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Abstract

Maximum-likelihood (ML) learning of
Markov random fields is challenging because
it requires estimates of averages that have an
exponential number of terms. Markov chain
Monte Carlo methods typically take a long
time to converge on unbiased estimates, but
Hinton (2002) showed that if the Markov
chain is only run for a few steps, the learning
can still work well and it approximately
minimizes a different function called “con-
trastive divergence” (CD). CD learning has
been successfully applied to various types of
random fields. Here, we study the properties
of CD learning and show that it provides
biased estimates in general, but that the bias
is typically very small. Fast CD learning
can therefore be used to get close to an ML
solution and slow ML learning can then be
used to fine-tune the CD solution.

Consider a probability distribution over a vector x (as-
sumed discrete w.l.o.g.) and with parameters W

. _ 1 —E(x;W)
where Z(W) = Y e F&W) is a normalisation con-
stant and E(x; W) is an energy function. This class
of random-field distributions has found many practical
applications (Li, 2001; Winkler, 2002; Teh et al., 2003;
He et al., 2004). Maximum-likelihood (ML) learning of
the parameters W given an iid sample X = {x,}_;
can be done by gradient ascent:

, QLW: )

— W(T)
oW W

w+D

Current address: Dept. of Computer Science & FElec-
trical Eng., OGI School of Science & Engineering, Oregon
Health & Science University. Email: miguel@cse.ogi.edu.

where the learning rate 1 need not be constant. The
average log-likelihood is:

LW;X) = L5 log p(x,; W) = (log p(x; W),
= —(E(x; W)), — log Z(W)

where (-), denotes an average w.r.t. the data distribu-
tion po(x) = + Zﬁle 0(x —xy). A well-known diffi-
culty arises in the computation of the gradient

o= (T )W)

where (-)_ denotes an average with respect to the
model distribution p.(x; W) = p(x; W). The average
(-)o is readily computed using the sample data X', but
the average (-)_ involves the normalisation constant
Z (W), which cannot generally be computed efficiently
(being a sum of an exponential number of terms). The
standard approach is to approximate the average over
the distribution with an average over a sample from

p(x; W), obtained by setting up a Markov chain that

converges to p(x; W) and running the chain to equilib-
rium (for reviews, see Neal, 1993; Gilks et al., 1996).
This Markov chain Monte Carlo (MCMC) approach
has the advantage of being readily applicable to many
classes of distribution p(x; W). However, it is typically
very slow, since running the Markov chain to equilib-
rium can require a very large number of steps, and no
foolproof method exists to determine whether equilib-
rium has been reached. A further disadvantage is the
large variance of the estimated gradient.

To avoid the difficulty in computing the log-likelihood
gradient, Hinton (2002) proposed the contrastive di-
vergence (CD) method which approximately follows
the gradient of a different function. ML learning min-
imises the Kullback-Leibler divergence
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CD learning approximately follows the gradient of the
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difference of two divergences (Hinton, 2002):

CD,, = KL (po|psc) — KL (pn ||Psc) -

In CD learning, we start the Markov chain at the data
distribution py and run the chain for a small number
n of steps (e.g. n = 1). This greatly reduces both
the computation per gradient step and the variance
of the estimated gradient, and experiments show that
it results in good parameter estimates (Hinton, 2002).
CD has been applied effectively to various problems
(Chen and Murray, 2003; Teh et al., 2003; He et al.,
2004), using Gibbs sampling or hybrid Monte Carlo as
the transition operator for the Markov chain. How-
ever, it is hard to know how good the parameter esti-
mates really are, since no comparison was done with
the real ML estimates (which are impractical to com-
pute). There has been a little theoretical investigation
of the properties of contrastive divergence (MacKay,
2001; Williams and Agakov, 2002; Yuille, 2004), but
important questions remain unanswered: Does it con-
verge? If so how fast, and how are its convergence
points related to the true ML estimates?

In this paper we provide some theoretical and empir-
ical evidence that contrastive divergence can, in fact,
be the basis for a very effective approach for learn-
ing random fields. We concentrate on Boltzmann ma-
chines, though our results should be more generally
valid. First, we show that CD provides biased esti-
mates in general: for almost all data distributions, the
fixed points of CD are not fixed points of ML, and
vice versa (section 2). We then show, by comparing
CD and ML in empirical tests, that this bias is small
(sections 3-4) and that an effective approach is to use
CD to perform most of the learning followed by a short
run of ML to clean up the solution (section 5).

To eliminate sampling noise from our investigations,
we use fairly small models (with e.g. 48 parameters)
for which we can compute the exact model distribution
and the exact distribution at each step of the Markov
chain at each stage of learning. Throughout, we take
ML learning to mean exact ML learning (i.e., with n —
oo in the Markov chain) and CD,, learning to mean
learning using the exact distribution of the Markov
chain after n steps. The sampling noise in real MCMC
estimates would create an additional large advantage
that favours CD over ML learning, because CD has
much lower variance in its gradient estimates.

1 ML and CD learning for two types
of Boltzmann machine

We will concentrate on two types of Boltzmann ma-
chine, which are a particular case of the model of
eq. (1). In Boltzmann machines, there are v visible

units x = (x1,...,2,)7 that encode a data vector, and
h hidden units y = (y1,...,yn)?; all units are binary
and take values in {0, 1}.

Fully visible Boltzmann machines have h = 0 and
the visible units are connected to each other. The en-
ergy is then E(x; W) = —1x” Wx, where W = (w;)
is a symmetric v X v matrix of real-valued weights (for
simplicity, we do not consider biases). We denote such
a machine by VBM(v). In VBMSs, the log-likelihood
has a unique optimum because its Hessian is negative
definite. Since OE/0w;; = —x;x;, ML learning takes
the form

T+1 T
wz(jJr )= ng) +n ((zizg), — (wizj) )

while CD,, learning takes the form

+1
wl(; ) = wg) +n ((zizj), — (zizj),) -
Here, p,(x; W) = p,, = T"py is the nth-step distri-
bution of the Markov chain with transition matrix® T
started at the data distribution pyg.

Restricted Boltzmann machines (Smolensky,
1986; Freund and Haussler, 1992) have connections
only between a hidden and a visible unit, i.e.,
they form a bipartite graph. The energy is then
E(x,y; W) = —yTWx, where we have v visible units
and h hidden units, and W = (w;;) is an h X v ma-
trix of real-valued weights. We denote such a machine
by RBM(v, h). By making h large, an RBM can be
given far more representational power than a VBM,
but the log-likelihood can have multiple maxima. The
learning is simpler than in a general Boltzmann ma-
chine because the visible units are conditionally inde-
pendent given the hidden units, and the hidden units
are conditionally independent given the visible units.
One step of Gibbs sampling can therefore be carried
out in two half-steps: the first updates all the hid-
den units and the second updates all the visible units.
Equivalently, we can write T = T«T, where t,,;; =
p(x=jly =4 W) and ty,;; =p(y =ilx = j; W).

Since OFE/0w;; = —y;xj, ML learning takes the form
T+1 T
wz(j ) — wz(j) +n <<<yixj>p(y|x;w)>0 - <yixj>oo>

while CD,, learning takes the form
T+1 T
wz(j ) — wz(j) +n (<<yixj>p(y|x;w)>0 - <y1x]>n> .
2 Analysis of the fixed points

A probability distribution over v units is a vector of
2Y real-valued components (from 0 to 2¥ — 1 in bi-

'Here and elsewhere we omit the dependence of T on
the parameter values W to simplify the notation.



nary notation) that lives in the 2Y-dimensional sim-
plex Age = {x € R* : z; >0, Zil x; = 1}. Each
coordinate axis of R?" corresponds to a state (binary
vector). We write such a distribution as p(+), when em-
phasising that it is a function, or as a vector p, when
emphasising that it is a point in the simplex. We define
a Markov chain through its transition operator, which
is a stochastic 2V x 2¥ matrix T. We use the Gibbs
sampler as the transition operator because of its sim-
plicity and its wide applicability to many distributions.
For Boltzmann machines with finite weights, the Gibbs
sampler converges to a stationary distribution which
is the model distribution p(x; W). For an initial dis-
tribution p we then have p,, = T"p for n = 1,2,...;
and p(x; W) = po = T®p for any p € Ag, ie,
T = poo1” where 1 is the vector of ones.

VBMs or RBMs define a manifold M within the sim-
plex, parameterised by W, with w;; € R (we ignore
the case of infinite weights, corresponding to distribu-
tions in the intersection of M and the simplex bound-
ary). The learning (ML or CD) starts at a point in
M and follows the (approximate) gradient of the log-
likelihood, thus tracing a trajectory within M.

For ML with gradient learning, the fixed points are the
zero-gradient points (maxima, minima and saddles),
which satisfy (g), = (g)., where g = 0E/OW. For
n-step CD, the fixed points satisfy (g), = (g),,- In this
section we address the theoretical question of whether
the fixed points of ML are fixed points of CD and vice
versa. We show that, in general,

We give a brief explanation of a framework for
analysing the fixed points of ML and CD; full details
appear in Carreira-Perpifidn and Hinton (2004). The
idea is to fix a value of the weights and so a value of the
moments (defined below), determine which data dis-
tributions py have such moments (i.e., the opposite of
the learning problem) and then determine under what
conditions ML, and CD agree over those distributions.
Call G the [W/| x 2¥ matrix of energy derivatives, de-
fined by

oE
Gix = ~dw, (x; W)
where we consider W' as a column vector with |W|
elements and the state x takes values 0,1,...,2Y — 1

in the case of v binary variables. We can then write
the moments s = <—§—V€,>p = — (g), of a distribution
p as s = Gp, i.e., s is a linear function of p. Call T
the transition matrix for the sampling operator with
stationary distribution pe (so we have poo = TpPoo).
In general, both G and T are functions of W.
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Figure 1: The simplex in 4 dimensions of the VBM(2).
The model has a single parameter W = w € (—o00, 00).
The tetrahedron represents the simplex, i.e., the set
{p€R*: 1Tp =1, p > 0}. The tetrahedron corners
correspond to the pure states, i.e., the distributions
that assign all the probability to a single state. The red
vertical segment is the manifold of VBMs, i.e., the dis-
tributions reachable by a VBM(2) for w € (—o0, 00).
The ML estimate of a data distribution is its orthog-
onal projection on the model manifold. The CD esti-
mate only agrees with the ML one for data distribu-
tions in the 3 shaded planes in the inset.

Now consider a fixed value of W and let po, be its
associated model distribution. Thus its moments are
Seo = GPoo- We define two sets Py and P; that depend
on s. First, the set of data distributions pg that have
those same moments s is:

Gpo = 5
17py =1
po >0

Po=<po € R?" .

Each distribution in Py gives a fixed point of ML. Like-
wise, define the set of data distributions py whose dis-
tribution p; = T'pg (first step in the Markov chain,
i.e., what CD; uses instead of p,) has the same mo-
ments as So:

’ GTpOZSoo
Pr=qpoeR*: 1Tpy=1
po >0

Both Py and P; are nonempty since po, is in both.
Now we can reformulate the problem in terms of the
sets Py and P;. For example, a distribution with pg €
Py and po ¢ P satisfies (g), = (8)., # (8); and thus
gives a fixed point of ML but not of CD (that is, the
CD learning rule would move away from such a ps).



In general (and ignoring technical details regarding the
inequality pg > 0), Py and P; are linear subspaces of
the same dimension because G is full rank (the mo-
ments are 1.i.) and T is generally full rank. Thus we
cannot generally expect Py = P1, so points with CD
bias are the rule; points in Py N P; have no CD bias
but are the exception (the intersection being a lower-
dimensional subspace). We can make the statement
precise for a given model. For example, for VBM(2)
with Gibbs sampling we have G = (0 0 0 1) (G hap-
pens to be independent of W for VBMs), we can com-
pute T and we can work out the set Py N Py for ev-
ery So, value. The resulting set, which contains all the
data distributions for which ML and CD have the same
fixed points (i.e., no bias), is the union (intersected
with the simplex) of the 3 planes: p;; = 0; p11 =
i; 3po1 + p11 = 1, where we write a distribution as
a 4-dimensional vector p = (poo po1 p1o p11)’, corre-
sponding to the probabilities of the 4 states 00,...,11
(see fig. 1). This set has measure zero in the simplex,
so CD is biased for almost every data distribution.

A reachable distribution pg € M is a fixed point for
both CD and ML, as it is invariant under T (Hinton,
2002). This is consistent with the above argument,
as Po = Poo € Pop N P1. The distributions of practi-
cal interest are typically unreachable because real data
are nearly always more complicated than our compu-
tationally tractable model of it.

In summary, we expect that for almost every data
distribution pg, the fixed points of ML are not fixed
points of CD and vice versa. This means that, in gen-
eral, CD is a biased learning algorithm. Our argu-
ment can be applied to models other than Boltzmann
machines, transition operators other than Gibbs sam-
pling, and to n > 1 (writing T" instead of T). What
determines whether CD is biased are the hyperplanes
defined by the matrices G and GT. However, non-
trivial models (i.e., defining a lower-dimensional man-
ifold) may exist for which CD is not biased; an exam-
ple is Gaussian Boltzmann machines (Williams and
Agakov, 2002) and Gaussian distributions, at least in
2D (Carreira-Perpinan and Hinton, 2004).

This analysis does not imply that CD learning con-
verges (to a stable fixed point); at present, we do not
have a proof for this. But if CD does converge, as
it appears to in practice and in all our experiments,
it can only converge to a fixed point. Naturally, ML
does converge to its stable fixed points (maxima) from
almost everywhere, since it follows the exact gradient
of an objective function; in the noisy sampling case
that is used in practice, it also converges provided
the learning rate n follows a Robbins-Monro sched-
ule (Benveniste et al., 1990), since the rule performs
stochastic gradient learning.

3 Experiments with fully visible BMs

Since CD is biased with respect to ML for almost all
data distributions, we now investigate empirically the
magnitude of the bias. In all experiments in the pa-
per, ML: and CD are tested under exactly the same
conditions (unless otherwise stated). Both ML and
CD learning use the same initial weight vectors, the
same constant learning rate n = 0.9 and the same
maximum of 10000 iterations (which is rarely reached
for VBMs), stopping when |e|| . < 1077 (where e =
(wixj), — (wizr;) is the gradient vector for ML, and
e = (w;xj), — (r;x;), is the approximate gradient for
CDy). All the experiments use n = 1 step of Gibbs
sampling with fixed ordering of the variables for CD
learning, because this should produce the greatest bias
(since CD — ML). Although each of our simu-

lated models is necessarily small, our empirical results
hold for a range of model sizes and conditions, which
suggests they may be more generally valid.

In this section we consider fully visible Boltzmann
machines, denoted VBM(v), which have a single ML
optimum. It appears that CD has a single conver-
gence point too: for v = 2 we can prove this, and
for v € {3,...,10} we checked empirically by running
CD from many different initial weight vectors that it
always converged to the same point (up to a small
numerical error). Thus, we assume that CD has a
unique convergence point for VBM(v). This allows us
to characterise the bias for this model class by sam-
pling many data distributions and computing the con-
vergence point of ML and of CD.

For a given value of v we sampled a number (as large
as computationally feasible) of data distributions uni-
formly distributed in the simplex in 2V variables (see
Carreira-Perpifian and Hinton, 2004 for details of how
to generate these samples). Then we ran ML and CD
starting with W = 0 because small weights give faster
convergence on average. The results for experiments
for v € {2,...,10} were qualitatively similar. For
v = 2 it was feasible to sample 10* data distributions
and the results are summarised in figures 2-5.

The histograms in figs. 2—-3 show the bias is very small
for most distributions. Fig. 4 shows that the KL error
(for both ML and CD) is small for data distributions
near the simplex centre. For less vague data distribu-
tions there is more variability, with some distributions
having a low error and some having a much higher
one. Generally speaking, the distributions having the
highest KL error for ML (i.e., the distributions that
are modelled worst by the VBM) are also the ones
that have the highest bias. Most of these lie near the
boundaries of the simplex, particularly near the cor-
ners. However, not all corners and boundaries are far
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Figure 2: Histograms of KL (pollpm) and

KL (pollpcp) for VBM(2) after learning on 10%
data distributions, where pyr, and pop are the
convergence points for MLL and CD, respectively. The
performance of CD is very close to ML on average.

from the model manifold; this depends on the geome-
try of the model. In fig. 4 (for v = 2) we can discern
the geometry of the simplex in fig. 1. The discontinu-
ity in the slope at a Euclidean distance ||pg — ul| just
less than 0.3 corresponds to the radius of the inscribed
sphere. The branch in the scatterplot which has low
error corresponds to the direction passing through the
centre and the simplex corner corresponding to the
delta distribution of the (1,1) state (i.e., along the
VBM manifold). The other branch which has high
error and more data points corresponds to the direc-
tions passing through the centre and any of the other
3 corners (i.e., away from the VBM manifold).

As v increases, most of the volume of the simplex con-
centrates at a distance intermediate between the cor-
ners and the centre, close to the radius of the inscribed
hypersphere. Consequently, a finite uniform sample
contains essentially no points near the boundaries of
the simplex, which produce the highest bias. For large
v, CD has very small bias for nearly all randomly cho-
sen data distributions. Only those rare distributions
near the simplex boundaries produce a significant bias,
but these are important in practice: real-world distri-
butions are often near the boundaries (though not as
far as the corners) because large parts of the data space
have negligible probability.

Fig. 5 shows some typical learning curves. Both CD
and ML decrease in a similar way, converging at the
same rate (first-order), taking the same number of it-
erations to converge to a given tolerance. CD yields a

3500 j j j j j j j -
3000 | i
2500 4
2000 4
1500 4

1000 (- -

o 0.002 0.004 0.006 0.008 0.01 0.012 0.014
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Figure 3: Histogram of the symmetrised KL diver-
gence for VBM(2) between the model distributions
found by ML and CD for all 10* data distributions.
This shows that the bias of CD is almost always very
small (< 5% of the KL error obtained by ML for the
same distribution; data not shown). However, data
distributions do exist that have a relatively large bias.
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Figure 4: KL error for ML KL (po|lpmr) (red o) and
for CD KL (po|lpcp) (black +) vs Euclidean distance
|lpo — u|| between the data distribution and the uni-
form distribution (centre of the simplex). This Eu-
clidean distance gives a linear ordering of the data
distributions (lowest Euclidean distance: pyg is the uni-
form distribution, ||py — u|| = 0; highest: pg is one of
the corners of the simplex, |[po — u|| = v1 —27?). For
clarity, not all 10* distributions are plotted.

higher KL error. In the lower example, the CD curve
increases slightly at the end, suggesting it came close
to the ML optimum but then moved away.

In summary, we find the CD bias to be very small for
most distributions and to be highest (but still small)
with real-world distributions (near the simplex bound-
ary). This bias is small in relative terms (compared to
the KL error for ML) and absolute terms (compared
to the simplex dimensions). CD and ML converge at
about the same rate, but an ML iteration costs much
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Figure 5: Learning curves for ML and CD for 2 ran-
domly chosen data distributions. Axes are in log scale.

more than a CD one in a MCMC implementation.

4 Experiments with restricted BMs

RBMs are practically more interesting than VBMs,
since they have a higher representational power. They
also introduce a new element that complicates our
study: the existence of multiple local optima of ML
and CD. This prevents the characterisation of the bias
over a large number of data distributions. Instead, we
can only afford to select one data distribution (or a
few) and try to characterise the set of all optima of
ML and CD.

Given a data distribution, we generate a collection of
60 random initial weight vectors W and compute all
the optima of ML and CD that are reachable from any
of the initial weight vectors or from the optima found
by the other learning method. This requires iterat-
ing over the current set of optima with ML and CD,
until no new optima are found. The result is a bipar-
tite, self-consistent convergence graph where an arrow
A — B indicates that ML optimum A converges to CD
optimum B under CD, or CD optimum A converges to
ML optimum B under ML. Using many different initial
weight vectors should give a representative collection

of optima and a Good-Turing estimator (Good, 1953)
can be used as a coarse indicator of how many op-
tima we missed. The graph depends on how we decide
whether two very similar optima are really the same.
The threshold and number of parameter updates have
to be carefully chosen so that truly different optima
are not confused but two discoveries of the same op-
timum are not considered different. We found that
using the symmetrised KL distance with a threshold
of 0.01 worked well with 10° parameter updates.

We ran experiments for various values of v and h and
various data distributions. Fig. 6 summarises the re-
sults for one representative case, corresponding to:
v = 6, h = 4. The data distribution was generated
from a data set of 4 binary vectors by adding an ex-
tra count of 0.1 to each possible binary vector and
renormalising (thus it is close to the simplex bound-
ary). We used 10° iterations and 60 different initial
weight vectors: 20 random N(0,0 = 0.1), 20 random
N (0,0 = 1) and 20 random N'(0,0 = 10). We found
27 ML optima and 28 CD optima, and missed about
3 and 4, respectively (Good-Turing estimate).

Panel A shows a 2D visualisation of ML optima (red o)
and CD optima (black +), i.e., the visible-unit distri-
butions pyy, and pep, and their convergence relations.
The blue O is the data distribution py (of the visi-
ble variables). To avoid cluttering the plot, pairs of
arrows A < B are drawn as a single line without ar-
rowheads A — B. Note that many such lines are too
short to be distinguished. The 2D view was obtained
with SNE (Hinton and Roweis, 2003) which tries to
preserve the local distances. Using a perplexity of 3
to determine the local neighborhood size, SNE gives
a better visualisation than projecting onto the first 2
principal components.

This panel shows an important and robust phenome-
non: ML and CD optima typically come in pairs that
converge to each other. The CD optimum always has
a greater or equal KL error than its associated ML op-
timum but the difference is small. These pairs are to
be expected for CD,, when n is large because CD be-
comes ML as n — oco. However they occur very often
even for n = 1, as shown. Panels B—C show that the
choice of initial weights has a much larger effect on the
KL error than the CD bias.

5 Using CD to initialise ML

The previous experiments show that CD takes us close
to an ML optimum, but that a small bias remains. An
obvious way to eliminate this bias is to use increasing
values of n as training progresses. In this section we
explore a crude version of this strategy: run CD until
it is close to convergence then use a short run of ML
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Figure 6: Empirical study of the convergence points of
ML and CD for RBM(6,4) with a single data distri-
bution. A: 2D SNE visualization of the points (ML:
red o; CD: black +), and convergence relations among
them with ML and CD (a line without an arrowhead
stands for two arrows S, to avoid clutter). B: KL er-
ror of CD vs ML from the same initial weight vectors,
for 60 random initial weight vectors. C: histograms of
the KL error of ML and CD.
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Figure 7: Learning curves for CD-ML and ML, where
each ML iteration is scaled to cost as much as 20 CD
iterations. The axes have a log scale, so CD-ML is an
order of magnitude faster for about the same final KL.

to reduce the bias. We call this strategy CD-ML. We
use a data distribution which is more representative of
a real problem. It is located on the simplex boundary
and derived from the statistics of all 3 x 3 patches in
11000 16 x 16 images of handwritten digits from the
USPS dataset. The 256 intensity levels are thresholded
at 150 to produce 9-dimensional binary vectors (thus
v = 9). pp is the normalised counts of each of these
binary vectors in the 2156 000 patches.

We used 60 different initial weight vectors: 20 ran-
dom N(0,0 = 3), 20 random N(0,0 = 1) and 20
random N(0,0 = 3). For each starting condition, two
types of learning were used: ML learning for 104 iter-
ations; and CD learning for 10 iterations, followed by
a shorter run of ML learning. We ran experiments for
h € {1,...,8} and found that there is a unique ML
optimum and several CD optima of varying degrees of
bias. If CD learning was followed by 1000 iterations of
ML, all the CD optima converged to the ML optimum.

Fig. 7 shows the learning curves (i.e., the error
KL (po|l-) as a function of estimated CPU time) for
the different methods with 2 = 8: CD (blue line), the
short ML run (1000 iterations) following CD (green
line) and ML (red line), for a selected starting condi-
tion. We assume that each ML iteration costs 20 times
as much as each CD iteration (a reasonable estimate
for the size of this RBM). CD-ML reaches the same
error as ML but at a small fraction of the cost. Note
how sharply the CD-ML curve drops when we switch
to ML, suggesting good performance can be achieved
with very few of the expensive ML iterations.



6 Conclusion

Our first result is negative: for two types of Boltz-
mann machine we have shown that, in general, the
fixed points of CD differ from those of ML, and thus
CD is a biased algorithm. This might suggest that
CD is not a competitive method for ML estimation of
random fields. Our remaining, empirical results show
otherwise: the bias is generally very small, at least
for Gibbs sampling, since CD typically converges very
near an ML optimum. And this small bias can be elim-
inated by running ML for a few iterations after CD,
i.e., using CD as an initialisation strategy for ML, with
a total computation time that is much smaller than
that of full-fledged ML (which will also have slight bias
because the Markov chain cannot be run forever).

The theoretical analysis of CD is difficult because of
the complicated form that the p; (or p,) distribution
takes; py is a moving target that changes with W in a
complicated way, and depends on the sampling scheme
used (e.g. Gibbs sampling). As a result, very few the-
oretical results about CD exist. MacKay (2001) gave
some examples of CD bias, but these used unusual
sampling operators. Our analysis applies to any model
and operator (through the G and T matrices), in par-
ticular generally applicable operators such as Gibbs
sampling. Williams and Agakov (2002) showed that,
for 2D Gaussian Boltzmann machines, CD is unbiased
and typically decreases the variance of the estimates.
Yuille (2004) gives a condition for CD to be unbiased,
though this condition is difficult to apply in practice.

One open theoretical problem is whether the exact ver-
sion of CD converges (we believe that it does). As-
suming we can prove convergence for the exact case,
the right tools to use to prove it in the noisy case
are probably those of stochastic approximation (Ben-
veniste et al., 1990; Yuille, 2004).
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