
Problem solving methods and knowledge systems:
A personal journey to perceptual images as knowledge

B. CHANDRASEKARAN
Laboratory for Artificial Intelligence Research, Department of Computer Science and Engineering, The Ohio State University,
Columbus, Ohio, USA

(RECEIVED December 1, 2008; ACCEPTED January 15, 2009)

Abstract

I was among those who proposed problem solving methods (PSMs) in the late 1970s and early 1980s as a knowledge-level
description of strategies useful in building knowledge-based systems. This paper summarizes the evolution of my ideas in
the last two decades. I start with a review of the original ideas. From an artificial intelligence (AI) point of view, it is not
PSMs as such, which are essentially high-level design strategies for computation, that are interesting, but PSMs associated
with tasks that have a relation to AI and cognition. They are also interesting with respect to cognitive architecture proposals
such as Soar and ACT-R: PSMs are observed regularities in the use of knowledge that an exclusive focus on the architecture
level might miss, the latter providing no vocabulary to talk about these regularities. PSMs in the original conception are
closely connected to a specific view of knowledge: symbolic expressions represented in a repository and retrieved as
needed. I join critics of this view, and maintain with them that most often knowledge is not retrieved from a base as
much as constructed as needed. This criticism, however, raises the question of what is in memory that is not knowledge
as traditionally conceived in AI, but can support the construction of knowledge in predicate–symbolic form. My recent
proposal about cognition and multimodality offers a possible answer. In this view, much of memory consists of perceptual
and kinesthetic images, which can be recalled during deliberation and from which internal perception can generate linguis-
tic–symbolic knowledge. For example, from a mental image of a configuration of objects, numerous sentences can be
constructed describing spatial relations between the objects. My work on diagrammatic reasoning is an implemented
example of how this might work. These internal perceptions on imagistic representations are a new kind of PSM.
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1. INTRODUCTION

1.1. Knowledge-based systems (KBS), tasks,
and methods

The artificial intelligence (AI) community’s raison d’être is
to provide an understanding of intelligence in the computa-
tional paradigm and to use this understanding to create a
general intelligent machine. At the time of the emergence
of KBS (also called “expert systems” at that time) a view
had arisen that intelligent behavior was the product of an in-
teraction between knowledge represented in an agent and
various inference and problem solving techniques that the

agent possessed. By “knowledge” was meant something
specific: encodings in a linguistic–symbolic1 representation.

The field of KBS built on this view of the relation between
intelligence and knowledge representation, but proposed that in-
telligent behavior, at least behavior of experts in various
domains, arose from the possession of vast amounts of
domain-specific knowledge, and not by the experts making
use of complex inferences and problem solving strategies. The

Reprint requests to: B. Chandrasekaran, Laboratory for Artificial Intelli-
gence Research, Department of Computer Science and Engineering, The
Ohio State University, Columbus, OH 43210, USA. E-mail: chandra@cse.
ohio-state.edu

1 In AI, the term symbolic is used to refer to a specific type, one that is
composed of symbolic expressions describing properties of and relations be-
tween individuals in the domain of interest, similar to sentences in natural lan-
guage. The processes that manipulate them use only the syntactic properties
of the expressions. This is a rather narrow construal of symbolic representa-
tion systems: the range of symbolic representations is much wider, as dis-
cussed in Goel (1995), and exemplified by the idea of perceptual symbol sys-
tems (Barsalou, 1999; Chandrasekaran, 2006). However, in this paper we use
symbolic to refer to predicate symbolic representations.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2009), 23, 331–338. Printed in the USA.
Copyright # 2009 Cambridge University Press 0890-0604/09 $25.00
doi:10.1017/S0890060409990035

331



field was launched by a small number of demonstration systems
that simulated professional problem solving in selected domains
and tasks: diagnosis and treatment in a medical area (Mycin;
Shortliffe, 1976), abducing molecular structures from relevant
data (Dendral; Buchanan & Feigenbaum, 1978), and a kind of
engineering design (R1; McDermott, 1982).

For people within AI like me, whose interest was and re-
mained the understanding of intelligence, the emerging field
was attractive because its apparent success in modeling complex
if narrowly focused problem solving suggested that it could pro-
vide an arena in which deeper issues about the nature of cogni-
tion could be investigated. In contrast, the field attracted wide
attention outside of AI because it seemed to promise a technol-
ogy for building high-performance systems to automate expert
problem solving. Researchers in various professional areas, and
entrepreneurs outside, saw opportunities to build valuable appli-
cations. This journal owes its founding to the excitement sur-
rounding the new technology, as one of the many, covering dif-
ferent professional areas (medicine, engineering, and financial
decision making, to name a few) that wanted to explore the pro-
mise of KBS in their respective domains.

The idea of problem solving methods (PSMs) arose when
some of us saw structure in the knowledge used in profes-
sional problem solving. The structure we saw was that the
knowledge explicitly or implicitly contained strategies,
even though the dogma of the incipient field, with its credo
“Knowledge2 is power,” was dismissive toward methods
and strategies. In our laboratory, Gomez and I (Gomez &
Chandrasekaran, 1981) were working on medical diagnosis
and noted that underlying the diagnostician’s behavior was
classification in a disease hierarchy. Brown and I (Brown &
Chandrasekaran, 1986) noted that underlying our designer–
collaborator’s behavior was instantiating a skeletal plan and
refining it. Mittal et al. (1984) noted that before classification
the diagnostician went through a set of activities whose effect
was to transform patient data into a form that could help in
classification. We also noted that determining if a disease
class applied to the case at hand called for a kind of concept
matching that had its own interesting hierarchical structure.
Josephson et al. (1987) pointed out that diagnosis was “best
explanation” reasoning, which was a form of abductive infer-
ence, and which often made use of classification to generate
good diagnostic hypotheses.

I attempted to unify the above empirically obtained insights
into a framework. In my 1986 work (Chandrasekaran, 1986) I
called the activities classification, concept matching, abductive
inference, skeletal planning, and so forth, tasks without realiz-
ing the ambiguity in the term: task could be the goal or means
or both. In fact, in our initial conception, they could be seen as
goals (“To Classify”) and as methods (“Establish and Refine”).
I also noted that these tasks were independent of the domain:

whether the diagnosis was done in some medical area or in me-
chanical systems, the underlying problem solving behavior
seemed to involve the same tasks, abductive best explanation,
hierarchical classification, and so forth, so I called them ge-
neric tasks (GTs). My coworkers and I showed how the GT/
PSM analysis helped in knowledge acquisition (Bylander &
Chandrasekaran, 1987; Chandrasekaran, 1989) and explana-
tion of problem solving (Chandrasekaran et al., 1989; Tanner
et al., 1993).

About the same time we were getting started and with intui-
tions similar to ours, Clancey (1985) noted that, contrary to
the claim that knowledge in the form of domain-specific rules
was doing all the work, the diagnostic component of Mycin
actually followed a strategy he called “heuristic classifica-
tion,” which had three parts: data abstraction, heuristic
match, and refinement. Some of the rules in Mycin were not
domain rules, but encoding of this strategy. Clancey’s motiva-
tion for analyzing Mycin arose from his attempts to build a tu-
torial system based on Mycin. Tutoring requires explanation,
and an explanation of how Mycin solves problems required,
well, an understanding and explication of its strategy.

There was soon substantial work in this mold of tasks and
methods in many other research centers in the United States,
Europe, and Japan. Without intending any disrespect, I will
forgo a history of this effort here for two reasons: my earlier pa-
pers, for example, Chandrasekaran and Johnson (1993), review
them and two, my goal here is a rapid recapitulation of some of
the basic ideas so I can get to my current thinking on them.

In regard to the evolution of our thinking on GTs, with our in-
itial ideas, it was tempting to thinkof a problem solving architec-
ture that consisted of a collection of task-specific problem
solving modules, each built from a PSM shell with domain-
specific knowledge and calling on other modules3 for the
subtasks outside of its competence (Gomez & Chandrasekaran,
1981;Chandrasekaran,1986).For instance,webuilt adiagnostic
system that had the following modules: Data Retrieve/Abstract
(DA), Establish–Refine Hypothesis (ER), Hypothesis Match
(HM), and Abductive Assembly of Hypotheses (AA). DA
would abstract patient-specific data into descriptions that HM
would use to help the Establish subgoal of ER decide the degree
of confidence in a hypothesis and what it can explain, AAwould
collect all the hypotheses and their explanations and assemble a
subset as the best explanation composite hypothesis.

Our initial work and the later GT Toolkit were based on
this approach to the architecture. However, as we applied
this architecture to real-world diagnostic problems of some
complexity, we found that the interaction between the prob-
lem solvers needed to be much finer grained than between
PSMs as such. The fine-grained interaction between individ-
ual subtasks required that they be represented, invoked, and
composed more flexibly. To accomplish this we turned to
the Soar architecture (Laird et al., 1987). All the subtasks

2 Again, this is a rather narrow view of knowledge: that it consists of do-
main-specific rules linking situation to action. That strategies are also knowl-
edge was somehow not noticed by those who did not feel warmly to the
introduction of knowledge use strategies.

3 These modules, at first called “specialists,” were functional units: they
carried out an activity, hence the origin of the term “tasks” in our original
GT work.
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of the relevant PSMs were represented individually and in-
voked as appropriate to the problem solving state (Johnson
et al., 1993). For example, the most effective sequence in a
particular case might be that the presence of a datum D trig-
gers consideration by HM of hypothesis H1, which causes
AA to ask HM to consider a confounding hypothesis H2.
However, in another case, the appropriate sequence might
be that AA builds the best partial composite hypothesis
with ER having explored only a part of the hierarchy, and
asks ER for further hypothesis space exploration only if the
explanation is not sufficiently satisfactory.

Particular compositions of subtasks, the PSMs, now served
as analysis frameworks, rather than fully hard-wired collections
of steps. This might strike one as a bit of retrogression if one
viewed Soar as simply a rule-based architecture similar to the
backward-chaining architecture in which Mycin was built.
However, there are three important differences. First, under ap-
propriate conditions, the learning mechanism of Soar chunks,
or “compiles” in our terminology, PSMs as packages of sub-
tasks. Second, these chunks do not stay as abstract representa-
tions of strategies. Domain-specific rules are compiled in which
PSMs are implicit.4 In other words, the agent behaves in a way
that corresponds to the strategy without the strategy being explic-
itly set up and followed. Third, when necessary and appropri-
ate, PSM shells can be built in this framework to obtain the ad-
vantages of PSMs. The composed versions of PSMs are best
viewed as emergent regularities of problem solving behavior,
instead of as a theoretically primitive building block.

Returning to compilation of expertise, even when an expert
diagnostician’s problem solving behavior, analyzed from the
outside, appears to be an instance of say, classification, she
may be unaware of it, let alone be explicitly applying the strat-
egy. In fact, our interlocutors in medicine would often tell us
their method was Bayesian, something they had been taught
as the rational way to do diagnosis. Not only was there no evi-
dence of that in their behavior, but also their behavior fit neatly
with the classification/abductive inference explanation. They
would go from a symptom to “That is high,” to “Looks like a
Liver problem,” to looking for evidence for say Cirrhosis. It
was as if they had a rule, “If Liver disease confirmed, consider
Cirrhosis,” rather than a rule, “When a hypothesis is established,
consider its children in the hierarchy.” A protocol like this actu-
ally tends to confirm the original KBS dogma—it is all domain
knowledge—while clearly the behavior matches the method.

The first explanation for the seeming paradox is that of com-
pilation by the agent, as modeled by the Soar implementation
mentioned earlier. While solving an earlier case, if the agent
had decided on liver, then explicitly looked for its subtypes
and then went on to consider cirrhosis, he would have learned
the rule, “If Liver confirmed, consider Cirrhosis.” A second ex-
planation is that knowledge might be acquired directly in a
compiled form; for example, the diagnostician might have
been trained to consider cirrhosis if liver disease is confirmed.

Community knowledge evolves into a form that is useful, with-
out the acquirer/user of this knowledge necessarily being aware
of the reason for the efficacy. Another example of this commu-
nity knowledge with a useful underlying form is the existence
of disease hierarchies that a medical student might directly ac-
quire. Whether the agent is explicitly using the PSM, the under-
lying PSM, in this case classification, is important as a theo-
retical construct: the PSM provides an explanation for how
and why the specific items of knowledge work for this problem,
how to adapt when the classification hierarchy changes, and
how to acquire knowledge in new domains.

2. FROM PSMs TO TASK STRUCTURES

PSMs are organized collections of generic subtasks intended
for a type of problem solving goal. However, the subtasks of
a PSM can be useful for other tasks, and conversely, a task
might have more than one PSM, depending on availability
of knowledge or other situation-specific differences. Data
Abstraction and Heuristic Match can be useful for tasks are
other than Classification. For example, during design, a spec-
ification (e.g., “1200 psi”) might be abstracted to a qualitative
value (“high pressure”). A set of such qualitatively abstracted
specifications (e.g., “high pressure” and “light weight”)
might be heuristically matched to subdevice alternatives
(e.g. “titanium valve #58” and “stainless steel valve #60,”
with matching strengths 0.8 and 0.6) that might realize
them and the best one chosen (in the case at hand, “titanium
valve #58”). Conversely, a classification task might use a dif-
ferent method than Heuristic Match for assessing a hypoth-
esis: for example, a diagnostic hypothesis might be assessed
for fitness with the observations by simulating the malfunc-
tion and seeing if the observations correspond to simulation
results. This two-way multiplicity of connections, between
a task and a variety of methods and between a method and
a variety of tasks in which the method could play a role, sug-
gested a broader conception of PSMs to us: the notion of a
task structure (Chandrasekaran et al., 1992). The idea is
that a generic problem solving goal can be decomposed
into an AND–OR graph of generic subtasks, representing al-
ternate methods, and each of the subtasks might be similarly
decomposed, this process repeated to a level that might be
considered primitive enough for the purpose. Chandrasekaran
(1990) provides a task analysis for the design task, and
Josephson and Josephson (1994) and Chandrasekaran et al.
(1992) provide analyses for diagnosis.

3. PSMs AS KNOWLEDGE LEVEL
REPRESENTATIONS OF STRATEGY
TRANSCENDING KBS

The task structure lays out a flexible strategy for achieving the
goals of the task, but there is nothing about the strategy that
requires that it be implemented in a certain way.

In particular, there is no reason to prefer implementation
in the framework of KBS technology, that is, a software

4 This has echoes of an area of research in psychology called implicit
learning (for a review, see, e.g., Berry & Dienes, 1993).
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technology in which atomic pieces of rulelike knowledge in a
domain are encoded in a knowledge base, and a domain- and
task-independent mechanism accesses the elements of the
knowledge base to solve problems in the domain.

For example, diagnostic systems following an abductive
inferencing task structure could be implemented by appropri-
ately combining the component problem solvers, the abduc-
tive inferencer, the classifier, and so forth, each implemented
in any suitable framework. In fact, many diagnostic systems
in industrial applications are built as quite conventional algo-
rithms not requiring representations of abstract knowledge.
The algorithm might not even follow the procedural arc
of a PSM, even when it informed the construction of the
algorithm; for example, it might not have a modular structure,
where the modules correspond to the subtask–method combi-
nations in the PSM. In the diagnostic example, a general
top-level PSM for the task is AA, which requires that the final
diagnostic solution explain all the observations, and that it is
a better explanation than competing alternatives. The corre-
sponding PSM explicitly sets up a subtask of comparing alter-
native explanations. In specific diagnostic applications, the evi-
dence available for establishing or rejecting various diagnostic
hypotheses from sensor data may be strong enough that the
conclusion is definitive.5 In such domains, the algorithm in
the deployed application might not explicitly generate and
compare alternate hypotheses. Nevertheless, such an algorithm
can be deemed correct only after the algorithm constructor has
explicitly considered the comparison subtask and justified to
herself that the nature of the evidential strength in the specific
application ensures that the subtask is implicitly satisfied.

Thus, the strategic content of a PSM can be useful in building
systems in any framework. The GT approach’s separation of the
GT level from implementation level systems such as rule-based
systems fitted in nicely with the knowledge level–symbol level
distinction that Newell (1982) was formulating, approximately
contemporaneously. Newell introduced the Problem Space
Computation Level between the Symbol Level of the architecture
implementation and the Knowledge Level. PSMs can be viewed
as content theories of the Problem Space Computation Level.

4. ARE PSMs INTERESTING?

If PSMs are a representation for computational strategies in
general with no features that distinguish them as ideas for
AI or cognition,6 as we just argued, do they matter for AI?
There are two reasons why they are important. First, certain
specific PSMs say interesting things about cognition; second,
the usefulness of these specific things in accounting for the
power of cognition provides a caution about attempts to
explain cognition solely at some architecture level.

KBSs were originally developed to perform certain tasks
that were of practical interest and that seemed to require large
amounts of expert knowledge, tasks such as diagnosis, de-
sign, and planning. PSMs were then developed in the service
of these tasks. Diagnosis may sound like a specific applica-
tion in engineering and medicine, and design, similarly, an
activity in engineering, with little to say about AI in general;
after all, we do not regard finite element analysis, another
problem area in engineering to which much computational at-
tention has been paid, as a task of interest to AI. However, di-
agnosis and design are instances of more general tasks that are
quite fundamental to the operation of agents: goal-seeking
systems interacting with the physical world. At a high level
of analysis, any agent of this sort has to perform three activ-
ities, in whatever mixture of implicit and explicit that works.
The three tasks are: making a model of the relevant aspects of
the external world where the goals need to be achieved; plan-
ning actions to take in the world so as to achieve the goal; and
predicting the performance of the plan, most commonly
by simulating the plan in some manner, to verify that it can
accomplish the goals. These tasks need not be done explicitly,
but the requirements of the tasks have to be met in some way.
The tasks interact: prediction requires the use of the model of
the world, model making requires prediction of the behavior
of the model to verify the model itself, and of course planning
requires prediction.

Making a model of the world (a picture of what is going on)
is an abductive inference task, as my colleague Josephson has
argued (Josephson & Josephson, 1984). The input from the
senses are data to be explained, and the best model is one
that provides the best explanation of the perceptions. Diagno-
sis is an instance of model making; in this case, a model of the
malfunctioning entity that best explains the symptoms.7 In
fact, part of the model-making task for an agent will indeed
include diagnosis-like activities: what is broken in the world
to explain certain observations so that the model can be up-
dated. Of course, biological agents come to the task with a
good deal of knowledge about the world precompiled in their
perception, action, and cognitive systems, so the complexity
of model making, especially when it needs to be done in
real time, is not prohibitive. Hence, the task structure of diag-
nosis, a contribution of PSM research, is very useful for con-
structing general agents, a core concern of AI.

Consider classification that plays such a prominent role in
many analyses of diagnostic activity. Why is classification so
ubiquitous in human knowledge and behavior? Consider why
diagnosis is done: the need is to map from a situation descrip-
tion to a proposed action. The computational complexity of
doing the mapping, let alone learning the mapping, can be ex-
tremely high, if the agent is going to use a table of mappings.
The number of situation descriptions can be huge: for exam-
ple, temperature 100.188888, temperature 100.288888, and so on, just5 This kind of a relation between an observation and a diagnostic hypoth-

esis is termed pathognomonic in medicine.
6 Particular implementations of PSMs may have AI interest, for example,

as specialists (Gomez & Chandrasekaran, 1981), a premodern version of AI
agents. However, as argued earlier, the concept of PSMs transcends specific
implementations.

7 Even when diagnosis is implemented by simple classification, assigning
a class label, say, Liver Disease, to a set of symptoms, is building a model of
an aspect of the relevant reality, “the patient’s Liver is malfunctioning.”
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for one variable, and similarly for action descriptions. The com-
putational strategy of first mapping from situations to an
equivalence class of situations, and then mapping from the sit-
uation class to an action class and possibly refining it, would
result in a substantial reduction in the computational complex-
ity of learning and run-time performance, if appropriate knowl-
edge is available. It so happens that the causal structure of the
world is cooperative: systems, natural or artificial, are more of-
ten than not compositional and hierarchical, what Simon (1947)
called loosely coupled systems of subsystems. These structure
hierarchies provide a basis for malfunction hierarchies.

Similarly, planning for actions can take advantage of the
fact that things can be composed hierarchically. The compu-
tational complexity of design and planning can similarly be
reduced if they can take advantage of this structure. In fact,
choosing a design template, instantiating it for some of the
specifications, and then refining the abstract elements into
subsystem designs, is a ubiquitous strategy in design and
planning (Brown & Chandrasekaran, 1986). Similarly, simu-
lation for prediction makes use of the hierarchies of structure
and behavior (Iwasaki & Chandrasekaran, 1992). Human
knowledge and strategies evolve to reflect these advantages
of classification, plan refinement, and behavior projection.
Psychology seems recently to be rediscovering these ideas
from AI and KBS; the term “macrocognition” (Schraagen
et al., 2008) has been proposed to describe some of the regu-
larities in cognitive behavior, and the proposed types of mac-
rocognitive activities are quite similar to the various GTs and
the PSMs that go with them. For example, “sense making,” a
frequently given example of macrocognition, corresponds to
the task of building a model that best explains the observa-
tions, an abductive inference task.

To summarize the preceding discussion, it is not the idea
of PSMs or something that AI uniquely brings to representing
them that is interesting from an AI point of view. It is the spe-
cific PSMs, classification, hierarchical instantiation and com-
position, simulation making use of hierarchies of structure,
abductive explanation building, and so forth, that were and
are interesting because they say something about the structure
of knowledge and the implicit or explicit strategies that under-
lie cognition. This leads us to the second point about why
PSMs are interesting for AI.

Let us look at the historic context in which the idea of
PSMs arose and was seen as interesting. The original pro-
posal of PSMs was a counter to the claim that there was noth-
ing theoretically interesting about how intelligent behavior
arises beyond a rather minimal architecture: a knowledge
base of rules (or frames or sentences, in variant architectures),
a working memory to hold goals and problem specifications,
a set of basic matching and rewrite rules, and a general control
strategy. From then on, it was all allegedly due to expertise
and domain-specific knowledge, which are not especially in-
teresting theoretically for AI or cognition: for instance, why
would the medical knowledge of a diagnostician be of interest
to theorists of cognition? As my historical account recapitu-
lated, many of us demurred with this stance, and contended

that the knowledge base contained implicitly or explicitly
general strategies that indeed were relevant for understanding
intelligent behavior. The PSM movement was a shot across the
bow of the then dominant claim to reduce explanation of intelli-
gence to the architecture level alone. Some kind of content
mattered theoretically, the movement said, content having
to do with a variety of knowledge-use strategies shared by
the human community as a whole, often implicitly8 organiz-
ing our knowledge, and at times explicitly available as strate-
gies. I think this message continues to be relevant for under-
standing cognition.

This is also an occasion to bury the worry often expressed,
not least by me, about how many tasks and PSMs there are.
The constituents of PSMs are operations on information
structures, and the ontology of these operations is not a closed
set. There is no periodic table of methods containing the
atoms of such operations. However, the top-level regularities
in knowledge use: model making, action planning and pre-
diction, as well as the computational and organizational
strategies such as classification and hierarchical planning,
are basic and widely useful, and that is why these tasks and
PSMs are worth the attention.

5. THE STATE OF KBS APPLICATIONS

Two decades after the excitement about KBS as a new
software technology framework to build applications, as a
particularly attractive alternative to traditional software tech-
nologies, it is fair to say that the technology has not had the
explosive growth that was hoped, although interesting re-
search continues to be conducted. One kind of application
seems to have been moderately successful, and the other
seems to have not been so successful.

The first kind, applications of the successful kind, often
may not even appear to be built in the knowledge system
framework, but their development owes much to PSMs devel-
oped in the KBS work. We mentioned earlier about diagnos-
tic and design applications in industry that are built as con-
ventional software, but which nevertheless owe much to
PSM research. One reason why these applications are built
in conventional frameworks is the need to scope their applic-
ability. In industry, there are significant incentives associated
with deploying systems with provable, or at least reliable, per-
formance. Thus, unless the system builder is in a position to
precisely characterize the range of problems solvable and has
a clear sense of closure about the relation between encoded
knowledge and the range of problems it can support, users
of any specific KBS intended for some task might have to
live in fear that it would exhibit unpredictable, brittle perfor-
mance. It is true that no such guarantees are sought or given in
the case of human experts, but we are far from being able to
claim sufficiently complete encoding of what an expert
knows. It is therefore hard to have a similar faith in systems

8 See our earlier discussion of how learning can produce implicit
knowledge.
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even when they are notionally based on human expertise. As a
result, there is a strong incentive to extract a traditional algo-
rithmic solution from a prototype KBS solution, and use these
algorithms in deployed applications. The performance and
the scope of applicability of such algorithms are often easier
to characterize. As mentioned earlier, PSMs have a useful role
to play in the design of such algorithms. For example, R1
demonstrated the use of the KBS systems technology in a
class of design problems. Later analysis revealed the implicit
PSM as a form of constraint satisfaction. Since then, numer-
ous applications have been built and deployed for that class of
design problems, but by using constraint–satisfaction algo-
rithms instead of a general KBS technology. Similarly, diag-
nostic applications are built and deployed in the traditional al-
gorithmic framework, and these applications often make use
of PSMs such as classification or abductive inference PSMs
as design templates.

The second type of application might seek its advantages in
what is supposed to be the selling point of KBS in the first
place: large knowledge bases that embody the knowledge of
experts. If the advantages are sufficiently great and the deploy-
ment context is sufficiently forgiving, systems with not entirely
predictable performance would still be useful. However, soon it
was realized that there was no clear separation between exper-
tise and more general, so-called common sense knowledge.
There was a developing consensus that for KBSs not to exhibit
“brittle” behavior, in other words, behavior that is catastrophi-
cally inappropriate, the knowledge bases needed to have com-
monsense knowledge that is shared by humans. This, in turn,
launched research efforts to encode commonsense knowledge
into a shareable repository, the most famous of which was
CYC (Lenat & Guha, 1989). The CYC knowledge base is
now a commercial enterprise, and an objective evaluation of
its successes and failures is hard to come by. My sense is
that CYC’s domain-specific ontologies and knowledge bases
built using them have found much more use than the so-called
common sense base. A conservative judgment is that the vision
of practical systems that tap into large bases of commonsense
and professional knowledge to solve complex problems that
currently require experts is quite far from realization. I next
turn to why such knowledge has been difficult to capture.

6. THE FUTURE, OR MODESTLY, A FUTURE

I agree with Clancey’s critique (1991) of the view, which is
accepted almost universally in symbolic AI but without
deep examination, that human memory is a repository of
information, which is encoded in a functional equivalent of
predicate-symbolic expressions, from which information
or knowledge items are retrieved. We, of course, have
much factual knowledge, such as “New Delhi is the capital
of India,” that we more or less retrieve.

However, not all knowledge that seems to appear in
our deliberation is retrieved: much of it is constructed in
response to the goals of the moment. In fact, as he has further
argued (Clancey, 1989), knowledge bases are domain models;

the knowledge base of Mycin is not a core dump of some ex-
pert’s relevant knowledge as much as it is some expert’s con-
struction in rule form of the relevant parts of his expertise.
We as agents are generally unaware of the process of construc-
tion, so the retrieval story, inspired by the ubiquitous computer
memory metaphor, seems unproblematic on first acquaintance.

Clearly, something is in our memory, and that something
generates information useful to pursue our goals. The prob-
lem is the nature of what is in memory. Let us consider two
examples to highlight the issues involved.

When I was growing up in India, a prototypical example we
children were told of behavior violating common sense was
that of a person sitting at the edge of a branch on a tree and saw-
ing the branch on the side between him and the tree. Even a
child instantly recognizes this as comically foolish. If asked
why, the child might say something like, “He’s going to fall
down when he’s finished sawing!” What exactly was retrieved
from the child’s memory? It is highly unlikely that it was a
piece of knowledge of the form, “If a person sits on a tree
branch, saws it on the side closer to tree, he’ll fall,” nor even
of the form, “If an object is sticking out at a height, . . .”
One could imagine abstract axioms about gravity from which
the inference could be made, but the amount of computing in-
volved to generate the answer would be substantial.

Let us look at another example. Imagine a person was at a
party one night and someone asks the next day, “Was Stepha-
nie standing closer to Bill than to Stu?” If the partygoer had
no reason to expect that he would be quizzed the next day on
this, it is quite unlikely that he would have noticed the relative
distances between Stephanie, Bill, and Stu, and thus it is un-
likely he could reply by retrieving the appropriate linguistic
symbolic unit from his memory. For one thing, slightly differ-
ent forms of the question, for example, “Was Stephanie close
enough to Bill that she could hear what he said, but too far
from Stu to hear what he said?” require different sentences
to be stored in memory. Storing all possible answers in mem-
ory in linguistic symbolic form would it be highly inefficient
in storage, time consuming at the time of the experiencing the
event, and the partygoer would not be able to anticipate all of
the questions. It follows that the relevant part of the party-
goer’s memory had to be of the sort from which different an-
swers could be generated, depending on the question.

Much of our memory, including parts corresponding to so-
called commonsense knowledge, is body and perception
based, and multimodal, as many have argued (Johnson-Laird,
1983; Chandrasekaran, 2006). What appears to be linguisti-
cally represented knowledge is generated from these multi-
modal memory fragments by means of a process that is
functionally like a form of internal perception. In the party-
goer example, what he has in his mind is a visual, almost dia-
grammatic, representation of the locations of Stephanie, Bill,
and Stu. This basic representation plus internal perception,9

9 No need to worry about homunculi. Internal perception does not call for
an internal screen and eye, but activation of the same neural processes in-
volved in perceiving categories and conceiving relations among them.
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being able to “see” spatial relations in the mental image, is
sufficient to support a wide variety of linguistic descriptions:
“knowledge,” as people in AI term it. In the case of the child
laughing at the image of the man on the branch sawing the
branch, the memory is visual as well as kinesthetic.

One way of looking at what I have been doing lately is as an
entirely new variety of PSM. The notion of knowledge
adopted in AI, that it is something expressed as a collection
of predicate–symbolic expressions describing properties of
and relationships between individuals in a domain of dis-
course, is an entirely too narrow conception of knowledge
for knowledge representation in cognitive agents. If I say
Jill knows a lot about Beethoven’s music, I do not intend
that she has in her head a lot of symbolically represented pro-
positions about Beethoven’s music. Among other things,
I would expect her to recognize Beethoven’s music, perhaps
play some of it, and so on, none of which is reducible to a set
of propositions in one’s head. Knowing New York City in-
cludes being able to visualize its layout and avenues and
streets. Of course, this knowledge might be used to generate
linguistically expressed versions such as “Subway station A is
closer to Bloomingdales than station B,” to support decisions
about which subway line to take. However, what is in mem-
ory is in an altogether different form than what is taken to be
knowledge representation in AI.

Therefore, knowledge, broadly conceived, is all the repre-
sentations in all modalities that an agent might have about his
world. In particular, much of so-called commonsense knowl-
edge, the acquisition of which precedes the development of
the linguistic mode in children, is in the form of multimodal
representations, including that of the body in relation to the
environment. This view of internal representations as percep-
tual and imagistic finds support from recent work in neu-
roscience (Damasio, 1994) and psychology (Barsalou, 1999).

With this broader conception of knowledge, the new sets of
PSMs I am interested in understanding are the sets of internal
perception and action routines (Chandrasekaran, 2006) avail-
able for operations on representations in each of the modalities,
and of course, the representations themselves. The representa-
tions have to be compositional, but are not compositions of Tur-
ing symbols, but rather perceptual symbols, which is quite a dif-
ferent notion. My collaborators and I (Chandrasekaran et al.,
2004) have defined and implemented such a representation
for diagrams, a limited version of representations in the visual
modality. The diagrammatic representation we propose retains
the spatial information about the diagrams and its elements. The
diagram as a whole is not represented as an image, an array of
pixels. Instead, in our representation, the diagram is a spatial
composition of diagrammatic objects, each of which is a point,
curve or region, and each of whose spatiality is fully available.
A repertoire of perceptions and diagram modification/creation
actions is also available; these may be thought of as new type
of PSM. In the partygoer example, his relevant working mem-
ory representations are such diagrams: the partygoer applies
perceptions of relative distances to his memory fragments
from the party to answer the questions.

Diagrammatic representations are a subset of visual repre-
sentations, and we chose that domain for two reasons. First,
they are important in practice: what would engineering prob-
lem solving do without diagrams? Second, they provide an
arena in which larger questions about perceptual representa-
tions as part of cognition, memory, and internal perceptions
can be studied.

This is the story of a certain continuity and a certain shift in
my research over the last two decades. The continuity is that
the subject matter has remained the same: the nature of cog-
nition, especially the representations and the processes asso-
ciated with it. The shift is a fairly radical change in the con-
ception of the cognitive state and knowledge: abandonment
of what I now think is too narrow a conception of the lan-
guage of thought and adoption of a view that gives pride of
place to our perceptual and kinesthetic experiences.
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