Reactive Policies with Planning for Action Languages

Zeynep G. Saribatur and Thomas Eiter *

Technische Universität Wien, Vienna, Austria, {zeynep,eiter}@kr.tuwien.ac.at

A Proof Sketches

Theorem 1 (soundness of Reach). Let $\mathcal{T}_h = \langle \widehat{S}, \widehat{S}_0, G_B, \mathcal{B}, \Phi_B \rangle$ be a transition system w.r.t. a classification function h. Checking whether every transition found by the policy execution function Φ_B induced by a given implementation Reach is correct is in Π_3^p .

Proof (Sketch). According to Definition 6, every transition from a state \hat{s} to some state \hat{s}' corresponds to some plan σ returned by $Reach(\hat{s}, g_B)$. Thus first one needs to check whether each plan $\sigma = \langle a_1, a_2, \ldots, a_n \rangle$ returned by Reach given some \hat{s} and g_B is correct. For that, we need to check two conditions on the corresponding trajectories of the plan: (i) for all partial trajectories $\hat{s}_0, \hat{s}_1, \ldots, \hat{s}_{i-1}$ it holds that for the upcoming action a_i from the plan σ , $\hat{\Phi}(\hat{s}_{i-1}, a_i) \neq \emptyset$ (i.e., the action is applicable). (ii) for all trajectories $\hat{s}_0, \hat{s}_1, \ldots, \hat{s}_n, \hat{s}_n \models g_B$. Checking whether these conditions hold is in Π_2^p .

Thus, to decide whether for some state \hat{s} and target g_B the function $\Phi_B(\hat{s}, g_B)$ does not work correctly, we can guess \hat{s} (resp. $s \in \hat{s}$), g_B , a plan σ , and verify that $\sigma \in Reach(\hat{s}, g_B)$ and that σ is not correct. As we can do the verification with an oracle for Σ_2^p in polynomial time, correctness can be refuted in Σ_3^p ; thus the problem is in Π_3^p .

Theorem 2 (completeness of Reach). Let $\mathcal{T}_h = \langle \hat{S}, \hat{S}_0, G_B, \mathcal{B}, \Phi_B \rangle$ be a transition system w.r.t. a classification function h. Deciding whether for a given implementation Reach, Φ_B fulfills $\hat{s}' \in \Phi_B(\hat{s})$ whenever a short conformant plan from \hat{s} to some $g_B \in \mathcal{B}(\hat{s})$ exists and \hat{s}' is the resulting state after the execution of the plan in T_h , is in Π_4^p .

Proof (Sketch). For a counterexample, we can guess some \hat{s} and \hat{s}' (resp. $s \in \hat{s}, s' \in \hat{s}'$) and some short plan σ and verify that (i) σ is a valid conformant plan in \mathcal{T}_h to reach \hat{s}' from \hat{s} , and (ii) that a target g_B exists such that $Reach(\hat{s}, g_B)$ produces some output. We can verify (i) using a Π_2^p oracle to check that σ is a conformant plan, and we can verify (ii) using a Π_3^p oracle (for all guesses of targets g_B and short plans σ' , either g_B is not a target for \hat{s} or σ' is not produced by $Reach(\hat{s}, g_B)$). This establishes membership in Π_4^p .

Theorem 3. The problem of determining whether the policy works is in PSPACE.

Proof (Sketch). One needs to look at all runs $\hat{s}_0, \hat{s}_1, \ldots$ from every initial state \hat{s}_0 in the equalized transition system and check whether each such run has some state \hat{s}_j that satisfies the main goal g_{∞} . Given that states have a representation in terms of fluent or state variables, there are at most exponentially many different states. Thus to find a counterexample, a run of at most exponential length in which g_{∞} is not satisfied is sufficient. Such a run can be nondeterministically built in polynomial space; as NPSPACE = PSPACE, the result follows.

^{*} This work has been supported by Austrian Science Fund (FWF) project W1255-N23.

Theorem 4. Let $\mathcal{T}_h = \langle \hat{S}, \hat{S}_0, G_B, \mathcal{B}, \Phi_B \rangle$ be a transition system w.r.t. a classification function h. Let $\hat{\Phi}$ be the transition function that the policy execution function Φ_B is based on. The problem of checking whether $\hat{\Phi}$ is proper is in Π_2^p .

Proof (Sketch). As a counterexample, one needs to guess $\hat{s}, a, \hat{s}' \in \hat{\Phi}(\hat{s}, a)$ and $s' \in \hat{s}'$ such that no $s \in \hat{s}$ has $s' \in \Phi(s, a)$.

Proposition 1 (soundness). Let $\mathcal{T}_h = \langle \hat{S}, \hat{S}_0, G_B, \mathcal{B}, \Phi_B \rangle$ be a transition system w.r.t. a classification function h. Let $\hat{s}_1, \hat{s}_2 \in \hat{S}$ be equalized states that are reachable from some initial states, and $\hat{s}_2 \in \Phi_B(\hat{s}_1)$. For any concrete state $s_2 \in \hat{s}_2$, assuming (2), there is a concrete state $s_1 \in \hat{s}_1$ such that $s_1 \rightarrow^{\sigma} s_2$ for some action sequence σ , in \mathcal{T} .

Proof. For equalized states \hat{s}_1, \hat{s}_2 , having $\hat{s}_2 \in \Phi_B(\hat{s}_1)$ means that \hat{s}_2 satisfies a target condition that is determined at \hat{s}_1 , and is reachable via executing some plan σ . Assuming that (2) holds, we can apply backwards tracking from any state $s_2 \in \hat{s}_2$ following the transitions Φ corresponding to the actions in the plan σ backwards. In the end, we can find a concrete state $s_1 \in \hat{s}_1$ from which one can reach the state $s_2 \in \hat{s}_2$ by applying the plan σ in the original transition system.

B Reachability of States in the Equalized Transition System

A state \hat{s} is *reachable* from an initial state in the equalized transition system if and only if $s \in \mathcal{R}_i$ for some $i \in \mathbb{N}$ where \mathcal{R}_i is defined as follows.

$$\mathcal{R}_0 = \widehat{S}_0, \ \mathcal{R}_{i+1} = \bigcup_{\hat{s} \in \mathcal{R}_i} \Phi_B(\hat{s}), \ i \ge 1, \ \text{and} \ \mathcal{R}^\infty = \bigcup_{i > 0} \mathcal{R}_i$$

Under the assumptions that apply to the previous results, we can state the following.

Theorem 5. *The problem of determining whether a state in an equalized transition system is reachable is in* PSPACE.

The notions of soundness and completeness of an outsourced planning function *Reach* could be restricted to reachable states; however, this, would not change the cost of testing these properties in general (assuming that $\hat{s} \in \mathcal{R}$ is decidable with sufficiently low complexity).