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Abstract Inexact graph matching has been one of the

significant research foci in the area of pattern analysis. As

an important way to measure the similarity between pair-

wise graphs error-tolerantly, graph edit distance (GED) is

the base of inexact graph matching. The research advance

of GED is surveyed in order to provide a review of the

existing literatures and offer some insights into the studies

of GED. Since graphs may be attributed or non-attributed

and the definition of costs for edit operations is various, the

existing GED algorithms are categorized according to these

two factors and described in detail. After these algorithms

are analyzed and their limitations are identified, several

promising directions for further research are proposed.

Keywords Inexact graph matching � Graph edit distance �
Attributed graph � Non-attributed graph

1 Originality and contribution

Graph edit distance is an important way to measure the

similarity between pairwise graphs error-tolerantly in

inexact graph matching and has been widely applied to

pattern analysis and recognition. However, there is scarcely

any survey of GED algorithms up to now, and therefore

this paper is novel to a certain extent. The contribution of

this paper focuses on the following aspects:

On the basis of authors’ effort for studying almost all

GED algorithms, authors firstly expatiate on the idea of

GED with illustrations in order to make the explanation

visual and explicit;

Secondly, the development of GED algorithms and

significant research findings at each stage, which should

be comprehended by researchers in this area, are

summarized and analyzed;

Thirdly, the most important part of this paper is providing

a review of the existing literatures and offering some

insights into the studies of GED. Since graphs may be

attributed or non-attributed and the definition of costs for

edit operations is various, existing GED algorithms are

categorized according to these two factors and are

described in detail. Advantages and disadvantages of

these algorithms are analyzed and indicated by compa-

ring them experimentally and theoretically;

Finally, a conclusion is given that several promising

directions for further research are proposed in terms of

limitations of the existing GED algorithms.

2 Introduction

In structural pattern recognition, graphs have invariability

to rotation and translation of images, and in addition,
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transformation of an image into a ‘mirror’ image; thus they

are used widely as the potent representation of objects.

With the representation of graphs, pattern recognition

becomes a problem of graph matching. The presence of

noise means that the graph representations of identical real

world objects may not match exactly. One common

approach to this problem is to apply inexact graph

matching [1–5], in which error correction is made part of

the matching process. Inexact graph matching has been

successfully applied to recognition of characters [6, 7],

shape analysis [8, 9], image and video indexing [10–14]

and image registration [15]. Since photos and their corre-

sponding sketches are similar to each other geometrically

and their difference mainly focuses on texture information,

photos and sketches can be represented with graphs and

then sketch-photo recognition [16] will be realized through

inexact graph matching in the future. Central to this

approach is the measurement of the similarity of pairwise

graphs. This can be measured in many ways but one

approach which of late has garnered particular interest

because it is error-tolerant to noise and distortion is the

graph edit distance (GED), defined as the cost of the least

expensive sequence of edit operations that are needed to

transform one graph into another.

In the development of GED which is demonstrated in

Fig. 1, Sanfeliu and Fu [17] plays an important role, who

first introduced edit distance into graph. It is computed by

counting node and edge relabelings together with the

number of node and edge deletions and insertions neces-

sary to transform a graph into another. Extending their

idea, Messmer and Bunke [18, 19] defined the subgraph

edit distance by the minimum cost for all error-correcting

subgraph isomorphisms, in which common subgraphs of

different model graphs are represented only once and the

limitation of inexact graph matching algorithms working

on only two graphs once can be avoided. But the direct

GED lacks some of the formal underpinning of string edit

distance, so there is considerable current effort aimed at

putting the underlying methodology on a rigorous footing.

There have been some development for overcoming this

drawback, for instance, the relationship between GED and

the size of the maximum common subgraph (MCS) has

been demonstrated [20], the uniqueness of the cost-func-

tion is commented [21], a probability distribution for local

GED has been constructed, extending of string edit to trees

and graphs, etc. GED has been computed for both attrib-

uted relational graphs and non-attributed graphs so far.

Attributed graphs have the attribute of nodes, edges, or

both nodes and edges according to which the GED is

computed directly. Non-attributed graphs only include the

information of connectivity structure; therefore they are

usually converted into strings and edit distance is used to

compare strings, the coded patterns of graphs. The edit

distance between strings can be evaluated by dynamic

programming [5], which has been extended to compare

trees and graphs on a global level [22, 23]. Hancock et al.

used Levenshtein distance, an important kind of edit dis-

tance, to evaluate the similarity of pairwise strings which

are derived from graphs [24]. Whereas Levenshtein edit

distance does not fully exploit the coherence or statistical

dependencies existing in the local context, Wei made use

of Markov random field to develop the Markov edit dis-

tance [25] in 2004. Recently, Marzal and Vidal [26]

normalized the edit-distance so that it may be consistently

applied across a range of objects in different size and this

idea has been used to model the probability distribution for

edit path between pairwise graphs [27]. The Hamming

distance between two strings is a special case of the edit

distance. Hancock measures the GED with Hamming dis-

tance between the structural units of graphs together with

the size difference between graphs [28]. So, in the deve-

lopment of GED, the role of edit distance [5, 29] cannot be

neglected and its advancement promotes the birth of new

GED algorithms.

Although the research of GED has been developed

flourishingly, GED algorithms are influenced considerably

by cost functions which are related to edit operations. The

GED between pairwise graphs changes with the change of

cost functions and its validity is dependent on the ratio-

nality of cost functions definition. Researchers have

defined the cost functions in various ways by far, and

particularly, the definition of cost functions is cast into a

probability framework mainly by Hancock and Bunke

lately [30, 31]. The problem is not solved radically. Bunke

[21] connects cost functions with multifold graph isomor-

phism in theory and then the necessity of cost function

definition can be removed. But graph isomorphism is a

kind of NP-complete problem and has to work together

with constraints and heuristics in practice. So, efforts are

still needed to develop new GED algorithms having

Fig. 1 The development of

GED
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reasonable cost functions or independent of defining cost

functions, such as the algorithms in [32, 33].

The aim of this paper is to provide a survey of current

development of GED which is related to computing the

dissimilarity of graphs in error correcting graph matching.

This paper is organized as follows: after some concepts and

basic algorithms are given in Sect. 3, the existing GED

algorithms are categorized and described in detail in

Sect. 4, which compares existing algorithms to show their

advantages and disadvantages. In Sect. 5, a summary is

presented and some important problems of GED deserving

further research are proposed.

3 Basic concepts and algorithms

Many concepts of graph theory and basic algorithms of

search and learning strategies are regarded as the founda-

tion of existing GED algorithms. In order to describe and

analyze GED algorithms thoroughly, these concepts have

to be expounded in advance.

3.1 Concepts related to graph theory

The subject investigated by GED is the graph representa-

tion of objects, and, judging from current research results,

graph theory is the basis of GED research; therefore,

introduction of some concepts related to graph theory is

necessary, such as the definitions of the graph with or

without attributes, the directed acyclic graph, the common

subgraph, the common supergraph, the maximum weight

clique, the isomorphism of graphs, the transitive closure,

the Fiedler vector and the super clique.

3.1.1 Definitions of the graph and the attributed graph

A graph is denoted by G = (V, E), where

V ¼ f1; 2; . . .;Mg

is the set of vertices (nodes), E is the edge set

(E 7 V 9 V). If nodes in a graph have attributes, the

graph is an attributed graph denoted by G = (V, E, l),

where l is a labeling function

l : V ! LN :

If both nodes and edges in a graph have attributes, the

graph is an attributed graph denoted by G = (V, E, a, b),

where

a : V ! LN and b : E ! LE

are node and edge labeling functions. LN and LE are

restricted to labels consisting of fixed-size tuples, that is,

LN = Rp, LE = Rq, p, q [ N [ {0}.

3.1.2 Definitions of the directed graph and directed

acyclic graph

Given a graph G = (V, E), if E is a set of ordered pairs of

vertices, G is a directed graph and edges in E are called

directed edges. If there is no non-empty directed path that

starts and ends on v for any vertex v in V, G is a directed

acyclic graph.

3.1.3 Definition of the subgraph and supergraph

Let G = (V, E, a, b) and G0 = (V0, E0, a0, b0) be two

graphs; G0 is a subgraph of G, G is a supergraph of G0,
G0 7 G, if

• V0 7 V,

• E0 7 E,

• a0(x) = a(x) for all x [ V0,
• b0((x, y)) = b((x, y)) for all (x, y) [ E0.

For non-attributed graphs, only the first two conditions are

needed.

3.1.4 Definition of the graph isomorphism

Let G1 = (V1, E1, a1, b1) and G2 = (V2, E2, a2, b2) be two

graphs. A graph isomorphism between G1 and G2 is a

bijective mapping f : V1 ? V2 such that

• a1(x) = a2(f(x)), Vx [ V1,

• b1((x, y)) = b2((f(x), f(y))), V(x, y) [ E1.

For non-attributed graphs G1
0 = (V1

0, E1
0) and

G2
0 = (V2

0, E2
0), a bijective mapping f : V1

0 ? V2
0 such

that ðu; vÞ 2 E01 , ðf ðuÞ; f ðvÞÞ 2 E02; Vu, v [ V1
0 is a graph

isomorphism between these two graphs.

If V1 = V2 = /, then f is called the empty graph

isomorphism.

3.1.5 Definitions of the common subgraph

and the maximum common subgraph

Let G1 and G2 be two graphs and G1
0 7 G1, G2

0 7 G2. If

there exists a graph isomorphism between G1
0 and G2

0, then

both G1
0 and G2

0 are called a common subgraph of G1 and

G2. If there exists no other common subgraph of G1 and G2

that has more nodes than G1
0 and G2

0, G1
0 and G2

0 are

called a MCS of G1 and G2.

3.1.6 Definitions of the common supergraph

and the minimum common supergraph

A graph G
^

is a common supergraph of two graphs G1 and

G2 if there exist graphs G
^

1 � G
^

and G
^

2 � G
^

such that there

exists a graph isomorphism between G
^

1 and G1, and a
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graph isomorphism between G
^

2 and G2. It is a minimum

common supergraph if there is no other common super-

graph of G1 and G2 smaller than G
^

:

3.1.7 Definition of the Fiedler vector

If the degree matrix and adjacency matrix of a graph are

diagonal matrix

D ¼ diagðdegð1Þ; degð2Þ; . . .; degðMÞÞ;

where M is the last node in the graph, and the symmetric

matrix A, respectively, the Laplacian matrix is the matrix

L = D - A. The eigenvector corresponding to the second

smallest eigenvalue of the graph Laplacian is referred to as

the Fiedler vector.

3.1.8 Definitions of the clique and the maximum weight

clique

A clique in a graph is a set of nodes which are adjacent to

each other, for example, in Fig. 2, node 3, node 4 and node

5 form a clique in the graph. Weight clique is the extension

of clique to weighted graphs. Maximum weight clique is

the clique with the largest weight.

3.1.9 Definition of the super clique

Given a graph G = (V, E), the super clique (or neighbor-

hood) of the node i [ V consists of its center node i

together with its immediate neighbors connected by edges

in the graph.

3.1.10 Transitive closure

The transitive closure of a directed graph G = (V, E) is a

graph G ? = (V, E?) such that for all v and w in V, (v,

w) [ E? if and only if there is a non-null path from v to w

in G.

3.2 Basic algorithms used in the existing GED

algorithms

The definition of cost functions is key issue of GED

algorithms and self-organizing map (SOM) can be used to

learn cost functions automatically to some extent [34].

GED is defined as the cost of least expensive edit

sequences; thus search strategy for shortest path is closely

related to GED algorithms. Dijkstra’s algorithm is the most

popular shortest path algorithm and is applied by Robles-

Kelly [35]. In addition, expectation maximum (EM) algo-

rithm is applied to parameter optimization [30]. So, EM

algorithm, Dijkstra’s algorithm and SOM are presented

here before GED algorithms are given.

3.2.1 EM algorithm

Expectation maximum algorithm [36] is one of the main

approaches for estimating the parameters of a Gaussian

mixture model (GMM). There exist two sample spaces X

and Y, and a many-one mapping from X to Y. Data Y

derived in space Y is observed directly, and corresponding

data x in X is not observed directly, but only indirectly

through Y. Data x and y are referred to as the complete data

and incomplete data, respectively. Given a set of N random

vectors

Z ¼ fz1; z2; . . .; zNg

in which each random vector is drawn from an independent

and identically distributed mixture model, the likelihood of

the observed samples (conditional probability) is defined as

the joint density

PðZ hj Þ ¼ PN
i¼1pðzi hj Þ:

Z is the complete data and zi is the incomplete data, and the

aim of EM algorithm is to determine the parameter h that

maximizes P(Z|h) given an observed Z.

The EM algorithm is an iterative maximum likelihood

(ML) estimation algorithm. Each iteration of EM algorithm

involves two steps: expectation step (E-step) and maximi-

zation step (M-step). In E-step, the updated posterior

probability is computed with the prior probability, and in

M-step, according to the posterior probability transferred

from E-step, conditional probability is maximized to obtain

the updated prior probability and the parameters corre-

sponding to the updated prior probability are transferred to

E-step.

3.2.2 Dijkstra’s algorithm

Dijkstra’s algorithm [37] is developed by Dijkstra. It is a

greedy algorithm that solves the single-source shortest path

problem for a directed graph with non-negative edgeFig. 2 An example of clique in the graph
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weights and it can be extended to undirected graph. Given

a weighted directed graph G = (V, E), each of edges in E is

given a weight value, the cost of moving directly along this

edge. The cost of a path between two vertices is the sum of

costs of the edges in that path. Given a pair of vertices s

and t in V, the algorithm finds the shortest path from s to t.

Let S be the set of nodes visited along the shortest path

from s to t. The adjacency matrix of G is the weight value

matrix C. The element d(i) is the cost of path from s to

vi [ V, and d(s) = 0. The algorithm can be described as

below:

• Initialization: S = /, and d(i) is the weight value of the

edge (s, vi);

• If d(j) = min{d(i)|vi [ V - S.} is true, S = S [ {vj};

• For every node vk [ V - S, if d(j) ? C(j, k) \ d(k) is

true, d(k) is updated, that is, d(k) = d(j) ? C(j, k);

• The last two steps are repeated until vertex t is visited

and d(t) is unchanged such that the shortest path from s

to t is achieved.

3.2.3 SOM

Self-organizing map [38–40] is an unsupervised artificial

neural network and maps the training samples into low-

dimensional space with the topological properties of the

input space unchanged. In SOM, neighboring neurons

compete in their activities by means of mutual lateral

interactions, and develop adaptively into specific detectors

of different signal patterns, so it is unsupervised, self-

organizing and competitive.

The SOM network consists of two layers: one is input

layer and another is competitive layer. As shown in Fig. 3,

hollow nodes denote neurons in input layer and solid nodes

are competitive neurons. Each input is connected to all

neurons in the competitive layer and every neuron in the

competitive layer is connected to the neurons in its

neighborhood. For each neuron j, its position is described

as neural weight Wj, and for neurons in the competitive

layer, the grid connections are regarded as their neigh-

borhood relation. The training process is as below:

• The neurons of the input layer selectively feed input

elements into the competitive layer;

• When an input element D is mapped onto the compet-

itive layer, the neurons in competitive layer compete

for the input element’s position to represent the input

element well. The closest neuron c, the winner neuron,

is chosen in terms of the distance metric dv which is the

distance of neural weights in the vector space;

• Neighborhood Nc = {c, n1
c, n2

c, …, nM
c }, where M is

the number of neighbors, of the winner neuron c is

determined with the distance dn between neurons which

is defined by means of the neighborhood relations. The

neuron c and its neighbors in Nc are drawn closer to the

input element and weights of the whole neighborhood

are moved in the same direction, similar items tend to

excite adjacent neurons. The strength of the adaptation

for a competitive neuron is decided by a non-increasing

activation function a(t), and the weight of the neuron j

in competitive layer is adapted according to the

following formula:

Wjðt þ 1Þ ¼
WjðtÞ þ aðtÞðDðtÞ �WjðtÞÞ; j 2 Nc

WjðtÞ; j 62 Nc

(
:

ð1Þ

• The last two steps are repeated until a terminal

condition is achieved.

4 Graph edit distance

A graph can be transformed to another one by a finite

sequence of graph edit operations which may be defined

differently in various algorithms, and GED is defined by

the least-cost edit operation sequence. In the following, an

example is used to illustrate the definition of GED. For

model graph shown in Fig. 4 and data graph shown in

Fig. 3 The structure of SOM Fig. 4 The model graph
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Fig. 5, the task is transforming data graph into model

graph. All edit operations are performed on the data

graph. One of the edit operation sequences includes node

insertion and edge insertion (node 6 and its relative edge),

node deletion and edge deletion (node a and its relative

edges), node substitution (node 1) and edge substitution

(the edge relative to node 5 and node 3). A cost function

is defined for each operation and the cost for this edit

operation sequence is sum of costs for all operations in

the sequence. The sequence of edit operations and its cost

needed for transforming a data graph into a model graph

is not unique, but the least cost is exclusive. Then edit

operation sequence with the least cost is requested and its

cost is the GED between these two graphs. It is obvious

that how to determine the similarity of components in

graphs and define costs of edit operations are the key

issues.

A graph may be an attributed relational graph with

attributes of nodes, edges, or both nodes and edges,

according to which the GED is computed directly. On the

other hand, for a structural graph only having the infor-

mation of connectivity structure, graphs are usually

converted into strings according to nodes, edges or the

connectivity, and the GED is computed based on the edit

distance methods concerning strings. GED algorithms,

whose ideas are given in brief, are classified from these two

aspects. Algorithms for different kinds of graphs are not

comparable. The distances obtained with algorithms of the

same kinds are compared in the ability of clustering and

classifying images, and accordingly their superiorities and

flaws can be concluded, which may be in favor of our

further research.

4.1 GED for attributed graphs

Graph edit distance for attributed graphs is computed

directly according to the attributes which are various in

different algorithms. In the SOM based method [34],

probability based approach [30], convolution graph kernel

based method [41] and subgraph and supergraph based

method [42], attributes are of both nodes and edges,

whereas the attribute is of nodes in binary linear pro-

gramming (BLP) based method [43].

4.1.1 SOM based algorithm

In the existing algorithms for GED, the automatic inference

of the cost for edit operations remains an open problem. To

this end, the SOM based algorithm [34] is developed, in

which the attributed graphs G = (V, E, a, b) are the

objects to be processed. Every node and edge labels are

m-dimensional and n-dimensional vectors, respectively.

The space of the node and edge labels in a population of

graphs is mapped into a regular grid which is an untrained

SOM network, and the grid will be deformed after being

trained. One type of edit operation is described by a SOM.

The actual edit costs are derived from a distance measure

for labels that is defined with the distribution encoded in

the SOM. The encoding of node substitution is described as

below:

• The m-dimensional node label space is reduced to a

regular grid by being sampled at equidistant positions.

Each vertex of the grid is connected to its nearest

neighbor along the dimensions so as to obtain a

representation of the full space. The regular grid is

SOM neural network;

• Grid vertices and connections correspond to competi-

tive neurons and neighborhood relations in the SOM;

• When it is being trained, the SOM corresponds to a

deformed grid. A label vector at a vertex position of the

regular grid is mapped directly onto the same vertex in

the deformed map. Any vector in the original space that

is not at a vertex can be mapped into the deformed

space by a simple linear interpolation of its adjacent

grid points.

• The cost of substituting node v2 for node v1 is defined

with dv, that is,

cðv1 ! v2Þ ¼ bn
subdvðv01; v02Þ;

where bsub
n is the weighting factor, and the vector vi

0 is

vi in the deformed space. The weighting factor com-

pensate for the dependency of the initial distance

between vertexes.

For other edit operations, the SOM networks are con-

structed in an analogous way. The vertex distribution of

each SOM will be changed iteratively in the learning

procedure, which results in different costs. The object is to

derive the cost functions resulting in small intraclass and

large interclass distances; therefore activation function a(t)

is defined such that the value of the function decreases

when the distance between neurons increases.

The experiments demonstrating the performance of

SOM based method are performed on the graph samples

consisting of ten distorted copies for each of the three

letter-classes A, E, and X. The instances of letter A being

sheared are illustrated in Fig. 6. Shearing factor a is used to

Fig. 5 The data graph
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indicate the degree of letter distortion. For every shearing

factor, the best average index is computed and shown in

Fig. 7. The average index, which is normalized to the unit

interval [0, 1], is defined by the average value of eight

validation indices to evaluate the performance of clustering

quantitatively. The Smaller values, the better clustering.

Eight validation indices are the Davies–Bouldin index [44],

the Dunn index [45], the C-index [46], the Goodman–

Kruskal index [47], the Calinski–Harabasz index [48],

Rand statistics [49], the Jaccard coefficient [50], and the

Fowlkes–Mallows index [51]. In Fig. 7, the average indi-

ces corresponding to SOM learning are smaller than those

of the Euclidean model under every shearing factor and the

superiority of SOM over the Euclidean model is increas-

ingly obvious with the shearing factor increasing, so edit

costs derived through SOM learning make the difference

between intraclass and interclass distances greater than that

derived through Euclidean model, which illustrates that the

SOM performs better than Euclidean model for clustering.

In this method, GED is computed based the metric dv;

therefore, the obtained GED is a metric. For a certain

application, some areas of the label space are of great

relevancy, while other areas are irrelevant. Other existing

cost functions treat every part of label space equally, which

can be overcome by the SOM based method learning the

relevant areas of the label space from graph sample set.

4.1.2 Probability based algorithm

Similar to the cost learning system based on the frequency

estimation of edit operations for the string matching [52],

Neuhaus proposed a probability based algorithm [30] to

compute GED. In this algorithm, if the GED of graphs G1

and G2 is to be computed by transferring G1 into G2, two

independent empty graphs EG1 and EG2 are constructed for

G1 and G2, respectively, by a stochastic generation process.

The sequence of node and edge insertion is applied to

either both or only one of the two constructed graphs EG1

and EG2, which can be interpreted as an edit operation

sequence transforming G1 into G2 and whose effects on G1

are presented in Table 1. Edit costs are derived from the

distribution estimation of edit operations. Each type of edit

operations, regarded as a random event, is modeled with a

GMM and the mixtures are weighted to form the proba-

bility distribution of edit events. Initialization starts with

the empiric mean and covariance matrices of a single

component, and new components are added sequentially if

the mixture density appears to converge in the training

process. Training pairs of graphs required to be similar are

extracted and the EM algorithm is employed to find a

locally optimized parameter set in terms of the likelihood

of the edit events occurring between the pairwise training

graphs. If a probability distribution of edit events sequence

ðe1; e2; . . .; elÞ

is given, the probability of two graphs p(G1, G2) is defined

as

pðG1;G2Þ ¼
Z
ðe1;e2;...;elÞ2wðG1;G2Þ

dpðe1; e2; . . .; elÞ ð2Þ

where w(G1, G2) denotes the set of all edit operations

transferring G1 to G2. Finally, the distance between these

two graphs is obtained by setting

dðG1;G2Þ ¼ � logðpðG1;G2ÞÞ: ð3Þ
This algorithm is compared with the SOM based algo-

rithm [34]. Three letter classes Z, A, and V are chosen, and 90

graphs (30 samples per class) are constructed to produce five

sample sets with different values of the distortion parameter,

0.1, 0.5, 0.8, 1.0, and 1.2. Examples of these graphs are

shown in Fig. 8. The average index consisting of the Calin-

ski–Harabasz index [48], Davies–Bouldin index [44],

0=α 25.0=α 5.0=α 75.0=α 1=α

Fig. 6 Sheared letter A with shearing factor a in [34]

Fig. 7 Comparison of average index on sheared line drawing sample

[34]

Table 1 Effects of edit operations on original graph

Edit operations Effects on G1

EG1 EG2

Node/edge insertion / Node/edge insertion

/ Node/edge insertion Node/edge deletion

Node/edge insertion Node/edge insertion Node/edge substitution
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Goodman–Kruskal index [47], and C-index [46] is computed

for every sample set, the result of which is shown in Fig. 9.

As mentioned ahead, smaller average indices correspond to

better clustering and this method corresponds to smaller

average index in every sample set and for every distortion

level; thus, it is confirmed that this method clearly leads to

better clustering results than SOM based algorithm, and the

best average index value is obtained for the second-strongest

distortion, although the matching task becomes harder and

harder with increasing distortion strength.

Although SOM neural network can derive edit costs

automatically and distinct the relevant areas of the label

space, edit costs derived according to probability distri-

bution of edit operations are more effective for clustering

distorted letters. The advantage of this method is that it is

able to cope with large samples of graphs and strong dis-

tortions between samples of the same class. It can be found

that the key of this algorithm is the probability distribution

of edit events.

4.1.3 Method based on convolution graph kernel

Kernel method is a new class of algorithms for pattern

analysis based on statistical learning. When kernel functions

are used to evaluate graph similarity, the graph matching

problem can be formulated in an implicitly existing vector

space, and then statistical methods for pattern analysis can

be applied. In the algorithm based on convolution graph

kernel [41], a novel graph kernel function is proposed to

compute the GED so as to avoid the lack of mathematical

structure in the space of graphs.

For graphs G = (V, E, l, m) and G0 = (V0, E0, l0, m0), the

cost of node substitution u ? u0 replacing node u [ V by

node u0 [ V0 is given by the radial basis function:

Ksimðu; u0Þ ¼ exp � lðuÞ � l0ðu0Þk k2
.

2r2
� �

: ð4Þ

The same function with different parameter r is also used

to evaluate the similarity of edge labels. These radial basis

functions favor edit paths containing more substitutions,

fewer insertions and fewer deletions. Hence, substitutions

are modeled explicitly, while insertions and deletions

implicitly.

The set of edit decompositions (sequence consisting of

all nodes and edges in graph) of G is denoted by R-1(G)

and a function evaluating whether two edit decompositions

are equivalent to a valid edit path is denoted by Kval. For

x [ R-1(G) and x0 [ R-1(G0), the function Kval is defined as

follows:

Kvalðx; x0Þ ¼
1; if edit path x and x0 is valid

0; otherwise

�
: ð5Þ

With these notations, the proposed edit kernel function

on graphs can finally be written as:

kðG;G0Þ ¼
X

x2R�1ðgÞ
x02R�1ðg0 Þ

Kvalðx; x0Þ
Y

i

KsimððxÞi; ðx0ÞiÞ; ð6Þ

where the index i indicates all nodes and edges present in

the edit decomposition. In the computation of the kernel

value k(G, G0), only valid edit paths are considered with the

help of function Kval.

On the one hand, convolution edit kernel based GED

and support vector machines (EK-SVM) are brought

together, whose classification performance is compared

with that of the traditional edit distance together with the k-

nearest neighbor classifier [53] (ED-kNN). This experiment

is conducted on the 15 letters that can be drawn with

straight lines only, such as A, E, F, etc. The distorted letter

graphs are split into a training set of 150 graphs, a vali-

dation set of 150 graphs, and a test set of 750 graphs. The

experimental results are shown in Fig. 10, the accuracy of

these two methods are heightened gradually with the

increase of running time and convolution edit kernel based

GED method has higher rate of classification than tradi-

tional edit distance under the same running time.

On the other hand, this method is compared with kernel

functions derived directly from edit distance [54] (ED-

(a) (b) (c) 

Fig. 8 Line drawing example. a Original drawing of letter A; b
distorted instance of the same letter with distortion parameter 0.5 and

c distortion parameter 1.0 [30]

Fig. 9 Comparison of performance with increasing strength of

distortion in [30]
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SVM), and random walks in graphs [55] (RW-SVM),

respectively. The Letters dataset used in the last experi-

ment and the image dataset which is split into a training set,

a validation set, and a test set, each of size 54, is used in

this experiment. The images are assigned to one of the

classes snowy, countryside, city, people, and streets and

they are described in [56] in detail. The classification

accuracy of four methods mentioned above is shown in

Table 2. The EK-SVM method outperforms all other

methods on the second dataset and achieves significantly

higher classification accuracy than the traditional edit dis-

tance method. RW-SVM performs as well as EK-SVM on

the first dataset, but significantly worse than all other

methods on the second dataset. Convolution edit kernel

based performs best of other methods.

In a word, the convolution edit kernel based GED

together with SVM outperforms not only the cooperation of

traditional edit distance and kNN, but also other kernel

functions combining with SVM in classification. Unlike the

traditional edit distance, this kernel function makes good

use of statistical learning theory in the inner product rather

than the graph space directly. The convolution edit kernel

is defined by decomposing pairs of graphs into edit path, so

it is more closely related to GED than other kernel

functions.

4.1.4 Method based on binary linear programming

The BLP based algorithm [43] is for graphs with vertex

attributes only and a framework for computing GED on

the set of graphs is introduced. Every attributed graph in

the set is treated as a subgraph of a larger graph referred

to as edit grid, and edit operations of converting a graph

into another one are equivalent to the state altering of the

edit grid, from which GED can be derived. With the help

of graph adjacency matrix, it can be treated as a problem

of the BLP.

If the GED between graph G0 = (V0, E0, l0) and graph

G1 = (V1, E1, l1) is to be computed, the graph G0 is firstly

embedded in a labeled complete graph

GX ¼ ðX;X� X; lXÞ;

such that

• Graph G0 is a subgraph of graph GX,

• Label lX(xi) = / for all nodes xi [ X - V0,

• Label lX(xi, xj) = 0 for all edges

ðxi;xjÞ 2 ðX� XÞ � E0

The GX = (X, X 9 X, lX) is the edit grid and its state

vector is denoted by g 2 ðR [ /ÞN � f0; 1gðN
2�NÞ=2; where

R is the label alphabet of nodes in the graph G0 and N is the

number of nodes in the edit grid.

Then, a sequence of edits used to convert graph G0 into

the graph G1 can be specified by the sequence of edit grid

state vectors {gk}k=0
M . The GED between G0 and G1 is the

minimum cost of state transition of edit grid, that is,

dcðG0;G1Þ ¼ min
fgkgM

k¼1
gM2C1j

XM
k¼1

cðgk�1; gk�1Þ

¼ min
fgkgM

k¼1
gM2C1j

XM
k¼1

XI

i¼1

c gi
k�1
; gi

k

� �

¼ min
p2P

XI

i¼1

c gi
0
; gpi

1

� �
; ð7Þ

where I = N ? (N2 - N)/2, C1 is the set of state vectors

corresponding to all isomorphisms of G1 on the edit grid,

and P is the set of all permutation mappings for

isomorphisms of the edit grid. Permutation maps the

element i of a set to other element pi of the same set. By

introducing the Kronecker delta function d : <2 ? {0, 1},

formula (7) is equalized to formula (8):

dcðG0;G1Þ ¼ min
p2P

XN

i¼1

c gi
0
; g j

1

� �
d pi; j
� �

þ cð0; 1Þ
XI

i¼Nþ1

1� d gi
0
; gpi

1

� �� �
ð8Þ

Fig. 10 Running time and accuracy of the proposed kernel function

and edit distance in [41]

Table 2 Accuracy of two edit distance methods (ED), a random walk

kernel (RW), and the proposed edit kernel (EK) in [41] (%)

Letter dataset Image dataset

ED-kNN 69.33 48.15

ED-SVM 73.2 59.26

RW-SVM 75.2 33.33

EK-SVM 75.2 68.52
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Finally, the edit grid state vector gk is represented with

the adjacency matrix Ak whose elements correspond to

edge labels in the state vector and rows (columns) are

indexed with node labels, that is

Aij
k ¼ g

iNþj�i2þi
2

k and ðAi
kÞ ¼ gi

k where 1� i; j�N

Formula (8) is converted into formula (9)

dcðG0;G1Þ ¼ min
P;S;T2f0;1gN�N

XN

i¼1

XN

j¼1

cðlðAi
0Þ; lðA j

1ÞÞPij

þ 1

2
cð0; 1ÞðSþ TÞij

s:t: ðA0P� PA1 þ S� TÞij ¼ 0 8 i; j;

and
X

i

Pik ¼
X

j

Pkj ¼ 1 8 k; ð9Þ

where Pij = d(pi, j), i, j [ [1, N] is a permutation matrix, S

and T are the introduced matrices for formula conversion.

Formula (9) is a BLP, and the solved optimal permutation

matrix P* can be used to determine the optimal edit operations.

This method is tested on 135 similar molecules which

have only 18 or fewer atoms in the Klotho Biochemical

Compounds Declarative Database [57]. Ideally, pairwise

distances of all these molecules are the same. Two MCS-

based distance metrics are used as references. The GED

computed with this method is more concentrated than that

of MCS-based distances. Furthermore, classification per-

formance is examined with the ‘‘classifier ratio’’ which is

the ratio of the GED between sample graph and the correct

prototype to the distance of sample and the nearest incor-

rect prototype. This method leads to the lowest classifier

ratio which indicates the least ambiguous classification.

As demonstrated above, this method tends to reduce the

level of ambiguity in graph recognition. But the complexity

of BLP makes the computation of GED for large graphs

difficult.

4.1.5 Method based on subgraph and supergraph

Concrete edit costs for GED are strongly application-

dependent and cannot be obtained in a general way, so sub-

graph and supergraph based method [42] is proposed. It is a

special kind of graph distance to approximate the edit dis-

tance, which is totally independent of edit costs. This method

is based on the conclusion that GED coincides with the MCS

of two graphs under the certain cost function [20]. Let G
_

and

G
^

be a MCS and a minimum common supergraph of

G1 ¼ ðV1;E1; a1Þ and G2 ¼ ðV2;E2; a2Þ

The distance between G1 and G2 is defined by

dðG1;G2Þ ¼ G
^
��� ���� G

_
��� ���;

where G
^
��� ��� is the number of nodes in graph G

^

and G
_
��� ��� is

similar. A cost function C is defined as a vector consisting

of non-negative real functions

ðcndðvÞ; cniðvÞ; cnsðv1; v2Þ; cedðeÞ; ceiðeÞ; cesðe1; e2ÞÞ;

where v, v1 [ V1, e, e1 [ E1, v2 [ V2, e2 [ E2 and the

components orderly represent costs for node deletion, node

insertion, node substitution, edge deletion, edge insertion

and edge substitution. If the cost function C is specified as

C ¼ ðc; c; cns; c; c; cesÞ;

where c is a constant function which holds that

cnsðv1; v2Þ[ 2c and cesðe1; e2Þ[ 2c

for all v1 [ V1 and v2 [ V2 with a1(v1) = a2(v2), the GED

between G1and G2 can be computed by the formula

d(G1, G2) = cd(G1, G2).

Construction of this method is simple and this method is

not relying on fundamental graph edit operations, that is to

say, it is independent of cost functions.

The first four algorithms take different approaches to

defining cost functions and they are proved to be potent for

classifying or clustering some specific images; therefore,

they are limited to some specific data. The last method has

less limitation and can be used for general attributed

graphs; however, this is related to the search of MCS and a

minimum common supergraph, which is also difficult for

implementing in practice.

4.2 GED for non-attributed graphs

For the non-attributed graphs only having the information

of connectivity structure, GED algorithms [31, 35] usu-

ally include two parts: conversion of graphs to strings

and computation of edit distance for strings [58–60].

Especially, a structural graph may be a tree. Although

trees can be viewed as a special kind of graphs, specific

characteristics of trees suggest that posing the tree-

matching problem as a variant on graph matching is not

the best approach. In particular, complexity of both tree

isomorphism and subtree isomorphism problems is poly-

nomial time, which is more efficient than general graphs.

The similarity of labeled trees is compared in [61] by

various methods, in which definitions of cost functions

are given ahead. In this paper, specific methods for non-

attributed tree matching problem are summarized. Tree

edit distance (TED) can be obtained by searching for the

maximum weight cliques [62, 63], or embedding trees

into a pattern space by constructing super-tree [64],

which are presented separately from those of general

graphs.
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4.2.1 Tree edit distance

4.2.1.1 Maximum weight cliques based method The edit

distance of the unordered tree still presents a computational

bottleneck, therefore, the computation of unordered TED

should be efficiently approximated. Bunke’s idea of the

equivalence of MCS and edit distance computation has

been applied to the GED [42], and it can also be extended

to the TED [62, 63, 65]. In these algorithms, there is a

strong connection between the computation of maximum

common subtree and the TED, and searching for the

maximum common subtree is transformed into finding a

maximum weight clique, so computation of TED is con-

verted into a series of maximum weight clique problems,

which is illustrated in Fig. 11.

Similar with the graphs, data tree needs converting into

model tree. Under the constraint [66] that the cost of

deleting and reinserting the same element with a different

label is not greater than the cost of relabeling it, node

substitution is to be replaced by node removal and insertion

on the data tree. The cost of node insertion on the data tree

is dual to that of node removal on the model tree, so the

operations to be performed are further reduced to node

removal on both trees, which makes the optimal matching

completely determined by the subset of nodes left after the

minimum edit sequence. The edit distance problem is equal

to a particular substructure isomorphism problem.

Given two directed acyclic graphs (DAGs) t and t0
0 to be

matched, the transitive closures ‘(t) and ‘(t0) are calculated.

A tree t
_

is an obtainable subtree of the ‘(t) if and only if t
_

is generated from a tree t with a sequence of node removal

operations. The minimum cost edited tree isomorphism

between t and t0
0 is a maximum common obtainable subtree

of the two ‘(t) and ‘(t0).
Then a maximum common obtainable subtree of the two

trees ‘(t) and ‘(t0) is searched to induce the optimal matches,

which can be transformed into computing the maximum

weight clique. It is a quadratic programming problem:

• The objective function is: min
x

xT Cx;

s:t: x 2 D where C ¼ ðcijÞi;j2V ; ð10Þ

cij ¼
1

2wi
if i ¼ j

kij� cii þ cjj if ði; jÞ 2 E; i 6¼ j
0 otherwise

8<
: ;

and wi is the weight associated with node i.

• Given a set of nodes S, its characteristic vector xS

defined as

xS
i ¼

wðiÞP
j2S

wðjÞ if i 2 S

0 otherwise

(
: ð11Þ

S is a maximum weight clique if and only if xS is a

global (local) minimum for the quadratic problem.

The TED is transformed into a series of maximum

weight clique problem and the experiment on 25 shapes

illustrates that this algorithm can effectively group similar

shapes together.

4.2.1.2 Super-tree based method The analysis of graphs

has proved to be considerably more elusive than the anal-

ysis of vector patterns; thus, graphs have to be embedded in

a vector pattern space in which similar structures are close

together and dissimilar ones are far apart. However, there

are few methods which can be used to construct low

dimensional pattern spaces for sets of graphs. A super-tree,

a special kind of graph, is constructed for each set of trees

to represent the variations present in the set [64], dimen-

sions of which correspond to principal modes of structural

variation. Each tree in a set can be obtained by removing

nodes and edges from its corresponding super-tree. Trees

are mapped to vectors of fixed length by the super-tree and

vectors can be embedded in a low dimension space with

principal component analysis. The edit distance between

trees can be computed by computing the distance between

the low dimensional pattern vectors corresponding to them.

When the database of 25 shapes is used to test the

classification performance, this method outperforms the

maximum weight cliques based method by 16%.

Consistency of node correspondences during matching

is imposed to avoid the underestimation of the distance. A

‘‘natural’’ embedding space of tree structures is derived to

analyze how tree representations vary. Although this

algorithm has many advantages, it fails to confront larger

databases of several shape classes.

4.2.2 Distance of general graphs

Compared with string edit distance, GED for general

graphs lacks rigorous footing, so graphs are converted into

strings and GED can be computed by using string align-

ment algorithms, for example Dijkstra’s algorithm based

method [35], maximum a posteriori probability (MAP)

based method [31, 59], string kernel based method [58],

subgraph based method [60] .

4.2.2.1 Dijkstra’s algorithm based method In Dijkstra’s

algorithm based method [35], graphs are converted into

strings, and then the shortest edit path corresponding to theFig. 11 The relation of TED and maximum weight clique
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least cost between pairwise strings is determined with Di-

jkstra’s algorithm.

Based on the conclusion that adjacency matrix is asso-

ciated to the Markov chain, the transition matrix of the

Markov chains is the normalized adjacency matrix of a

graph G = (V, E), where V = {1, 2, …, N}. Its leading

eigenvector gives the node sequence of the steady state

random walk on the graph so that a graph is converted into

a string and global structural properties of graphs is char-

acterized. The procedure is shown as below:

1. The adjacent matrix A of the graph is defined;

2. A transition probability matrix P is defined as:

Pði; jÞ ¼ Aði; jÞ
.X

j2V
Aði; jÞ; ð12Þ

3. The matrix P is converted into a symmetric form for an

eigenvector expansion. The diagonal degree matrix D

is computed, and its elements are

Dði; jÞ ¼ 1=dðiÞ ¼ 1
.P Vj j

j¼1 Pði; jÞ;
0;

(
i ¼ j

otherwise
;

ð13Þ

The symmetric version of the matrix P is W ¼ D
1
2AD

1
2:

4. The spectral analysis for the symmetric transition

matrix W is

W ¼
X Vj j

i¼1
ki/i/

T
i ; ð14Þ

where ki is an eigenvalue of W and /i is the corre-

sponding eigenvector of unit length.

5. The leading eigenvector /* gives the sequence of

nodes in an iterative procedure and at each iteration k,

a list Lk denotes the nodes visited:

• In the first step, let L1 = j1, where

j1 ¼ arg max
j

/�ðjÞ;

and neighbors of j1 is the set Nj1 ¼ fm ðj1;mÞ 2 Ej g;
• In the second step, node j2 satisfying

j2 ¼ arg max
j2Nj1

/�ðjÞ

is found to form L2 ¼ fj1; j2g and the set of

neighbors

Nj2 ¼ fm ðj2;mÞ 2 Ej ^ m 6¼ j1g

of j2 is hunted;

In the kth step, the node visited is jk and the list of nodes

visited is Lk. The set Njk ¼ fm ðjk;mÞ 2 Ej g consists of

neighbors of jk, and then in the k ? 1th step, node jk?1

satisfying jkþ1 ¼ arg maxj2Ck
/�ðjÞ is chosen, where

Ck ¼ fj j 2 Njk ^ j 62 Lk

�� g;

• The number of step k = k ? 1;

• The third and fourth steps are repeated until every node

in the graph is traversed.

Given the model graph GM = (VM, EM) and the data

graph GD = (VD, ED) whose GED is to be computed,

strings of these two graphs are determined by the procedure

above. The model graph is denoted by

X ¼ fx1; x2; . . .; x VMj jg

and the data graph is denoted by

Y ¼ fy1; y2; . . .; y VDj jg:

A lattice is constructed, rows of which are indexed using

the data-graph string, whereas columns of which are

indexed using the model-graph string. An edit path can be

found to transform string of data graph into string of model

graph, which is denoted by

C ¼ c1; c2; . . .; ck; . . .; cLh i

and its elements are Cartesian pairs ck [ (VD [ e) 9

(VM [ e), where e denotes the empty set. The path is

constrained to be connected on the edit lattice. The

diagonal transition corresponds to the match of an edge

of the data-graph to an edge of the model graph. A

horizontal transition corresponds to the case where the

traversed nodes of the model graph do not have matched

nodes in data graph. Similarly, when a vertical transition is

made, then the traversed nodes of the data graph do not

have matched nodes in model graph. The cost of the edit

path is the sum of the costs for the elementary edit

operations:

CðCÞ ¼
X

ck2C
gðck ! ckþ1Þ; ð15Þ

where g(ck ? ck?1) = -ln P(ck ? ck?1) is the cost of the

transition from state ck = (a, b) to ck?1 = (c, d). The

probability P(ck ? ck?1) is defined as below:

Pðck ! ckþ1Þ ¼ ba;bbc;dRDða; cÞRMðb; dÞ;

where ba,b and bc,d are the morphological affinity,

RDða; cÞ ¼
PDða; cÞ if ða; cÞ 2 ED

2 ð VMj j� VDj jÞj j
VMj jþ VDj j if a ¼ e or c ¼ e

0 otherwise

8<
: ;

PD is the transition probability matrix of data graph GD,

and RM(b, d) is similar with RD(a, c). The optimal edit path

is the one with the minimum cost, that is, C* = arg -

minCC(C). So, the problem of computing GED is posed as

finding the shortest path through the lattice by Dijkstra’s

algorithm and the GED between these two graphs is C(C*).

This is a relatively preliminary work for applying the

eigenstructure of the graph adjacency matrix to the graph-
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matching, and it is improved to be the method in the

probability framework.

4.2.2.2 MAP based method The idea of the MAP esti-

mation based algorithm [31, 59] is developed from the

Dijkstra’s algorithm based method [35]. They differ in the

establishment of strings and match of strings. Edit costs are

related to different features. All these differences are pre-

sented in Table 3.

In the MAP based algorithm, graphs are converted into

strings with graph spectral method according to the leading

eigenvectors of their adjacency matrices. Similar with the

Dijkstra’s algorithm based method, GED is the cost of the

least expensive edit path C*, but the path C* is found based

on the idea of Levenshtein distance in probability frame-

work. The cost for the elementary edit operations is defined

as:

gðck ! ckþ1Þ ¼ � ln Pðck /�XðxjÞ;
�� /�YðyiÞÞ

� ln Pðckþ1 /�Xðxjþ1Þ;
�� /�Yðyiþ1ÞÞ � ln Rk;kþ1;

ð16Þ

where the edge compatibility coefficient Rk,k?1 is

and

Pðck /�XðxjÞ;
�� /�YðyiÞÞ

¼
1ffiffiffiffi
2p
p

r
exp � 1

2r2 ð/�XðxjÞ � /�YðyiÞÞ2
n o

if xj 6¼ e and yi 6¼ e

a if xj ¼ e or yi ¼ e

(

Given images in three sequences: CMU-VASC sequence

[67], the INRIA MOVI sequence [68], and a sequence of

views of a model Swiss chalet, their GED matrix is com-

puted with this method. The result is shown in Fig. 12.

Each element of the matrix specifies the color of a recti-

linear patch in Fig. 12 and the deeper color corresponds to

the smaller distance. All patches constitute nine blocks.

Coordinates 1–10, 11–20 and 21–30 correspond to CMU-

VASC sequence, INRIA MOVI sequence and Swiss chalet

sequence, respectively; therefore blocks along the diagonal

present within-class distances and other blocks present

between-class distances. In each block, the row and column

indexes increase monotonically according to the viewing

angle of each sequence. Color of diagonal blocks is deeper

than that of other areas, and it is obvious that GED within a

class is lower than that between classes on the whole.

Compared with the Dijkstra’s algorithm based method,

this method has the following two advantages: when graphs

are converted into strings, the adjacency matrix needs not

normalization, which decreases computation complexity;

when strings are matched, the computation of minimal edit

distance is cast in a probabilistic setting so that statistical

models can be used for the cost definition.

4.2.2.3 String kernel based method String kernels can be

used to measure the similarity of seriated graphs, which

makes the computation of GED more efficient. In the string

kernel based algorithm [58], graphs are seriated into strings

with semidefinite programming (SDP) whose steps are

given as below.

Table 3 Comparison of the MAP based algorithm and the Dijkstra’s

algorithm based method

Methods MAP based algorithm Dijkstra’s algorithm

based method

Establishment

of the serial

ordering

Using the leading

eigenvector of the

graph adjacency

matrix

Using the leading

eigenvector of the

normalized graph

adjacency matrix

String

matching

A MAP alignment of

the strings for

pairwise graphs

Searching for the optimal

edit sequence using

Dijkstra’s algorithm

Edit costs Related to the edge

density of two graphs

Related to the degree and

adjacency of nodes

Rk;kþ1 ¼
Pðck; ckþ1Þ

PðckÞPðckþ1Þ

¼

qMqD if ck ! ckþ1 is a diagonal transition on the the edit

lattice, i.e., ðyi; yiþ1Þ 2 ED and ðxj; xjþ1Þ 2 EM

qM if ck ! ckþ1 is a vertical transition on the the edit

lattice, i.e.; ðyi; yiþ1Þ 2 ED and xj ¼ e or xjþ1 ¼ e

qD if ck ! ckþ1 is a horizontal transition on the the edit

lattice; i:e:; yi ¼ e or yiþ1 ¼ e and ðxj; xjþ1Þ 2 EM

1 if yi ¼ e or yiþ1 ¼ e and xj ¼ e or xjþ1 ¼ e

8>>>>>>>>>>><
>>>>>>>>>>>:
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• Let B be X1/2AX-1/2 and y be X1/2x*, where

X ¼

1 0 0 � � � 0 0

0 2 0 � � � 0 0

..

.

0 0 0 � � � 2 0

0 0 0 � � � 0 1

2
66664

3
77775;

A is the adjacency matrix of the graph to be converted

into a string, and x* denotes the value to be solved. If

Y* = yyT, the SDP is represented as the following

formula:

arg min
Y�

traceðBY�Þ;

such that trace(EY*) = 1, where E is the unit matrix.

Matrix Y* can be solved with the method in [69] so as

to obtain x*.

• Similar with the idea of converting a graph into a string

with the leading eigenvector in [35], the graph is

converted into a string according to the vector x*.

With strings obtained, kernel feature is applied to pre-

senting the times of a substring occurring in a string and is

weighted by the length of the substring. Elements of a

kernel feature vector for a string correspond to substrings.

The inner product of the kernel feature vectors corre-

sponding to two strings is called as string kernel function.

The kernel function gives sum of frequency of all common

substrings weighted by their lengths. String kernel function

works based on the idea that the strings are more similar if

they share more common substrings.

COIL image database [70] is used to evaluate this

method. Six objects are selected from the database and

each object has 20 different views. Distance of images

belonging to the same class is much smaller than that of

images between classes and images corresponding to dif-

ferent objects can be clustered well.

The SDP overcomes local optimality of the graph

spectral method used in the Dijkstra’s algorithm based and

MAP based methods, and string kernel function is more

efficient than aligning strings with Dijkstra’s algorithm.

4.2.2.4 Subgraph based method Because of potentially

exponential complexity of the general inexact graph-

matching problem, it is decomposed into a series of simpler

subgraph matching problems [60]. A graph G = (V, E) is

partitioned into non-overlapping super cliques according to

Fiedler vector:

• The list C = {j1, j2, …, j|V|} is the node rank-order

which is determined under the conditions that the

permutation satisfies

pðj1Þ\pðj2Þ\ � � �\pðj Vj jÞ

and the components of the Fiedler vector is

xj1 [ xj2 [ � � � [ xj Vj j :

The weight assigned to the node i [ V is wi = r-

ank(p(i)) and the significance score of the node i being

a center node is computed, that is Si, according to

degree and weight of node i;

• The list C is traversed until a node k is founded which is

neither in the perimeter nor whose score sk exceeds

those of its neighbors. Node k and its neighborhood Nk

constitute a super clique and they are deleted from the

list C, that is C = C - {k} [ Nk. This procedure is

repeated until C = /, and then the non-overlapping

neighborhoods of the graph G are located.

With super cliques in hand, a graph G0 containing super

cliques of the original graph G is constructed, in which the

nodes denote the super cliques and the edges indicate

whether these super cliques are connected in the original

graph. Such graphs are matched based on the matching of

the super clique set, that is, the super clique-to-super clique

matching, which is computed by the conversion of super

cliques into strings based on the cyclic permutations of the

peripheral nodes about the center nodes and the Levensh-

tein distance between strings.

This method partitions a graph into subgraphs, and

therefore the process may cast into a hierarchical frame-

work and be suitable for parallel computation.

Trees, as a special kind of graphs, have some attributes

superior to general graphs and TED can be computed

without definition of cost functions, which has been

applied to shape classification [71] with shock-tree as a

structural representation of 2D shape. But it is obvious

that the key issue of GED algorithms for general graphs is

still definition of cost functions. Each method defines cost

Fig. 12 GED matrix in [31]
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functions in a task specific way from heuristics of the

problem domain in a trial-and-error fashion and further

research is still needed to derive cost functions in a

general method.

5 Conclusion

Graph edit distance is a flexible error-tolerant mechanism

to measure distance between two graphs, which has been

widely applied to pattern recognition and image retrieval.

The research of GED is studied and surveyed in this

paper. Existing GED algorithms are categorized and

presented in detail. Advantages and disadvantages of

these algorithms are uncovered by comparing them

experimentally and theoretically. Although the research

has remained for several decades and yielded substantial

results, there are few robust algorithms suitable for all

kinds of graphs and several problems deserve future

research.

1. In the computation of GED, how to compare the

similarity of corresponding nodes and edges in two

graphs is still not solved well. For attributed graphs,

attributes of nodes and edges can be used for

comparing the similarity. But which attributes should

be adopted and available for computing distance

remains an open problem. For non-attributed graphs,

the connectivity of the graph can be used for compar-

ing the similarity. But how to characterize the

connectivity to achieve a better evaluation of similarity

remains unsolved.

2. The definition of costs for edit operations is also

important for GED, which affects the rationality of

GED directly. Existing researches of GED mainly

focus on this problem and each of them is available for

limited applications, or under some constrains, so

some definitions of costs, which can be applied

extensively and easily, are demanded.

3. Many ways of searching for least expensive edit

sequence have been used previously. The search

strategy should be consistent with the method of

similarity comparison and the definition of edit cost,

instead of the best one in theory. So an appropriate

search strategy for the minimum edit costs sequence

should be studied to improve both the efficiency and

accuracy of GED algorithms.
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