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Parallax of the Moon in Terms of a World Geodetic System* 

Irene Fischer 
Army Map Service, Washington, D. C. 

(Received November 27, 1961 ; revised version received April 15, 1962) 

The recent geodetic connection between Europe and South Africa along the 30th meridian east makes it 
possible to reinterpret the Greenwich and Cape observations of the lunar crater Mösting A made by Christie 
and Gill in the years 1905 to 1910. Crommelin’s result for the correction of Hansen’s value for mean parallax 
of the moon is expressed as a mean lunar distance in kilometers, which is compared with various results from 
dynamical theory, with O’Keefe and Anderson’s determination from occultations, and with radar measure- 
ments. The Astrogeodetic World Datum serves as common reference system. As a by-product, the contra- 
dictions in the literature quoting Hansen’s value for mean parallax are cleared up. 

1. INTRODUCTION 

IN the years 1905 through 1910 Christie at Greenwich 
and Gill at the Cape of Good Hope arranged for 

observations to be made of the moon, specifically of 
the crater Mösting A, at meridional transit on the same 
night whenever possible, in order to determine the mean 
equatorial horizontal parallax (Christie, Gill, Crommelin 
1911). Crommelin made the computations and drew 
conclusions about the figure of the earth, regretting 
very much the uncertainty arising from the lack of 
geodetic connection between the observatories. That 
connection is available now. 

The discrepancies between the geometric parallax 
as derived in this classical paper and the dynamical 
parallax have been analyzed by various authors. 
Crommelin put the entire discrepancy into the flattening 
of the earth and computed 1/294.4 as that flattening 
which would make the observed and calculated parallax 
agree. Lambert (1928) assumed 1/297 as certain and 
estimated the influence of the neglected deflections and 
geoidal heights. De Sitter (1927) also blamed the 
geoidal irregularities ; he also pointed out the possibility 
of a systematic error due to the difference between the 
aspects of the crater as seen from the north and the 
south. Jeffreys (1948) analyzed the uncertainties, and 
seemed satisfied that each value was within the rms 
error of the other. 

The present paper reinterprets Crommelin’s paper by 
combining the old observations with new geodetic 
knowledge, eliminating the uncertainties due to geoidal 
heights and deflections. For comparison, the dynamical 
parallax is expressed in terms of the numerical constants 
considered best at present. 

Two other geometric methods have been tried within 
recent years: by O’Keefe and Anderson (1952) using 
four occultations, and by Yaplee et al. (1958) using 
radar. The results from occultations are modified in 
the present paper by introducing recent geodetic 
knowledge. The results of all four methods are expressed 
as mean lunar distance in linear units. 

* Presented in parts to the 42nd and 43rd Annual Meeting of 
the AGU in Washington, D. C., 1961 and 1962. 

2. CROMMELIN’S PROCEDURE AND RESULT 

The north polar distances of Mösting A, observed 
when the crater was on the meridian of Greenwich and 
the Cape, respectively, were corrected for parallax, 
and the Cape observations were reduced to the time of 
the Greenwich observations by allowing for the change 
in declination during the time interval between the 
two transits. The difference between the geocentric 
values so derived gives a measure of the correction to 
be applied to Hansen’s value of the mean parallax. 
The final correction Att was obtained as a mean of 100 
measurements, with the alternatives of using a weight- 
ing system or applying equal weights. The calculations 
were carried out for two values of /: 1/293.5 and 1/300, 
taking the altitude of the instruments above sea level 
into account. 

/= 1/293.5 /= 1/300 
Att +0''50 -f0''12 weighted 
Att -i-0''52 -f-0''14 equal weights 
d 1.349579 1.349728 

The chord distance d between the instruments, with 
the Cape instrument reduced to the Greenwich meridian, 
may easily be derived in units of the earth’s equatorial 
radius from the assumption of the flattening. It is this 
distance that can now be computed from geodetic 
measurements in terms of kilometers. 

3. GEODETIC CONNECTION BETWEEN THE 
OBSERVATORIES 

In 1954 an Army Map Service field party under 
D. L. Mills completed the last link in triangulation 
along the 30th meridian east in Africa, so that we now 
have a continuous chain from Greenwich to the Cape. 
The position of the Greenwich Observatory is known on 
European Datum (Hayford ellipsoid) from the relative 
deflections published by the IAG in 1957 and the 
European geoid chart (Fischer 1959a). The position 
of the Cape on South African Arc Datum (Modified 
Clarke 1880 ellipsoid) is given in the 1894 Report of 
the South African Geodetic Survey. The conventional 
extension of the European Datum to South Africa 
was corrected for the separation between geoid and 
ellipsoid along the meridian (Fischer 1959b) and conver- 
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sion formulas between the two geodetic systems were 
derived at Buffelsfontein in South Africa, the datum 
point of the South African Arc Datum. With both 
observatories referred to the same geodetic system, the 
chord distance between the instruments could be 
computed and modified in order to have the crater 
observations referred to the same meridian. The ratio 
between this distance of 8608.611 km and the distance 
d computed above in units of the equatorial radius leads 
to fictitious values for the equatorial radius consistent 
with Crommelin’s assumptions : 

#293.5—6378.739 km, a3oo= 6378.033 km. 

From these we can compute the mean lunar distance 
a/sin(7r^+A7r) in kilometers, if we know Hansen’s 
value for mean parallax, to which Crommelin’s cor- 
rections apply. 

4. hansen’s value of mean parallax 

There are conflicting quotations of Hansen’s value of 
the mean parallax in the literature. Crommelin quotes 
Newcomb (1895, p. 194) as having raised Hansen’s 
value by 0'i45, and there Newcomb gives his own 
adopted value as 3422'Í 68 when referred to the Clarke 
1880 ellipsoid (<z= 6378.249 km, l//= 293.46); thus 
by inference we know that Crommelin considered 
342223 as Hansen’s value. This value is also quoted 
explicitly by Newcomb (1912), not with a verbatim 
reference from Hansen, but derived by sine to angle 
correction from Hansen’s constant in the sine of the 
parallax, which Newcomb decided to raise by 0'i40, 
leading to 7r(( = 3422'i63 for Helmert’s flattening 
1/298.26. The authority for this value, Hansen’s 
constant in the sine of the parallax, is given by New- 
comb (1880, 1912) mostly as 3422'i06, but sometimes as 
r07 or ':09. 

On the other hand, Schrutka-Rechtenstamm (1955, 
1956) repeatedly quotes Hansen’s mean parallax as 
3422^28; and the Berliner Jahrbuch gives 57'2'i27 
with reference to Peters (1895). 

A discrepancy of 0''05 changes the implications of 
Crommelin’s results by more than 5.5 km in the mean 
distance of the moon. 

/= 1/293-5 /= 1/300 
3422''23 (28) 
3422'(73 (78) 

.75 (80) 
6378.739 km 

384 421.1 km 
(15.5) 

384 418.9 km 
(13.3) 

3422'(23 (28) 
3422'(35 (40) 

.37 (42) 
6378.033 km 

384 4213 km 
(15.6) 

384 419.0 km 
(13.4) 

Hansen’s 
tt^+Att weighted 

equal weights 
equatorial radius 
mean distance weighted 

equal weights 

On the other hand, the change in flattening has prac- 
tically no effect on the result when expressed in terms 
of kilometers (the variation being 100 to 200 m), while 
the resulting mean parallax is very different. 

To remove the uncertainty due to Hansen’s tt^ we 
have searched Hansen’s main publications (1857, 1864) : 

there is no specific mention of a value of the mean 
parallax, but an earlier communication (Hansen 1840), 
to which Newcomb referred, gives the numerical 
derivation of the constant in the sine parallax 3422'Í06. 
In Hansen’s tables (1857), however, a slightly different 
value is used for the constant part of the inequalities 
in the logarithm of the radius vector of the moon, and 
this change produces one of 0^06 in the mean parallax, 
bringing it up to the value quoted by Schrutka-Rechten- 
stamm, namely 3422'Í 28. 

Incidentally, Newcomb’s statement (1880) that 
Hansen contradicts himself by deriving 3422'i06 as 
constant in sine parallax and using 342209 in the 
tables of the same paper (Hansen 1840), is a confusion 
of the constant in the sine (3422''06) and the “in- 
complete” (unvollständige) constant in the logarithm of 
the sine(logio sin3422'i09) ; the latter is made “complete” 
(vollständig) by subtracting the constant term in the 
logarithm of the radius vector of the auxiliary ellipse. 

If Crommelin had used the correct value for Hansen’s 
mean parallax and, incidentally, also quoted himself 
correctly (on p. 539 he uses +'Í49 in his observational 
equation, while on p. 536 he gives his result as +'Í50 
weighted and +''52 for equal weights), then his con- 
clusions about the flattening of the earth would have 
been 1/295.5 (weighted) or 1/296.1 (equal weights) 
instead of the much quoted 1/294.4. Brown’s (1914, 
1915) choice of 1/294.0 for his lunar tables, although 
not based on Crommelin’s result, was very much 
influenced by the apparent agreement, which gave his 
result from lunar theory a middle value between 
Newcomb’s (1/293.5) and Crommelin’s (1/294.4) 
values. 

Even if Crommelin had used the correct values, 
however, his procedure of deriving the flattening of 
the earth from equating his geometrical with Newcomb’s 
gravitational parallax is objectionable because of two 
tacit assumptions: (1) that all of Newcomb’s factors in 
the gravitational parallax other than the flattening are 
the true values so that a change in the latter will not 
affect the others; (2) that his rigid relation between 
assumed flattening and resulting observed mean 
parallax, as shown in his table on p. 540, is a real one. 
The first assumption is probably justifiable on grounds 
of expediency, speculating about one constant with a 
large uncertainty, while assuming for the others the 
best (i.e., most recently observed) values as true (or with 
small uncertainties) even though later values often are 
outside the quoted uncertainties. The second assump- 
tion is more serious, because it confuses a reasonable 
technique of guessing the distance between the observa- 
tories in the absence of a geodetic connection, with a 
statement about the earth as a whole. The elements in 
the geometric problem are essentially three points of a 
huge plane triangle in space, or four points if the 
center of the earth is included. This configuration is 
unaffected by the shape of the earth at the poles, in 
Africa, or elsewhere. 
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5. GEOMETRIC PARALLAX AS REFERRED TO THE 
ASTROGEODETIC WORLD DATUM 

The Astrogeodetic World Datum (Fischer 1960a) is 
the result of fitting an ellipsoid of revolution with 
unknown parameters and position to the bulk of all 
geodetic observations available at present, which 
include astrogeodetic as well as gravimetric data and 
satellite observations. The resulting parameters are 
/= 1/298.3 and 6378.166 km. 

Although the chord distance between the observa- 
tories is an invariant under coordinate transformation, 
the introduction of the World Datum into the problem 
of the parallax is important because it represents our 
present idea of the position of the earth’s center in 
relation to these observatories. 

The change to the World Datum produces changes in 
Crommelin’s listed results for /= 1/293.5 that vary 
from —''301 to —'Í307, the mean being —''304 for 
both of Crommelin’s weighting systems : 

Weighted 
+ U96 (+-241) 

342228 
3422''476 (.521) 
6378.166 (.250) km 

384 415.1 (15.1) km 

Equal weights 
+ ?213 (+.258) 

3422''28 
3422''493 (.538) 
6378.166 (.250) km 

384 413.2 (13.2) km 

WD corr. to 
Hansen 

Hansen’s tt^ 
WD 7T( 
equatorial 

radius 
corresp. mean 

distance 

The figures in parentheses refer to an alternative 
reference system. Since the geodetic observations 
available at present cover only a relatively small part 
of the earth’s surface it is conceivable that the World 
Datum derived from the present material will undergo 
significant changes when the geodetic coverage will be 
significantly enlarged. O’Keefe el at. (1959) derived 
6378.255 km as equatorial radius of the earth by forcing 
agreement between the dynamical and geometric 
parallax, the latter given in the form of Yaplee’s lunar 
radar measurements (see Brouwer et al. 1960). In order 
to show that even such a big difference of 90 m in 
equatorial radius has no essential influence on the 
purely geometric problem between two observatories 
and the moon, an ellipsoid of revolution with parameters 
/= 1/298.3 and 6378.250 km was fitted to the same 
geodetic material as before. It can be seen that the 
result is quite different if expressed as mean parallax, 
but unchanged if expressed as mean distance in terms of 
kilometers. 

6. DYNAMICAL PARALLAX 

where a is the equatorial radius of the earth, M the 
mass of the earth, G the gravitation constant, and 
a', ïm, 7T(/, nf, ¡A are taken from De Sitter and Brouwer’s 
(1938) notation. 

The choice of the equatorial radius as terrestrial unit 
of length in this definition was considered by Newcomb 
(1912) “a defect in astronomical practice” since the 
mean radius is the one which is ‘ Test determined by 
geodetic measurements, and for which gravity is best 
ascertained from pendulum observations.” De Sitter, 
Jeffreys, and others concur. 

Accordingly, Newcomb uses gravity at mean latitude, 
assumed to be the same as if the mass of the earth were 
concentrated in its center, corrects it for centrifugal 
force to obtain the mean attraction gm. The mass of 
the earth is set equal to the mass of a mean sphere with 
radius rm and attraction gm, so that GM = gmrn?. The 
flattening becomes now part of the parallax expression 
because of the (arbitrary) presence of the equatorial 
radius. 

Thus the numerical value of the dynamical parallax 
depends on estimates of gravity, radius, flattening of 
the earth, and mass of the moon, all of which have 
changed very much with the times. The efforts of 
Newcomb (1895) and De Sitter and Brouwer (1938) 
for at least theoretical consistency between these and 
the other astronomical constants are being renewed 
at present. 

In Table I the numerical constants considered best 
by Hansen, Newcomb, Brown, Lambert, and at present, 
are listed together with the resulting dynamical 
parallax and the corresponding lunar distance. The 
values marked a are inferred from information given in 
other form : 

Hansen (1840, 1857) gives length of the seconds 
pendulum and centrifugal correction instead of gm. 
The Bessel (1837) ellipsoid is referred to in the theore- 
tical derivations, but the Tables de la Lune are based on 
the rounded value of 1/300, which produces the slight 
difference of 0'(009. Here is the explanation why Peters 
quoted 3422'(27 as Hansen’s mean parallax (derived 
with l//= 300.7047). Hansen’s value for (l+z^) can 
be deduced from a comparison of his procedure with 
Newcomb’s, if allowance is made for Hansen’s using 
the anomalistic instead of the sidereal period of the 
moon, and an auxiliary instantaneous orbital ellipse 
with constant parameters: Hansen gives numerically 
the constant in the logarithm of sine parallax as 

The dynamical mean horizontal equatorial parallax 
7T( is defined by 

a 
sin7ix =  

a'/ (1 + ^4) 

aV2(l + ï/4)3 

ti-/3 = , 
GM(1+m)(86 400)2 sinl” 

4.00283983 
log > 

4.OOO32753 

where double bracket means antilogarithm, and 
ä=orbital semimajor axis, defined by äd4:ir2/Ta

2 = GM 
X (1+m)- He gives the correction from the antilogarithm 
of this constant to the constant in the sine parallax as 
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Table I. Constants for dynamical parallax. 

Hansen 1857 
Newcomb 1895 
Newcomb 1912 
Brown 1915 
Brown and Hayford 
Lambert 1928 
World Datum 

Ellipsoid 
Bessel 1837 
Clarke 1880 
Helmert 1903 
modified from 

Newcomb 1912 
Hayford 
Hayford 

a 
6370 

1// km + 
300.7047 7.1569 
300 
293.465 8.249 
298.26 7.980 
294.0 8.074a 
297.0 8.388 
297.0 8.388 
298.3 8.166 

Vm 6370 gm km + gal 
0.063 981.980a 
1.004 982.030 
0.843 981.996 
0.843a 981.996a 

1.229a 982.038a 
982.022a 

1.229a 982.041a 
1.0388 982.0222 

GM 
megameter3 

kilosec2 

398.603 Hill 
398.569 Helmert 398.569a 
398.634a 
398.628a 
398.636a 
398.604 

1/fl 1+^4 
80 1.000919a 
81.45 1.000907 
81.45 1.000907 
81.53 1.0009076 

81.53 1.0009078a 
81.375 1.0009076 
81.219 

7T a/sinTi-ff* 
57'+ km ^ 
2?27a 384 377.4 
2?28a 384 376.3 
2':68 384 397.2 
2 ''63 384 386.6 
2?70a 384 384.7 
2''678a 384 405.8 2?70a 384 403.7 
2''68(2) 384 405.4 
2''624 384 398.5 
2':597 384 401.5 

a By inference. 

2! 71/206265, so that 

r aHw2 -p 
sin7r( = I  

Lgm(i+m)J 

for his adopted constants (Table I). The second factor 
should be equivalent to (I+jm)/?//; thus 

l+z.4=(rs/ra)t(i.0058016)+r^(0.4471)(10-7) 
= 1.000919. 

The derivation given in Jordan-Eggert (1941) is 
erroneous. 

Brown (1914, 1915, 1919) gives the sine mean 
parallax 3422''54 as the basic value, and his adopted 
changes from the constants used by Newcomb in 1912, 
which do not include rm and gm; the different flattening 
implies a small modification in a.—Brown’s statement 
(1914, 1918) that his adopted 2'i54 “agrees exactly 
with the value which Crommelin found from observa- 
tion (for the same flattening)” obviously refers to 
Crommelin’s listing 0'i47 for /= 1/294; then Att^^ ''31, 
which together with Hansen’s 2! 23 would give exactly 
2''54. Hansen’s value, however, was not 2''23 but 2'f28, 
which makes Brown’s statement erroneous. On the 
other hand, Brown had started computing his Tables 
with 2''70 as sine mean parallax, which was an observa- 
tional value (Brown 1896, p. 124, 131) of the same type 
as Crommelin’s, derived by Breen (1863) and later by 
Stone (1865) from grouping and averaging various 
pairs of observations at the Cape of Good Hope and at 
Greenwich, Edinburgh, and Cambridge, referred to the 
Bessel ellipsoid and /= 1/300. Brown, however, decided 
later to reject this value in favor of a dynamically 
derived one.—In the American Ephemeris this dynam- 
ical value is used in connection with the Hayford 
(International) ellipsoid and the International gravity 
formula, which produce a value of 2".678. This incon- 
sistency could be resolved by changing gm to 982.022 
gals, close to the value used for the World Datum. 

Lambert (1928) gives equatorial gravity 978.052 gals 
and log^ + JH)3^.0011822. The third decimal in 2''682 
is uncertain. 

The World Datum constants are those of the Astro- 

geodetic World Datum (Fischer, 1960a) as employed 
earlier, combined with Brown’s (I + jt) and an alterna- 
tive of Rabe’s (81.375=L.026) and Delano’s (81.219 
zb.030) values (Makemson et al. 1961) for the mass of 
the moon. These alternatives were introduced to show 
today’s uncertainty, each value quoted with an rms 
error excluding the other; they make a difference of 
3 km in the lunar distance. From Table 7 of the Makem- 
son paper it appears that this so-called Delano value 
was derived from Delano’s constant of the lunar 
equation T = 6.4430 using an adopted solar parallax of 
8''790. With 8'i795 for the solar parallax, as indicated 
by recent radar measurements of the distance to Venus, 
(Jet Propulsion Laboratory, Lincoln Laboratory, Jodrell 
Bank), Delano’s L gives 1/^=81.268 (almost Spencer 
Jones’ value as modified by Jeffreys), leading to 
7r( = 57'2''605 and a/sinx^ 384 400.6 km for the World 
Datum.—The mean attraction gm includes the decrease 
by 12.8 mgals proposed by the Special Study Group 
No. 5 of the IUGG (Morelli 1960) as well as a decrease 
of 2 mgals derived by Kaula (1959). 

The distances of the moon, computed from dynamical 
theory with these sets of constants very by 30 km; 
none of these distances matches Crommelin’s result. 
Since there was no other geometric determination until 
recently, the often-stated disagreement between dynam- 
ical and geometrical parallax actually referred to various 
repeatedly modernized dynamical values in comparison 
to the one geometrical value. The comparison empha- 
sizes the need to have other geometric determinations. 

7. LUNAR DISTANCE FROM OCCULTATIONS 

One such is that by O’Keefe and Anderson (1952), 
who determined the moon’s distance from observations 
of four occultations at nine stations in the United 
States. This is comparable to Crommelin’s determina- 
tion in the sense that one and the same point on the 
moon is observed from two or more stations. 

The published numerical results of this paper are 
between those implied by the Crommelin paper and 
those derived from dynamical theory. A recomputation 
inserting recent geodetic information, however, produces 
a significant change. 

I.UU0ÖU1Ö 

L TJ 
+ (.4471) (10- 

-I 
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Table II. Modification of O’Keefe and Anderson’s (1952) computation, to be compared with Table III on p. 120 of their publication.0 

Station Star 
8(d) 
m m 

8r] 
m 

Tangent Hayford 
A<r = a — k (Act) = Aer 

m — mean 

World Datum 
Act' (Acr'^Air' 
m — mean 

2540 
2540 

501 
501 
348 
348 
996 
996 
996 

+ 10.5 
-1.5 
-2.0 
+2.5 
+ 1.5 
+ 1.0 
+3.5 

-18.5 
-12.5 

-2.30 
-5.67 

-28.0 
-19.5 
-16.5 
-19.0 
-19.5 
-47.5 
-42.5 

-.4 
-1.9 

-21.1 
-16.2 
-13.5 
-15.9 
-13.7 
-37.0 
-34.9 

-2.1 
-5.1 
-9.3 
-7.0 
-7.8 
-9.1 
-7.1 

-17.1 
-15.2 

740 
740 
740 
740 
740 
740 
739 
739 
739 

128.9 
143.0 
930.7 
929.7 
054.0 
079.4 
851.8 
820.0 
835.4 

2141.3 
2155.4 
2943.0 
2942.1 
2066.4 
2091.8 
1864.2 
1832.3 
1847.8 

-7.05 
+7.05 
+ .45 
-.45 

-12.7 
+ 12.7 
+ 16.1 
-15.8 

-.3 

2030.7 
2032.9 
2781.9 
2777.7 
1862.7 
1887.9 
1664.7 
1631.9 
1647.0 

-1.1 
+ L1 
+2.1 
-2.1 

-12.6 
+ 12.6 
+ 16.8 
-16.0 

-.9 

a d =geoid above ellipsoid. 5(d) = discrepancy between new and old geoidal heights. 

The new geodetic information available now, but not 
at the time of the occultations refers to the geoidal 
map of North America (Fischer 1960b). For reading 
the geoidal heights of the nine stations, a detailed, 
large-scale map was used, however, of which the map 
in the reference is only a simplified version. The 
geoidal heights and their differences from the estimates 
used by O’Keefe are listed in Table II. The rest of the 
table contains the computational consequences of this 
change in geoidal heights and will be understood in 
connection with Table III on p. 120 of the O’Keefe and 
Anderson publication. We made two solutions : one for 
the Hayford ellipsoid tangent to the Clarke 1866 
ellipsoid at Meades Ranch, differing from O’Keefe’s 
Solution III only through the change in geoidal heights ; 
the other for the World Geodetic System. In O’Keefe’s 
Eq. (20) onp. 110, 

Act = ¿qA^T^Ai’T^eA^T C, 

Au = Av = 0 for the first solution, and Aw= + 16.9 m, 
At'=+205.6 m for the second solution. Least-squares 
solutions give 

A^i=+.4 km (Tangent Hayford), 

Ap2 — —2.8 km (World Datum). 

The basic value p to be corrected by Ap is the one 
consistent with Brown’s lunar tables in conjunction 
with the Hayford ellipsoid. O’Keefe used ^~384 403 
km ; more closely 

6378.388 km 
p = = 384 403.7 km, 

3422.540 sinl" 

leading to the following results : 

Tangent Hayford: ^i = 384 404.1 km 
and tt^. i = 3422''693, 

World Datum: 7>2==384 400.9 km 
and 7tc.2 = 3422': 603. 

Since it is now generally recognized that the Hayford 
ellipsoid is not a good fit as a World ellipsoid, p2 
= 384400.9 km may be regarded as the updated result 

of the occultation method, agreeing very well with the 
dynamical result of about 384 400±2 km, referred to 
the same World Datum. 

The new geoidal heights were inserted also into 
O’Keefe’s Solutions I and II. These solutions had been 
designed to extract a value for the earth’s equatorial 
radius from the observed lunar distance by utilizing the 
dynamical relationship between them. The same 
approach was used by Crommelin to extract a value for 
the earth’s flattening from the observed parallax. The 
procedure requires assumptions about the other dynam- 
ical constants involved. The uncertainty in our knowl- 
edge of the mass of the moon alone causes a large 
scatter in the derived value for equatorial radius as 
seen below. Inserting three current estimates : 

Rabe l/ju = 81.375, recommended by Makem- 
son et al. (1961), 

Spencer Jones l//z = 81.27, adopted in O’Keefe’s paper, 
Delano l//x = 81.219, an alternative used in the 

World Datum 

(In the following discussion the values resulting from 
1/^ = 81.268 are almost the same as those given for 
Spencer Jones.) O’Keefe’s Eq. (35) on p. 112 reads 

2 cotTT i .7731 for Rabe, 
A/> = Aa-\ \ 1.3297 for Spencer Jones, 

3 sfiiTT sinrr 11.7626 for Delano, 

leading to the following results, referred to the fixed 
flattening 1/297 : 

I. With Rice’s 1952 estimate of gravity deflections 
at Meades Ranch 

a 7T([ a/siriTix 
Rabe 6 378 270 m 57,2':651 
Spencer Jones 6 378 199 2"620 
Delano 6 378 143 2':596 

384 401.7 km 
384 400.9 
384 400.2 

II. Without gravity estimate 

Rabe 6 378 249 2':647 384 400.9 
Spencer Jones 6 378 178 2"616 384 400.1 
Delano 6 378 122 2':592 384 399.4 

It can be seen that the scatter in the resulting values 
for equatorial radius is too large to make the derivation 
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significant ; but it also can be seen that these values are 
balanced by a compensatory variation in tt^ to give a 
fairly stable result for the lunar distance. 

Thus the significant result of the O’Keefe and 
Anderson paper is the determination of the distance of 
the moon, not that of the earth’s equatorial radius. 

8. LUNAR DISTANCE FROM RADAR MEASUREMENT 

The source for lunar distance carrying the most 
conviction at the present time is, of course, Yaplee’s 
current determination by radar. So far only preliminary 
results and tentative interpretations of a one day 
(Yaplee et al. 1958; O’Keefe; Eckels et al. 1959) and of 
a one month series of observations (O’Keefe; Roman 
et al. 1959; Brouwer et al. 1960) have been published. 
The preliminary result is 384 402=tl.2 km. 

Combining this geometric result with the dynamical 
parallax O’Keefe derived an equatorial radius of 
6 378 255 m, adopting as flattening of the earth 
1/298.25, equatorial gravity 978.030 gals, and Rabe’s 
value 1/81.375 for the mass of the moon (Brouwer et 
al. 1960). For Delano’s value ix= 1/81.219, however, the 
resulting equatorial radius would decrease to about 
6 378 182 m. 

Yaplee’s result for the distance of the moon combines 
the actual radar measurements to the surface of the 
moon with an assumption of 1740 km for the radius of 
the moon. The reason for this choice is not mentioned. 
In the occultation method the radius of 1738 km had 
been used in conformity with the American Ephemeris. 
It would seem that the radar result, if computed with 
1738 km for the sake of a fair comparison, should 
decrease to about 384 400 km. The corresponding 
derivation of the equatorial radius would lead to about 

6 378 205 m (Rabe), 
6 378 155 m (Spencer Jones), 
6 378 132 m (Delano). 

The statement that the equatorial radius of the 
earth is 6 378 255 m on authority of the radar measure- 
ments should be taken cum grano salis. 

9. CONCLUSION 

Referred to the World Geodetic System (/= 1/298.3, 
a= 6378.166 km) the dynamical mean parallax is 

3422':610d= .013, 

and the corresponding distance of the moon is 

384400zt2 km, 

the uncertainty largely due to a realistic estimate of 
the uncertainty in the mass of the moon. The dynamical 

result agrees very well with the observational results 

by occultations 384 400.9 km and 3422''603 (O’Keefe, 
recomputed), 

and by radar 384 402 km (Yaplee, for 1740 km), 
384 400 km (for ^=1738 km). 

It does not agree with Crommelin’s result : 384 415 km 
(weighted) or 384 413 km (equal weights). 
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