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Abstract

In this papers we study smoothness properties of solutions. We
consider the equation of Korteweg - de Vries - Burgers type

(1)
{

ut + ∂xf(u) = ε ∂2
xu− δ ∂3

xu
u(x, 0) = ϕ(x)

with −∞ < x < +∞ and t > 0. The flux f = f(u) is a given
smooth function satisfying certain assumptions to be listed shortly. It
is shown under certain additional conditions on f that C∞ - solutions
u(x, t) are obtained for all t > 0 if the initial data u(x, 0) = ϕ(x)
decays faster than polinomially on IR+ = {x ∈ IR ; x > 0 } and has
certain initial Sobolev regularity.
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1. Introduction

In 1976, J. C. Saut and R. Temam [ 22 ] have remarked that a so-
lution u of an equation of Korteweg-de Vries type cannot gain or
lose regularity: They show that if u(x, 0) = ϕ(x) ∈ Hs(IR) for
s ≥ 2, then u( · , t) ∈ Hs(IR) for all t > 0. The same results were
obtained independently by J. Bona and R. Scott [ 2 ] by different
methods. For the Korteweg - de Vries (KdV ) equation on the line,
T. Kato [ 16 ], motivated by work of A. Cohen [ 6 ], showed that if
u(x, 0) = ϕ(x) ∈ L2

b ≡ H2(IR)
⋂

L2(eb x dx) ( b > 0 ) then the so-
lution u(x, t) of the KdV equation becomes C∞ for all t > 0. A
main ingredient in the proof was the fact that formally the semi-group
S(t) = e−t ∂3

x in L2
b is equivalent to Sb(t) = e−t ( ∂x−b )3 in L2 when

t > 0. One would be inclined to believe this was a special property
of the KdV equation. This is not, however, the case. The effect is
due to the dispersive nature of the linear part of the equation. S. N.
Kruzkov and A. V. Faminskii [ 20 ] for u(x, 0) = ϕ(x) ∈ L2 such that
xαϕ(x) ∈ L2(( 0, +∞ )) is was proven that the weak solution of the
KdV equation constructed there has l-continuous space derivatives for
all t > 0 if l < 2α. The proof of this result is based on the asymptotic
behavior of the Airy function and its derivatives, and on the smooth-
ing effect of the KdV equation found in [16, 20]. Corresponding work
for some special nonlinear Schrödinger equations was done by Hayashi
et al. [12, 13] and G. Ponce [21]. While the proof of T. Kato appears
to depend on special a priori estimates, some of its mystery has been
resolved by results of local gain of finite regularity for various others
linear and nonlinear dispersive equations due to P. Constantin and J.
C. Saut [10], P. Sjolin [23], J. Ginibre and G. Velo [11] and others.
However, all of them require growth conditions on the nonlinear term.

All the physically significant dispersive equations and systems
known to us have linear parts displaying this local smoothing prop-
erty. To mention only a few, the KdV, Benjamin-Ono, intermedi-
ate long wave, various Boussinesq, and Schrödinger equations are in-
cluded. Continuing with the idea of W. Craig, T. Kappeler and W.
Strauss [9] we study a equation of Korteweg - de Vries - Burgers Type

ut + ∂xf(u) = ε ∂2
xu− δ ∂3

xu(1.1)
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with −∞ < x < +∞ and t > 0. The flux f = f(u) is a given
smooth function satisfying certain assumptions to be listed shortly. It
is shown under certain additional condition on f that C∞ - solutions
u(x, t) are obtained for all t > 0 if the initial data u(x, 0) decays
faster than polinomially on IR+ = { x ∈ IR ; x > 0 } and has certain
initial Sobolev regularity. In section three we prove an important a pri-
ori estimate. In section four we prove basic local-in-time existence and
uniqueness results for (1) used in the gain of regularity result in section
7. Specifically, we show that for initial ϕ(x) ∈ HN(IR), for N ≥ 3,
there exists a unique u ∈ L∞([ 0, T ]; HN(IR)) where the time of
existence depends of the norm of ϕ(x) ∈ H3(IR). In section five we
developed a serie of estimates for solutions of equation (1) in weighted
Sobolev norms. We show that solution u in (1) also satisfies a persis-
tence property. Indeed, we prove that if the initial data ϕ lies in a
certain weighted Sobolev space, then the unique solution u of the non-
linear equation (1) lies in the same Sobolev space. At the conclusion
of sections, we give a formal proof of our gain in regularity theorem
for nonlinear equation (1). In section six we state our main results on
the gain of regularity for the nonlinear equation (1) and prove the a
priori estimate used in the main Theorem 7.2. In the section seven, we
state and prove our main results concerning the gain of regularity for
solutions to the nonlinear equation (1), including the main estimates
for the remainder terms. Specifically, we prove the following principal
theorem.

Theorem. (Main Theorem ) Let T > 0 and u(x, t) be a solution
of (1.1) in the region IR× [ 0, T ] such that

u ∈ L∞([ 0, T ]; H3(W0 L 0))(1.2)

for some L ≥ 2 and all σ > 0. Then

u ∈ L∞([ 0, T ]; H3+l(Wσ, L−l, l))
⋂

L2([ 0, T ]; H4+l(Wσ, L−l−1, l))

for all 0 ≤ l ≤ L− 1.
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2. Preliminaries

We consider equation of Korteweg - de Vries - Burgers type

ut + [ f(u) ]x = ε uxx − δ uxxx(2.1)

with −∞ < x < +∞ and t > 0 is an arbitrary positive time,
ε, δ > 0. The flux f = f(u) ≡ f(u(x, t)) is given smooth function
satisfying certain assumptions.

Notation 1. We write ∂ = ∂/∂x ; ∂tu = ∂u/∂t = ut

Abreviation 1. We abbreviate uj = ∂ju = ∂ju/∂xj ; ∂j =
∂/∂uj.

Example. If ∂u/∂x = u1 then

∂
∂x

[ f(u0) ] =
∂
∂x

[ f(u) ] =
∂
∂u

[ f(u) ]
∂
∂x

[ u ] =
∂
∂u

[ f(u) ] u1 = ( ∂0f ) u1

Let T > 0, The assumptions on f are as follow:

A.1 f : IR2 × [ 0, T ] 7→ IR is C∞ in all its variables.
A.2 All the derivatives of f(u, x, t) are bounded for x ∈ IR, t ∈

[ 0, T ] and u in a bounded set.
A.3 xN∂j

xf(0, x, t) is bounded for all N ≥ 0, j ≥ 0 and x ∈
IR, t ∈ ( 0, T ].

Lemma 1. These assumptions imply that f has the form

f = u0 f0 + h ≡ u f0 + h

where f0 = f0(u0, x, t) ≡ f0(u, x, t) and h = h(x, t). f0 and h are
C∞ and each of their derivatives is bounded for u bounded, x ∈ IR
and t ∈ [0, T ].
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Proof. Indeed

f0 =
{ f(y0, x, t)−f(0, x, t)

y0
for y0 6= 0

∂0f(0, x, t) for y0 = 0

and h(x, t) = f(0, x, t).

Definition 2.1. An evolution equation enjoys a gain of regularity
if its solutions are smoother for all t > 0 than its initial data.

Definition 2.2. A function ξ(x, t) belong to the weight class
Wσ i k if it is a positive C∞ function on IR × [ 0, T ], ξx ≥ 0 and
there exist constant cj, 0 ≤ j ≤ 5 such that

0 < c1 ≤ t−ke−σxξ(x, t) ≤ c2 for x < −1, 0 < t < T.(2.2)

0 < c3 ≤ t−kx−iξ(x, t) ≤ c4 for x > 1, 0 < t < T.(2.3)

(

t | ξt | + | ∂jξ |
)

/ξ ≤ c5 for (x, t) ∈ R× [ 0, T ], ∀ j ∈ Z+(2.4)

Remark 1. We shall always take σ ≥ 0, k ≥ 0 and i ≥ 1.

Example 1. Let

ξ(x) =
{

1 + e−1/x for x > 0
1 for x ≤ 0

then ξ ∈ W0 i 0.
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Definition 2.3. Fixed ξ ∈ Wσ i k define the space ( s is an integer
positive )

Hs(Wσ i k) = { v : IR → IR; ‖ v ‖2 =
∑s

j=0
∫ +∞
−∞ | ∂jv(x) |2 ξ(x, · ) dx <

+∞}

Remark 2. Hs(Wσ i k) depends t ( because ξ = ξ(x, t) ).

Lemma 2. For ξ ∈ Wσ i 0 and σ ≥ 0, i ≥ 0 there exists a
constant c such that, for u ∈ H1(Wσ i 0)

sup
x∈IR

| ξ u2 | ≤ c
∫ +∞

−∞

(

| u |2 + | ∂u |2
)

ξ dx
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Proof. This result has already been proved in [ 9 ].

Definition 2.4. Fixed T > 0 and ξ ∈ Wσ i k define the space
L2([ 0, T ]; Hs(Wσ i k)) = { v = v(x, t), v( · , t ) ∈ Hs(Wσ i k) such
that

||| v |||2=
∫ T
0 ‖ v( · , t) ‖2 dt < +∞}

L∞([ 0, T ]; Hs(Wσ i k)) = { v = v(x, t), v( · , t ) ∈ Hs(Wσ i k) such
that

||| v |||∞= supt∈ [ 0, T ] ess ‖ v( · , t ) ‖ < +∞}

Remark 3. The usual Sobolev space is Hs(IR) = Hs(W0 0 0)
without a weight.

From now on we consider the following equation

ut + δ u3 − ε u2 + ∂0f u1 = 0(2.5)

The equation is considered for −∞ < x < +∞, t ∈ [ 0, T ] and T
is an arbitrary positive time.

3. An Important a Priori Estimate

In this section we show an fundamental a priori estimate to demon-
strate basic local-in-time existence theorem. Differentiating the equa-
tion (2.5) two times leads to

∂tu2 + δ u5 − ε u4 + ∂0f(u) u3 + 3∂2
0f(u) u1 u2 + ∂3

0f(u) u3
1 = 0(3.1)

Let u = ∧v where ∧ = (I − ∂2)−1. Then ∂tu2 = − vt + ut

replacing in (3.1) we have

− vt + δ ∧ v5 − ε ∧ v4 + ∂0f ∧ v3 + 3∂2
0f ∧ v1 ∧ v2 + ∂3

0f (∧v1)3

− δ ∧ v3 + ε ∧ v2 − ∂0f ∧ v1 = 0(3.2)

The equation (3.2) is linearized by substituting a new variable w
in each coefficient

−vt + δ ∧ v5 − ε ∧ v4 + ∂0f(∧w) ∧ v3 + 3 ∂(∂0f(∧w)) ∧ v2

+ ∂2(∂0f(∧w)) ∧ v1 − δ ∧ v3 + ε ∧ v2 − ∂0f(∧w) ∧ v1 = 0(3.3)
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This linear (3.3) equation which is to be solved at each iteration
has the form

∂tv = δ ∧ v5 − ε ∧ v4 + b(1) ∧ v3 + b(0)(3.4)

We consider the following lemma that to help us to set up the
iteration scheme.

Lemma 3.1. Given initial data in ϕ ∈ H∞(IR) =
⋂

N≥0 HN(IR)
there exists a unique solution of (3.5). Where b(1) = b(1)(∧w) and
b(0) = b(0)(∧w2, ∧w1, ∧w) are smooth bounded coefficients with w ∈
H∞(IR). The solution is defined in any time interval in which the
coefficients are defined.

The next step is to estimate the corresponding solutions v =
v(x, t) of equation (3.3) via the coefficients of that equation.

Lemma 3.2. Let v, w ∈ Ck([ 0, +∞); HN(IR)) for all k, N
which satisfy (3.3). Let 0 < c1 ≤ ξ ≤ c2. For each integer α there
exist positive nondecreasing functions G,E and F such that for all
t ≥ 0

∂t
∫

R ξ v2
α dx ≤ G( ‖w ‖λ ) ‖ v ‖2

α + E( ‖w ‖λ ) ‖w ‖2
α + F ( ‖w ‖α )

(3.5)

where ‖ · ‖α is the norm in Hα(IR) and λ = max {1, α}.

4. Uniqueness and Local Existence Theorem

In this section, we study uniqueness and local existence of strong
solutions for the problem (2.5). Specifically, we show that for ini-
tial ϕ(x) ∈ HN(IR), for N ≥ 3, there exists a unique u ∈
L∞([ 0, T ]; HN(IR)) where the time of existence depends of the norm
of ϕ(x) ∈ H3(IR). These results are used in the proof of Theorem
7.2. First we address the question of uniqueness.
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Theorem 4.1. (Uniqueness ) Let ϕ ∈ HN(IR) with N ≥ 3 and
0 < T < +∞. Assume f satisfies A.1-A.3. Then there is at most
one strong solution u ∈ L∞([ 0, T ]; HN(IR)) of (2.5) with initial data
u(x, 0) = ϕ(x).

Proof. Assume u, v ∈ L∞([ 0, T ]; HN(IR)) are two solutions of
(2.5) with ut, vt ∈ L∞([ 0, T ]; HN−3(IR)) and with the same initial
data. Then

(u− v)t + δ (u− v)3 − ε (u− v)2 + [ f(u)− f(v) ]1 = 0(4.1)

with (u− v)(x, 0) = 0. By the mean value theorem we have

f(u)− f(v) = ∂f( θ u + ( 1− θ ) v ) (u− v) 0 < θ < 1.
then there is smooth function d depending smoothly on

u, x, t and v, x, t such that (4.1) takes the form

(u− v)t + δ (u− v)3 − ε (u− v)2 + d1 (u− v) + d (u− v)1 = 0(4.2)

Multiplying (4.2) by 2 ξ (u− v) and integrating in x over IR

2
∫

R ξ (u− v) (u− v)t dx + 2 δ
∫

R ξ (u− v) (u− v)3 dx
−2 ε

∫

R ξ (u− v) (u− v)2 dx

+ 2
∫

R
ξ d1 (u− v)2 dx + 2

∫

R
ξ d (u− v) (u− v)1 dx = 0(4.3)

In the firs term we have

2
∫

R ξ (u− v) (u− v)t dx = ∂t
∫

R ξ (u− v)2 dx−
∫

R ξt (u− v)2 dx

In the second term integrating by parts
2 δ

∫

R ξ (u− v) (u− v)3 dx =
= − 2 δ

∫

R ∂ξ (u− v) (u− v)2 dx− 2 δ
∫

R ξ (u− v)1 (u− v)2 dx
= 2 δ

∫

R ∂2ξ (u− v) (u− v)1 dx + 2 δ
∫

R ∂ξ (u− v)2
1 dx + δ

∫

R ∂ξ (u−
v)2

1 dx
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= − δ
∫

R ∂3ξ (u− v)2 dx + 3 δ
∫

R ∂ξ (u− v)2
1 dx

The others terms are treated the similar form. Replacing over (4.3)
we have

∂t
∫

R ξ (u− v)2 dx−
∫

R ξt (u− v)2 dx + 3 δ
∫

R ∂ξ (u− v)2
1 dx

− δ
∫

R ∂3ξ (u− v)2 dx + 2 ε
∫

R ξ (u− v)2
1 dx− ε

∫

R ∂2ξ (u− v)2 dx
+ 2

∫

R ξ d1 (u− v)2 dx−
∫

R ∂( ξ d ) (u− v)2 dx = 0
then

∂t
∫

R ξ (u− v)2 dx +
∫

R( 3 δ∂ξ + 2 ε ξ ) (u− v)2
1 dx =

∫

R[ ξt + δ ∂3ξ
+ε ∂2ξ − 2 ξ d1 + ∂( ξ d ) ] (u− v)2 dx

Using the assumptions on f and for a suitably chosen constant c ,
we have

∂t

∫

IR
ξ (u− v)2 dx +

∫

IR
( 3δ ∂ξ + 2 ε ξ ) (u− v)2

1 dx ≤ c
∫

IR
ξ (u− v)2 dx

By Gronwall’s inequality and the fact (u − v) vanishes at t = 0 it
follows that u = v. This proves uniqueness.

To stablish the local existence of strong solutions to (2.5) we use
of the a priori estimate together with a approximation procedure.

We construct the mapping T : L∞([ 0, T ] ;Hs(IR)) → L∞([ 0, T ]
;Hs(IR)) by defining that

u(0) = ϕ( x )
u(n) = T ( u(n−1) ) n ≥ 1

where u(n−1) is in the position of w in equation (3.3) and u(n) is in the
position of v which is the solution of equation (3.3). By to lemma 3.1.,
u(n) exists and is unique in C(( 0, +∞ ); HN(IR)). A choice of c0 and
the use of the a priori estimate in §3 show that T : IBc0(0) → IBc0(0)
with IBc0(0) a bounded ball in L∞([ 0, T ]; Hs(IR)).

We know state our existence theorem for equation (2.5).

Theorem 4.2. ( Local Existence ) Assume f satisfies A.1 - A.4.
Let N be an integers ≥ 3. If ϕ ∈ HN(IR), then there is T > 0 and u
such that u is a strong solution of (2.5). u ∈ L∞([ 0, T ]; HN(IR))
with initial data u(x, 0) = ϕ(x) .

Proof. We prove that for ϕ ∈ H∞(IR) =
⋂

k≥0 Hk(IR) there
exists a solution
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u ∈ L∞([ 0, T ]; HN(IR)) with initial data u(x, 0) = ϕ(x) and
which a time of existence T > 0 which only depends on the norm of
ϕ.

We define a sequence of approximations to equation (3.3) as

− v(n)
t + δ ∧ v(n)

5 − ε ∧ v(n)
4 + ∂0f(∧v(n−1)) ∧ v(n)

3 + 3 ∂(∂0f(∧v(n−1)))
∧v(n)

2 + ∂2(∂0f(∧v(n−1))) ∧ v(n)
1 − δ ∧ v(n)

3 + ε ∧ v(n)
2 − ∂0f(∧v(n−1))

∧v(n)
1 = 0

(4.4)
with initial data v(n)(x, 0) = ϕ(x)− ∂2ϕ(x).

The first approximation is given by v(0)(x, 0) = ϕ(x) − ∂2ϕ(x).
Equation (4.4) is a linear equation at each iteration which can be
solved in any interval of time in which the coefficients are defined.
This is shown in lemma 3.1. By lemma 3.2 follows that

∂t
∫

R ξ [ v(n)
α ]2 dx ≤ G( ‖ v(n−1) ‖λ ) ‖ v(n) ‖2

α + E( ‖ v(n−1) ‖λ ) ‖ v(n−1) ‖2
α

+F ( ‖ v(n−1) ‖α )
(4.5)
Choose α = 1 and let c0 ≥ ‖ϕ − ∂2ϕ ‖1 ≥ ‖ϕ ‖3. For each iterate
n, ‖ v(n)( · , t) ‖ is continuous in t ∈ [ 0, T ] and ‖ v(n)( · , 0) ‖ ≤ c0.
Define c3 = c2

2c1
c2
0 + 1. Let T (n) be the maximum time such that

‖ v(k)( · , t) ‖1 ≤ c3 for 0 ≤ t ≤ T (n), 0 ≤ k ≤ n. Integrating (4.5)
over [ 0, t ] we have for 0 ≤ t ≤ T (n) and j = 0, 1, . . . follows that

∫

R ξ(x, t) [ v(n)
j (x, t) ]2 dx ≤

∫

R ξ(x, 0) [ v(n)
j (x, 0) ]2 dx+

∫ t
0 G( ‖ v(n−1) ‖1 ) ‖ v(n) ‖2

j ds +
∫ t
0 E( ‖ v(n−1) ‖1 ) ‖ v(n−1) ‖2

j ds+
∫ t
0 F ( ‖ v(n−1) ‖j ) ds

hence

c1
∫

R[ v(n)
j ]2 dx ≤

∫

R ξ [ v(n)
j ]2 dx ≤

∫

R ξ(x, 0) [ v(n)
j (x, 0) ]2 dx+

∫ t
0 G( ‖ v(n−1) ‖1 ) ‖ v(n) ‖2

j ds +
∫ t
0 E( ‖ v(n−1) ‖1 ) ‖ v(n−1) ‖2

j ds+
∫ t
0 F ( ‖ v(n−1) ‖j ) ds

this way
∫

IR
[ v(n)

j ]2 dx ≤ c2

c1

∫

IR
[ v(n)

j (x, 0) ]2 dx+
G(c3)

c1
c2
3 t+

E(c3)
c1

c2
3 t+

F (c3)
c1

t
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and we obtain for j = 0, 1.

‖ v(n) ‖1 ≤
c2

c1
c2
0 + 2

G(c3)
c1

c2
3 t + 2

E(c3)
c1

c2
3 t + 2

F (c3)
c1

t

Choosing T = T (c0) sufficiently small, but T not depending on n ,
one concludes that

‖ v(n) ‖1 ≤ c(4.6)

for 0 ≤ t ≤ T. This shows that T (n) ≥ T. We have shown that v(n)

is a bounded sequence in L∞([ 0, T ]; H1(IR)). Hence of (4.6) there
is a weak∗ convergent subsequence v(nj) def= v(n) such that v(n) ∗⇀
v weak in L∞([ 0, T ]; H1(IR)).

Claim. u = ∧v is the solution we are looking for.

Proof. We first need to show that v is a solution of (3.2). We
do so by showing that each term in (4.4) converges to its corret
limit. By equation (4.4), ∂tv(n) is a sum of terms each of which
is the product of a coefficient, bounded uniformly in n , so that the
sequence ∂tv(n) is bounded in L2([ 0, T ]; H−2(IR)). By Lions-
Aubin’s compactness theorem, there is a subsequence v(nj) def= v(n)

such that v(n) −→ v strongly in L2([ 0, T ]; H1/2
loc (IR)). Therefore,

for a subsequence, v(nj) def= v(n) we have v(n) −→ v a. e. in x
and t. It follows that the fourth term on the right hand side of (4.4)
∂0f(∧v(n−1))∧v(n)

3 ⇀ ∂0f(∧v)∧v3 weak in L2([ 0, T ]; L1
loc(IR)) as

∧v(n)
3 ⇀ ∧v3 weak in L2([ 0, T ]; H−2(IR)) and ∂0f(∧v(n−1)) −→

∂0f(∧v) strong in L2([ 0, T ]; H2
loc(IR)). Similarly all other terms in

(4.4) converge to their corrects limits, implying v(n)
t ⇀ vt weak in

L2([ 0, T ]; L1
loc(IR)). This way we have (2.5) for u = ∧v.

We prove that there exists a solution of the equation (2.5) with
u ∈ L∞([ 0, T ]; HN(IR)) and N ≥ 4, where T depends only on the
norm of ϕ. We already know that there is a solution ( previously )
u ∈ L∞([ 0, T ]; H3(IR)). It is suffices to prove that the approximating
sequence v(n) is bounded in L∞([ 0, T ]; HN−2(IR)). Take α = N−2
and consider (4.5) for α ≥ 2. By the same arguments as for α = 1
we conclude that there exists T (α) > 0 depending on the norm of ϕ
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but independent n such that ‖ v(n) ‖α ≤ c for all 0 ≤ t ≤ T (α).
Thus v ∈ L∞([ 0, T (α) ]; Hα(IR)). Now denote by 0 ≤ T ∗(α) ≤ +∞
the maximal number such that for all 0 < T ≤ T ∗(α)

u = ∧v ∈ L∞([ 0, T ]; HN(IR))

We claim that T (1) ≤ T ∗(α) for all α ≥ 2. Thus T can be cho-
sen depending only on norm of ϕ. Approximating ϕ by {ϕj} ∈
C∞

0 (IR) such that ‖ϕ − ϕj ‖HN (IR)
j−→+∞−→ 0. Let uj be a so-

lution of (2.5) with uj(x, 0) = ϕj(x). According to the above ar-
gument, there exists T which is independent of n but depending
only supj ‖ϕj ‖ such that uj exists on [ 0, T ] and a subsequence

uj
j−→+∞−→ u in L∞([ 0, T ]; HN(IR)). As a consequence of Theorem

4.1 and Theorem 4.2 and its proof one gets.

Corollary 4.3. Let ϕ ∈ H3(IR)
⋂

HN(IR) with N ≥ 3 such
that ϕ(γ) −→ ϕ in HN(IR). Let u and u(γ) be the corresponding
unique solutions given by Theorems 4.1 and 4.2 in L∞([ 0, T ]; HN(IR))
with T depending only on supγ ‖ϕ(γ) ‖H3(IR) then

u(γ) ∗⇀ u weak in L∞([ 0, T ]; HN(IR))

and
u(γ) −→ u strong in L2([ 0, T ]; HN+1(IR))

5. Main Inequality

Lemma 5.1. Let u be a solution of the initial value problem (2.5).
Then we have the following inequality.

∂t

∫

IR
ξ u2

α dx +
∫

IR
η u2

α+1 dx +
∫

IR
θ u2

α dx +
∫

IR
R dx ≤ 0

with
η =

(

3 δ + 2 ε
c

)

∂ξ
θ = −ξt − δ ∂3ξ − ε ∂2ξ − ∂( ξ ∂0f )
R = O( uα, . . . )
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Proof. Taking α-derivatives of the equation (2.5) (for α ≥ 3 )
over x ∈ IR

∂tuα + δ uα+3 − ε uα+2 + ∂0f uα+1 + O( uα, uα−1, . . . ) = 0(5.1)

Multiply (5.1) by 2 ξ uα , integrate over x ∈ IR we have

2
∫

IR ξ uα ∂tuα dx + 2 δ
∫

IR ξ uα uα+3 dx− 2 ε
∫

IR ξ uα uα+2 dx+
2

∫

IR ξ uα ∂0f uα+1 dx +
∫

IR R dx = 0

integrating by parts we have

∂t

∫

IR
ξ u2

α dx +
∫

IR
( 3 δ ∂ξ + 2 ε ξ ) u2

α+1 dx +
∫

IR
θ u2

α dx +
∫

IR
R dx = 0

with θ = −ξt − δ ∂3ξ − ε ∂2ξ − ∂( ξ ∂0f ). Using (2.4) follows

∂t

∫

IR
ξ u2

α dx +
∫

IR

(

3 δ + 2
ε
c

)

∂ξ u2
α+1 dx +

∫

IR
θ u2

α dx +
∫

IR
R dx ≤ 0

where we obtain main inequality.

∂t

∫

R
ξ u2

α dx +
∫

R
η u2

α+1 dx +
∫

R
θ u2

α dx +
∫

R
R dx ≤ 0(5.2)

with
η =

(

3 δ + 2 ε
c

)

∂ξ
θ = −ξt − δ ∂3ξ − ε ∂2ξ − ∂( ξ ∂0f )
R = O( uα, . . . )

Lemma 5.2. If η ∈ Wσ i k is an arbitrary weight function, then
there exist ξ ∈ Wσ, i+1, k which satisfies

η =
(

3 δ + 2
ε
c

)

∂ξ(5.3)

Proof. Indeed

ξ =
1

(

3 δ + 2 ε
c

)

∫ x

−∞
η(y, t) dy(5.4)
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Lemma 5.3. The expression R in the main inequality is a sum
of terms of the form

ξ ∂p0
0 ∂γ

xf uν1 uν2 . . . uνp−1 uνp uα(5.5)

where 1 ≤ ν1 ≤ ν2 ≤ . . . ≤ νp ≤ α.

p = p0 ≥ 1, γ = α + 1(5.6)

ν1 + ν2 + . . . + νp = α + 1(5.7)

p + νp−1 + νp ≤ α + 3(5.8)

6. Persistence Theorem

As a starting point for the a priori gain of regularity results that will be
discussed in next section, we need to develop some estimates for solu-
tions of the equation (2.5) in weighted Sobolev norms. The existence of
these weighted estimated is often called the persistence of a property
of the initial data ϕ. We show that if ϕ ∈ H3(IR)

⋂

HL(W0 i 0) for L ≥
3, i ≥ 1 then the solution u( · , t) evolves in HL(W0 i 0) for t ∈ [ 0, T ].
The time interval of such persistence is at least as long as the interval
guaranteed by the existence theorem 4.2.

Theorem 6.1. ( Persistence ) Let i ≥ 1 and L ≥ 3 be non-
negative integers, 0 < T < +∞. Assume that u is the solution
to (2.5) in L∞([ 0, T ]; H3(IR)) with initial data ϕ(x) = u(x, 0) ∈
H3(IR). If ϕ(x) ∈ HL(W0 i 0) then

u ∈ L∞([ 0, T ]; H3(R)
⋂

HL(W0 i 0))(6.1)

∫ T

0

∫

R
| ∂L+1u(x, t) |2 η dx dt < +∞(6.2)

where σ is arbitrary, η ∈ Wσ, i−1, 0 for i ≥ 1.
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7. The Main Theorem

In this section we state and prove our main theorem, which tells us that
if the initial data u(x, 0) decays faster than polinomially on IR+ =
{x ∈ IR ; x > 0 } and possesses certain initial Sobolev regularity, then
the solution u(x, t) ∈ C∞ for all t > 0.
In the case of main theorem, we take 4 ≤ α ≤ L + 2. For α ≤ L + 2,
we take any

η ∈ Wσ, L−α+2, α−3 =⇒ ξ ∈ Wσ, L−α+3, α−3(7.1)

Lemma 7.1. ( Estimate of Error Terms ) Let 4 ≤ α ≤ L + 2 and the
weight functions are chosen as in (7.1), then

∣

∣

∣

∣

∣

∫ T

0

∫

IR

(

θ u2
α + R

)

dx dt
∣

∣

∣

∣

∣

≤ c(7.2)

where c depends only on the norms of u in

L∞([ 0, T ]; Hβ(Wσ, L−β+2, β−3))
⋂

L2([ 0, T ]; Hβ+1(Wσ, L−β+1, β−3))

for 3 ≤ β ≤ α− 1, and the norms of u in L∞([ 0, T ]; H3(W0 L 0)).

Theorem 7.2. (Main Theorem ) Let T > 0 and u(x, t) be a
solution of (2.5) in the region IR× [ 0, T ] such that

u ∈ L∞([ 0, T ]; H3(W0 L 0))(7.3)

for some L ≥ 2 and all σ > 0. Then

u ∈ L∞([ 0, T ]; H3+l(Wσ, L−l, l))
⋂

L2([ 0, T ]; H4+l(Wσ, L−l−1, l))

for all 0 ≤ l ≤ L− 1.

Remark 7.1. If the assumption (7.9) holds for all L ≥ 2, the so-
lution is infinitely differentiable in the x -variable. From the equation
(2.5) itself the solution C∞ in both of its variables.
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Proof. ( Induction on α )
For α = 4. Let u be a solution (2.5) satisfying (7.9), the equa-

tion itself implies that ut ∈ L∞([ 0, T ]; L2(W0 L 0)) where u ∈
L∞([ 0, T ]; H3(W0 L 0)), ut ∈ L∞([ 0, T ]; L2(W0 L 0)) then u ∈
C([ 0, T ]; L2(W0 L 0))

⋂

Cw([ 0, T ]; H3(W0 L 0)). Hence u : [ 0, T ] 7→
H3(W0 L 0) is a weakly continuous function. In particular u( · , t) ∈
H3(W0 L 0) for all t. Let t0 ∈ ( 0, T ) and u( · , t0) ∈ H3(W0 L 0),
then there are {ϕ(n) } ⊂ C∞

0 (IR) such that

ϕ(n)( · ) −→ u( · , t0) in H3(W0 L 0)

Let u(n)(x, t) be a unique solution of (2.5) with u(n)(x, t0) = ϕ(n)(x).
Then by theorem 4.1, theorem 4.2 to exist in a time interval [ t0, t0 +
δ ] where δ > 0 does not depend on n and u be a unique solution of
(2.5) u(n) ∈ L∞([ t0, t0 + δ ]; H3(W0 L 0)) with

u(n)(x, t0) ≡ ϕ(n)(x) −→ u(x, t0) ≡ ϕ(x) in H3(W0 L 0)

Now, by theorem 6.1, we have

u(n) ∈ L∞([ t0, t0 + δ ]; H3(W0 L 0))
⋂

L2([ t0, t0 + δ ]; H4(Wσ, L−1, 0))

with a bound that depends only on the norm of ϕ(n) in H3(W0 L 0).
Furthermore, Theorem 6.1 guarantees the non-uniform bounds

sup
[ t0, t0+δ ]

sup
x

( 1 + |x+ | )k | ∂αu(n)(x, t) | < +∞

for each n, k and α. The main inequality (5.2) and the estimate
(7.2) are therefore valid for each u(n) in the interval [t0, t0 + δ].
η may be chosen arbitrarily in its weight class (7.1) and then ξ is
defined by (5.4) and the constant c1, c2, c3, c4 are independent of n.
From (5.2) and (7.2) we have

sup
[ t0, t0+ δ ]

∫

R
ξ [ u(n)

α ]2 dx +
∫ t0+ δ

t0

∫

R
η [ u(n)

α+1 ]2 dx dt ≤ c(7.4)

where by (7.2) c independ of n. This estimate (7.10) is proved by
induction for α = 4, 5, 6, . . . Thus u(n) is also bounded in

L∞([ t0, t0 + δ ]; Hα(Wσ, L−α+3, α−3))
⋂

L2([ t0, t0 + δ ] ;
Hα+1(Wσ, L−α+2, α−3))

(7.5)
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for α ≥ 4. Since

u(n) −→ u in L∞([ t0, t0 + δ ]; H3(W0 L 0))

By corollary 4.3 it follows that u belong to the space (7.11). Since δ
is fixed, this result is valid over the whole interval [ 0, T ].
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