5 (2/5 Log[ 2] (Log[1 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])]/(-2 + 2 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3) + Log[1 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]/(-2 + 2 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3) + Log[1 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]/(-2 + 2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3) + Log[1 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]/(-2 + 2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3)) - 6/5 Log[2] (((3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) Log[ 1 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])])/( 4 (-2 + 2 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3)) + ((3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) Log[ 1 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])])/( 4 (-2 + 2 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3)) + ((3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) Log[ 1 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])])/( 4 (-2 + 2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3)) + ((3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) Log[ 1 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])])/( 4 (-2 + 2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3))) + 3/5 Log[ 2] (((3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 Log[ 1 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])])/( 16 (-2 + 2 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3)) + ((3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 Log[ 1 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])])/( 16 (-2 + 2 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3)) + ((3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 Log[ 1 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])])/( 16 (-2 + 2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3)) + ((3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 Log[ 1 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])])/( 16 (-2 + 2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3))) + 9/5 Log[2] (((3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3 Log[ 1 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])])/( 64 (-2 + 2 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3)) + ((3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3 Log[ 1 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])])/( 64 (-2 + 2 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3)) + ((3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3 Log[ 1 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])])/( 64 (-2 + 2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3)) + ((3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3 Log[ 1 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])])/( 64 (-2 + 2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3))) - 1/5 Log[2] (( 5 Log[1 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])] - 5/4 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) Log[ 1 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])] + 13/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 Log[ 1 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])])/(-2 + 2 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3) + (5 Log[ 1 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] - 5/4 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) Log[ 1 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] + 13/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 Log[ 1 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])])/(-2 + 2 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3) + (5 Log[ 1 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] - 5/4 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) Log[ 1 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] + 13/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 Log[ 1 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])])/(-2 + 2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3) + (5 Log[ 1 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] - 5/4 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) Log[ 1 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] + 13/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 Log[ 1 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])])/(-2 + 2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3)) - 16/5 Log[ 2] ((-Log[1 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])] + 1/2 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) Log[ 1 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])] - 1/4 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 Log[ 1 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])] + 3/64 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3 Log[ 1 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])])/(-2 + 2 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3) + (-Log[ 1 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] + 1/2 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) Log[ 1 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] - 1/4 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 Log[ 1 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] + 3/64 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3 Log[ 1 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])])/(-2 + 2 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3) + (-Log[ 1 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] + 1/2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) Log[ 1 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] - 1/4 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 Log[ 1 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] + 3/64 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3 Log[ 1 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])])/(-2 + 2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3) + (-Log[ 1 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] + 1/2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) Log[ 1 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] - 1/4 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 Log[ 1 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] + 3/ 64 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3 Log[ 1 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])])/(-2 + 2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3)) - Log[2] ((-5 Log[ 1 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])] + 7/4 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) Log[ 1 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])] - 15/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 Log[ 1 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])] + 5/64 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3 Log[ 1 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])])/(-2 + 2 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3) + (-5 Log[ 1 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] + 7/4 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) Log[ 1 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] - 15/ 16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 Log[ 1 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] + 5/64 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3 Log[ 1 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])])/(-2 + 2 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3) + (-5 Log[ 1 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] + 7/4 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) Log[ 1 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] - 15/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 Log[ 1 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] + 5/64 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3 Log[ 1 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])])/(-2 + 2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3) + (-5 Log[ 1 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] + 7/ 4 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) Log[ 1 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] - 15/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 Log[ 1 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] + 5/64 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3 Log[ 1 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])])/(-2 + 2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3)) + 12/5 Log[ 2] ((-3 Log[1 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])] + 5/4 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) Log[ 1 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])] - 5/8 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 Log[ 1 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])] + 5/64 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3 Log[ 1 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])])/(-2 + 2 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 + 1/ 16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3) + (-3 Log[ 1 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] + 5/4 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) Log[ 1 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] - 5/8 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 Log[ 1 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] + 5/64 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3 Log[ 1 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])])/(-2 + 2 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3) + (-3 Log[ 1 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] + 5/4 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) Log[ 1 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] - 5/8 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 Log[ 1 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] + 5/64 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3 Log[ 1 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])])/(-2 + 2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3) + (-3 Log[ 1 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] + 5/4 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) Log[ 1 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] - 5/8 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 Log[ 1 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] + 5/64 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3 Log[ 1 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])])/(-2 + 2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3)) - 2/5 Log[2] (Log[ 2 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])]/(-2 + 2 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3) + Log[2 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]/(-2 + 2 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3) + Log[2 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]/(-2 + 2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3) + Log[2 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]/(-2 + 2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3)) + 1/5 Log[64] (((3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) Log[ 2 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])])/( 4 (-2 + 2 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3)) + ((3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) Log[ 2 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])])/( 4 (-2 + 2 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3)) + ((3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) Log[ 2 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])])/( 4 (-2 + 2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3)) + ((3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) Log[ 2 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])])/( 4 (-2 + 2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3))) - 3/5 Log[2] (((3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 Log[ 2 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])])/( 16 (-2 + 2 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3)) + ((3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 Log[ 2 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])])/( 16 (-2 + 2 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3)) + ((3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 Log[ 2 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])])/( 16 (-2 + 2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3)) + ((3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 Log[ 2 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])])/( 16 (-2 + 2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3))) - 9/5 Log[2] (((3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3 Log[ 2 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])])/( 64 (-2 + 2 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3)) + ((3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3 Log[ 2 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])])/( 64 (-2 + 2 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3)) + ((3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3 Log[ 2 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])])/( 64 (-2 + 2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3)) + ((3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3 Log[ 2 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])])/( 64 (-2 + 2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3))) + 1/5 Log[2] (( 5 Log[2 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])] - 5/4 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) Log[ 2 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])] + 13/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 Log[ 2 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])])/(-2 + 2 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3) + (5 Log[ 2 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] - 5/4 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) Log[ 2 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] + 13/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 Log[ 2 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])])/(-2 + 2 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3) + (5 Log[ 2 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] - 5/4 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) Log[ 2 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] + 13/ 16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 Log[ 2 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])])/(-2 + 2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3) + (5 Log[ 2 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] - 5/4 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) Log[ 2 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] + 13/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 Log[ 2 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])])/(-2 + 2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3)) + 16/5 Log[ 2] ((-Log[2 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])] + 1/2 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) Log[ 2 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])] - 1/4 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 Log[ 2 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])] + 3/ 64 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3 Log[ 2 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])])/(-2 + 2 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3) + (-Log[ 2 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] + 1/2 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) Log[ 2 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] - 1/4 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 Log[ 2 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] + 3/64 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3 Log[ 2 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])])/(-2 + 2 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3) + (-Log[ 2 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] + 1/2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) Log[ 2 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] - 1/ 4 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 Log[ 2 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] + 3/64 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3 Log[ 2 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])])/(-2 + 2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3) + (-Log[ 2 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] + 1/2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) Log[ 2 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] - 1/4 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 Log[ 2 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] + 3/64 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3 Log[ 2 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])])/(-2 + 2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3)) + Log[2] ((-5 Log[ 2 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])] + 7/ 4 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) Log[ 2 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])] - 15/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 Log[ 2 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])] + 5/64 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3 Log[ 2 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])])/(-2 + 2 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3) + (-5 Log[ 2 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] + 7/4 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) Log[ 2 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] - 15/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 Log[ 2 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] + 5/64 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3 Log[ 2 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])])/(-2 + 2 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 + 1/ 16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3) + (-5 Log[ 2 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] + 7/4 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) Log[ 2 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] - 15/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 Log[ 2 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] + 5/64 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3 Log[ 2 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])])/(-2 + 2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3) + (-5 Log[ 2 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] + 7/4 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) Log[ 2 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] - 15/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 Log[ 2 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] + 5/64 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3 Log[ 2 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])])/(-2 + 2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3)) - 12/5 Log[ 2] ((-3 Log[2 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])] + 5/4 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) Log[ 2 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])] - 5/8 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 Log[ 2 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])] + 5/64 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3 Log[ 2 + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])])/(-2 + 2 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3) + (-3 Log[ 2 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] + 5/4 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) Log[ 2 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] - 5/8 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 Log[ 2 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] + 5/ 64 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3 Log[ 2 + 1/4 (-3 + Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])])/(-2 + 2 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3) + (-3 Log[ 2 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] + 5/4 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) Log[ 2 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] - 5/8 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 Log[ 2 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] + 5/64 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3 Log[ 2 + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])])/(-2 + 2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3) + (-3 Log[ 2 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] + 5/4 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) Log[ 2 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] - 5/ 8 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 Log[ 2 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] + 5/64 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3 Log[ 2 + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])])/(-2 + 2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3)) - 2/5 (PolyLog[2, 4/(3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])]/(-2 + 2 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3) + PolyLog[2, 4/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]/(-2 + 2 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3) + PolyLog[2, 4/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]/(-2 + 2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3) + PolyLog[2, 4/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]/(-2 + 2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3)) + 6/5 (((3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) PolyLog[2, 4/( 3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])])/( 4 (-2 + 2 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3)) + ((3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) PolyLog[2, 4/( 3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])])/( 4 (-2 + 2 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3)) + ((3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) PolyLog[2, 4/( 3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])])/( 4 (-2 + 2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3)) + ((3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) PolyLog[2, 4/( 3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])])/( 4 (-2 + 2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3))) - 3/5 (((3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 PolyLog[2, 4/( 3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])])/( 16 (-2 + 2 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3)) + ((3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 PolyLog[2, 4/( 3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])])/( 16 (-2 + 2 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3)) + ((3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 PolyLog[2, 4/( 3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])])/( 16 (-2 + 2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3)) + ((3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 PolyLog[2, 4/( 3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])])/( 16 (-2 + 2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3))) - 9/5 (((3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3 PolyLog[2, 4/( 3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])])/( 64 (-2 + 2 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3)) + ((3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3 PolyLog[2, 4/( 3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])])/( 64 (-2 + 2 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3)) + ((3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3 PolyLog[2, 4/( 3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])])/( 64 (-2 + 2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3)) + ((3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3 PolyLog[2, 4/( 3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])])/( 64 (-2 + 2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3))) + 2/5 ((Log[2] Log[1 - 8/(3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])] + PolyLog[2, 8/(3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])])/(-2 + 2 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3) + ( Log[2] Log[1 - 8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] + PolyLog[2, 8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])])/(-2 + 2 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3) + ( Log[2] Log[1 - 8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] + PolyLog[2, 8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])])/(-2 + 2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3) + ( Log[2] Log[1 - 8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] + PolyLog[2, 8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])])/(-2 + 2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3)) - 6/5 ((1/4 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) Log[2] Log[ 1 - 8/(3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])] + 1/4 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) PolyLog[2, 8/( 3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])])/(-2 + 2 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3) + ( 1/4 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) Log[2] Log[ 1 - 8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] + 1/4 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) PolyLog[2, 8/( 3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])])/(-2 + 2 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3) + ( 1/4 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) Log[2] Log[ 1 - 8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] + 1/4 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) PolyLog[2, 8/( 3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])])/(-2 + 2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3) + ( 1/4 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) Log[2] Log[ 1 - 8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] + 1/4 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) PolyLog[2, 8/( 3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])])/(-2 + 2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3)) + 3/5 ((1/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 Log[2] Log[ 1 - 8/(3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])] + 1/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 PolyLog[2, 8/( 3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])])/(-2 + 2 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3) + ( 1/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 Log[2] Log[ 1 - 8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] + 1/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 PolyLog[2, 8/( 3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])])/(-2 + 2 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3) + ( 1/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 Log[2] Log[ 1 - 8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] + 1/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 PolyLog[2, 8/( 3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])])/(-2 + 2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3) + ( 1/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 Log[2] Log[ 1 - 8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] + 1/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 PolyLog[2, 8/( 3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])])/(-2 + 2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3)) + 9/5 ((1/64 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3 Log[2] Log[ 1 - 8/(3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])] + 1/64 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3 PolyLog[2, 8/( 3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])])/(-2 + 2 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3) + ( 1/64 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3 Log[2] Log[ 1 - 8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] + 1/64 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3 PolyLog[2, 8/( 3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])])/(-2 + 2 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) - 9/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 + 1/16 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3) + ( 1/64 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3 Log[2] Log[ 1 - 8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] + 1/64 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3 PolyLog[2, 8/( 3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])])/(-2 + 2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3) + ( 1/64 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3 Log[2] Log[ 1 - 8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] + 1/64 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3 PolyLog[2, 8/( 3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])])/(-2 + 2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) - 9/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 + 1/16 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3)) + (-(3/ 5) (125 + 1/2 (-65 + 35 Sqrt[5] - 2 I Sqrt[5485/2 - (2441 Sqrt[5])/2]) + 1/2 (-65 + 35 Sqrt[5] + 2 I Sqrt[5485/2 - (2441 Sqrt[5])/2])) (-1 + ((3 - Sqrt[ 5] + I Sqrt[2 (5 - Sqrt[5])])^3 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]))/ 2048 + ((3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) (3 + Sqrt[ 5] - I Sqrt[2 (5 + Sqrt[5])])^3 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2)/ 2048 + ((3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 (3 + Sqrt[ 5] - I Sqrt[2 (5 + Sqrt[5])]) (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3)/2048 + 1/ 32 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3 (1/ 64 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 + 1/64 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 (3 + Sqrt[ 5] + I Sqrt[2 (5 + Sqrt[5])]) + 1/64 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) (3 + Sqrt[ 5] + I Sqrt[2 (5 + Sqrt[5])])^2) + 1/8 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 (1/ 256 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3 (3 + Sqrt[ 5] - I Sqrt[2 (5 + Sqrt[5])]) + 1/256 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3 (3 + Sqrt[ 5] + I Sqrt[2 (5 + Sqrt[5])]) + 1/256 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) (3 + Sqrt[ 5] + I Sqrt[2 (5 + Sqrt[5])])^3) + 1/2 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) (((3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3)/ 1024 + ((3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2)/ 1024 + ((3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3)/1024)) \[Pi]^2 - 1/64 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^4 (1/ 4 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])) (1/ 4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) + 1/4 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])) (1/ 4 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])) (179 - 72 Log[-(8/(3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]))]^2 + 6 Log[2] (-25 + 24 Log[1 - 8/(3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])]) - 144 PolyLog[2, 1/8 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])]) + 9/256 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^5 (1/ 4 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])) (1/ 4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) + 1/4 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])) (1/ 4 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])) (9 - 6 Log[-(8/(3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]))]^2 + 4 Log[2] (-2 + 3 Log[1 - 8/(3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])]) - 12 PolyLog[2, 1/8 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])]) + (1/8192) 9 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^7 (1/ 4 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])) (1/ 4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) + 1/4 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])) (1/ 4 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])) (-Log[-(8/( 3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]))]^2 + 2 Log[2] Log[ 1 - 8/(3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])] - 2 PolyLog[2, 1/8 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])]) + (1/2048) 9 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^6 (1/ 4 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])) (1/ 4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) + 1/4 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])) (1/ 4 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])) (-4 + Log[16] + 5 Log[-(8/(3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]))]^2 - 10 Log[2] Log[ 1 - 8/(3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])] + 10 PolyLog[2, 1/8 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])]) - 3/320 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^3 (1/ 4 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])) (1/ 4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) + 1/4 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])) (1/ 4 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])) (30 Log[2]^2 - 20 Log[2] (-60 + Log[8]) - 3 (65 + 35 Sqrt[5] - I Sqrt[10970 + 4882 Sqrt[5]]) PolyLog[2, 1/2 - 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 10 (-148 - 3/4 (-13 + 7 Sqrt[5] - 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) Log[-(1/2) I (-I + Sqrt[5 + 2 Sqrt[5]])]^2 - 3/4 (-13 + 7 Sqrt[5] + 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) Log[ 1/2 I (I + Sqrt[5 + 2 Sqrt[5]])]^2 + 3/2 (-13 - 7 Sqrt[5] - I Sqrt[2/5 (1097 + 2441/Sqrt[5])]) PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] - 3/2 (-13 + 7 Sqrt[5] - 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) PolyLog[2, 2/( 1 + I Sqrt[5 + 2 Sqrt[5]])] - 3/2 (-13 + 7 Sqrt[5] + 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) PolyLog[2, ( 2 I)/(I + Sqrt[5 + 2 Sqrt[5]])])) + 1/320 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) (5/ 64 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) (179 - 72 Log[-(8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]))]^2 + 6 Log[2] (-25 + 24 Log[1 - 8/( 3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) - 144 PolyLog[2, 1/8 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) - 5/64 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) (179 - 72 Log[-(8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]))]^2 + 6 Log[2] (-25 + 24 Log[1 - 8/( 3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) - 144 PolyLog[2, 1/8 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) - 45/256 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^4 (3 + Sqrt[ 5] - I Sqrt[2 (5 + Sqrt[5])]) (9 - 6 Log[-(8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]))]^2 + 4 Log[2] (-2 + 3 Log[1 - 8/( 3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) - 12 PolyLog[2, 1/8 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) + 45/256 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^4 (3 + Sqrt[ 5] + I Sqrt[2 (5 + Sqrt[5])]) (9 - 6 Log[-(8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]))]^2 + 4 Log[2] (-2 + 3 Log[1 - 8/( 3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) - 12 PolyLog[2, 1/8 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) - ( 45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^6 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) (-Log[-(8/( 3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]))]^2 + 2 Log[2] Log[ 1 - 8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] - 2 PolyLog[2, 1/8 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]))/8192 + ( 45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^6 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) (-Log[-(8/( 3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]))]^2 + 2 Log[2] Log[ 1 - 8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] - 2 PolyLog[2, 1/8 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]))/8192 - ( 1/2048)45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^5 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) (-4 + Log[16] + 5 Log[-(8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]))]^2 - 10 Log[2] Log[ 1 - 8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] + 10 PolyLog[2, 1/8 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) + (1/2048) 45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^5 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) (-4 + Log[16] + 5 Log[-(8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]))]^2 - 10 Log[2] Log[ 1 - 8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] + 10 PolyLog[2, 1/8 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) - 5/ 64 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3 (179 - 72 Log[-(8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]))]^2 + 6 Log[2] (-25 + 24 Log[1 - 8/( 3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) - 144 PolyLog[2, 1/8 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) + 5/64 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) (179 - 72 Log[-(8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]))]^2 + 6 Log[2] (-25 + 24 Log[1 - 8/( 3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) - 144 PolyLog[2, 1/8 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) + 45/256 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^4 (9 - 6 Log[-(8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]))]^2 + 4 Log[2] (-2 + 3 Log[1 - 8/( 3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) - 12 PolyLog[2, 1/8 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) - 45/256 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^4 (3 + Sqrt[ 5] + I Sqrt[2 (5 + Sqrt[5])]) (9 - 6 Log[-(8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]))]^2 + 4 Log[2] (-2 + 3 Log[1 - 8/( 3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) - 12 PolyLog[2, 1/8 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) + ( 45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^6 (-Log[-(8/( 3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]))]^2 + 2 Log[2] Log[ 1 - 8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] - 2 PolyLog[2, 1/8 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]))/8192 - ( 45 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^6 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) (-Log[-(8/( 3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]))]^2 + 2 Log[2] Log[ 1 - 8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] - 2 PolyLog[2, 1/8 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]))/8192 + ( 1/2048)45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) (3 + Sqrt[ 5] - I Sqrt[2 (5 + Sqrt[5])])^5 (-4 + Log[16] + 5 Log[-(8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]))]^2 - 10 Log[2] Log[ 1 - 8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] + 10 PolyLog[2, 1/8 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) - (1/2048) 45 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^5 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) (-4 + Log[16] + 5 Log[-(8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]))]^2 - 10 Log[2] Log[ 1 - 8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] + 10 PolyLog[2, 1/8 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) + 5/64 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3 (179 - 72 Log[-(8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]))]^2 + 6 Log[2] (-25 + 24 Log[1 - 8/( 3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) - 144 PolyLog[2, 1/8 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) - 5/64 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3 (179 - 72 Log[-(8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]))]^2 + 6 Log[2] (-25 + 24 Log[1 - 8/( 3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) - 144 PolyLog[2, 1/8 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) - 45/256 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^4 (9 - 6 Log[-(8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]))]^2 + 4 Log[2] (-2 + 3 Log[1 - 8/( 3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) - 12 PolyLog[2, 1/8 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) + 45/256 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^4 (9 - 6 Log[-(8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]))]^2 + 4 Log[2] (-2 + 3 Log[1 - 8/( 3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) - 12 PolyLog[2, 1/8 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) - ( 45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^6 (-Log[-(8/( 3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]))]^2 + 2 Log[2] Log[ 1 - 8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] - 2 PolyLog[2, 1/8 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]))/8192 + ( 45 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^6 (-Log[-(8/( 3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]))]^2 + 2 Log[2] Log[ 1 - 8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] - 2 PolyLog[2, 1/8 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]))/8192 - ( 1/2048)45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) (3 + Sqrt[ 5] + I Sqrt[2 (5 + Sqrt[5])])^5 (-4 + Log[16] + 5 Log[-(8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]))]^2 - 10 Log[2] Log[ 1 - 8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] + 10 PolyLog[2, 1/8 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) + (1/2048) 45 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^5 (-4 + Log[16] + 5 Log[-(8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]))]^2 - 10 Log[2] Log[ 1 - 8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] + 10 PolyLog[2, 1/8 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) + 3/64 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) (30 Log[2]^2 - 20 Log[2] (-60 + Log[8]) - 3 (65 + 35 Sqrt[5] - I Sqrt[10970 + 4882 Sqrt[5]]) PolyLog[2, 1/2 - 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 10 (-148 - 3/4 (-13 + 7 Sqrt[5] - 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) Log[-(1/2) I (-I + Sqrt[5 + 2 Sqrt[5]])]^2 - 3/4 (-13 + 7 Sqrt[5] + 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) Log[ 1/2 I (I + Sqrt[5 + 2 Sqrt[5]])]^2 + 3/2 (-13 - 7 Sqrt[5] - I Sqrt[2/5 (1097 + 2441/Sqrt[5])]) PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] - 3/2 (-13 + 7 Sqrt[5] - 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) PolyLog[2, 2/(1 + I Sqrt[5 + 2 Sqrt[5]])] - 3/2 (-13 + 7 Sqrt[5] + 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) PolyLog[2, ( 2 I)/(I + Sqrt[5 + 2 Sqrt[5]])])) + 3/64 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) (30 Log[2]^2 - 20 Log[2] (-60 + Log[8]) - 3 (65 + 35 Sqrt[5] - I Sqrt[10970 + 4882 Sqrt[5]]) PolyLog[2, 1/2 - 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 10 (-148 - 3/4 (-13 + 7 Sqrt[5] - 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) Log[-(1/2) I (-I + Sqrt[5 + 2 Sqrt[5]])]^2 - 3/4 (-13 + 7 Sqrt[5] + 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) Log[ 1/2 I (I + Sqrt[5 + 2 Sqrt[5]])]^2 + 3/2 (-13 - 7 Sqrt[5] - I Sqrt[2/5 (1097 + 2441/Sqrt[5])]) PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] - 3/2 (-13 + 7 Sqrt[5] - 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) PolyLog[2, 2/(1 + I Sqrt[5 + 2 Sqrt[5]])] - 3/2 (-13 + 7 Sqrt[5] + 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) PolyLog[2, ( 2 I)/(I + Sqrt[5 + 2 Sqrt[5]])])) + 3/64 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 (30 Log[2]^2 - 20 Log[2] (-60 + Log[8]) - 3 (65 + 35 Sqrt[5] - I Sqrt[10970 + 4882 Sqrt[5]]) PolyLog[2, 1/2 - 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 10 (-148 - 3/4 (-13 + 7 Sqrt[5] - 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) Log[-(1/2) I (-I + Sqrt[5 + 2 Sqrt[5]])]^2 - 3/4 (-13 + 7 Sqrt[5] + 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) Log[ 1/2 I (I + Sqrt[5 + 2 Sqrt[5]])]^2 + 3/2 (-13 - 7 Sqrt[5] - I Sqrt[2/5 (1097 + 2441/Sqrt[5])]) PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] - 3/2 (-13 + 7 Sqrt[5] - 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) PolyLog[2, 2/(1 + I Sqrt[5 + 2 Sqrt[5]])] - 3/2 (-13 + 7 Sqrt[5] + 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) PolyLog[2, ( 2 I)/(I + Sqrt[5 + 2 Sqrt[5]])])) + 3/64 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 (-30 Log[2]^2 + 20 Log[2] (-60 + Log[8]) + 3 (65 + 35 Sqrt[5] - I Sqrt[10970 + 4882 Sqrt[5]]) PolyLog[2, 1/2 - 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 10 (148 + 78 PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 3/10 (-65 - 35 Sqrt[5] + I Sqrt[10970 + 4882 Sqrt[5]]) PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 3/4 (-13 + 7 Sqrt[5] - 2 I Sqrt[ 1097/10 - 2441/( 10 Sqrt[5])]) (Log[-(1/2) I (-I + Sqrt[5 + 2 Sqrt[5]])]^2 + 2 (PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + PolyLog[2, 2/(1 + I Sqrt[5 + 2 Sqrt[5]])])) + 3/4 (-13 + 7 Sqrt[5] + 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) (Log[ 1/2 I (I + Sqrt[5 + 2 Sqrt[5]])]^2 + 2 (PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + PolyLog[2, (2 I)/(I + Sqrt[5 + 2 Sqrt[5]])])))) + 3/64 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) (-30 Log[2]^2 + 20 Log[2] (-60 + Log[8]) + 3 (65 + 35 Sqrt[5] - I Sqrt[10970 + 4882 Sqrt[5]]) PolyLog[2, 1/2 - 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 10 (148 + 78 PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 3/10 (-65 - 35 Sqrt[5] + I Sqrt[10970 + 4882 Sqrt[5]]) PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 3/4 (-13 + 7 Sqrt[5] - 2 I Sqrt[ 1097/10 - 2441/( 10 Sqrt[5])]) (Log[-(1/2) I (-I + Sqrt[5 + 2 Sqrt[5]])]^2 + 2 (PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + PolyLog[2, 2/(1 + I Sqrt[5 + 2 Sqrt[5]])])) + 3/4 (-13 + 7 Sqrt[5] + 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) (Log[ 1/2 I (I + Sqrt[5 + 2 Sqrt[5]])]^2 + 2 (PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + PolyLog[2, (2 I)/(I + Sqrt[5 + 2 Sqrt[5]])])))) + 3/64 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 (-30 Log[2]^2 + 20 Log[2] (-60 + Log[8]) + 3 (65 + 35 Sqrt[5] - I Sqrt[10970 + 4882 Sqrt[5]]) PolyLog[2, 1/2 - 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 10 (148 + 78 PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 3/10 (-65 - 35 Sqrt[5] + I Sqrt[10970 + 4882 Sqrt[5]]) PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 3/4 (-13 + 7 Sqrt[5] - 2 I Sqrt[ 1097/10 - 2441/( 10 Sqrt[5])]) (Log[-(1/2) I (-I + Sqrt[5 + 2 Sqrt[5]])]^2 + 2 (PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + PolyLog[2, 2/(1 + I Sqrt[5 + 2 Sqrt[5]])])) + 3/4 (-13 + 7 Sqrt[5] + 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) (Log[ 1/2 I (I + Sqrt[5 + 2 Sqrt[5]])]^2 + 2 (PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + PolyLog[2, (2 I)/( I + Sqrt[5 + 2 Sqrt[5]])]))))) + 1/20 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) (-(1/1024) 5 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^4 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 (179 - 72 Log[-(8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]))]^2 + 6 Log[2] (-25 + 24 Log[1 - 8/( 3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) - 144 PolyLog[2, 1/8 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) + (1/ 1024)5 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^4 (3 + Sqrt[ 5] + I Sqrt[2 (5 + Sqrt[5])])^2 (179 - 72 Log[-(8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]))]^2 + 6 Log[2] (-25 + 24 Log[1 - 8/( 3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) - 144 PolyLog[2, 1/8 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) + (1/4096) 45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^5 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 (9 - 6 Log[-(8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]))]^2 + 4 Log[2] (-2 + 3 Log[1 - 8/( 3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) - 12 PolyLog[2, 1/8 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) - (1/4096) 45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^5 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 (9 - 6 Log[-(8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]))]^2 + 4 Log[2] (-2 + 3 Log[1 - 8/( 3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) - 12 PolyLog[2, 1/8 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) + ( 45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^7 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 (-Log[-(8/( 3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]))]^2 + 2 Log[2] Log[ 1 - 8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] - 2 PolyLog[2, 1/8 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]))/ 131072 - ( 45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^7 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 (-Log[-(8/( 3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]))]^2 + 2 Log[2] Log[ 1 - 8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] - 2 PolyLog[2, 1/8 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]))/ 131072 + (1/32768) 45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^6 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 (-4 + Log[16] + 5 Log[-(8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]))]^2 - 10 Log[2] Log[ 1 - 8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] + 10 PolyLog[2, 1/8 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) - (1/ 32768)45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^6 (3 + Sqrt[ 5] + I Sqrt[2 (5 + Sqrt[5])])^2 (-4 + Log[16] + 5 Log[-(8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]))]^2 - 10 Log[2] Log[ 1 - 8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] + 10 PolyLog[2, 1/8 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) + (1/1024) 5 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^4 (179 - 72 Log[-(8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]))]^2 + 6 Log[2] (-25 + 24 Log[1 - 8/( 3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) - 144 PolyLog[2, 1/8 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) - (1/1024) 5 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^4 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 (179 - 72 Log[-(8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]))]^2 + 6 Log[2] (-25 + 24 Log[1 - 8/( 3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) - 144 PolyLog[2, 1/8 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) - (1/4096) 45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^5 (9 - 6 Log[-(8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]))]^2 + 4 Log[2] (-2 + 3 Log[1 - 8/( 3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) - 12 PolyLog[2, 1/8 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) + (1/4096) 45 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^5 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 (9 - 6 Log[-(8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]))]^2 + 4 Log[2] (-2 + 3 Log[1 - 8/( 3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) - 12 PolyLog[2, 1/8 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) - ( 45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^7 (-Log[-(8/( 3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]))]^2 + 2 Log[2] Log[ 1 - 8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] - 2 PolyLog[2, 1/8 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]))/ 131072 + ( 45 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^7 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 (-Log[-(8/( 3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]))]^2 + 2 Log[2] Log[ 1 - 8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] - 2 PolyLog[2, 1/8 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]))/ 131072 - (1/32768) 45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^6 (-4 + Log[16] + 5 Log[-(8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]))]^2 - 10 Log[2] Log[ 1 - 8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] + 10 PolyLog[2, 1/8 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) + (1/ 32768)45 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^6 (3 + Sqrt[ 5] + I Sqrt[2 (5 + Sqrt[5])])^2 (-4 + Log[16] + 5 Log[-(8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]))]^2 - 10 Log[2] Log[ 1 - 8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] + 10 PolyLog[2, 1/8 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) - (1/1024) 5 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^4 (179 - 72 Log[-(8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]))]^2 + 6 Log[2] (-25 + 24 Log[1 - 8/( 3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) - 144 PolyLog[2, 1/8 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) + (1/1024) 5 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^4 (179 - 72 Log[-(8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]))]^2 + 6 Log[2] (-25 + 24 Log[1 - 8/( 3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) - 144 PolyLog[2, 1/8 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) + (1/4096) 45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^5 (9 - 6 Log[-(8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]))]^2 + 4 Log[2] (-2 + 3 Log[1 - 8/( 3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) - 12 PolyLog[2, 1/8 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) - (1/4096) 45 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^5 (9 - 6 Log[-(8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]))]^2 + 4 Log[2] (-2 + 3 Log[1 - 8/( 3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) - 12 PolyLog[2, 1/8 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) + ( 45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^7 (-Log[-(8/( 3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]))]^2 + 2 Log[2] Log[ 1 - 8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] - 2 PolyLog[2, 1/8 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]))/ 131072 - ( 45 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^7 (-Log[-(8/( 3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]))]^2 + 2 Log[2] Log[ 1 - 8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] - 2 PolyLog[2, 1/8 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]))/ 131072 + (1/32768) 45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^6 (-4 + Log[16] + 5 Log[-(8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]))]^2 - 10 Log[2] Log[ 1 - 8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] + 10 PolyLog[2, 1/8 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) - (1/ 32768)45 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 (3 + Sqrt[ 5] + I Sqrt[2 (5 + Sqrt[5])])^6 (-4 + Log[16] + 5 Log[-(8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]))]^2 - 10 Log[2] Log[ 1 - 8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] + 10 PolyLog[2, 1/8 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) + (1/1024) 3 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3 (30 Log[2]^2 - 20 Log[2] (-60 + Log[8]) - 3 (65 + 35 Sqrt[5] - I Sqrt[10970 + 4882 Sqrt[5]]) PolyLog[2, 1/2 - 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 10 (-148 - 3/4 (-13 + 7 Sqrt[5] - 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) Log[-(1/2) I (-I + Sqrt[5 + 2 Sqrt[5]])]^2 - 3/4 (-13 + 7 Sqrt[5] + 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) Log[ 1/2 I (I + Sqrt[5 + 2 Sqrt[5]])]^2 + 3/2 (-13 - 7 Sqrt[5] - I Sqrt[2/5 (1097 + 2441/Sqrt[5])]) PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] - 3/2 (-13 + 7 Sqrt[5] - 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) PolyLog[2, 2/(1 + I Sqrt[5 + 2 Sqrt[5]])] - 3/2 (-13 + 7 Sqrt[5] + 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) PolyLog[2, ( 2 I)/(I + Sqrt[5 + 2 Sqrt[5]])])) + (1/1024) 3 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 (30 Log[2]^2 - 20 Log[2] (-60 + Log[8]) - 3 (65 + 35 Sqrt[5] - I Sqrt[10970 + 4882 Sqrt[5]]) PolyLog[2, 1/2 - 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 10 (-148 - 3/4 (-13 + 7 Sqrt[5] - 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) Log[-(1/2) I (-I + Sqrt[5 + 2 Sqrt[5]])]^2 - 3/4 (-13 + 7 Sqrt[5] + 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) Log[ 1/2 I (I + Sqrt[5 + 2 Sqrt[5]])]^2 + 3/2 (-13 - 7 Sqrt[5] - I Sqrt[2/5 (1097 + 2441/Sqrt[5])]) PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] - 3/2 (-13 + 7 Sqrt[5] - 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) PolyLog[2, 2/(1 + I Sqrt[5 + 2 Sqrt[5]])] - 3/2 (-13 + 7 Sqrt[5] + 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) PolyLog[2, ( 2 I)/(I + Sqrt[5 + 2 Sqrt[5]])])) + (1/1024) 3 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3 (30 Log[2]^2 - 20 Log[2] (-60 + Log[8]) - 3 (65 + 35 Sqrt[5] - I Sqrt[10970 + 4882 Sqrt[5]]) PolyLog[2, 1/2 - 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 10 (-148 - 3/4 (-13 + 7 Sqrt[5] - 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) Log[-(1/2) I (-I + Sqrt[5 + 2 Sqrt[5]])]^2 - 3/4 (-13 + 7 Sqrt[5] + 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) Log[ 1/2 I (I + Sqrt[5 + 2 Sqrt[5]])]^2 + 3/2 (-13 - 7 Sqrt[5] - I Sqrt[2/5 (1097 + 2441/Sqrt[5])]) PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] - 3/2 (-13 + 7 Sqrt[5] - 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) PolyLog[2, 2/(1 + I Sqrt[5 + 2 Sqrt[5]])] - 3/2 (-13 + 7 Sqrt[5] + 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) PolyLog[2, ( 2 I)/(I + Sqrt[5 + 2 Sqrt[5]])])) + (1/1024) 3 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^2 (-30 Log[2]^2 + 20 Log[2] (-60 + Log[8]) + 3 (65 + 35 Sqrt[5] - I Sqrt[10970 + 4882 Sqrt[5]]) PolyLog[2, 1/2 - 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 10 (148 + 78 PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 3/10 (-65 - 35 Sqrt[5] + I Sqrt[10970 + 4882 Sqrt[5]]) PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 3/4 (-13 + 7 Sqrt[5] - 2 I Sqrt[ 1097/10 - 2441/( 10 Sqrt[5])]) (Log[-(1/2) I (-I + Sqrt[5 + 2 Sqrt[5]])]^2 + 2 (PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + PolyLog[2, 2/(1 + I Sqrt[5 + 2 Sqrt[5]])])) + 3/4 (-13 + 7 Sqrt[5] + 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) (Log[ 1/2 I (I + Sqrt[5 + 2 Sqrt[5]])]^2 + 2 (PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + PolyLog[2, (2 I)/( I + Sqrt[5 + 2 Sqrt[5]])])))) + (1/1024) 3 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^2 (-30 Log[2]^2 + 20 Log[2] (-60 + Log[8]) + 3 (65 + 35 Sqrt[5] - I Sqrt[10970 + 4882 Sqrt[5]]) PolyLog[2, 1/2 - 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 10 (148 + 78 PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 3/10 (-65 - 35 Sqrt[5] + I Sqrt[10970 + 4882 Sqrt[5]]) PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 3/4 (-13 + 7 Sqrt[5] - 2 I Sqrt[ 1097/10 - 2441/( 10 Sqrt[5])]) (Log[-(1/2) I (-I + Sqrt[5 + 2 Sqrt[5]])]^2 + 2 (PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + PolyLog[2, 2/(1 + I Sqrt[5 + 2 Sqrt[5]])])) + 3/4 (-13 + 7 Sqrt[5] + 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) (Log[ 1/2 I (I + Sqrt[5 + 2 Sqrt[5]])]^2 + 2 (PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + PolyLog[2, (2 I)/( I + Sqrt[5 + 2 Sqrt[5]])])))) + (1/1024) 3 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^2 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3 (-30 Log[2]^2 + 20 Log[2] (-60 + Log[8]) + 3 (65 + 35 Sqrt[5] - I Sqrt[10970 + 4882 Sqrt[5]]) PolyLog[2, 1/2 - 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 10 (148 + 78 PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 3/10 (-65 - 35 Sqrt[5] + I Sqrt[10970 + 4882 Sqrt[5]]) PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 3/4 (-13 + 7 Sqrt[5] - 2 I Sqrt[ 1097/10 - 2441/( 10 Sqrt[5])]) (Log[-(1/2) I (-I + Sqrt[5 + 2 Sqrt[5]])]^2 + 2 (PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + PolyLog[2, 2/(1 + I Sqrt[5 + 2 Sqrt[5]])])) + 3/4 (-13 + 7 Sqrt[5] + 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) (Log[ 1/2 I (I + Sqrt[5 + 2 Sqrt[5]])]^2 + 2 (PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + PolyLog[2, (2 I)/( I + Sqrt[5 + 2 Sqrt[5]])]))))) + 1/80 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])^2 (5/ 256 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^4 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) (179 - 72 Log[-(8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]))]^2 + 6 Log[2] (-25 + 24 Log[1 - 8/( 3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) - 144 PolyLog[2, 1/8 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) - 5/256 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^4 (3 + Sqrt[ 5] + I Sqrt[2 (5 + Sqrt[5])]) (179 - 72 Log[-(8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]))]^2 + 6 Log[2] (-25 + 24 Log[1 - 8/( 3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) - 144 PolyLog[2, 1/8 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) - (1/1024) 45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^5 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) (9 - 6 Log[-(8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]))]^2 + 4 Log[2] (-2 + 3 Log[1 - 8/( 3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) - 12 PolyLog[2, 1/8 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) + (1/1024) 45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^5 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) (9 - 6 Log[-(8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]))]^2 + 4 Log[2] (-2 + 3 Log[1 - 8/( 3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) - 12 PolyLog[2, 1/8 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) - ( 45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^7 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) (-Log[-(8/( 3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]))]^2 + 2 Log[2] Log[ 1 - 8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] - 2 PolyLog[2, 1/8 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]))/32768 + ( 45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^7 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) (-Log[-(8/( 3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]))]^2 + 2 Log[2] Log[ 1 - 8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] - 2 PolyLog[2, 1/8 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]))/32768 - ( 1/8192)45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^6 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) (-4 + Log[16] + 5 Log[-(8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]))]^2 - 10 Log[2] Log[ 1 - 8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] + 10 PolyLog[2, 1/8 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) + (1/8192) 45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^6 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) (-4 + Log[16] + 5 Log[-(8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]))]^2 - 10 Log[2] Log[ 1 - 8/(3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])] + 10 PolyLog[2, 1/8 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])]) - 5/256 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^4 (179 - 72 Log[-(8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]))]^2 + 6 Log[2] (-25 + 24 Log[1 - 8/( 3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) - 144 PolyLog[2, 1/8 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) + 5/256 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^4 (3 + Sqrt[ 5] + I Sqrt[2 (5 + Sqrt[5])]) (179 - 72 Log[-(8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]))]^2 + 6 Log[2] (-25 + 24 Log[1 - 8/( 3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) - 144 PolyLog[2, 1/8 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) + (1/1024) 45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^5 (9 - 6 Log[-(8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]))]^2 + 4 Log[2] (-2 + 3 Log[1 - 8/( 3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) - 12 PolyLog[2, 1/8 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) - (1/1024) 45 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^5 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) (9 - 6 Log[-(8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]))]^2 + 4 Log[2] (-2 + 3 Log[1 - 8/( 3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) - 12 PolyLog[2, 1/8 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) + ( 45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^7 (-Log[-(8/( 3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]))]^2 + 2 Log[2] Log[ 1 - 8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] - 2 PolyLog[2, 1/8 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]))/32768 - ( 45 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^7 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) (-Log[-(8/( 3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]))]^2 + 2 Log[2] Log[ 1 - 8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] - 2 PolyLog[2, 1/8 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]))/32768 + ( 1/8192)45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) (3 + Sqrt[ 5] - I Sqrt[2 (5 + Sqrt[5])])^6 (-4 + Log[16] + 5 Log[-(8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]))]^2 - 10 Log[2] Log[ 1 - 8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] + 10 PolyLog[2, 1/8 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) - (1/8192) 45 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^6 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]) (-4 + Log[16] + 5 Log[-(8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]))]^2 - 10 Log[2] Log[ 1 - 8/(3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])] + 10 PolyLog[2, 1/8 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])]) + 5/256 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^4 (179 - 72 Log[-(8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]))]^2 + 6 Log[2] (-25 + 24 Log[1 - 8/( 3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) - 144 PolyLog[2, 1/8 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) - 5/256 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^4 (179 - 72 Log[-(8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]))]^2 + 6 Log[2] (-25 + 24 Log[1 - 8/( 3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) - 144 PolyLog[2, 1/8 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) - (1/1024) 45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^5 (9 - 6 Log[-(8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]))]^2 + 4 Log[2] (-2 + 3 Log[1 - 8/( 3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) - 12 PolyLog[2, 1/8 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) + (1/1024) 45 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^5 (9 - 6 Log[-(8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]))]^2 + 4 Log[2] (-2 + 3 Log[1 - 8/( 3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) - 12 PolyLog[2, 1/8 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) - ( 45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^7 (-Log[-(8/( 3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]))]^2 + 2 Log[2] Log[ 1 - 8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] - 2 PolyLog[2, 1/8 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]))/32768 + ( 45 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^7 (-Log[-(8/( 3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]))]^2 + 2 Log[2] Log[ 1 - 8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] - 2 PolyLog[2, 1/8 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]))/32768 - ( 1/8192)45 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) (3 + Sqrt[ 5] + I Sqrt[2 (5 + Sqrt[5])])^6 (-4 + Log[16] + 5 Log[-(8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]))]^2 - 10 Log[2] Log[ 1 - 8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] + 10 PolyLog[2, 1/8 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) + (1/8192) 45 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^6 (-4 + Log[16] + 5 Log[-(8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]))]^2 - 10 Log[2] Log[ 1 - 8/(3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])] + 10 PolyLog[2, 1/8 (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])]) + 3/256 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3 (3 + Sqrt[ 5] - I Sqrt[2 (5 + Sqrt[5])]) (30 Log[2]^2 - 20 Log[2] (-60 + Log[8]) - 3 (65 + 35 Sqrt[5] - I Sqrt[10970 + 4882 Sqrt[5]]) PolyLog[2, 1/2 - 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 10 (-148 - 3/4 (-13 + 7 Sqrt[5] - 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) Log[-(1/2) I (-I + Sqrt[5 + 2 Sqrt[5]])]^2 - 3/4 (-13 + 7 Sqrt[5] + 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) Log[ 1/2 I (I + Sqrt[5 + 2 Sqrt[5]])]^2 + 3/2 (-13 - 7 Sqrt[5] - I Sqrt[2/5 (1097 + 2441/Sqrt[5])]) PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] - 3/2 (-13 + 7 Sqrt[5] - 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) PolyLog[2, 2/(1 + I Sqrt[5 + 2 Sqrt[5]])] - 3/2 (-13 + 7 Sqrt[5] + 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) PolyLog[2, ( 2 I)/(I + Sqrt[5 + 2 Sqrt[5]])])) + 3/256 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3 (3 + Sqrt[ 5] + I Sqrt[2 (5 + Sqrt[5])]) (30 Log[2]^2 - 20 Log[2] (-60 + Log[8]) - 3 (65 + 35 Sqrt[5] - I Sqrt[10970 + 4882 Sqrt[5]]) PolyLog[2, 1/2 - 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 10 (-148 - 3/4 (-13 + 7 Sqrt[5] - 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) Log[-(1/2) I (-I + Sqrt[5 + 2 Sqrt[5]])]^2 - 3/4 (-13 + 7 Sqrt[5] + 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) Log[ 1/2 I (I + Sqrt[5 + 2 Sqrt[5]])]^2 + 3/2 (-13 - 7 Sqrt[5] - I Sqrt[2/5 (1097 + 2441/Sqrt[5])]) PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] - 3/2 (-13 + 7 Sqrt[5] - 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) PolyLog[2, 2/(1 + I Sqrt[5 + 2 Sqrt[5]])] - 3/2 (-13 + 7 Sqrt[5] + 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) PolyLog[2, ( 2 I)/(I + Sqrt[5 + 2 Sqrt[5]])])) + 3/256 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3 (30 Log[2]^2 - 20 Log[2] (-60 + Log[8]) - 3 (65 + 35 Sqrt[5] - I Sqrt[10970 + 4882 Sqrt[5]]) PolyLog[2, 1/2 - 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 10 (-148 - 3/4 (-13 + 7 Sqrt[5] - 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) Log[-(1/2) I (-I + Sqrt[5 + 2 Sqrt[5]])]^2 - 3/4 (-13 + 7 Sqrt[5] + 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) Log[ 1/2 I (I + Sqrt[5 + 2 Sqrt[5]])]^2 + 3/2 (-13 - 7 Sqrt[5] - I Sqrt[2/5 (1097 + 2441/Sqrt[5])]) PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] - 3/2 (-13 + 7 Sqrt[5] - 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) PolyLog[2, 2/(1 + I Sqrt[5 + 2 Sqrt[5]])] - 3/2 (-13 + 7 Sqrt[5] + 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) PolyLog[2, ( 2 I)/(I + Sqrt[5 + 2 Sqrt[5]])])) + 3/256 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])^3 (-30 Log[2]^2 + 20 Log[2] (-60 + Log[8]) + 3 (65 + 35 Sqrt[5] - I Sqrt[10970 + 4882 Sqrt[5]]) PolyLog[2, 1/2 - 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 10 (148 + 78 PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 3/10 (-65 - 35 Sqrt[5] + I Sqrt[10970 + 4882 Sqrt[5]]) PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 3/4 (-13 + 7 Sqrt[5] - 2 I Sqrt[ 1097/10 - 2441/( 10 Sqrt[5])]) (Log[-(1/2) I (-I + Sqrt[5 + 2 Sqrt[5]])]^2 + 2 (PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + PolyLog[2, 2/(1 + I Sqrt[5 + 2 Sqrt[5]])])) + 3/4 (-13 + 7 Sqrt[5] + 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) (Log[ 1/2 I (I + Sqrt[5 + 2 Sqrt[5]])]^2 + 2 (PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + PolyLog[2, (2 I)/(I + Sqrt[5 + 2 Sqrt[5]])])))) + 3/256 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])])^3 (3 + Sqrt[ 5] + I Sqrt[2 (5 + Sqrt[5])]) (-30 Log[2]^2 + 20 Log[2] (-60 + Log[8]) + 3 (65 + 35 Sqrt[5] - I Sqrt[10970 + 4882 Sqrt[5]]) PolyLog[2, 1/2 - 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 10 (148 + 78 PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 3/10 (-65 - 35 Sqrt[5] + I Sqrt[10970 + 4882 Sqrt[5]]) PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 3/4 (-13 + 7 Sqrt[5] - 2 I Sqrt[ 1097/10 - 2441/( 10 Sqrt[5])]) (Log[-(1/2) I (-I + Sqrt[5 + 2 Sqrt[5]])]^2 + 2 (PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + PolyLog[2, 2/(1 + I Sqrt[5 + 2 Sqrt[5]])])) + 3/4 (-13 + 7 Sqrt[5] + 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) (Log[ 1/2 I (I + Sqrt[5 + 2 Sqrt[5]])]^2 + 2 (PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + PolyLog[2, (2 I)/(I + Sqrt[5 + 2 Sqrt[5]])])))) + 3/256 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) (3 + Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])^3 (-30 Log[2]^2 + 20 Log[2] (-60 + Log[8]) + 3 (65 + 35 Sqrt[5] - I Sqrt[10970 + 4882 Sqrt[5]]) PolyLog[2, 1/2 - 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 10 (148 + 78 PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 3/10 (-65 - 35 Sqrt[5] + I Sqrt[10970 + 4882 Sqrt[5]]) PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + 3/4 (-13 + 7 Sqrt[5] - 2 I Sqrt[ 1097/10 - 2441/( 10 Sqrt[5])]) (Log[-(1/2) I (-I + Sqrt[5 + 2 Sqrt[5]])]^2 + 2 (PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + PolyLog[2, 2/(1 + I Sqrt[5 + 2 Sqrt[5]])])) + 3/4 (-13 + 7 Sqrt[5] + 2 I Sqrt[1097/10 - 2441/(10 Sqrt[5])]) (Log[ 1/2 I (I + Sqrt[5 + 2 Sqrt[5]])]^2 + 2 (PolyLog[2, 1/2 + 1/2 I Sqrt[5 - 2 Sqrt[5]]] + PolyLog[2, (2 I)/( I + Sqrt[5 + 2 Sqrt[5]])]))))))/(180 (1/ 4 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) + 1/4 (-3 + Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])])) (1/ 4 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])) (1/ 4 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) + 1/4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])) (1/ 4 (-3 - Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])]) + 1/4 (3 + Sqrt[5] - I Sqrt[2 (5 + Sqrt[5])])) (1/ 4 (3 - Sqrt[5] - I Sqrt[2 (5 - Sqrt[5])]) + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])])) (1/ 4 (3 - Sqrt[5] + I Sqrt[2 (5 - Sqrt[5])]) + 1/4 (-3 - Sqrt[5] + I Sqrt[2 (5 + Sqrt[5])]))))