
Peeling Design Patterns Design Interview Questions

8.1 Design Interview Questions 180

 DESIGN INTERVIEW QUESTIONS

 Chapter-8

8.1 Design Interview Questions

In this chapter, we will discuss few common interview questions. Along with them, we
have presented few practice questions as well. Try designing classes for those problems
so that you will get more confidence in object oriented designing.

For some design problems we have used 𝐶 + + classes to explore 𝐶 + + concepts. If you
are not a 𝐶 + + professional, feel free to download the 𝐽𝑎𝑣𝑎 code online or try designing

your own classes.

Problem-1 Can you explain about access specifiers in 𝐽𝑎𝑣𝑎?

Solution: In 𝐽𝑎𝑣𝑎, classes, variables, methods and constructors can have 𝑎𝑐𝑐𝑒𝑠𝑠

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑟𝑠. There are 4 types of access specifiers:

 𝑝𝑟𝑖𝑣𝑎𝑡𝑒
 𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑
 𝑝𝑢𝑏𝑙𝑖𝑐
 No specifier or none

It is important to remember that constructors in 𝐽𝑎𝑣𝑎 are treated differently than

methods. Constructors are 𝑛𝑜𝑡 considerd a class member. Class members are made of

2 things:

 Class's variables.

 Class's methods.

Access modifiers specify who can access them. Its effect is different when used on any
of:

 Class

 Class variable

 Class method

 Class's constructor

Access Specifiers for Class Variables and Class Methods: Below is a table showing

the effects of access specifiers for class members (i.e. class variable and class methods).

Yes = Can Access. No = No Access.

Specifier Class Subclass Package Other Packages

𝑝𝑟𝑖𝑣𝑎𝑡𝑒 Yes No No No

𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 Yes Yes Yes No

𝑝𝑢𝑏𝑙𝑖𝑐 Yes Yes Yes Yes

𝑁𝑜 specifier Yes No Yes No

Peeling Design Patterns

8.1 Design Interview Questions 181

For example, if a variable is declared 𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑, then the same class can access it, its
subclass can access it, and any class in the same package can also access it, but

otherwise a class cannot access it.

If a class member doesn't have any access specifier (the 𝑁𝑜 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑟 row in above), its

access level is sometimes known as 𝑝𝑎𝑐𝑘𝑎𝑔𝑒.

class Test {
 int x = 7;
}
public class Testing {
 public static void main(String[] args) {

 Test var = new Test ();
 System.out.println(var.x);
 }
}

The above code compiles and runs. But, if we add 𝑝𝑟𝑖𝑣𝑎𝑡𝑒 in front of int 𝑥, then we will

get a compiler error: “x has private access in Test”. This is because when a member
variable is 𝑝𝑟𝑖𝑣𝑎𝑡𝑒, it can 𝑜𝑛𝑙𝑦 be accessed within that class.

Access Specifiers for Constructors: Constructors can have the same access specifiers
used for variables and methods. Their meaning is same. For example, when a
constructor has 𝑝𝑟𝑖𝑣𝑎𝑡𝑒 declared, then, only the class itself can create an instance of it.
Other class in the same package 𝑐𝑎𝑛𝑛𝑜𝑡 create an instance of that class 𝑛𝑜𝑟 any

subclass of that class. Nor any other class outside of this package.

class Test {
 public int x;
 private Test (int n) {
 x=n;
 System.out.println("Test Message!");
 }
}
public class Testing {
 public static void main(String[] args) {
 Test t = new Test (3);
 System.out.println(t.x);

 }
}

In the above code, it won't compile because Test's constructor is 𝑝𝑟𝑖𝑣𝑎𝑡𝑒 but it is being

created outside of itself. If we delete the 𝑝𝑟𝑖𝑣𝑎𝑡𝑒 keyword in front of 𝑇𝑒𝑠𝑡's constructor,

then it compiles.

Constructors in Same Class Can Have Different Access Specifiers: Remember that a
class can have more than one constructor, each with different parameters. Each
constructor can have different access specifier. In the following example, the class 𝑇𝑒𝑠𝑡
has two constructors; one takes an 𝑖𝑛𝑡 argument, the other takes a 𝑑𝑜𝑢𝑏𝑙𝑒 argument.

One is declared 𝑝𝑟𝑖𝑣𝑎𝑡𝑒, while the other with no access specifier (default package level
access).

class Test {
 Test (int n) {
 System.out.println("Test Message-1”);
 }
 private Test (double d) {

Peeling Design Patterns

8.1 Design Interview Questions 182

 System.out.println("Test Message-2");
 }
}
public class Testing {
 public static void main(String[] args) {
 Test t1 = new Test (3);
 // Test t2 = new Test (3.3);
 }
}

The fact that there can be constructors with different access specifiers means that in
Java, the ability to create an object also depends on which constructor is called to

create the object.

Access Specifiers for Classes: For classes, only the 𝑝𝑢𝑏𝑙𝑖𝑐 access specifier can be used

on classes. That is, in every java source code file, only one class in the file is public
accessible and that class must have the same name as the file. For example, if the file
is 𝐴𝐵𝐶. 𝑗𝑎𝑣𝑎, then there must be a class named 𝐴𝐵𝐶 in it, and that is the class that's

public. Optionally, the class can be declared with 𝑝𝑢𝑏𝑙𝑖𝑐 keyword. By convention, class’s
names should start with capital letter. So, a class named 𝐴𝐵𝐶 really should be 𝐴𝐵𝐶,

with the file named 𝐴𝐵𝐶.𝑗𝑎𝑣𝑎. If we use any other access specifier on classes, or declare
more than one class 𝑝𝑢𝑏𝑙𝑖𝑐 in a file, the compiler will complain.

Problem-2 Given a database application, can you think of classes to generate
unique sequence numbers?

Solution: We can use 𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛 pattern to create a counter to provide unique sequential
numbers. This can be used as 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑘𝑒𝑦𝑠 in a database.

public class SequenceNumbers {
 private static SequenceNumber instance;
 private static int counter;
 private SequenceNumber(){
 counter = 0; // starting value
 }
 public static synchronized SequenceNumber getInstance(){
 if(instance == null){ // Lazy instantiation
 instance = new SequenceNumber();

 }
 return instance;
 }
 public synchronized int getNext(){
 return ++counter;
 }

}

Notes about this implementation:

 Synchronized methods are used to ensure that the class is thread-safe.

 This class cannot be subclassed because the constructor is private. This may or

may not be a good thing depending on the resource being protected. To allow
subclassing, the visibility of the constructor should be changed to protected.

 Object serialization can cause problems; if a Singleton is serialized and then de-
serialized more than once, there will be multiple objects and not a singleton.

Problem-3 Simulate a supermarket (grocery store).

Peeling Design Patterns

8.1 Design Interview Questions 183

Solution: Before creating the objects let’s understand the use-cases for simulating a
grocery store. At very top-level, a customer walks into a grocery store, picks up a few
items, pays for them, and leaves. To make the problem simple we will discard the corner
cases (e.g., what if customer forgets to bring money after billing). The obvious objects of
any grocery store are:

 A customer

 A store

 Grocery items of various sorts

 A cashier

One doubt that may arise here is: Do we need to subclass the grocery items (beauty,
health, cook etc.)? The answer is no, because these items don’t have different behaviors.

There is no obvious reason for any of these to be a superclass (or subclass) of any of the
others. Another doubt that may arise here is: Should we make a class Person and use it
as a superclass of 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 and 𝐶𝑎𝑠ℎ𝑖𝑒𝑟? To make it simple let us not do that. We can

always do it later, if we find some data or actions that 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 and 𝐶𝑎𝑠ℎ𝑖𝑒𝑟 should both
have.

Now, let us start creating classes. The grocery items should be in the 𝑠𝑡𝑜𝑟𝑒, and initially
only the store needs to know about them, so we will let the 𝑠𝑡𝑜𝑟𝑒 create those. The

𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 and the 𝐶𝑎𝑠ℎ𝑖𝑒𝑟 both need to know about the 𝑠𝑡𝑜𝑟𝑒 (but the 𝑠𝑡𝑜𝑟𝑒 kind of just
sits there). So, we probably should create the store first. This is because, when we
create the 𝐶𝑎𝑠ℎ𝑖𝑒𝑟 and the 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟, we want to create them with knowledge of the

𝑠𝑡𝑜𝑟𝑒.

The store is the central idea of this program, so let’s put a main method in the 𝑠𝑡𝑜𝑟𝑒 to

kick things off. Let us call our main class as 𝐺𝑟𝑜𝑐𝑒𝑟𝑦𝑆𝑡𝑜𝑟𝑒. What does our main method
need to do?

 Create a GroceryStore

 Create a Cashier for the store

 Create a Customer who knows about the store

 Tell the Customer to “shop”

class GroceryStore {
 public static void main(String args[]) {
 GroceryStore store = new GroceryStore();
 Cashier cashier = new Cashier(store);

 Customer customer = new Customer(store);
 customer.shop();
 }
}

With the above code, the customer only shops in this one store. This is adequate for our
program, but it’s very restrictive and it’s trivial to fix. So, the Customer needs to shop:
this includes selecting groceries and paying for them.

class Customer {
 public void shop(GroceryStore store) {
 selectGroceries(store); // because the store holds the groceries
 checkOut(???); // who or what do we pay?
}

Obviously, the 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 should pay the 𝐶𝑎𝑠ℎ𝑖𝑒𝑟. But how does the 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 know about

the 𝐶𝑎𝑠ℎ𝑖𝑒𝑟? The Customer knows about (can reference) the GroceryStore and the
Cashier knows about the 𝐺𝑟𝑜𝑐𝑒𝑟𝑦𝑆𝑡𝑜𝑟𝑒. Neither the GroceryStore nor the Customer

knows about the Cashier. To fix this, the 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 do not know about the 𝐶𝑎𝑠ℎ𝑖𝑒𝑟 as

Peeling Design Patterns

8.1 Design Interview Questions 184

they don’t know any clerks personally. Buy the GroceryStore know about the Cashier
and the Cashier still needs to know about the GroceryStore. So, the customer class can
be changed as:

class Customer {
 public void shop(GroceryStore store) {
 selectGroceries(store);
 checkOut(store);

}

At this point, we understand that the Customer knows about the GroceryStore, the
GroceryStore knows about the Cashier and hence, the Customer can ask the
GroceryStore about the Cashier.

class GroceryStore {
 GroceryStore() {...} // Constructor
 public static void main(String args[]) {...}
 public void hire(Clerk clerk) {...}
 public Clerk getClerk() {...}
}

class Customer {
 public void shop(GroceryStore store) {...}
 public void selectGroceries(GroceryStore store) {...}
 checkOut(GroceryStore store) {...}
}

There’s just one Cashier, whom we hired like this:

GroceryStore store = new GroceryStore();
Cashier cashier = new Cashier();
store.hire(cashier);

So we need to write the hire method. Also, don’t forget the store and Cashier need to
know about each other.

class GroceryStore {
 Cashier myCashier;
 public void hire(Cashier cashier) {
 myCashier = Cashier;

 cashier.takePosition(this);
 }
}
class Cashier {
 GroceryStore myStore;
 public void takePosition(GroceryStore store) {
 myStore = store;
 }
}

The Customer call gets the Cashier from GroceryStore as:

class Store {
 Cashier myCashier;
 ...
 public Cashier getCashier() {
 return myCashier;
 }

Peeling Design Patterns

8.1 Design Interview Questions 185

 ...
}

Next, construct a Store containing an array of GroceryItems (along with how many of
each).

public int KINDS_OF_ITEMS = 4;
public GroceryItem[] item = new GroceryItem[KINDS_OF_ITEMS];
public int[] itemCount = new int[KINDS_OF_ITEMS];

GroceryStore() {
 item[0] = new GroceryItem("milk", 2.12);
 item[1] = new GroceryItem("butter", 2.50);

 item[2] = new GroceryItem("eggs", 0.89);
 item[3] = new GroceryItem("bread", 1.59);
 for (int i = 0; i < KINDS_OF_ITEMS; i++) {
 itemCount[i] = 50; // the store has lots of everything
 }
}

Customer selects the items as:

GroceryItem[] myShoppingBasket = new GroceryItem[20];
Random random = new Random();
public void selectGroceries(GroceryStore store) {
 int itemsInMyBasket = 0;
 for (int i = 0; i < store.KINDS_OF_ITEMS; i++) {
 for (int j = 0; j < 3; j++) {
 if (random.nextInt(2) == 1) { // choose up to 3 of it
 myShoppingBasket[itemsInMyBasket] = store.item[i];
 store.itemCount[i] = store.itemCount[i] - 1;

 itemsInMyBasket = itemsInMyBasket + 1;
 }
 }
 }
}

The Customer can checkout as:

void checkOut(GroceryStore store) {
 Cashier cashier = store.getCashier();
 double total = cashier.getBill(myShoppingBasket);
 myMoney = myMoney - total;
 cashier.pay(total);
}

The final code for our discussion is:

public class GroceryStore {
 Cashier myCashier;
 public int KINDS_OF_ITEMS = 4;
 public GroceryItem[] item = new GroceryItem[KINDS_OF_ITEMS];
 public int[] itemCount = new int[KINDS_OF_ITEMS];
 double money = 1000.00;

 GroceryStore() {
 item[0] = new GroceryItem("milk", 2.12);
 item[1] = new GroceryItem("butter", 2.50);

Peeling Design Patterns

8.1 Design Interview Questions 186

 item[2] = new GroceryItem("eggs", 0.89);
 item[3] = new GroceryItem("bread", 1.59);
 for (int i = 0; i < KINDS_OF_ITEMS; i++) {
 itemCount[i] = 50; // the store has lots of everything
 }
 }
 public static void main(String args[]) {
 GroceryStore store = new GroceryStore();
 Cashier cashier = new Cashier();
 store.hire(cashier);
 Customer customer = new Customer();

 customer.shop(store);
 }
 public void hire(Cashier cashier) {
 myCashier = cashier;
 cashier.takePosition(this); // "this" = this store

 }

 public Cashier getCashier() {
 return myCashier;
 }
}
public class Customer {
 GroceryItem[] myShoppingBasket = new GroceryItem[20];
 Random random = new Random();
 double myMoney = 100.00;

 public void shop(GroceryStore store) {
 selectGroceries(store); // because the store holds the groceries
 checkOut(store);
 }

 public void selectGroceries(GroceryStore store) {
 int itemsInMyBasket = 0;
 for (int i = 0; i < store.KINDS_OF_ITEMS; i++) { // for each kind of item
 for (int j = 0; j < 3; j++) { // choose up to 3 of it
 if (random.nextInt(2) == 1) {

 myShoppingBasket[itemsInMyBasket] = store.item[i];
 store.itemCount[i] = store.itemCount[i] - 1;
 itemsInMyBasket = itemsInMyBasket + 1;
 }
 }
 }
 }
 void checkOut(GroceryStore store) {

 Cashier cashier = store.getCashier();
 double total = cashier.getBill(myShoppingBasket);
 myMoney = myMoney - total;
 cashier.pay(total);
 }
}
public class Cashier {
 GroceryStore myStore;

 public void takePosition(GroceryStore store) {

Peeling Design Patterns

8.1 Design Interview Questions 187

 myStore = store;
 }
 public double getBill(GroceryItem[] item) {
 double total = 0;
 int itemNumber = 0;
 while (item[itemNumber] != null) {
 total = total + item[itemNumber].price;
 System.out.println(item[itemNumber].name + " " + item[itemNumber].price);
 itemNumber = itemNumber + 1;
 }
 System.out.println("TOTAL " + total);

 return total;
 }
 public void pay(double amount) {
 myStore.money = myStore.money + amount;
 }

}
public class GroceryItem {
 public String name;
 public double price;

 GroceryItem(String name, double price) {
 this.name = name;
 this.price = price;
 }
}

In addition to above discussion, it is worth mentioning the other points for extensions:

 Providing interface for changing the prices of items.

 Providing discount coupons while checkouts.

 Categorizing the store employees and assigning roles and many more.

Problem-4 Consider a company which wants to process salary hikes of its
employees during recession period. As a precautionary measure, instead of hiking
all employee salaries it decided to hike only for the employees who met at least any
two of the criteria. Can you design the classes and functions to help the company

for processing the hike letters?

 Published at least two research papers.

 Got star of the year award.

 Completed at least 5 years of experience.

Solution: As the problem states, the two basic objects of the problem are: 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 and

𝐶𝑜𝑚𝑝𝑎𝑛𝑦. For each employee, we need to maintain additional information such as

number of papers published by employee, whether the employee got the award or not,
and also the number of years he spend in current company. To maintain that
information, we can define the interface of 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 as:

public interface Employee{
 public int getName(); // returns name of employee
 public int getAge(); // returns age of employee
 public int getYearsOnJob(); // number of years on job
 public double getSalary(); // salary in dollars
 public int getID(); // unique employee ID number
 public beeloan gotAward(); // whether the employee got award or not
 public int getCountPublished(); //number of papers published by employee

Peeling Design Patterns

8.1 Design Interview Questions 188

}

One possible implementation for the employee would be:

public class EmployeeImpl implements Employee{
 private int myName;
 private int myAge;
 private int myYearsExp;
 private double mySalary;
 private int myID;
 private boolean gotAward;
 private int papersPublished;

 public EmployeeImpl(String name, int age, int yearsExp, double salary,

 int id, boolean award, int papersCount){
 myName = name;
 myAge = age;
 myYearsExp = yearsExp;
 mySalary = salary;
 myID = id;
 gotAward = award;
 papersPublished = papersCount;
 }
 public String getName(){
 return myName;
 }
 public int getAge() {
 return myAge;
 }
 public int getYearsOnJob(){
 return myYearsExp;
 }
 public double getSalary(){
 return mySalary;
 }
 public int getID(){
 return myID;

 }
 public boolean gotAward(){

 return gotAward;
 }
 public int getCountPublished(){
 return papersPublished;
 }
}

We are done with 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 class and let us start defining the 𝐶𝑜𝑚𝑝𝑎𝑛𝑦 class. For

simplicity we can discard the unrelated functionality (for example, adding new
employees, changing name of employee etc..). We can assume that the Company class
is the main class for our problem (which means, Company class takes care of adding
employees with the values defined). Once, it generates the employee list we can use that
and process for salary hikes.

public class Company{
 private final static int MIN_PUBLISH_COUNT = 2;
 private final static int MIN_EXP = 5;

Peeling Design Patterns

8.1 Design Interview Questions 189

 private ArrayList myEmployees;
 private Employee[] empList = {
 new EmployeeImpl("James Bond", 25,3,12000,1, true, 3),
 new EmployeeImpl("Steve Jobs",35,6,13000,2,false, 4),
 new EmployeeImpl("Bill Gates",30,2,14000,true, 1),
 new EmployeeImpl("Jeff",23,1,9999,4, true, 5),
 new EmployeeImpl("Steve Gates",57,15,20000,5, true, 10)
 };
 private double myTotalSalary;
 //set myTotalSalary as total budget = sum of all salaries
 private void calcSalaries(){

 myTotalSalary = 0;
 Iterator it = myEmployees.iterator();
 while (it.hasNext()){
 Employee e = (Employee) it.next();
 myTotalSalary += e.getSalary();

 }
 }
 Company(){
 myEmployees = new ArrayList();
 myEmployees.addAll(Arrays.asList(empList));
 calcSalaries();
 }

 public double getBudget(){
 return myTotalSalary; //returns total of all employee salaries
 }
 public void printAll(){
 System.out.println("Number of employees = " + myEmployees.size());
 for(int k=0; k < myEmployees.size(); k++){
 Employee e = (Employee) myEmployees.get(k);
 System.out.println(k + ".\t id = " + e.getID()+ "\t$"+e.getSalary());
 }
 System.out.println("total budget = "+getBudget());
 }

 private boolean employeeIsEligible(Employee emp){

 return (emp.getCountPublished() >= MIN_PUBLISH_COUNT
 && emp.gotAward()) ||
 (emp.getCountPublished() >= MIN_PUBLISH_COUNT
 && emp.getYearsOnJob() >= MIN_EXP) ||
 (emp.getYearsOnJob() >= MIN_EXP && emp.gotAward());
 }
 public void processRetirements(){
 Iterator it = myEmployees.iterator();
 while (it.hasNext()){
 Employee e = (Employee) it.next();
 if (employeeIsEligible(e)){
 System.out.println(e.getID() + " is eligible for salary hike\n");
 }
 }
 }
}

Problem-5 Design the library management system.

Peeling Design Patterns

8.1 Design Interview Questions 190

Solution: We all know how a library system works. The basic components of the library
are: library items (like books, CDs, journals etc..), and a mechanism for giving books to
users. The interface for LibraryItem is straightforward except for the decision to return
a boolean for the method checkOut. To simplify our discussion, we can confine
ourselves to only books. The book class can be defined as:

public class Book{
 private String theAuthor, theTitle, pageCount, year, edition;
 public Book(String author, String title, String pages,

String yearPublished, String bookEdition){
 theAuthor = author;
 theTitle = title;

 pageCount = pages;
 year = yearPublished;

 edition = bookEdition;
 }
 public String getAuthor(){
 return theAuthor;
 }
 public String getTitle(){
 return theTitle;
 }
 public String getPageCount(){
 return pageCount;
 }
 public String getYear(){
 return year;
 }
 public String getEdition(){
 return edition;
 }
}
public interface LibraryItem{
 public String getID(); // return id of this item
 //return true if checking out (no holder) possible
 //and assign a new holder otherwise (existing holder) return false

 public boolean checkOut(String holder);
 public String getHolder();//return current holder
 // We can add more functions based on requirement
}

Now, to create a library book we can simply implement the 𝐿𝑖𝑏𝑟𝑎𝑟𝑦𝐼𝑡𝑒𝑚 interface and
extend the book class. It shouldn't duplicate state from the 𝐵𝑜𝑜𝑘 class (so no

author/title, those are accessible via super.getXX methods), but a 𝐿𝑖𝑏𝑟𝑎𝑟𝑦𝐵𝑜𝑜𝑘 needs an
ID and a holder, so those instance variables are required.

public class LibraryBook extends Book implements LibraryItem{
 private String theID;
 private String theHolder;
 public LibraryBook(String author, String title, String id,

int pageCount, int year, int edition){
 super(author, title, pageCount, year, edition);
 theID = id;
 }

Peeling Design Patterns

8.1 Design Interview Questions 191

 public String getHolder(){
 return theHolder;
 }
 public boolean checkOut(String holder){
 if (theHolder == null){
 theHolder = holder;
 return true;
 }
 return false;
 }
 public String getID(){

 return theID;
 }
}

Now, let us define the library class which maintains the library items as a collection.
The problem statement pretty much requires a mapping of IDs toLibraryItems to
facilitate efficient implementation of the 𝑐ℎ𝑒𝑐𝑘𝑂𝑢𝑡 and 𝑔𝑒𝑡𝐻𝑜𝑙𝑑𝑒𝑟 methods. For this, we

can use a hash map.

public class Library{
 private Map items;
 public Library(){
 items = new HashMap();

 }
 public void add(LibraryItem theItem){
 items.put(theItem.getID(), theItem);
 }
 public void checkout(String id, String holder){
 LibraryItem item = (LibraryItem) items.get(id);
 item.checkOut(holder); // ignore return value here
 }
 public String getHolder(String id){
 LibraryItem item = (LibraryItem) items.get(id);
 return item.getHolder(); // precondition: item in library
 }

}

Problem-6 Design a Cinema Management System.

Solution: Let us start our discussion by understanding the components of a typical
Cinema Management System (CMS). As we know any cinema (movie that is being
played) associated with a number of theaters and each theater contains a set of rows
with a number of seats. Also, each seat will have a specification.

 𝑆𝑒𝑎𝑡 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛: Specifies the properties of a seat.

 𝑆𝑒𝑎𝑡: A Seat keeps track of what type it is and whether or not it is reserved.

 𝑅𝑜𝑤 𝑜𝑓 𝑠𝑒𝑎𝑡𝑠: Models a row of seats.

 𝑆𝑒𝑎𝑡𝑖𝑛𝑔 𝑐ℎ𝑎𝑟𝑡: Models a seating chart (set of rows of seats) for a theater.

 𝑇ℎ𝑒𝑎𝑡𝑒𝑟: Models one theater, including its configuration of rows of seats.

 𝑀𝑜𝑣𝑖𝑒: Models a movie. A movie screening may be the event at a Show.

 𝐶𝑖𝑛𝑒𝐺𝑜𝑒𝑟: Models a cinema goer, a customer of the Cinema. Human customers

will interact with the software system.

 𝑆ℎ𝑜𝑤: Models a show. For now, assume that the event at all shows is the
screening of a movie, in one of the theaters of the Cinema, at a given time.

Peeling Design Patterns

8.1 Design Interview Questions 192

 𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛: Specifies the properties of a reservation and mimics

the SeatSpecification class.

 𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛: Models a reservation by some movie-goer of some tickets for some
show.

 𝐶𝑖𝑛𝑒𝑚𝑎𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝑆𝑦𝑠𝑡𝑒𝑚: The Cinema class controls how many theatres it

holds, and indexes those theatres.

Now, let us work on each of these components to make CMS complete. We can treat
each of these as a separate class.

𝑺𝒆𝒂𝒕 𝒔𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏: This class specifies the properties of a seat. For simplicity, we can
implement this as a Hashmap <String, Object>. Also, as of this moment we need few

methods to check what type a seat object is.

 𝑎𝑑𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒: adds a specified feature to this seat featureLabel name of the
feature e.g. aisle, front row, and featureValue value, typically true as input.

 𝑐ℎ𝑒𝑐𝑘𝐹𝑒𝑎𝑡𝑢𝑟𝑒: returns the object of the given feature.

 𝑚𝑎𝑡𝑐ℎ: returns true when this SeatSpecification has all the that givenSpec has,

otherwise returns false. Assume that it takes givenSpec as input parameter and
indicates the specification that this is being matched against.

public class SeatSpecification implements Serializable, Cloneable {
 private HashMap <String, Object> features;
 public SeatSpecification (){
 features = new HashMap <String, Object> ();
 }
 public void addFeature (String featureLabel, Object featureValue)
 throws InvalidParameterException {
 if (featureValue == null)
 throw new InvalidParameterException ("feature value cannot be null");
 else features.put (featureLabel, featureValue);
 }
 public Object checkFeature(String featureLabel) {
 return features.get (featureLabel);
 }
 public boolean match (SeatSpecification givenSpec) {
 String currFeature;

 if (givenSpec == null)
 return false;
 else {
 Iterator it = givenSpec.features.keySet().iterator();
 while (it.hasNext()) {
 currFeature = (String) it.next();
 if (! (features.get(currFeature) .equals (
 givenSpec.features.get(currFeature))))
 return false;
 }
 return true;
 }
 }
 public SeatSpecification clone() {
 try {
 SeatSpecification c = (SeatSpecification) super.clone();
 c.features = new HashMap <String, Object> ();
 Iterator it = features.keySet().iterator();

Peeling Design Patterns

8.1 Design Interview Questions 193

 while(it.hasNext()){
 String currFeatureLabel = (String) it.next();
 Object currFeatureValue = features.get(currFeatureLabel);
 c.features.put (currFeatureLabel, currFeatureValue.clone());
 }
 return c;
 }
 catch (CloneNotSupportedException e) {
 return null;
 }
 }

}

𝑺𝒆𝒂𝒕: A 𝑠𝑒𝑎𝑡 keeps track of what type it is and whether or not it is reserved. Every seat

is associated with a SeatSpecification and a seat ID. Also, assume that we make a seat
by combining a row id and seat# e.g. A1. Below are functions that can be added to 𝑆𝑒𝑎𝑡
class.

 𝑠𝑒𝑡𝑆𝑒𝑎𝑡𝐹𝑒𝑎𝑡𝑢𝑟𝑒: adds a specified feature to this seat (calls seat specification

method)

 𝑚𝑎𝑡𝑐ℎ: return true when this seat matches givenSpec, otherwise returns false

(calls seat specification method)

 𝑖𝑠𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑: return true if seat is reserved

public class Seat implements Serializable, Cloneable{
 private SeatSpecification spec;

 private String id;

 public Seat(String id) {
 this.id = id;
 spec = new SeatSpecification ();
 }
 public void setSeatFeature (String featureLabel, Object featureValue)
 throws InvalidParameterException {
 spec.addFeature (featureLabel, featureValue);
 }
 public boolean match(SeatSpecification givenSpec) {
 return spec.match(givenSpec);

 }
 public String getID() {
 return id;
 }
 public boolean isReserved(){
 return true;

 }
 public Seat clone() {
 Seat cloneSeat = new Seat(id);
 cloneSeat.clone();
 return cloneSeat;
 }
}

𝑹𝒐𝒘 𝒐𝒇 𝒔𝒆𝒂𝒕𝒔: Models a row of seats. Assume that a collection of seats are maintained in

a hash map (HashMap <String, Seat>). Below are functions that can be added to this
class.

Peeling Design Patterns

8.1 Design Interview Questions 194

 𝑠𝑒𝑡𝑆𝑒𝑎𝑡𝐹𝑒𝑎𝑡𝑢𝑟𝑒: adds a specified feature to a specified seat. It takes seatNum

(desired seat number), featureLabel (name of the feature e.g. aisle, front row)
and featureValue (value, typically true) as input.

 𝑎𝑑𝑑𝑆𝑒𝑎𝑡: adds a single seat to current row of seats.

 𝑟𝑒𝑚𝑜𝑣𝑒𝑆𝑒𝑎𝑡: removes a specified seat from current row of seats.

public class RowOfSeats implements Serializable, Cloneable{
 private HashMap<String, Seat> seats; //collection of seats

 private String rowId;
 private int numOfSeats;
 ArrayList<String> keys;

 public RowOfSeats (String rowId, int numOfSeats)
 throws InvalidParameterException {
 seats = new HashMap();
 int i = 0; starts at 1

 Seat s;
 while (i < numOfSeats) {
 s = new Seat (Integer.toString(i));
 seats.put(s.getID(), s);
 i++;
 }
 keys = new ArrayList<String>();
 this.rowId = rowId;
 this.numOfSeats = numOfSeats;
 }

 public void setSeatFeature (String seatID, String featureLabel,
Object featureValue) throws InvalidParameterException {

 if (seats.containsKey(seatID)) {
 Seat s = seats.get(seatID);
 s.setSeatFeature (featureLabel, featureValue);
 }
 else {

 throw new InvalidParameterException (" no seat " + seatID + " in row " + rowId);
 }
 }

 public String getRowId() {
 return rowId;
 }

 public int getNumOfSeats() {
 return seats.size();
 }

 public void addSeat() {
 Seat s;
 numOfSeats += 1;
 s = new Seat (Integer.toString(numOfSeats));
 seats.put(s.getID(), s);
 keys.add(Integer.toString(numOfSeats));
 }

 public void removeSeat(String seatID) throws InvalidParameterException {
 if (seats.containsKey(seatID)) {
 seats.remove(seatID);

Peeling Design Patterns

8.1 Design Interview Questions 195

 }
 else
 throw new InvalidParameterException("The specified Seat could not be found!");
 }

 public RowOfSeats clone() {
 RowOfSeats newRowOfSeats = (RowOfSeats) super.clone();
 Iterator it = seats.keySet().iterator();

 for(int i = 0; i <= keys.size(); i++) {
 String seatID = keys.get(i);
 while(it.hasNext()) {
 newRowOfSeats.put(seatID, seats.get(seatID).clone());

 }
 }
 return newRowOfSeats;
 }
}

𝑺𝒆𝒂𝒕𝒊𝒏𝒈 𝒄𝒉𝒂𝒓𝒕: Models a seating chart for a theater and can be cloned by 𝑇ℎ𝑒𝑎𝑡𝑒𝑟 class.
Seating chart implements the following:

 Hash Map of Rows -> collection of rows with String keys

 𝑎𝑑𝑑𝑅𝑜𝑤𝑇𝑜𝐵𝑎𝑐𝑘: add a row from the chart

 𝑟𝑒𝑚𝑜𝑣𝑒𝑅𝑜𝑤: remove a row from the chart

 𝑠𝑒𝑡𝑆𝑒𝑎𝑡𝐹𝑒𝑎𝑡𝑢𝑟𝑒: set a seat spec within a row

 𝑔𝑒𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑅𝑜𝑤𝑠: can return number of rows/ number of seats in a row

public class SeatingChart implements Cloneable, Serializable{
 HashMap <String, RowOfSeats> chart;
 ArrayList<String> keys;
 public SeatingChart() {
 chart = new HashMap <String, RowOfSeats>();
 keys = new ArrayList<String>();
 }
 public void addRowToBack(String rowId, int numOfSeats)
 throws InvalidParameterException {

 Iterator it = chart.keySet().iterator();
 while(it.hasNext()){
 if(chart.containsKey(rowId)){
 throw new InvalidParameterException ("The row id " + rowId +

"already exists.");
 }
 }
 RowOfSeats row = new RowOfSeats (rowId, numOfSeats);
 chart.put(rowId, row);
 keys.add(rowId);
 }
 public void removeRow(String rowId)

 throws InvalidParameterException {
 Iterator it = chart.keySet().iterator();
 while(it.hasNext()){
 if(chart.containsKey(rowId)){
 chart.remove(rowId);
 for(int i = 0; i <= keys.size(); i++){

Peeling Design Patterns

8.1 Design Interview Questions 196

 if(rowId.equals(keys.get(i))){
 keys.remove(i);
 }
 }
 }
 else {
 throw new InvalidParameterException("that row id does not exist");
 }
 }
 }
 public void setSeatFeature (String rowId, String seatId, String featureLabel,

 Object featureValue)
 throws InvalidParameterException {
 Iterator it = chart.keySet().iterator();
 while(it.hasNext()){
 if(chart.containsKey(rowId)){

 }
 else {
 throw new InvalidParameterException("that row id or

seat id does not exist");
 }
 }
 }
 public int getNumberOfRows(){
 return chart.size();
 }
 public int getNumberOfSeatsInRow(String rowId) {
 RowOfSeats currentRow = chart.get(rowId);
 return currentRow.getNumOfSeats();
 }
 public SeatingChart clone() {
 try {
 SeatingChart c = (SeatingChart) super.clone();

 c.keys = new ArrayList<String> ();

 for (String s : keys)

 c.keys.add (s);

 c.chart = new HashMap <String, RowOfSeats> ();
 Iterator it = chart.keySet().iterator();
 while(it.hasNext()){
 String currRowId = (String) it.next();
 RowOfSeats currROS = chart.get(currRowId);
 c.chart.put (currRowId, (RowOfSeats) currROS.clone());
 }

 return c;
 }
 catch (CloneNotSupportedException e) {
 return null;
 }
 }
}

Peeling Design Patterns

8.1 Design Interview Questions 197

𝑻𝒉𝒆𝒂𝒕𝒆𝒓: Models one theater, including its configuration of rows of seats. This class
creates a new theatre by taking 𝑡ℎ𝑒𝑎𝑡𝑒𝑟𝐼𝐷 (the unique name), 𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒 (the hour of this

theatre is allowed to begin showing events, in [0,23]), 𝑠𝑒𝑡𝑢𝑝𝑇𝑖𝑚𝑒 (the number of minutes

that it takes to clean this theatre after an event), and 𝑠𝑒𝑎𝑡𝑖𝑛𝑔𝐶ℎ𝑎𝑟𝑡 (the layout of rows
for the given seating chart) as input. This class can also add a row of seats, adds a
specified feature to a specified seat, and can set/get the clean-up time.

 𝑎𝑑𝑑𝑅𝑜𝑤: adds a row of numOfSeats plain-vanilla seats to the back of this

theater

 𝑠𝑒𝑡𝑆𝑒𝑎𝑡𝐹𝑒𝑎𝑡𝑢𝑟𝑒: adds a specified feature to a specified seat

 𝑔𝑒𝑡𝐵𝑙𝑎𝑛𝑘𝑆𝑒𝑎𝑡𝑖𝑛𝑔𝐶ℎ𝑎𝑟𝑡: returns a SeatingChart with all seats unreserved

 𝑔𝑒𝑡𝐶𝑙𝑒𝑎𝑛𝑢𝑝𝑇𝑖𝑚𝑒: returns the cleanup time needed for the theater (in minutes)

 𝑠𝑒𝑡𝐶𝑙𝑒𝑎𝑛𝑢𝑝𝑇𝑖𝑚𝑒: sets the cleanup time for the theater (in minutes)

 public class Theater implements Serializable, Cloneable{
 private SeatingChart seatingChart;
 private String theaterID;
 private int cleanupTime;
 public Theater(String theaterID, int cleanupTime, SeatingChart seatingChart) {
 this.theaterID = theaterID;
 this.cleanupTime = cleanupTime;

 this.seatingChart = seatingChart;
 }
 public void addRow (String rowId, int numOfSeats)
 throws InvalidParameterException {
 try{
 seatingChart.addRowToBack(rowId, numOfSeats);
 }
 catch(InvalidParameterException e){
 System.out.println("Invalid parameter passed to addRow");
 }
 }
 public void setSeatFeature (String rowId, String seatId, String

featureLabel, Object featureValue) throws InvalidParameterException {
 try {
 seatingChart.setSeatFeature(rowId, seatId, featureLabel, featureValue);

 }
 catch(InvalidParameterException e) {
 System.out.println("Invalid parameter passed to setSeatFeature");
 }
 }
 public SeatingChart getBlankSeatingChart() {
 SeatingChart newSeatingChart = seatingChart.clone();
 return newSeatingChart;
 }
 public String getID() {
 return theaterID;
 }

 public int getCleanupTime() {
 return cleanupTime;
 }
 public void setCleanupTime(int cleanupTime) {
 this.cleanupTime = cleanupTime;
 }

Peeling Design Patterns

8.1 Design Interview Questions 198

 public void setTheaterID(String theaterID){
 this.theaterID = theaterID;
 }
 public void setSeatingChart(SeatingChart seatingChart){
 this.seatingChart = seatingChart;
 }
}

𝑴𝒐𝒗𝒊𝒆: Models a movie. A movie screening may be the event at a 𝑆ℎ𝑜𝑤. For now, the
movie stores its title, director, actor(s), running time (in minutes), rating. It may need to
store other attributes if required. This also provides a method for removing an actor

from an ArrayList of actors. If the actor is in the ArrayList and is successfully removed

then it returns true. If the actor is 𝑛𝑜𝑡 in the ArrayList and is 𝑛𝑜𝑡 removed it returns
false. The GUI should display a message confirming that the actor was removed or tell
them that the actor doesn't exist in this movie.

public class Movie implements Serializable{
 private String title;
 private ArrayList<String> actors;
 private String director;
 private int runtime;
 private String rating;
 private String screenFormat;
 public Movie(String title, String director, int runtime, String rating,

String screenFormat){
 this.title = title;
 this.director = director;

 this.runtime = runtime;
 this.rating = rating;
 this.screenFormat = screenFormat;
 actors = new ArrayList<String>();
 }
 public String getTitle() {
 return title;
 }
 public String getDirector() {

 return director;
 }
 public String getRating() {
 return rating;
 }
 public int getRuntime() {
 return runtime;
 }
 public String getScreenFormat() {
 return screenFormat;
 }
 public void setTitle(String title) {
 this.title = title;
 }
 public void setDirector(String director) {
 this.director = director;
 }

 public void setRating(String rating) {

Peeling Design Patterns

8.1 Design Interview Questions 199

 this.rating = rating;
 }
 public void setRuntime(int runtime) {
 this.runtime = runtime;
 }
 public void setScreenFormat(String screenFormat) {
 this.screenFormat = screenFormat;
 }
 public void addActor(String actor) {
 actors.add(actor);
 }

 public boolean removeActor(String actor) {
 int i=0;
 boolean removed = false;
 for(String actor1 : actors){
 if(actor.equals(actors.get(i))){

 actors.remove(i);
 removed = true;
 break;
 }
 }
 return removed;
 }
 public ArrayList<String> getActors() {
 return actors;
 }
}

𝑪𝒊𝒏𝒆𝑮𝒐𝒆𝒓: Models a cinema goer, a customer of the Cinema. Human customers will

interact with the software system. This class manages the user profiles and uses phone
number as a default password for the user. Also, it provides a method for changing the
password of the user.

public class CineGoer{
 private String firstName;
 private String lastName;

 private String phoneNumber; // default password to log into their account
 private int seatNumber; // The Number of the seat that they reserved
 private String movieGoingToSee; // The Movie they are going to see
 private String password; // The password used to access the account
 private String username;
 private String address;
 private String town;
 private String state;
 private String zipcode;
 public CineGoer(String firstName, String lastName, String phoneNumber,

String address, String town, String state, String zipcode){
 this.firstName = firstName;
 this.lastName = lastName;
 this.phoneNumber = phoneNumber;
 this.address = address;

 this.town = town;
 this.state = state;
 if(zipcode.length() == 5){

Peeling Design Patterns

8.1 Design Interview Questions 200

 this.zipcode = zipcode;
 }
 else
 this.zipcode = "00000";
 }
 public String getFirstName() {
 return firstName;
 }
 public String getLastName() {
 return lastName;
 }

 public String getPhoneNumber() {
 return phoneNumber;
 }
 public String getAddress(){
 return address;

 }
 public String getTown() {
 return town;
 }
 public String getState() {
 return state;
 }
 public String getZipcode() {
 return zipcode;
 }
 public int getSeatNumber(){
 return seatNumber;
 }
 public String getMovieGoingToSee() {
 return movieGoingToSee;
 }
 public void setMovieGoingToSee(String newMovie) {
 movieGoingToSee = newMovie;
 }

 public void getSeatNumber(int newSeatNumber) {
 seatNumber = newSeatNumber;
 }
 public boolean setPassword(String newPassword) {
 boolean accepted = false;
 if(newPassword.length() >= 6 && newPassword.length() <= 16) {
 password = newPassword;
 accepted = true;

 }
 return accepted;
 }
 public String getPassword() {
 return password;
 }
}

𝑺𝒉𝒐𝒘: Models a show. For now, we can assume that the event at all shows is the
screening of a movie, in one of the theaters of the Cinema, at a given time.

