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ABSTRACT 

 

Investigating traffic of distributed denial of services (DDoS) attack requires extra 

overhead which mostly results in network performance degradation. This study 

proposes an investigation model for detecting DDoS attack in real-time without causing 

negative degradation against network performance. The model investigates network 

traffic in a scalable way to detect user violations on quality of service regulations. 

Traffic investigation is triggered only when the network is congested; at that exact 

moment, burst gateways actually generate a congestion notification to misbehaving 

users. The misbehaving users are thus further investigated by measuring their 

consumption ratios of bandwidth. By exceeding the service level agreement bandwidth 

ratio, user traffic is filtered as DDoS traffic. Simulation results demonstrate that the 

proposed model efficiently monitors intrusive traffic and precisely detects DDoS attack. 
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INTRODUCTION 

 

Every day, Internet attackers come up with new sophisticated tactics to increase their 

ability of disrupting users' online services. One of their tactics is generating unsolicited 

traffic in immense volume for overwhelming network resources. A sudden surge in 

network traffic mostly occurs due to huge traffic generated from single or distributed 

sources to prevent legitimate users from using network resources, e-businesses, or 

online services. Distributed denial of services (DDoS) is a sophisticated attack uses 

huge traffic to overwhelm network resource and deny services to network 

users(Gyanchandani2, 2010; Jose, 2008; Jaeyeon et al., 2002). 

Numerous studies have attempted to devise an effective solution to the DDoS traffic 

without inflicting harm on normal traffic (Choffnes, 2010; Xuan, 2010). However, 

monitoring DDoS traffic still has the challenges of capability, scalability, and reliability, 

which severely hinder the researchers from developing a successful defense. Capability 

challenge arises due to the high similarity between DDoS and legitimate traffic. 

Scalability challenge arises because the continuous monitoring of a large-scale network 

in a scalable manner requires extra overhead in a volume, which mostly results in 

performance degradation. Reliability challenges arise when the algorithm fails to 

investigate user traffic in whole or in part. Such a case can be caused by a single point 

of failure in making filtration decisions.  
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Figure 1. Phases of traffic investigation. 

 

In the detection phase, the M-traffic is thus subjected to eventually undergo further 

investigation. Using passive measurement, the bandwidths consumed by M-user are 

measured as packet transmission rate (PTR) aggregation. The M-users that exceed SLA 

PTR ratios are considered as attacker, and their traffic as DDoS traffic.  

The traffic of users that do not violate the SLA PTR ratios is considered as 

normal traffic (N-traffic).The rest of this study is organized as follows: Section 2 

discusses the related works. Section 3 describes the architecture of the filtration model. 

Section 4 describes the DDoS traffic filtration. Section 5 presents the experimental 

results and analytical evaluation. Finally, Section 6 concludes and discusses the 

possibilities for future work. 

 

RELATED WORKS 
 

In general, there are two main categories of IDS, each with its own disadvantages: 

misuse-based, and anomaly based detection systems. In the main drawback of the first 

category is its inability to detect new intrusions still unknown to the intrusion detector. 

Thus, the security policy of these approaches should add new rules when a new type of 

attack is discovered. The disadvantage of the second category is the possibility of 

deviation the normal traffic from its distribution pattern signatures. In addition to the 

existing IDS of misuse-based and anomaly-based, quality of service (QoS)-based IDS is 

an important subcategory to detect DDoS attacks. 

Numerous real-time studies have been conducted regarding the impact of user 

behavior on QoS regulations to detect DDoS traffic. This study focuses on the related 

works that use SLA ratios as thresholds to differentiate the DDoS traffic from the 

normal ones. Important and recent schemes on the SLA monitoring can be found in 

(Habib et al., 2005; Ahsan et al., 2004; Abdulghani et al,2010; Abdulghani et al, 2011; 

An, 2006). In these schemes, traffic investigation requires separate communication 

between the domain edges and SLA management for each delay or jitter, loss, and PTR 

metrics. As a result, processing and communication overhead may increase, 

representing a shortcoming for these schemes. 

Moreover, to detect SLA violation, delay is estimated in the arrival of packets. 

Estimation is conducted either by examining the timestamps of probe packets or by 

dividing the round-trip time (RTT) by two. In the former, the two ends cannot be 

synchronized. In the latter, the major weakness lies in approximated ratios as a result of 

asymmetric links in domains. Another study has revealed the difficulty of using the 
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core-assisted scheme because of the high overhead incurred in monitoring core routers 

(Abdulghani et al, 2011). Furthermore, bandwidth measurements are executed at egress 

routers rather than at ingress routers. In this case, simultaneous global attacks may not 

be detected because local attacks get camouflaged. 

 Additionally, these schemes use central management units for gathering the 

measured values of users from various domain edges and for making final decisions on 

traffic investigation. These algorithms may be vulnerable to single points of failure. By 

contrast, the algorithm in (Ahsan et al., 2004) uses distributed management units on 

various edges for gathering the measured values of users and filtering DDoS traffic. 

Although the distributed algorithm is immune against single points of failure, this 

algorithm is not sufficiently scalable because of the high processing and communication 

overhead generated in gathering distributed measured ratios.  

In the proposed model, an SLA violation is deduced when RED-enabled gateways 

begin to generate congestion notifications toward misbehaving users. Therefore, 

investigating the jitter and packet loss ratios is unnecessary. Thus, the proposed model 

enhances communication overhead by decreasing the exchange of messages and 

processing overhead by reducing the fraction of traffic, which should be examined.  
 

ARCHITECTURE OF THE INVESTIGATION MODEL 
 

The next subsections describe in detail the agent architecture of the present model.  

VIOLATION-MONITOR AGENT 

The Violation-monitor agent is used to recognize M-users notified by RED technique 

and to probe the M-traffic for PTR measurement. Customers of QoS networks have 

SLA guarantees from their service providers for delay, jitter, loss, and bandwidth 

metrics (Tham and Y. Liu, 2005). These QoS metrics are measured to determine 

abnormal activities in the network. In this paper, delay and packet loss estimation are 

deduced by monitoring RED-gateway queues.  

Traffic policing is executed at domain gateways. The RED technique prevents 

traffic bursts at gateways by monitoring traffic shifts in the AQSs. Once the AQS of a 

particular gateway exceeds a predefined threshold, RED notifies the users connected to 

that edge to reduce the volume of sent packets. The RED algorithm computes the AQS 

for every packet received at the gateway queue by using a low-pass filter algorithm that 

uses the exponential weighted moving average (EWMA) technique described in (Gu, 

2003). According to (Floyd and Jacobson, 1993), the RED policy uses the EWMA 

technique to smooth possible short-term increases in queue size (QS) that result from 

normal traffic bursts or from transitory congestion, thus resulting in a significant 

increase in the AQS. Therefore, the AQS of the burst gateway is calculated as follows: 

 

  qwwAQSAQS qq  1                                                  (1) 

 

where q is the instantaneous buffer size of the gateway queue, and wq is an 

exponential weight coefficient that defines the time of the low-pass filter with a ratio 

much less than one. Choosing an appropriate ratio for wq is important for efficiently 

calculating the AQS. Thus, if the wq ratio is too large, the averaging transaction may not 

filter the transitory congestion at the gateway queue. However, if the wq ratio is set too 

low, the response of the AQS to shifts in the actual QS will be too slow; thus, the 

gateway may not detect the initial levels of congestion. As described in (Floyd and 
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Jacobson, 1993), the ratio of coefficient wq is chosen based on the number of packet 

arrivals at the gateway queue. Therefore, the ratio of wq should be set to satisfy the 

following equation: 

 
th

q

L

q

w

w
L min

11
1

1








                                                                            (2) 

where L is number of packets arriving at the gateway queue, and minth is the RED 

minimum threshold. In one RTT, the minimum and maximum thresholds, minth and 

maxth,, are defined by considering that maxth–minth must not be less than the typical 

augment in the AQS. The AQS is then compared with the maxth and minth thresholds. If 

the calculated AQS is less than minth, all packets are allowed to pass to the destination. 

However, if the value of the AQS is greater than the maxth, the packets are marked to 

drop. In between, every received packet is marked with an RED-notification in 

commensurate probability.  

VIOLATION-VERIFIER AGENT  

The Violation-verifier agent measures the PTR fractions of M-users to verify if the 

consumed ratio exceeds the ratio guaranteed in the SLA. PTR of M-user at each ingress 

edge can be adequately measured by counting the average number of packets generated 

by a user. According to (Ningning, 2003), the PTR can be accurately measured by 

multiplying the total generated packets with packet size. Thus, the bandwidth consumed 

by every M-user is computed by measuring the PTR of that user at each ingress edge: 

 
t

sentavgsizepacket
PTR

i

userMi

userM 


 



_8_
                                                          (3) 

where i

userMsentavg _  is the average packets sent by the M-user at ingress edge i, and ∆t 

is the time interval. Conclusions on DDoS traffic sources are made once the end-user 

sends more than its preset bandwidth share in the SLA. 

SLA-MANAGER AGENT 

The SLA-manager agent provides a mechanism for managing the detection of DDoS 

attack.This agent computes the average ratios of the PTR for M-user on the basis of user 

details gathered from various ingress edges; therefore, DDoS traffic is differentiated 

from legitimate traffic by recognizing misbehaving users who exceed the SLA bit rate 

of the PTR. The SLA-manager agent is a central unit taking decisions based on 

congestion reports received from distributed RED gateways. It is activated once it is 

probed by the Violation-monitor agent. The SLA-manager module is shown in Fig 2 as 

a separate entity installed in a separated router. In this paper, once the M-traffic notified 

with RED notifications, every ingress edge measures the PTRs of the M-users and 

reports them to the SLA-manager. The SLA-manager add their reported 
userMPTR 

 to the 

aggregated PTRM-user by using the following formula: 

 

userMuserMuserM PTRPTRPTR                                                                                   (4) 
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The process of aggregating the PTR and sending the subtotal to their right and left 

neighbors is repeated for SLA-manager. Figure 2 shows how SLA-manager exchanges 

PTR messages with each network edges to resolve the decision of PTR violations. For 

every M-user, the total number of PTR is computed by aggregating the PTR fractions 

from the SLA-manager. To compare the PTR measured ratios with the SLA bandwidth 

shares and resolve the decision of PTR violations, the SLA-manager transfers the total 

PTRM-user to percentile ratios by using the following formula: 

%100_ 









 



Link

userM
userM

Bandwidth

PTR
PTRPercentile                                                                              (5) 

where BandwidthLink is the domain links bandwidth. Therefore, the SLA-manager 

compares the PTR percentile of M-user with the SLA bandwidth share to detect 

possible DDoS traffic.  

 

 

 

 

 

 

 

 
 

                                                                                     
 

 

 Figure 2. Architecture of the investigation model. 
 

DDOS TRAFFIC INVESTIGATION 

Typically, at the ingress routers, user traffic is classified and policed to ensure that each 

user does not exceed the delay, jitter, packet loss, and bandwidth ratios predefined in the 

SLA. A user cannot send a volume of packets higher than the SLA rates through a 

single ingress; however, the user can send a higher volume by sending a volume lower 

than the SLA bit rate through multiple ingress edges (Habib et al., 2003). Thus, 

inspection of QoS metrics at each edge does not detect network attacks; however, by 

doing so at all edges, network attacks can be detected.  

Moreover, optimally deploying the model agents is necessary to guarantee the 

production of an early warning and the deterrence of network attacks. As illustrated in 

Fig. 2, Violation-monitor and Violation-verifier agents are deployed at ingress routers. 

However, the SLA-manager agent is deployed on various separate routers in the 
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network. The following subsections describe the policies of the agents in monitoring 

and detecting the DDoS traffic. 

 

MONITORING M-TRAFFIC 

Users' traffic is first monitored at the ingress gateways where RED algorithm computes 

the AQS to detect incipient congestion at the gateway queues. Based on the congestion 

level, the burst gateways notify users of congestion by either marking a notification in 

their packet headers or dropping these packets. According to (Floyd and Jacobson, 

1993), the possibility of notifying end-user by a particular burst gateway is almost 

commensurate with the user’s share of bandwidth through that gateway. In this model, 

the Violation-monitor should be permanently active to filter traffic with RED 

notifications as M-traffic. However, traffic of users not notified by the RED 

notifications is N-traffic, which is normally allowed to be transmitted to the destination. 

IDENTIFYING DDOS-TRAFFIC 

A further investigation is performed on the M-traffic to verify if it is DDoS traffic by 

gathering PTR rates using the passive measurement technique. In this study, the attack 

is detected by identifying the intruders that strip others' resources. In the case of 

gateway burst, generating RED notifications activates the passive measurement phase to 

measure the PTR of M-traffic. The Violation-monitor agent probes the Violation-

verifier agent to be activated and reports the total bandwidth consumed by each M-user. 

Thus, the PTR of each M-user is calculated and reported to the SLA-manager agent for 

comparisons with SLAPTR. User that consumes PTR higher than the bandwidth share in 

the SLA is intruder. The SLA-manager agent then sends notification packets to all 

ingress edges to filter the traffic of that user as DDoS-traffic. Users within the 

bandwidth ratio guaranteed in the SLA are victims and their traffic is classified back to 

N-traffic.  

EXPERIMENTAL RESULTS 

This section presents the experimental results of the proposed model and evaluates its 

performance with recent existing schemes. 

SIMULATION SETUP 

Our experiment was conducted by using a network simulator NS-2.34 (ns-2). As shown 

in Fig. 3, the network topology is composed of 47 nodes (35 edge routers (E1–E35) and 

12 core routers (CR1–CR12)). The network traffic can be generated by 70 end-users 

(U1–U70). Each user could use several active sources to send several flows through one 

or more ingress edges. Each of the 5 edges was gathered as a 5-fold set; likewise, each 

of the 10 end-users was gathered to obtain a denary set. Each end-user could send its 

data through one fivefold set of ingress edges as maximum, and each ingress edge could 

be used only by one denary set of end-users as maximum. Further descriptions of users’ 

traffic setting are presented in Table 1. 
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Table 1. End-users traffic setting 

End–

users 
Connected to Destined to 

Generated Traffic 

(Mbps/user) 

U1-U10 E1-E5 E26 1 

U11-U20 E6-E10 E20 0.7 

U21-U30 E11-E15 E30 1 

U31-U40 E16-E20 E10 0.5 

U41-U50 E21-E25 E33 0.5 

U51-U60 E26-E30 E1 0.7 

U61-U70 E31-E35 E25 1 

 

The maximum TCP flow window is 64 packets and the maximum packet size is 

1024 bytes. QoS ratios guaranteed for end-users had been predefined by the SLA. Delay 

ratios had been specified according to the link delays. Jitter predefined ratios were 10% 

of the links delays. Bandwidth shares were equally specified for all users at 20% of core 

link bandwidth. Packet loss ratios were 1% of the PTR fraction of each user. The 

simulated experiment was run for 100 s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Simulated network topology 

 

RESULT AND DISCUSSION 

In this simulated experiment, network traffic was monitored under light load and traffic 

burst. Light load was observed at 0–9 and 86–100 s. Within these periods, end-users did 

not consume more than their bandwidth share; therefore, the network was properly 

provisioned. Traffic burst was observed at 10–85 s, when attacks were executed and the 

link bandwidth could no longer accommodate all user traffic. Within this period, two 

mutual attacks were simulated as DDoS traffic increased to more than 10 Mbps. Attack 

1 was generated by U30 through ingress edges E11 to E15. Attack 2 was generated by 

U10 through ingress edges E1 to E5. Attacks 1 and Attack2 were intended for E30 and 
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E26, respectively; consequently, the edges of CR4 to CR5 became the most congested 

links. Figure 3 illustrates from which source edges the attack was injected and for which 

destination edges the attack was intended.  

SCENARIO FOR MONITORING M-TRAFFIC 

This scenario demonstrates the ability of the RED gateway for recognizing misbehaving 

user traffic. The values of RED parameters are set as follows: queue limit is 100 

packets, minth is 7 to10 packets, maxth is 21 to 30 packets, and wq is 0.02. Figure 4 

shows the values of AQS and QS in the domain gateways that were measured by using 

the RED algorithm. Gateways with an AQS between 7 and 21 packets marked the 

packet headers of misbehaving users with RED notifications. Based on the AQS curves, 

E11 to E15 started to stick the traffic of U20 to U30 with RED notifications at 16 s, and 

E1 to E5 started to stick the traffic of U1 to U10 with RED notifications at 32 s. 

Gateways with an AQS exceeding 21 packets notified M-users by dropping the 

excessive packets instead of marking them with RED notifications. E11 to E15 dropped 

the excessive packets from 58 s to 87 s. E1 to E5 dropped the excessive packets from 

83 s to 91 s. During periods when gateway AQS was less than 7 packets, the network 

traffic did not experience dropping or RED marking. The RED notification was used in 

this experiment to identify M-users with traffic that requires further investigation. 

During the period of attacks, the number of M-users notified by the burst ingress edges 

with RED notifications oscillates to reach a maximum value of 20 M-users. Therefore, 

the RED-based strategy filters 20 M-users of 70 users in its worst case. 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 4. Domain RED gateways QS and AQS 

SCENARIO FOR FILTERING DDOS-TRAFFIC 

It is demonstrated that only users whose traffic classified as M-user-traffic violated the 

SLA. Hence, the PTR measurement was required only for traffic of 20 users, not 70. 

Using the passive technique, the PTRs of M-users are measured at the ingress edges. 

Figure 5 shows the link bandwidth percentage consumed by every M-user. U10 

breached its SLA bandwidth guarantee by exceeding its bit rates and consuming more 

than 90% of the link bandwidth from 25 s to 45 s and from 70 s to 85 s. U30 exceeded 

its bit rate guarantee by approximately 90% from 10 s to 25 s and from 45 s to 70 s. 

However, the rest of the users did not exceed their PTR shares in the SLA, which was 
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20% of the intermediate link bandwidth. This scenario implies that U10 and U30 were 

intruders who launched the attack. Consequently, the excessive traffic sent by these 

intruders was filtered out as DDoS-Traffic. Conversely, U1 to U9 and U21 to U29 were 

victims plundered by the attacks of U10 and U30.  

 

 

 

 

 

 

 

 

 

Figure 5. M-users consumption percentages of PTR. 

 

In the current study, RED notification was an indicator used to identify M-traffic, which 

requires further investigation. Table 2 shows the M-users whose traffic had been 

classified as M-traffic in this scenario. The table also shows at what time and by which 

burst gateway the traffic of these users was filtered. For instance, E11 to E15 started to 

stick the traffic of U21 to U30 with RED notifications at the 16th s and stopped at the 

57nd s. E11 to E15 started to stick RED notifications again to the same user traffic at the 

88th s and continued until the end of the simulation time. E1 to E5 stuck U1 to U10 with 

RED notifications from 32 s to 82 s and from 92 s up to the end of the simulation time. 

Table 2. Details of RED notifications issued for misbehaving users 

Notified users Generator 

edges 

RED marking 

started at 

RED 

marking 

stopped at U21 to U30 E11 to E15 16th s 57th s 

U21 to U30 E11 to E15 88th s 100th s 

U1 to U10 E1 to E5 32nd s 82nd s 

U1 to U10 E1 to E5 92nd s 100th s 

 

ANALYSIS AND EVALUATION 

The effective protection systems should be able to support high detection capability, a 

large-scale network in a scalable way, and should be reliable for monitoring whole 

network traffic. Thus, we evaluated the proposed investigation model (iModel for short) 

by comparing scalability with each Stripe-based (Habib, 2003) and Com-approach 

(Abdulghani, 2011) schemes. Figure 3 shows the topology used for the comparison 

analysis. Scalability evaluation was achieved by measuring processing overhead POH 

and communication overhead COD of each scheme with variable domain sizes. For 
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computing the COD, the total number of probe packets injected per unit time for 

investigating network traffic was multiplied by the size of probe packets. However, the 

POD was computed by considering the extra processing Pextra at all hops h, through 

which a packet passes per unit time. For each probe packet in the monitoring schemes, a 

POD is required to change some fields in the packet header, such as address lookup, 

checksum computation, and any other CPU processing overhead. Thus, for a network 

domain with U users, and N edge routers, the POH and COD are calculated in each 

scheme.  

In the Stripe-based approach, for each user, every edge injects a stripe of S 

packets to every egress edge pair. The egress edge pair sends a complementary stripe in 

reverse. Thus, POD and COD in the Stripe-based are computed by formulas (6) and (7), 

respectively. 

     UPhNNSStripe extraPOD  21                                                             (6) 

     USizePktNNSStripeCOD  _21                                                            (7) 

For monitoring the network in the Com-approach, every edge injects 4-packet 

trains T to every egress edge for each suspicious user sU. Thus, the POD and COD are 

given by (8) and (9), respectively. 

     sUPhNNTapproachCom extraPOD  11                                             (8) 

     sUSizePktNNTapproachCom COD  _11                                            (9) 

In the proposed iModel, any bursting edge probes edge routers to report their PTR 

fraction of the corresponding M-users. In response, the edge routers report the PTR 

fractions to the SLA-manager. Thus, the POD and COD of iModel are given by 

formulas (10) and (11), respectively: 

  mUPhNbNTiModel extraPOD  )1(                                                              (10) 

  mUSizePktNbNTiModelCOD  _)1(                                                                (11) 

where bN is the bursting gateways and mU is the number of M-users. Hence, scalability 

of each scheme was evaluated by using variable number of gateways ranging from 35 to 

2000, while the number of users was fixed at 70. The values of the parameters used in 

the formula are set as follows: S is 3 packets, T is 4 packets, h is 6 hops, Pkt_Size  is 40 

bytes, bN is 57% of N, and mU is 60% of U, where the values of bN and mU are 

computed based on the results demonstrated in Figure 4.   

A comparison of the POD and COD among the three schemes showed that the 

iModel exhibits the lowest values, as shown in Fig. 7 and Fig 8. Additionally, 

evaluation of schemes' scalability with thousands of edge-routers demonstrated that 

iModel, when compared with the existing schemes, is able to support a large-scale 

network in a scalable way. 
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Figure 7. POD comparisons  

 

Figure  8. COD comparisons 

CONCLUSION AND FUTURE WORK 

The model presented in the current study detects the attack before it happens with early 

warning notifications to uncover the attackers while still in the planning stages of an 

attack. Monitoring the RED notifications as an early notification when anomaly 

congestion surfaces is beneficial for detecting DDoS traffic and minimizing potential 

overhead and resources associated with the attacks. Although the results are based on 

simulation scenarios, comparison of the approximate results indicates that the 

exploitation of RED notifications in triggering traffic investigation reduces more than 

50% of investigation overhead and assists the proposed algorithm in supporting a large-

scale network in a scalable manner.  

Probing all ingress gateways to aggregate the bandwidth share of misbehaving 

users is also significant in identifying DDoS traffic, which could be carried out by 

multiple ingress edges in a capable manner. In the future, the behavior of the detected 

DDoS traffic can be analyzed to create DDoS traffic patterns. These patterns may be 

used in the preliminary phases of investigation to detect traffic with similar DDoS 

traffic behavior at an early time. 

 

REFERENCES 

Abdulghani, A. Ahmed, A. Jantan. G. Ahmed.(2010). A Potent Model for Unwanted           

Traffic Detection in QoS Network Domain"," JDCTA, vol. 4, pp. 122 ~ 130. 



 

 
Abdulghani /International Journal of Software Engineering and Computer Systems 1(2015) 93-105 

104 

Abdulghani, A. Ahmed, A. Jantan, and T.C. Wan.(2011).SLA-based complementary          

approach for network intrusion detection," Computer Communications, vol. 34,           

pp1738-1749. 

Ahsan, H. K. Maleq, and B. Bharat.(2004).Edge-to-edge measurement-based distributed         

network monitoring, Computer Networks." vol. 44, pp. 211-233. 

An, J. S. P. G.(2006). Packet marking based cooperative attack response service for effectively        

handling suspicious traffic", LNCS, vol. 4318, pp. 182-195. 

Choffnes, D. R.(2010). Service-level network event detection from edge systems, 

PhDdissertation, NORTHWESTERN university, p. 131. 

Floyd, S. and V. Jacobson.(1993). Random early detection gateways for congestion avoidance, 

Networking, IEEE/ACM Transactions on, vol. 1, pp. 397-413. 

Gu, Y. X. Hong, M. Mazzucco, and R. Grossman.(2003). Rate Based Congestion Control over 

High Bandwidth/Delay Links, IEEE/ACM Transaction on Networking, vol. 11. 

Gyanchandani2, S. S. M.(2010). Analysis of Botnet Behavior Using Queuing Theory, IJCS, vol. 

1, pp. 239-241. 

Habib, A. S. Fahmy, S. R. Avasarala, V. Prabhakar, and B. Bhargava.(2003). On detecting 

service violations and bandwidth theft in QoS network domains, Computer 

Communications, vol. 26, pp. 861-871. 

Habib, A. S. Fahmy, and B. Bhargava.(2005). Monitoring and controlling QoS network 

domains, International Journal of Network Management, vol. 15, pp. 11-29. 

Jaeyeon, J. K. Balachander, and R. Michael.(2002). Flash crowds and denial of service attacks: 

characterization and implications for CDNs and web sites, in Proceedings of the 11th 

international conference on WWW, Hawaii, USA: ACM. 

Jose, N. "DDoS attack evolution," Network Security, vol.( 2008), pp. 7-10. Kulatunga, C. and 

G. Fairhurst.(2010). Enforcing layered multicast congestion control using ECN-

nonce,Computer Networks, vol. 54, pp. 489-505. 

Ningning, P. Hu Steenkiste.(2003). Evaluation and characterization of available bandwidth 

probing techniques Communications, IEEE Journal vol. 21, pp. 879 - 894. 

Tham, C.-K. and Y. Liu.(2005). Assured end-to-end QoS through adaptive marking in 

multidomain differentiated services networks, Computer Communications, vol. 28, pp. 

2009- 2019. 

"The Network Simulator (ns-2) home page," http://www.isi.edu/nsnam/ns/. 

Xuan I. S. Y., My T. Thai, Taieb Znati.(2010). Detecting Application Denial-of-Service attacks: 

A Group-Testing-Based Approach,IEEE Transactions on Parallel and Distributed 

Systems, vol. 21, pp. 1203-1216. 

 



 

 
Investigation model for ddos attack detection in real-time 

 

105 

 

 


