cluster for } i} \propto \underbrace{p(Data \mid i \text{ is in cluster } k)}_{\text{Likelihood}} \times \underbrace{p(i \text{ is in cluster } k)}_{\text{Prior}}$$

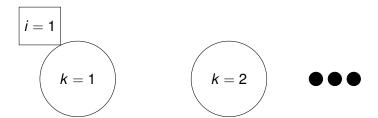
- Likelihood: More accurate prediction is preferred ~> more clusters
- Balance between likelihood and prior → estimated clusters fewer than individuals.

roduction Model and Intuition Empirical Example Simulation Conclusion

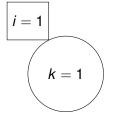
Prior Leading to Fewer Clusters

ullet Chinese restaurant process with tuning parameter α

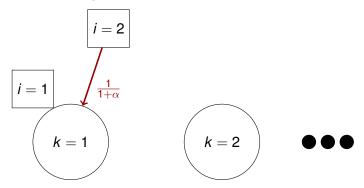
- ullet Chinese restaurant process with tuning parameter α
- ullet i creates a new cluster with probability $rac{lpha}{(i-1)+lpha}$



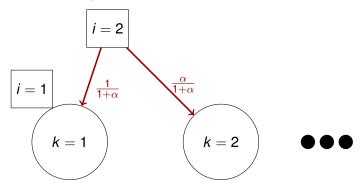
- Chinese restaurant process with tuning parameter α
- ullet i creates a new cluster with probability $rac{lpha}{(i-1)+lpha}$



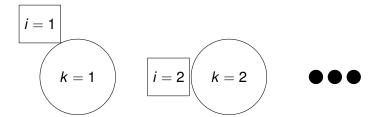
- Chinese restaurant process with tuning parameter α
- ullet i creates a new cluster with probability $rac{lpha}{(i-1)+lpha}$



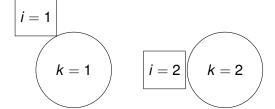
- Chinese restaurant process with tuning parameter α
- ullet i creates a new cluster with probability $rac{lpha}{(i-1)+lpha}$

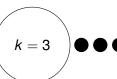


- Chinese restaurant process with tuning parameter α
- ullet i creates a new cluster with probability $rac{lpha}{(i-1)+lpha}$

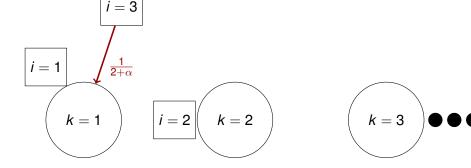


- Chinese restaurant process with tuning parameter α
- ullet i creates a new cluster with probability $\frac{\alpha}{(i-1)+\alpha}$

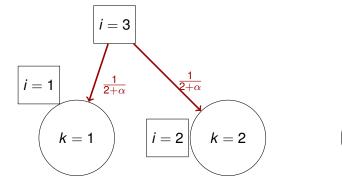


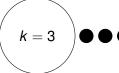


- Chinese restaurant process with tuning parameter α
- ullet i creates a new cluster with probability $rac{lpha}{(i-1)+lpha}$

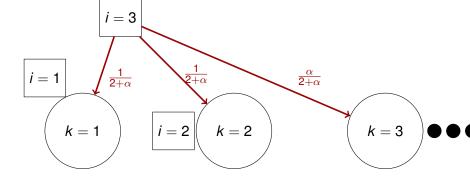


- Chinese restaurant process with tuning parameter α
- i creates a new cluster with probability $\frac{\alpha}{(i-1)+\alpha}$

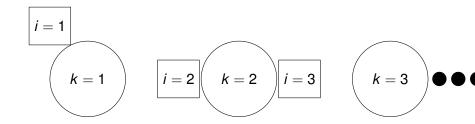




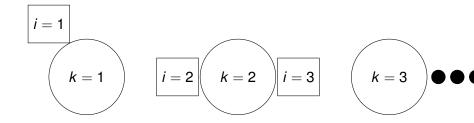
- Chinese restaurant process with tuning parameter α
- i creates a new cluster with probability $\frac{\alpha}{(i-1)+\alpha}$



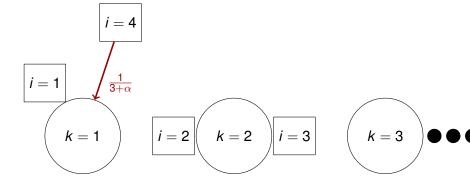
- Chinese restaurant process with tuning parameter α
- i creates a new cluster with probability $\frac{\alpha}{(i-1)+\alpha}$



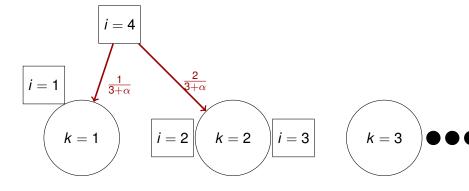
- Chinese restaurant process with tuning parameter α
- i creates a new cluster with probability $\frac{\alpha}{(i-1)+\alpha}$



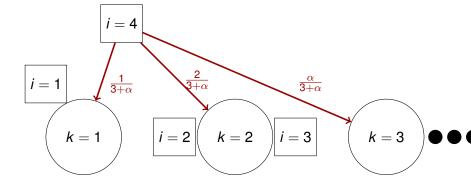
- Chinese restaurant process with tuning parameter α
- *i* creates a new cluster with probability $\frac{\alpha}{(i-1)+\alpha}$



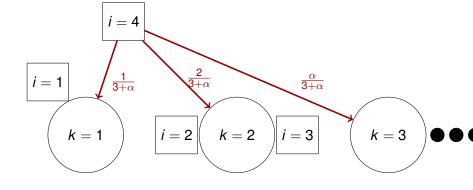
- Chinese restaurant process with tuning parameter α
- *i* creates a new cluster with probability $\frac{\alpha}{(i-1)+\alpha}$



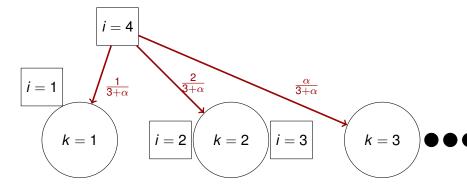
- Chinese restaurant process with tuning parameter α
- ullet i creates a new cluster with probability $rac{lpha}{(i-1)+lpha}$



- Chinese restaurant process with tuning parameter α
- *i* creates a new cluster with probability $\frac{\alpha}{(i-1)+\alpha}$



- Chinese restaurant process with tuning parameter α
- ullet i creates a new cluster with probability $rac{lpha}{(i-1)+lpha}$
- More individuals → smaller probability of a new cluster



- ullet Chinese restaurant process with tuning parameter α
- ullet i creates a new cluster with probability $\frac{\alpha}{(i-1)+\alpha}$
- More individuals → smaller probability of a new cluster

Uncovering Treatment Heterogeneity

Encourages larger and fewer clusters

- Lyall (2009) JCR
- Does indiscriminate violence reduce insurgent attacks?

- Lyall (2009) JCR
- Does indiscriminate violence reduce insurgent attacks?
- Example of natural experiment
 - Russian artillery randomly shelled Chechen villages
 - Indiscriminate because anyone in shelled villages can be harmed
 - Data: Shelled (treated) villages and matched nonshelled villages
 - Diff-in-diff design: Diff in # of attacks before and after shelling

- Lyall (2009) JCR
- Does indiscriminate violence reduce insurgent attacks?
- Example of natural experiment
 - Russian artillery randomly shelled Chechen villages
 - Indiscriminate because anyone in shelled villages can be harmed

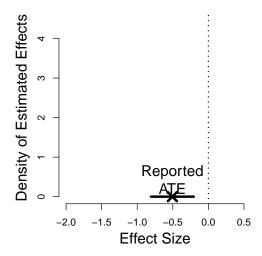
Empirical Example

- Data: Shelled (treated) villages and matched nonshelled villages
- Diff-in-diff design: Diff in # of attacks before and after shelling
- Lyall concludes artillery attacks decrease insurgent attacks
- Controversial implication—is the effect heterogeneous?

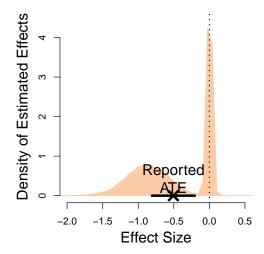
- Lyall (2009) JCR
- Does indiscriminate violence reduce insurgent attacks?
- Example of natural experiment
 - Russian artillery randomly shelled Chechen villages
 - Indiscriminate because anyone in shelled villages can be harmed
 - Data: Shelled (treated) villages and matched nonshelled villages
 - Diff-in-diff design: Diff in # of attacks before and after shelling
- Lyall concludes artillery attacks decrease insurgent attacks
- Controversial implication—is the effect heterogeneous?
- Regression model:

- Lyall (2009) JCR
- Does indiscriminate violence reduce insurgent attacks?
- Example of natural experiment
 - Russian artillery randomly shelled Chechen villages
 - Indiscriminate because anyone in shelled villages can be harmed
 - Oata: Shelled (treated) villages and matched nonshelled villages
 - Diff-in-diff design: Diff in # of attacks before and after shelling
- Lyall concludes artillery attacks decrease insurgent attacks
- Controversial implication—is the effect heterogeneous?
- Regression model:
 - Treatment: Russian artillery attacks
 - Covariates: Village level variables used by Lyall (2009)

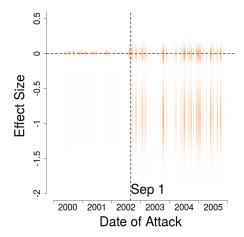
Heterogeneous Effect of Artillery Attacks



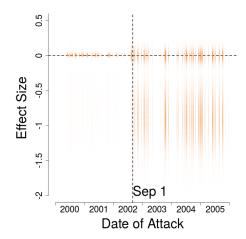
Heterogeneous Effect of Artillery Attacks



Exploring the Source of Heterogeneity

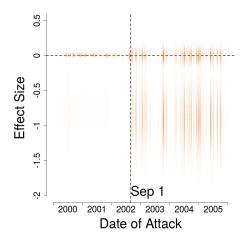


Exploring the Source of Heterogeneity



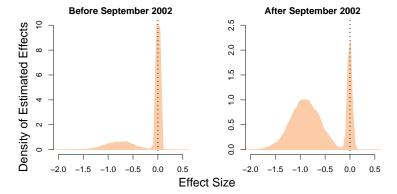
• Change in mid-2002

Exploring the Source of Heterogeneity



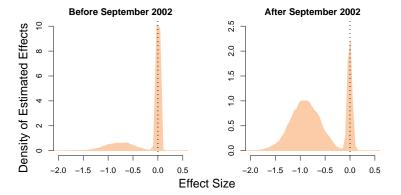
- Change in mid-2002
- What happened?

Possible Mechanism



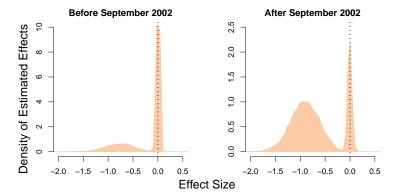
Empirical Example

Possible Mechanism



 Ground patrols by pro-Russian Chechens introduced in 2002 (Lyall 2010)

Possible Mechanism



- Ground patrols by pro-Russian Chechens introduced in 2002 (Lyall 2010)
- New hypothesis!

troduction Model and Intuition Empirical Example Simulation Conclusion

Simulation Setup

Simulation Setup

• When does the method work, and when does not?

Simulation Setup

- When does the method work, and when does not?
- \bullet N = 300, 500, 1000, 10000

Simulation Setup

- When does the method work, and when does not?
- \bullet N = 300, 500, 1000, 10000
- Binary treatment

Simulation Setup

- When does the method work, and when does not?
- \bullet N = 300, 500, 1000, 10000
- Binary treatment
- Three covariates: binary, discrete, and continuous

Simulation Setup

- When does the method work, and when does not?
- *N* = 300, 500, 1000, 10000
- Binary treatment
- Three covariates: binary, discrete, and continuous
- Model: $Y_i = T_i \tau_k + X_{1i} \gamma_{1k} + X_{2i} \gamma_{2k} + X_{3i} \gamma_{3k} + \epsilon_i$

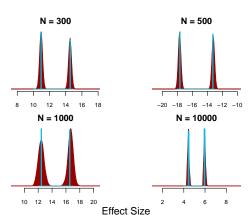
Simulation Setup

- When does the method work, and when does not?
- \bullet N = 300, 500, 1000, 10000
- Binary treatment
- Three covariates: binary, discrete, and continuous
- Model: $Y_i = T_i \tau_k + X_{1i} \gamma_{1k} + X_{2i} \gamma_{2k} + X_{3i} \gamma_{3k} + \epsilon_i$
- Unobserved moderator
 - Binary
 - Continuous

Simulation Results: Binary Moderator

• Binary $U_i \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(.5)$

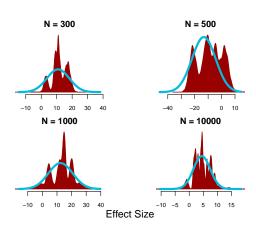
$$Y_{i} = \begin{cases} T_{i}\tau + X_{1i}\gamma_{1k} + \cdots + \epsilon_{i} \\ T_{i}(\tau + \nu) + X_{1i}(\gamma_{1} + \delta_{1}) + \cdots + \epsilon_{i} \end{cases}$$



Simulation Results: Continuous Moderator

• Continuous $U_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,4)$

$$Y_i = T_i(\tau + U_i\nu) + X_{1i}(\gamma_1 + U_i\delta_1) + \cdots + \epsilon_i$$



troduction Model and Intuition Empirical Example Simulation Conclusio

When Things Can Go Wrong

• No information in the covariate-outcome relationship:

$$Y_i = T_i(\tau + U_i\nu) + X_{1i}\gamma_1 + \cdots + \epsilon_i$$

No information in the covariate-outcome relationship:

$$Y_i = T_i(\tau + U_i\nu) + X_{1i}\gamma_1 + \cdots + \epsilon_i$$

No moderation but heterogeneous relationships

$$Y_i = T_i \tau + X_{1i} (\gamma_1 + U_i \delta_1) + \cdots + \epsilon_i$$

No information in the covariate-outcome relationship:

$$Y_i = T_i(\tau + U_i\nu) + X_{1i}\gamma_1 + \cdots + \epsilon_i$$

No moderation but heterogeneous relationships

$$Y_i = T_i + X_{1i}(\gamma_1 + U_i \delta_1) + \cdots + \epsilon_i$$

• Misspecification:

No information in the covariate-outcome relationship:

$$Y_i = T_i(\tau + U_i\nu) + X_{1i}\gamma_1 + \cdots + \epsilon_i$$

No moderation but heterogeneous relationships

$$Y_i = T_i + X_{1i}(\gamma_1 + U_i \delta_1) + \cdots + \epsilon_i$$

- Misspecification:
 - Model

Simulation

When Things Can Go Wrong

No information in the covariate-outcome relationship:

$$Y_i = T_i(\tau + U_i\nu) + X_{1i}\gamma_1 + \cdots + \epsilon_i$$

No moderation but heterogeneous relationships

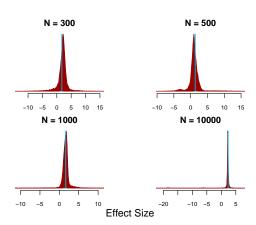
$$Y_i = T_i + X_{1i}(\gamma_1 + U_i \delta_1) + \cdots + \epsilon_i$$

- Misspecification:
 - Model
 - Distribution of error

No Moderation with Model Misspecification

Model Misspecification

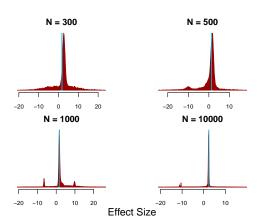
$$Y_i = T_i \tau + (X_{1i}^3 - 3 \times X_{1i}^2) \gamma_{1k} + \dots + \epsilon_i, \ k = 1, \dots, 5$$



No Moderation with Model and Error Misspecification

Model and Error Misspecification

$$Y_i = T_i \tau + (X_{1i}^3 - 3 \times X_{1i}^2) \gamma_{1k} + \dots + \epsilon_i^2 - \epsilon_i^5, \ k = 1, \dots, 5$$



troduction Model and Intuition Empirical Example Simulation Conclusion

troduction Model and Intuition Empirical Example Simulation Conclusion

Conclusion

 Researchers generally believe causal effects are heterogeneous Model and Intuition Empirical Example Simulation Conclusion

- Researchers generally believe causal effects are heterogeneous
- Existing methods require them to know and observe moderators

- Researchers generally believe causal effects are heterogeneous
- Existing methods require them to know and observe moderators
- Proposed method: Mixture with DP prior

- Researchers generally believe causal effects are heterogeneous
- Existing methods require them to know and observe moderators
- Proposed method: Mixture with DP prior
 - Uncovers heterogeneity under unobserved moderators

- Researchers generally believe causal effects are heterogeneous
- Existing methods require them to know and observe moderators
- Proposed method: Mixture with DP prior
 - Uncovers heterogeneity under unobserved moderators
 - Applicable to many situations

- Researchers generally believe causal effects are heterogeneous
- Existing methods require them to know and observe moderators
- Proposed method: Mixture with DP prior
 - Uncovers heterogeneity under unobserved moderators
 - Applicable to many situations
- Other applications

- Researchers generally believe causal effects are heterogeneous
- Existing methods require them to know and observe moderators
- Proposed method: Mixture with DP prior
 - Uncovers heterogeneity under unobserved moderators
 - Applicable to many situations
- Other applications
 - Joint distribution of treatment effects in conjoint experiment

- Researchers generally believe causal effects are heterogeneous
- Existing methods require them to know and observe moderators
- Proposed method: Mixture with DP prior
 - Uncovers heterogeneity under unobserved moderators
 - Applicable to many situations
- Other applications
 - Joint distribution of treatment effects in conjoint experiment
 - Fuzzy regression discontinuity

- Researchers generally believe causal effects are heterogeneous
- Existing methods require them to know and observe moderators
- Proposed method: Mixture with DP prior
 - Uncovers heterogeneity under unobserved moderators
 - Applicable to many situations
- Other applications
 - Joint distribution of treatment effects in conjoint experiment
 - Fuzzy regression discontinuity
 - Instrumental variable

- Researchers generally believe causal effects are heterogeneous
- Existing methods require them to know and observe moderators
- Proposed method: Mixture with DP prior
 - Uncovers heterogeneity under unobserved moderators
 - Applicable to many situations
- Other applications
 - Joint distribution of treatment effects in conjoint experiment
 - Fuzzy regression discontinuity
 - Instrumental variable
 - Regression discontinuity with multiple cutoffs

- Researchers generally believe causal effects are heterogeneous
- Existing methods require them to know and observe moderators
- Proposed method: Mixture with DP prior
 - Uncovers heterogeneity under unobserved moderators
 - Applicable to many situations
- Other applications
 - Joint distribution of treatment effects in conjoint experiment
 - Fuzzy regression discontinuity
 - Instrumental variable
 - Regression discontinuity with multiple cutoffs
- Package in development: DPMfx

- Researchers generally believe causal effects are heterogeneous
- Existing methods require them to know and observe moderators
- Proposed method: Mixture with DP prior
 - Uncovers heterogeneity under unobserved moderators
 - Applicable to many situations
- Other applications
 - Joint distribution of treatment effects in conjoint experiment
 - Fuzzy regression discontinuity
 - Instrumental variable
 - · Regression discontinuity with multiple cutoffs
- Package in development: DPMfx
- More Bayesian nonparametrics, e.g. topic models for text analysis