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Euler: 56 years of fluid dynamics

• 1727: Dissertatio physica de sono =⇒ [1784]: Calculs sur les ballons aérostatiques.

• Over 40 papers or books on fluids (theory and applications)
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250 years ago: Euler’s equations

• “Principes généraux du mouvement des fluides”, presented to the Académie Royale
des Sciences et Belles-Lettres (Berlin) on 4 September 1755 and published in 1757.
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How Euler’s equations were written
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Flashback
Newton ⇒ Johann and Daniel Bernouilli ⇒ D’Alembert ⇒ Euler

• Newton’s law of “resistance” (drag): isolated particles individually impacting the
head of the moving body; thus: drag ∝ (velocity)2 (first scaling argument).

• Newton’s theory of the propagation of sound: elasticity of the air is assumed and the
(normal) pressure between successive layers of the air is taken into account.

• This is the first instance of internal pressure action.

• Many years needed before Euler’s reintroduction of internal pressure as a means to
derive the motion of fluid elements.
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The derivation of (Daniel) Bernoulli’s pressure law in 1734-1738

• According to Toricelli’s law of efflux, the water escapes from the hole o with the
velocity u =

√
2gh.

• Mass conservation implies that, within the appended tube EFDG the water flows with
the velocity v = (ε/s)u, where ε and s are the crosssections of the hole and of the
appended tube.
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If in truth there were no barrier FD, the final velocity of the water in

the same tube would be [ s/ε times greater]. Therefore, the water in

the tube tends to a greater motion, but its pressing [nisus] is hindered

by the applied barrier FD. By this pressing and resistance [nisus et

renisus] the water is compressed [comprimitur], which compression

[compressio] is itself kept in by the walls of the tube, and thence these

too sustain a similar pressure [pressio]. Thus it is plain that the

pressure [pressio] on the walls is proportional to the acceleration. . . that

would be taken on by the water if every obstacle to its motion should

instantaneously vanish, so that it were ejected directly into the air.

• Principle of live forces (kinetic + potential energy conservation):

hsvdt =
v2

2g
svdt + bsd

(
v2

2g

)
, b = Ea .

• Wall pressure P ∝ dv/dt = (gh− v2/2)/b must reduce to gh for v = 0. Thus

P = gh− 1
2
v2 .
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D’Alembert: “Eulerian” coordinates and the use of PDEs
• In 1747 Jean le Rond d’Alembert submitted a prize-winning memoir “The cause of

winds” to the Berlin Academy. The prescribed subject was:
. . . to determine the order & the law wind should follow, if the Earth were surrounded on all sides by the

Ocean; so that one could at all times predict the speed & direction of the wind in all places.

• For a special case involving spherical coordinates he gave, the first time the complete
equations of motion of an incompressible fluid in a genuinely two-dimensional case.

• Thus emerged the (“Eulerian”) velocity field and partial derivatives with respect to
two independent spatial coordinates.

• In 1749 d’Alembert submitted a memoir “The resistance of fluids” to another Berlin
prize and failed to win (comparison with experimental results was lacking).

• Yet this memoir contains the first instance of what we now call the vorticity equation
for a steady incompressible flow around an axially symmetric body; it is derived by
demanding that the convective derivative be potential and thus curlfree; in modern
terms:

∇× [(v · ∇)v] = 0 .

• Only zero-vorticity solutions are identified (a mistake Euler will repeat in 1752).
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D’Alembert’s first derivation of the incompressibility condition
• In the 1749 memoir d’Alembert derived the incompressibility condition

∇ · v = 0 .

• Actually, limiting himself to the axially symmetric case, he wrote literally:

dq

dx
+

dp

dz
=

p

z
,

where z and x are the radial and axial coordinates and p and q the corresponding
components of the velocity.

• For this, he considered the deformation of a small parallelepiped of fluid during an
infinitesimal time interval.
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Euler’s 1750 “discovery of a new principle of mechanics”

• In a 1750 memoir, mostly devoted to the motion of a solid, Euler claimed that the
true basis of continuum mechanics was Newton’s second law applied to the
infinitesimal elements of bodies.

• Among the forces acting on the elements he included “connection forces” acting on
the boundary of the elements. In the case of fluids, these internal forces were to be
identified to the pressure.

• In a memoir written around 1750–1751 Euler applied this principle to the motion of
rivers, treated as a fully two-dimensional (steady-state) problem.

• The Cartesian coordinates of a fluid particle were expressed as functions of time and
of a fillet-labeling parameter.

• He wrote partial differential equations expressing the incompressibility condition and
his new principle.

• He derived for the first time the Bernoulli law along the stream lines of an arbitrary
steady incompressible flow.

• Euler appeared not very satisfied with this paper.
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The 1752-1761 Latin memoir

• The 1750 principle is fully implemented for two- and three-dimensional
incompressible flow, using what we now call (cartesian) Eulerian coordinates.

• The incompressibility condition is established, basically as in d’Alembert’s 1749
memoir for the Berlin-prize, and written in Euler’s own notation as

du

dx
+

dv

dy
+

dw

dz
= 0 .

• The momentum equation is written (in somewhat modernized form) as

dp =
(
g − 2

∂v
∂t

− 2(v · ∇)v
)
· dr .

• The full time-dependent vorticity equation is derived in 2D and 3D.

• The only solutions retained were potential v = ∇ϕ, a mistake not repeated in the
1755-1757 French memoir but which led to Laplace’s equation for ϕ.

• Bernoulli’s law is established for such potential flow

p = g · r− 1
2
v2 − ∂ϕ

∂t
+ C .
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The three 1755-1757 French memoirs
• The first memoir “Principes généraux de l’état d’équilibre des fluides” gives a PDE

formulation of hydrostatics.

• The second memoir “Principes généraux du mouvement des fluides” is why we are
here! It also contains the first formulation of the initial value problem for PDEs.

• The third memoir “Continuation des recherches sur la théorie du mouvement des
fluides” contains an extension of Bernoulli’s law to vortical steady flow: the
constancy of p + v2/2 is no more global but only along each line of flow.

• Summarizing, altogether 21 years where needed:

* D. Bernoulli: his pressure law derived from live forces (1734-1738).

* J. Bernoulli: theory of gurges applied to identifying the convective derivative (1742).

* J. d’Alembert: PDE for the multi-dimensional description of fluid flow (1746);
incompressibility condition in modern notation (1749).

* L. Euler: Newton’s second law + internal pressure to obtain the first instance of the
incompressible 2D and 3D Euler equations but with a “vorticity mistake” (1752).
Then he obtained in the clearest and most general manner an amazingly stable
foundation for the science of fluid motion (1755).
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A long way to go
• At the end of the second 1755 memoir Euler wrote:

We see well enough . . . how far we still are from a complete knowledge of the motion of fluids, and that

what I have explained here contains but a feeble beginning. However, all that the Theory of fluids holds, is

contained in the two equations reported above, so that it is not the principles of Mechanics which we lack

in the pursuit of these researches, but solely Analysis, which is not yet sufficiently cultivated for this

purpose. Thus we see clearly what discoveries remain for us to make in this Science before we can arrive

at a more perfect Theory of the motion of fluids.

• As we know, Euler’s equation are the first instance of a nonlinear field theory and
remain to this day shrouded in mystery, contrary for example to the heat equation
introduced by Fourier in 1807 and the Maxwell equations, discovered in 1862.

• It soon became clear that their application to problems of resistance (drag) led to
paradoxes (d’Alembert’s zero-drag paradox).

• The discovery of viscous stresses in the 19th century led to a (very slow) erosion of
interest in Euler’s equations.

• We now observe a strong renewal of interest: weak solutions, Young measure
solutions, generalized flows all give new life to our beloved Euler equations.
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