

Copyright © 2007, 2008, 2011 by Alan MacCormack, John Rusnak, and Carliss Baldwin

Working papers are in draft form. This working paper is distributed for purposes of comment and
discussion only. It may not be reproduced without permission of the copyright holder. Copies of working
papers are available from the author.

Exploring the Duality
between Product and
Organizational Architectures:
A Test of the “Mirroring”
Hypothesis

Alan MacCormack
John Rusnak
Carliss Baldwin

Working Paper

08-039

Exploring the Duality between
Product and Organizational Architectures:

A Test of the “Mirroring” Hypothesis

Corresponding Author:
Alan MacCormack

MIT Sloan School of Management
50 Memorial Drive E52-538

Cambridge MA 02142
alanmac@mit.edu

John Rusnak, Carliss Baldwin

Harvard Business School
Soldiers Field Park
Boston, MA 02163

cbaldwin@hbs.edu; jrusnak@hbs.edu

 2

Abstract

A variety of academic studies argue that a relationship exists between the structure of

an organization and the design of the products that this organization produces.

Specifically, products tend to “mirror” the architectures of the organizations in which

they are developed. This dynamic occurs because the organization’s governance

structures, problem solving routines and communication patterns constrain the space in

which it searches for new solutions. Such a relationship is important, given that product

architecture has been shown to be an important predictor of product performance, product

variety, process flexibility and even the path of industry evolution.

We explore this relationship in the software industry. Our research takes advantage

of a natural experiment, in that we observe products that fulfill the same function being

developed by very different organizational forms. At one extreme are commercial

software firms, in which the organizational participants are tightly-coupled, with respect

to their goals, structure and behavior. At the other, are open source software

communities, in which the participants are much more loosely-coupled by comparison.

The mirroring hypothesis predicts that these different organizational forms will produce

products with distinctly different architectures. Specifically, loosely-coupled

organizations will develop more modular designs than tightly-coupled organizations.

We test this hypothesis, using a sample of matched-pair products.

We find strong evidence to support the mirroring hypothesis. In all of the pairs we

examine, the product developed by the loosely-coupled organization is significantly more

modular than the product from the tightly-coupled organization. We measure modularity

by capturing the level of coupling between a product’s components. The magnitude of

the differences is substantial – up to a factor of eight, in terms of the potential for a

design change in one component to propagate to others. Our results have significant

managerial implications, in highlighting the impact of organizational design decisions on

the technical structure of the artifacts that these organizations subsequently develop.

Keywords: Organizational Design, Product Design, Architecture, Modularity, Open-

Source Software.

 3

1. Introduction
The architecture of a product can be defined as the scheme by which the functions it

performs are allocated to its constituent components (Ulrich, 1995). Much prior work

has highlighted the critical role of architecture in the successful development of a firm’s

new products, the competitiveness of its product portfolio and the evolution of its

organizational capabilities (e.g., Eppinger et al, 1994; Ulrich, 1995; Sanderson and

Uzumeri, 1995; Sanchez and Mahoney, 1996; Schilling, 2000; Baldwin and Clark, 2000;

MacCormack, 2001). For any given set of functional requirements however, a number of

different architectures might be considered viable. These designs will possess differing

performance characteristics, in terms of important attributes such as cost, quality,

reliability and adaptability. Understanding how architectures are chosen, how they are

developed and how they evolve are therefore critical topics for academic research.

A variety of studies have examined the link between a product’s architecture and the

characteristics of the organization that develops it (Conway, 1968; Henderson and Clark,

1990; Brusoni and Prencipe, 2001; Sosa et al, 2004; Cataldo et al, 2006). Most examine

a single project, focusing on the need to align team communications to the technical

interdependencies in a design. In many situations however, these interdependencies are

not predetermined, but are the product of managerial choices. Furthermore, how these

choices are made can have a direct bearing on a firm’s success. For example, Henderson

and Clark (1990) show that leading firms in the photolithography industry stumbled when

faced with innovations that required radical changes to the product architecture. They

argue that these dynamics occur because designs tend to reflect the organizations that

develop them. Given organizations are slow to change, the designs they produce can

quickly become obsolete in a changing marketplace. Empirical evidence of such a

relationship however, has remained elusive.

In this study, we provide evidence to support the hypothesis that a relationship exists

between product and organizational designs. In particular, we use a network analysis

technique called the Design Structure Matrix (DSM) to compare the design of products

developed by different organizational forms. Our analysis takes advantage of the fact

that software is an information-based product, meaning that the design comprises a series

of instructions (or “source code”) that tell a computer what tasks to perform. Given this

 4

feature, software products can be processed automatically to identify the dependencies

that exist between their component elements (something that cannot be done with

physical products). These dependencies, in turn, can be used to characterize a product’s

architecture, by displaying the information visually and by calculating metrics that

capture the overall level of coupling between elements in the system.

We chose to analyze software because of a unique opportunity to examine two

distinct organizational forms. Specifically, in recent years there has been a growing

interest in open source (or “free”) software, which is characterized by: a) the distribution

of a program’s source code along with the binary version of the product1 and; b) a license

that allows a user to make unlimited copies of and modifications to this product (DiBona

et al, 1999). Successful open source software projects tend to be characterized by large

numbers of volunteer contributors, who possess diverse goals, belong to different

organizations, work in different locations and have no formal authority to govern

development activities (Raymond, 2001; von Hippel and von Krogh, 2003). In essence,

they are “loosely-coupled” organizational systems (Weick, 1976). This form contrasts

with the organizational structures of commercial firms, in which smaller, collocated

teams of individuals sharing common goals are dedicated to projects full-time, and given

formal decision-making authority to govern development. In comparison to open source

communities, these organizations are much more “tightly-coupled.” The mirroring

hypothesis suggests that the architectures of the products developed by these contrasting

forms of organization will differ significantly: In particular, open source software

products are likely to be more modular than commercial software products. Our research

seeks to examine the magnitude and direction of these differences.

Our paper proceeds as follows. In the next section, we describe the motivation for

our research and prior work in the field that pertains to understanding the link between

product and organizational architectures. We then describe our research design, which

involves comparing the level of modularity of different software products by analyzing

the coupling between their component elements. Next, we discuss how we construct a

sample of matched product pairs, each consisting of one open source and one

1 Commercial software is distributed in a binary form (i.e., 1’s and 0’s) that is executed by the computer.

 5

commercially developed product. Finally, we discuss the results of our analysis, and

highlight the implications for practitioners and the academy.

 2. Research Motivation
The motivation for this research comes from work in organization theory, where it

has long been recognized that organizations should be designed to reflect the nature of

the tasks that they perform (Lawrence and Lorsch, 1967; Burns and Stalker, 1961). In a

similar fashion, transaction cost economics predicts that different organizational forms

are required to solve the contractual challenges associated with tasks that possess

different levels of interdependency and uncertainty (Williamson, 1985; Teece, 1986). To

the degree that different product architectures require different tasks to be performed, it is

natural to assume that organizations and architectures must be similarly aligned. To date

however, there has been little systematic empirical study of this relationship.

Research seeking to examine this topic has followed one of two approaches. The first

explores the need to match patterns of communication within a development project to

the interdependencies that exist between different parts of a product’s design. For

example, Sosa et al (2004) examined a single jet engine project, and found a strong

tendency for communications to be aligned with key design interfaces. The likelihood of

“misalignment” was shown to be greater when dependencies spanned organizational and

system boundaries. Similarly, Cataldo et al (2006) explored the impact of misalignment

in a single software development project, and found tasks were completed more rapidly

when the patterns of communication between team members were congruent with the

patterns of interdependency between components. Finally, Gokpinar et al (2006)

explored the impact of misalignment in a single automotive development project, and

found subsystems of higher quality were associated with teams that had aligned their

communications to the technical interfaces with other subsystems.

The studies above begin with the premise that team communication must be aligned

to the technical interdependencies between components in a system, the latter being

determined by the system’s functionality. A second stream of work however, adopts the

reverse perspective. It assumes that an organization’s structure is fixed in the short-term,

and explores the impact of this structure on the technical designs that emerge. This idea

 6

was first articulated by Conway who stated, “any organization that designs a system will

inevitably produce a design whose structure is a copy of the organization’s

communication structure” (Conway, 1968). The dynamics are best illustrated in

Henderson and Clark’s study of the photolithography industry, in which they show that

market leadership changed hands each time a new generation of equipment was

introduced (Henderson and Clark, 1990). These observations are traced to the successive

failure of leading firms to respond effectively to architectural innovations, which involve

significant changes in the way that components are linked together. Such innovations

challenge existing firms, given they destroy the usefulness of the architectural knowledge

embedded in their organizing structures and information-processing routines, which tend

to reflect the current “Dominant Design” (Utterback, 1996). When this design is no

longer optimal, established firms find it difficult to adapt.

The contrast between the two perspectives can be clarified by considering the

dynamics that occur when two distinct organizational forms develop the same product.

Assuming the product’s functional requirements are identical, the first stream of research

would assume that the patterns of communication between participants in each

organization should be similar, driven by the nature of the tasks to be performed. In

contrast, the second stream of research would predict that the resulting designs would be

quite different, each reflecting the architecture of the organization from which it came.

We define the latter phenomenon as “mirroring.” A test of the mirroring hypothesis can

be conducted by comparing the designs of “matched-pair” products – products that fulfill

the same function, but that have been developed by different organizational forms. To

conduct such a test, we must characterize these different forms, and establish a measure

by which to compare the designs of products that they produce.

2.1 Organizational Design and “Loosely-Coupled” Systems

Organizations are complex systems comprising individuals or groups that coordinate

actions in pursuit of common goals (March and Simon, 1958). Organization theory

describes how the differing preferences, information, knowledge and skills of these

organizational actors are integrated to achieve collective action. Early “classical”

approaches to organization theory emphasized formal structure, authority, control, and

 7

hierarchy (i.e., the division of labor and specialization of work) as distinguishing features

of organizations, building upon work in the fields of scientific management, bureaucracy

and administrative theory (Taylor, 1911; Fayol, 1949; Weber, 1947; Simon, 1976). Later

scholars however, argued that organizations are best analyzed as social systems, given

they comprise actors with diverse motives and values that do not always behave in a

rational economic manner (Mayo, 1945; McGregor, 1960). As this perspective gained

popularity, it was extended to include the link between an organization and the

environment in which it operates. With this lens, organizations are seen as open systems,

comprising “interdependent activities linking shifting coalitions of participants” (Scott,

1981). A key assumption is that organizations can vary significantly in their design; the

optimal design for a specific mission is established by assessing the fit between an

organization and the nature of the tasks it must accomplish (Lawrence and Lorsch, 1967).

Weick was the first to introduce the concept that organizations can be characterized

as complex systems, comprising many elements with different levels of coupling between

them (Weick, 1976; Orton and Weick, 1990). Organizational coupling can be analyzed

along a variety of dimensions, however the most important of these fall into three broad

categories: Goals, structure and behavior (Orton and Weick, 1990). Organizational

structure, in turn, can be further decomposed to capture important differences in terms of

membership, authority and location. All these dimensions represent a continuum along

which organizations vary in the level of coupling between participants. When aligned,

they generate two distinct organizational forms, representing opposite ends of this

continuum (see Table 1). While prior work had assumed that the elements in

organizational systems were coupled through dense, tight linkages, Weick argued that

some organizations (e.g., educational establishments) were only loosely-coupled.

Although real-world organizations typically fall between these “canonical types,” they

remain useful constructs for characterizing the extent to which organizations resemble

one extreme or the other (Brusoni et al, 2001).

 8

Table 1: Characterizing Different Organizational Forms

 Tightly-Coupled Loosely-Coupled
Goals Shared, Explicit Diverse, Implicit
Membership Closed, Contracted Open, Voluntary
Authority Formal, Hierarchy Informal, Meritocracy
Location Centralized, Collocated Decentralized, Distributed
Behavior Planned, Coordinated Emergent, Independent

The software industry represents an ideal context within which to study these

different organizational forms, given the wide variations in structure observed in this

industry. At one extreme, we observe commercial software firms, which employ smaller,

dedicated (i.e., full-time), collocated development teams to bring new products to the

marketplace. These teams share explicit goals, have a closed membership structure, and

rely on formal authority to govern their activities. At the other, we observe open source

(or “free” software) communities, which rely on the contributions of large numbers of

volunteer developers, who work in different organizations and in different locations (von

Hippel and von Krogh, 2003). The participants in these communities possess diverse

goals and have no formal authority to govern development, instead relying on informal

relationships and cultural norms (Dibona et al, 1999). These forms of organization

closely parallel the canonical types described above, with respect to the level of coupling

between participants. They provide for a rich natural experiment, in that we observe

products that perform the same function being developed in each.

2.2 Product Design, Architecture and Modularity

Modularity is a concept that helps us to characterize different designs. It refers to the

way that a product’s architecture is decomposed into different parts or modules. While

there are many definitions of modularity, authors tend to agree on the concepts that lie at

its heart; the notion of interdependence within modules and independence between

modules (Ulrich, 1995). The latter concept is often called “loose-coupling.” Modular

designs are loosely-coupled in that changes made to one module have little impact on the

others. Just as there are degrees of coupling, there are degrees of modularity.

 9

The costs and benefits of modularity have been discussed in a stream of research that

has sought to examine its impact on the management of complexity (Simon, 1962),

product line architecture (Sanderson and Uzumeri, 1995), manufacturing (Ulrich, 1995),

process design (MacCormack, 2001) process improvement (Spear and Bowen, 1999) and

industry evolution (Baldwin and Clark, 2000). Despite the appeal of this work however,

few studies have used robust empirical data to examine the relationship between

measures of modularity, the organizational factors assumed to influence this property or

the outcomes that it is thought to impact (Schilling, 2000; Fleming and Sorenson, 2004).

Most studies are conceptual or descriptive in nature.

Studies that attempt to measure modularity typically focus on capturing the level of

coupling that exists between different parts of a design. In this respect, the most

promising technique comes from the field of engineering, in the form of the Design

Structure Matrix (DSM). A DSM highlights the inherent structure of a design by

examining the dependencies that exist between its constituent elements in a square matrix

(Steward, 1981; Eppinger et al, 1994; Sosa et al, 2003). These elements can represent

design tasks, design parameters or the actual components. Metrics that capture the

degree of coupling between elements have been calculated from a DSM, and used to

compare different architectures (Sosa et al, 2007). DSMs have also been used to explore

the degree of alignment between task dependencies and project team communications

(Sosa et al, 2004). Recent work extends this methodology to show how design

dependencies can be automatically extracted from software code and used to understand

architectural differences (MacCormack et al, 2006). In this paper, we use this method to

compare designs that come from different forms of development organization.

2.3 Software Design

The measurement of modularity has gained most traction in the software industry,

given the information-based nature of the product lends itself to analytical techniques that

are not possible with physical products. The formal study of software modularity began

with Parnas (1972) who proposed the concept of information hiding as a mechanism for

dividing code into modular units. Subsequent authors built on this work, proposing

metrics to capture the level of “coupling” between modules and “cohesion” within

 10

modules (e.g., Selby and Basili, 1988; Dhama, 1995). This work complemented studies

that sought to measure the complexity of software, to examine its effect on development

productivity and quality (e.g., McCabe 1976; Halstead, 1976). Whereas measures of

software complexity focus on characterizing the number and nature of the elements in a

design, measures of modularity focus on the patterns of dependencies between these

elements. Software can be complex (i.e., have many parts) and modular (i.e., have few

dependencies between these parts). In prior work, this distinction is not always clear.2

Efforts to measure software modularity generally follow one of two approaches. The

first focuses on identifying specific types of dependency between components in a

system, for example, the number of non-local branching statements (Banker et al, 1993);

global variables (Schach et al, 2002); or function calls (Banker and Slaughter, 2000;

Rusovan et al, 2005). The second infers the presence of dependencies by assessing which

components tend to be changed concurrently. For example, Eick et al (1999) show that

code decays over time, by looking at the number of files that must be altered to complete

a modification request; while Cataldo et al (2006) show that modifications involving files

that tend to change along with others, take longer to complete. While the inference

approach avoids the need to specify the type of dependency being examined, it requires

access to maintenance data that is not always captured consistently across projects. In

multi-project research, dependency extraction from source code is therefore preferred.

With the rise in popularity of open source software, interest in the topic of modularity

has received further stimulus. Some authors argue that open source software is inherently

more modular than commercial software (O’Reilly, 1999; Raymond, 2001). Others have

suggested that modularity is a required property for this method of development to

succeed (Torvalds, as quoted in DiBona, 1999). Empirical work to date however, yields

mixed results. Some studies criticize the number of dependencies between critical

components in systems such as Linux (Schach et al, 2002; Rusovan et al, 2005). Others

provide quantitative and qualitative data that open source products are easier to modify

(Mockus et al, 2002; Paulsen et al, 2004) or have fewer interdependencies between

components (MacCormack et al, 2006). None of these studies however, conducts a

2 In some fields, complexity is defined to include inter-element interactions (Rivkin and Siggelkow, 2007).

 11

rigorous apples-to-apples comparison between open source and commercially developed

software; the results may therefore be driven by idiosyncrasies of the systems examined.

In this paper, we explore whether organizations with distinctly different forms – as

captured by the level of coupling between participants – develop products with distinctly

different architectures – as captured by the level of coupling between components.

Specifically, we conduct a test of the “mirroring” hypothesis, which can be stated as

follows: Loosely-coupled organizations will tend to develop products with more modular

architectures than tightly-coupled organizations. We use a matched-pair design, to

control for differences in architecture that are related to differences in product function.

We build upon recent work that highlights how DSMs can be used to visualize and

measure software architecture (Lopes and Bajracharya, 2005; MacCormack et al, 2006).

3. Research Methods3

There are two choices to make when applying DSMs to a software product: The unit

of analysis and the type of dependency. With regard to the former, there are several

levels at which a DSM can be built: The directory level, which corresponds to a group of

source files that pertain to a specific subsystem; the source file level, which corresponds

to a collection of related processes and functions; and the function level, which

corresponds to a set of instructions that perform a specific task. We analyze designs at

the source file level for a number of reasons. First, source files tend to contain functions

with a similar focus. Second, tasks and responsibilities are allocated to programmers at

the source file level, allowing them to maintain control over all the functions that perform

related tasks. Third, software development tools use the source file as the unit of analysis

for version control. And finally, prior work on design uses the source file as the primary

unit of analysis (e.g., Eick et al, 1999; Rusovan et al, 2005; Cataldo et al, 2006).4

3 The methods we describe here build on prior work in this field (see MacCormack et al, 2006; 2007).
4 Metaphorically, source files are akin to the physical components in a product; whereas functions are akin
to the nuts and bolts that comprise these components.

 12

There are many types of dependency between source files in a software product.5 We

focus on one important dependency type – the “Function Call” – used in prior work on

design structure (Banker and Slaughter, 2000; Rusovan et al, 2005). A Function Call is

an instruction that requests a specific task to be executed. The function called may or

may not be located within the source file originating the request. When it is not, this

creates a dependency between two source files, in a specific direction. For example, if

FunctionA in SourceFile1 calls FunctionB in SourceFile2, then we note that SourceFile1

depends upon (or “uses”) SourceFile2. This dependency is marked in location (1, 2) in

the DSM. Note this does not imply that SourceFile2 depends upon SourceFile1; the

dependency is not symmetric unless SourceFile2 also calls a function in SourceFile1.

To capture function calls, we input a product’s source code into a tool called a “Call

Graph Extractor” (Murphy et al, 1998). This tool is used to obtain a better understanding

of system structure and interactions between parts of the design.6 Rather than develop

our own extractor, we tested several commercial products that could process source code

written in both procedural and object oriented languages (e.g., C and C++), capture

indirect calls (dependencies that flow through intermediate files), run in an automated

fashion and output data in a format that could be input to a DSM. A product called

Understand C++7 was selected given it best met all these criteria.

The DSM of a software product is displayed using the Architectural View. This

groups each source file into a series of nested clusters defined by the directory structure,

with boxes drawn around each successive layer in the hierarchy. The result is a map of

dependencies, organized by the programmer’s perception of the design. To illustrate, the

Directory Structure and Architectural View for Linux v0.01 are shown in Figure 1. Each

“dot” represents a dependency between two particular components (i.e., source files).

5 Several authors have developed comprehensive categorizations of dependency types (e.g., Shaw and
Garlan, 1996; Dellarocas, 1996). Our work focuses on one important type of dependency.
6 Function calls can be extracted statically (from the source code) or dynamically (when the code is run).
We use a static call extractor because it uses source code as input, does not rely on program state (i.e., what
the system is doing at a point in time) and captures the system structure from the designer’s perspective.
7 Understand C++ is distributed by Scientific Toolworks, Inc. see <www.scitools.com> for details.

 13

Figure 1: The Directory Structure and Architectural View for Linux 0.01.

3.1 Measuring Product Modularity

The method by which we characterize the structure of a design is by measuring the

level of coupling it exhibits, as captured by the degree to which a change to any single

element causes a (potential) change to other elements in the system, either directly or

indirectly (i.e., through a chain of dependencies that exist across elements). This work is

closely related to and builds upon the concept of visibility (Sharmine and Yassine 2004),

which in turn, is based upon the concept of reachability matrices (Warfield 1973).

To illustrate, consider the example system depicted in Figure 2 in both graphical and

DSM form. We see that element A depends upon (or “calls functions within”) elements

B and C, so a change to element C may have a direct impact on element A. In turn,

element C depends upon element E, so a change to element E may have a direct impact

on element C, and an indirect impact on element A, with a path length of two. Similarly,

a change to element F may have a direct impact on element E, and an indirect impact on

elements C and A with path lengths of two and three, respectively. There are no indirect

dependencies between elements for path lengths of four or more.

 14

Figure 2: Example System in Graphical and DSM Form

 A B C D E F

A 0 1 1 0 0 0

B 0 0 0 1 0 0

C 0 0 0 0 1 0

D 0 0 0 0 0 0

E 0 0 0 0 0 1

F 0 0 0 0 0 0

We use the technique of matrix multiplication to identify the “visibility” of each

element for any given path length (see Figure 3). Specifically, by raising the dependency

matrix to successive powers of n, the results show the direct and indirect dependencies

that exist for successive path lengths of n. By summing these matrices together we derive

the visibility matrix V, showing the dependencies that exist between all system elements

for all possible path lengths up to the maximum – governed by the size of the DSM itself

(denoted by N).8 To summarize this data for the system as a whole, we compute the

density of the visibility matrix, which we refer to as the system’s Propagation Cost.

Intuitively, this metric captures measures the percentage of system elements that can be

affected, on average, when a change is made to a randomly chosen element.

Figure 3: The Derivation of the Visibility Matrix

8 Note that we choose to include the matrix for n=0 meaning that each element depends upon itself.

 15

4. Sample Construction and Analysis Approach
Our approach is based upon comparing the architectures of products that perform

similar functions, which have been developed using two distinct organizational forms.

To achieve this, we construct a sample of matched pairs, in which the same product has

been developed using these different forms. Our matching process takes into account the

function of the software (e.g., a spreadsheet application) as well as its level of

sophistication (e.g., the functions that the spreadsheet performs). The latter is achieved

by pairing products of similar size, thereby controlling for differences in architecture that

are related to the different scope of functionality included in each product.

Developing an ideal sample proves difficult for two reasons. First, many open source

software projects are small efforts, involving only one or two developers, hence are not

representative of a “loosely-coupled” organization (Howison and Crowston, 2004). To

address this problem, we focus only on successful open source software projects that

meet a minimum threshold in terms of size and usage.9 Only a small number of projects

meet these criteria. The second challenge is that commercial firms regard source code as

a form of intellectual property, hence are reluctant to provide access to it and cautious

about research that seeks to compare it with “free” equivalents. Where a commercial

product is not available, we therefore adopt two strategies. First, we try to identify a

matched product that began its life inside a commercial firm, but that was subsequently

released under an open source license. In these cases, we use the first release of the open

version as a proxy for the architecture developed by the commercial firm. Second, where

we have access to information that a small, dedicated organization developed a product,

even if the software was released under an open source license, we use this as an

observation for a tightly-coupled organization.

Table 2 reports the resulting sample of five paired products, with data on the

organizations from which they come.10 For each open source product, we extract data

from the credits file (or feature log) to characterize the organization at the time the

9 Use was determined by downloads and other data on the number of user installations. Size was measured
using the number of source files in the product. After reviewing the universe of potential projects, we
defined a threshold of 300 source files as being representative of a successful open source project.
10 Note that we could not access data that matched several well-known open source products (e.g., Apache).
We provide two possible matches for Linux, given the ideal commercial product – the Solaris operating
system, developed by Sun – is significantly larger and more sophisticated than the open source product.

 16

product was released. We report the number of unique contributors, the number of

unique email domains (a proxy for the number of organizations represented, e.g.,

ibm.com) and the number of unique high-level email domains (a proxy for the number of

countries represented, e.g., xx.xx.uk). The results show open source communities are

loosely-coupled, in that they possess many contributors who work in different

organizations and different locations. While comparable data for commercial products is

not available, archival analysis suggests that these teams are smaller, staffed from within

a single organization, and work predominantly at a single location (see Appendix A for

details). The contrast between these two organizational forms is therefore distinctive.

Table 2: Sample of Matched Pairs

Product Type Loosely-Coupled11 Tightly-Coupled

1: Financial Mgmt GnuCash 1.8.4

138 Contributors
76 Organizations

27 Countries

MyBooks

2: Word Processing Abiword 0.9.1 160 Contributors
68 Organizations

27 Countries

StarWriter

3: Spreadsheet Gnumeric 1.4.2 19 Contributors
9 Organizations

7 Countries

StarCalc

4a: Operating System Linux 2.1.32 228 Contributors
64 Organizations

42 Countries

Solaris

4b: Operating System Linux 2.6.8 515 Contributors
201 Organizations

54 Countries

XNU

5: Database MySQL 3.20.32a12 60 Contributors
N/A Organizations

25 Countries

Berkeley DB

Our sample contains only five pairs, however it provides sufficient statistical power

to test our hypothesis in two respects. First, each matched pair represents an independent

test of the hypothesis, given we can analyze data on visibility at the source file level, and

11 Data for organizations and countries is based upon the unique email identifier for each contributor.
12 MySQL does not have a credits file. Source for data: The Economist, March 16th, 2006.

 17

conduct a test of differences between the two populations of components (i.e., the

“basket” of open source files and the basket of commercially developed files). We can

therefore make inferences about the differences between products within a pair. Second,

our set of five matched pairs provides a test of the hypothesis across this population of

large, successful open source projects and their commercial equivalents. This second test

is conducted by considering the probability that five open source products will have a

lower propagation cost than commercial equivalents merely by chance. 13

We note that differences in the level of coupling between components could be driven

by different choices, in terms of how much functionality and code to include in a source

file. Hence it is important to check whether there are systematic biases in these measures

across. Table 3 contains data on the products in our sample, focusing on the number of

source files, the number of lines of code and functions per source file, and the density of

dependencies. The data reveal considerable heterogeneity. For example, in three cases,

the commercial product has a significantly greater number of lines of code per source

file, yet these differences are not replicated in terms of functions per source file. On

balance, while there are notable differences between some product pairs, these

differences are not consistent in magnitude or direction. It is therefore unlikely that they

will unduly influence the results found across the sample.

13 Assuming the null hypothesis, the chance of finding that the open source product is more modular than
the commercial product in all five matched pairs is (0.5)5 = 0.03125 (p<0.05). While our sample is not a
true “random draw” from the populations of each type of organization, it is biased only to the degree that
we require accessibility to the source code of products, and the existence of a matched-pair for analysis.

 18

Table 3: Quantitative Data on Products

Product Type Data14 Loosely-Coupled Tightly-Coupled

1. Financial Mgmt Source Files
Lines of Code/File
Functions/File
Dependency Density

466
613
17.3
1.4%

471
1563
19.4
1.9%

2. Word Processing Source Files
Lines of Code/File
Functions/File
Dependency Density

841
390
12.3
0.5%

790
936
22.7
1.0%

3. Spreadsheet Source Files
Lines of Code/File
Functions/File
Dependency Density

450
804
22.2
1.6%

532
797
25.9
1.4%

4a. Operating System Source Files
Lines of Code/File
Functions/File
Dependency Density

6675
666
14.5
0.1%

1208115
572
9.9

0.1%
4b. Operating System Source Files

Lines of Code/File
Functions/File
Dependency Density

1032
726
13.2
0.6%

994
677
14.3
0.7%

5. Database Source Files
Lines of Code/File
Functions/File
Dependency Density

465
213
4.6

0.9%

344
540
9.6

1.9%

5. Empirical Results
We report the results of our comparisons in Table 4. To evaluate whether the designs

in each pair differ significantly, we calculate visibility for each source file in each

product, and then compare the two populations using a Mann-Whitney-Wilcoxon

(MWW) test of differences in means.16 The mean level of visibility across all source files

in a product is, by definition, the propagation cost of the system and can be read from the

table. We report the MWW test statistic (U), z-score and significance level for each pair.

Given visibility is not symmetric – in-degree and out-degree measures differ for each file

14 Note that all the systems in our sample are programmed in C and C++. We report data for C and C++
files only. We do not include “Header files” which are far smaller in terms of code and functionality.
15 Solaris is significantly bigger than any version of Linux that exists. Hence we report data on a second
operating system – XNU – that is comparable to Linux in terms of size.
16 We use this non-parametric test of differences because the distribution of visibility data among source
files is skewed; hence a simple t-test would be inaccurate.

 19

– we report separate tests for each measure. We find statistically significant differences

between all pairs. The direction of the differences supports our hypothesis in each case.

Table 4: Propagation Cost Measures for each Matched Pair

MWW Test Statistic Product Type Loosely-

Coupled

Tightly-

Coupled In-Degree Out-Degree

1: Financial Mgmt 7.74% 47.14% U=194247

z = 12.6 (p<0.1%)

U=189741

Z = 11.6 (p<0.1%)

2: Word Processing 8.25% 41.77% U=410832

z = 8.3 (p<0.1%)

U=549546

Z = 22.9 (p<0.1%)

3: Spreadsheet 23.62% 54.31% U=174030

z = 12.3 (p<0.1%)

U=180024

Z = 13.6 (p<0.1%)

4a: Operating System 7.18% 22.59% U=49.4Mn

z = 25.6 (p<0.1%)

U=65.0Mn

z = 69.5 (p<0.1%)

4b: Operating System 7.21% 24.83% U=594522

z = 6.2 (p<0.1%)

U=786574

Z = 20.8 (p<0.1%)

5: Database 11.30% 43.23% U=90814

z = 3.3 (p<1.0%)

U=126564

Z = 14.1 (p<0.1%)

The DSMs for each matched pair are shown in Appendix B. Below, we use these

visual comparisons, in conjunction with the data on propagation cost, to discuss the

insights revealed by each comparison. We then examine the third product pair in further

detail, given that the propagation cost of the open source product in this pair is

significantly higher than any of the other open source products.

In pair number one, we see distinct differences in architecture. The open source

product is divided into many smaller modules, with few dependencies between them.

The exception is one block of files in the center that are called by much of the rest of the

system, a structure we call a “bus,” given it delivers common functionality to many

components. By comparison, the commercial product has one large central module,

within which there are many interdependencies between components. The system’s

propagation cost is 47.1%, in contrast to the open source product, which is 7.7%.

In pair number two, the visual differences are not as clear. Each product is divided

into many smaller modules of a similar size. However, the commercial product has twice

 20

the density of dependencies – 1% versus 0.5% – and these dependencies are spread

throughout the system, rather than being concentrated within a few parts. As a result of

this pattern, the propagation cost of this system exceeds 41%, in contrast to the open

source product, which has a propagation cost of only 8.25%.

In pair number three, the hypothesis is again supported. We note however, that the

open source product has a much higher propagation cost – over 23% - than any other

open source product in our sample. The open source product has a larger density of

dependencies than the closed source product. Many of these dependencies are to a group

of files located within the largest module, which surprisingly, have not been grouped

within a separate sub-module. By contrast, the closed source product possesses a more

hierarchical structure, with a few top-level modules, within which are a number of

smaller sub-modules. Despite having a lower dependency density, this product has a

very high propagation cost, suggesting it is the pattern of dependencies, and not the

number of them, that drives the high level of coupling between components.

In our fourth product category, we examine two matched pairs. In the first, which

compares Linux with Solaris, the hypothesis is supported. The propagation cost of

Solaris is over 22%, a significant number given the system’s size. The figure implies

that, on average, a change to a source file has the potential to impact over 2,400 other

files. By contrast, the figure for Linux is around 7%. While still large in absolute terms,

the difference between the two systems is significant, especially with regard to

contributors choosing between the two. Our results suggest that contributing to Linux is

far easier, all else being equal, than contributing to the “open” version of Solaris.

The comparison above is not ideal in that Solaris is significantly larger than Linux,

consisting of twice as many source files. The differences in architecture may therefore be

driven, in part, by differences in the functionality these systems provide.17 To address

this issue, we look at a second matched product – XNU – and compare it to a version of

Linux of similar size. The result is consistent with that of Solaris. The propagation cost

of XNU is just over 24%, in comparison to 7.4% for a version of Linux of similar size.

17 Note that in every code base we have analyzed, propagation cost tends to remain constant or decline as a
system grows in size. This is a product of the fact that the rate of dependency addition is often lower than
the rate of growth in component pairs, hence the density of the visibility matrix declines with size. This
dynamic biases the test against our hypothesis when comparing Linux and Solaris.

 21

Of note, the structure of these products appears visually similar. The density of

dependencies is also comparable. Once again, this result suggests it is the pattern of

dependencies in XNU that drives its higher propagation cost. This pattern generates a

higher number of indirect links between system components.

In pair number five, the hypothesis is again supported. This pair is unusual in that the

commercial product comprises a large number of very small modules (i.e., it has a “flat”

hierarchy). It may therefore appear more modular from the architect’s viewpoint.

However, the number and pattern of dependencies between source files is such that the

product has a very high propagation cost exceeding 43%. By comparison, the open

source product contains an additional layer of hierarchy, with several sub-modules nested

within a larger module. Combined with its lower density, this design has a propagation

cost of only 11.3%.

5.1 Exploring the High Propagation Cost in Gnumeric

While the hypothesis is supported in all the pairs we examine, there is one anomaly

within the group of open source products. Specifically, Gnumeric has a significantly

higher propagation cost than all other open source products. One possible explanation is

that spreadsheet applications require more integral architectures, and hence both open and

commercially developed products have higher propagation costs relative to other types of

product. Alternatively however, Gnumeric may not, in fact, be developed by a loosely-

coupled organization. To explore this possibility, we examine the number of contributors

for GnuMeric in comparison to other open source projects. We gather data from two

sources: the credits file and the change log. The credits file is a list of individuals who

have contributed to a system’s development. Each individual’s name is listed once, and

once added is generally never removed. The change log is a detailed listing of each

change made to the product in each version. The change log from GnuMeric identifies

the individuals who developed the code being added/changed.18

18 We do not use the Concurrent Versioning System (CVS) system for our analysis, a tool that is sometimes
used to control submissions of source code in a project. In many projects, contributions are batched
together and submitted by a few individuals who have “access control.” But these individuals are not
always the authors of the code they submit. Using a change log overcomes this limitation.

 22

To capture the number of contributors, we developed a script to count how many

names appeared in the credit file of each open source product in our study. We captured

this data for multiple versions, creating a plot of the size of the credits file as the system

grows in size. Figure 4 displays the result. GnuMeric has a much smaller number of

credits file entries than open source products of a similar size. By contrast, Linux,

AbiWord and Gnucash all have similar patterns of contributor growth, having three to

five times as many credits file entries, adjusted for size.19

Figure 4: Number of Credits File Entries for Open Source Products

To capture the extent of each individual’s contributions we developed a script to

count how many times each unique name appeared in Gnumeric’s change log, providing

a proxy for the number of submissions attributable to each. For comparison, we

conducted the same analysis for an open source project with similar data, and for which

the system was known to have a low propagation cost: the Apache web server.20 Results

are shown in Figure 5. The contrast is clear. In Gnumeric, one individual accounts for

almost 40% of changes, the top four for ~70% and the top 9 for ~90%. In Apache, the

top individual accounts for less than 7% of changes and the top four less than 25%.

19 Note that MySQL dos not have a credits file of equivalent structure to the other open source products.
20 The propagation cost for the version of Apache web server closest in size to Gnumeric is less than 1%.

 23

Figure 5: Developer Contributions for GnuMeric (left) and Apache (right)

In Table 5, we plot the GnuMeric contributor data by year. This data highlights that

the pattern of contributions has been consistent throughout the project’s life. In any

given year, development activity is concentrated within a few key individuals.

Table 5: Developer Contributions for GnuMeric by Year (1998-2004)

In Figure 6, we plot the number of unique contributors in the change log by year.

This yields a fascinating insight. While the number of contributors increased in the first

year of the project, the trend thereafter was one of decline. From a peak of over 50

people, the number falls to between 10-15.21 In combination, these data suggest that

Gnumeric is not developed by a loosely-coupled organization. Rather, development is

concentrated among a few developers. Hence the higher propagation cost we observe

relative to other open source projects is consistent with the mirroring hypothesis.

21 The tightly-integrated nature of Gnumeric’s design may a major factor in explaining the declining trend
in participation. Developers contributing to Gnumeric need to understand far more of the system than in
other open source projects, in order to ensure their changes do not affect other parts.

 24

Figure 6: The Number of Unique Contributors to GnuMeric over time

6. Discussion
This study makes an important contribution to the academy and practicing managers.

We find strong evidence to support the hypothesis that a product’s architecture tends to

mirror the structure of the organization in which it is developed. In all the pairs we

examine, the loosely-coupled organization develops a product with a more modular

design than that of the tightly-coupled organization. Furthermore, the open source

software product with the highest propagation cost comes from an organization that is

more tightly-coupled than the typical open source project. The results have important

implications, in that we show a product’s architecture is not wholly determined by

function, but is influenced by contextual factors. The search for a new design is

constrained by the nature of the organization within which this search occurs.

The differences in levels of modularity within each product pair are surprisingly

large, especially given each matches products of similar size and function. We find

products vary by a factor of eight, in terms of the potential for a design change in one

component to propagate to other system components. Critically, these differences are not

driven by differences in the number of direct dependencies between components – in

only three of the pairs does the tightly-coupled organization produce a design with

significantly higher density (see Table 3). Rather, each direct dependency gives rise to

many more indirect dependencies in products developed by tightly-coupled

organizations, as compared to those developed by loosely-coupled organizations.

 25

The mirroring phenomenon is consistent with two rival causal mechanisms. First,

designs may evolve to reflect their development environments. In tightly-coupled

organizations, dedicated teams employed by a single firm and located at a single site

develop the design. Problems are solved by face-to-face interaction, and performance

“tweaked” by taking advantage of the access that module developers have to information

and solutions developed in other modules. Even if not an explicit managerial choice, the

design naturally becomes more tightly-coupled. By contrast, in loosely-coupled

organizations, a large, distributed team of volunteers develops the design. Face-to-face

communications are rare given most developers never meet. Hence fewer connections

between modules are established. The architecture that evolves is more modular as a

result of the limitations on communication between developers.

Alternatively, our observations may stem from purposeful choices made by designers.

For commercial firms, the main aim is to develop a product that maximizes performance

(e.g., speed, functionality, etc.). The benefits of modularity, given the competitive

context, may not be viewed as significant. In open source projects however, the benefits

of modularity are greater. Without modularity, there is little hope that contributors can

understand enough of a design to contribute to it, or develop new features and fix defects

without affecting other parts of the system. Open source products need to be modular to

attract a developer community and to facilitate the work of this community.

While our data can be explained by either of these mechanisms, in practice, both

likely work in parallel. This is particularly true in this industry, given software products

rarely die. Instead, each version becomes a platform upon which subsequent versions are

built. Early design choices can have a profound impact on a system, however, as the

system grows, the organizational form through which development occurs likely plays an

increasingly prominent role. For example, when Linus Torvalds released the first version

of Linux in 1991, his architectural design choices were critical to its early success.

Twenty years later however, with 95% of the code having been developed by others, the

nature of the design likely owes much more to its organizational heritage.

Building on this argument, we believe that early design choices play a critical role in

explaining the evolution of successful open source software projects. In particular,

assuming the availability of a large pool of “seed” designs with a variety of different

 26

architectures, potential contributors operate as a “selection environment,” choosing only

the most modular of them to work on, thereby minimizing the costs in making their

contributions. Such a mechanism explains why large, successful open source projects are

associated with more modular products, even though the set of initial designs they

emerge from may be just as heterogeneous as those developed by commercial firms.

Conversely, inside a firm, there are rarely alternative designs from which to select –

resources are usually too scarce. Furthermore, the selection environment is such that

modularity may not be the most critical criterion for filtering. Instead, measures

associated with product performance (e.g., speed or memory usage) are likely to be the

priority. Such a process might even lead firms to select against more modular designs.

We note that the pairs we examine were not developed contemporaneously; open

source projects are often started after a product category has reached maturity. Hence our

results could be explained, in part, by learning that occurs between the dates of release.

While commercial firms restrict access to source code, preventing the copying of code,

general knowledge about a product category might still benefit later projects. In this

respect, it is useful to consider the comparison of Linux and Solaris, operating systems

developed at similar times, each of which drew upon the heritage of UNIX (a system

developed at AT&T Bell Labs in the 1960’s). Despite the conceptual foundations shared

by these projects, they were organized very differently. Solaris was developed inside a

commercial firm – Sun Microsystems – headquartered in Silicon Valley. By contrast, the

first version of Linux, comprising only 45 components, was posted on the Internet in

1991, and thereafter gained a huge contributor-base worldwide. Despite the common

ancestry of these systems, and the objectives they shared, these organizations developed

in very different ways. Ultimately, they produced very different designs with respect to

the levels of modularity observed.

Our work suggests that managers of the innovation process must strive to understand

the influences on their design choices that stem from the way they are organized. These

influences are seldom explicit, but are a result of the interplay between a firm’s problem

solving and information processing routines, and the space of designs that must be

searched to locate a solution. While a firm can look backwards, and see what kinds of

designs it has developed in the past, it is harder to look forward, and imagine what

 27

designs might be possible. Managers also face a cognitive problem, in that the

architecture of a system depends critically on the indirect dependencies in a design,

which are difficult to observe using existing tools and techniques. Indeed, the

commercial managers we work with almost always think their designs are highly

modular. Unfortunately, the pristine black boxes they draw on their whiteboards rarely

reflect the actual file-to-file interactions embedded in the source code.

More broadly, our findings have important implications for R&D organizations given

the recent trend towards “open” innovation and the use of partners in R&D projects

(Brusoni and Prencipe, 2001; Chesbrough, 2003; Iansiti and Levian, 2004; MacCormack

et al, 2007). They imply that these new organizational arrangements will have a distinct

impact on the designs they produce, and hence may affect product performance in

unintended ways. Our results suggest that R&D partnering choices, and the division of

tasks that these choices imply, cannot be managed independently of the design process

itself (von Hippel, 1990; Brusoni et al, 2001). Decisions taken in one realm will

ultimately affect performance in the other, suggesting the need for a more integrated

approach to project, product and procurement management.

Our study has several limitations that must be considered in assessing the

generalizability of our results. First, our work is conducted in the software industry, a

unique context in which designs exist purely as information, without physical constraints.

Whether the results hold for physical products requires confirmation. Second, our sample

comprises only five matched pairs, a limitation that stems from the dearth of successful

open source products of sufficient size and complexity, and the difficulty accessing

commercial source code that firms regard as intellectual property. Further large-scale

testing would help discern the conditions under which mirroring holds from those where

this link is weaker. Finally, we do not directly test the functional equivalence of the pairs

we analyze, comparing products only of a similar size. While there are no consistent

differences in the number of functions across pairs (see Table 3) some of the results we

observe may still be associated with differences in the functionality of sample products.

Our work opens up a number of areas for future study. Most importantly, our work

highlights differences in product design that emerge from two distinct organizational

forms that differ along many dimensions – including the degree to which participants

 28

share common goals, work at the same location, and possess formal authority over others

to govern development. Yet our research design does not disentangle which of these

dimensions are most critical in driving the phenomenon. Further work could usefully

adopt a much more fine-grained definition of organizational design parameters, in order

to determine those with the most effect on product design decisions.

Our results also provoke questions as to whether there are performance implications

from the design differences that we observe. For example, one reason that organizations

might rationally choose different designs relates to the trade-offs that exist between

architectures with different characteristics. Unfortunately, there is little empirical

evidence to confirm the existence or magnitude of these trade-offs. Does achieving

greater modularity require accepting lower performance along other important

dimensions? Our ongoing work suggests that, in practice, many designs may not be at

the performance “frontier” where such a trade-off exists, but sit below it due to

architectural inefficiencies or “slack” (MacCormack et al, 2006). If this is true, there

may be scope to improve a design along multiple dimensions without any penalty.

Exploring these issues will help reveal managerial strategies for moving designs towards

the frontier. And they will help to understand the trade-offs involved in moving along it.

 29

Appendix A: Details for Sample Organizations

Loosely-Coupled Organizations

GnuCash22

GnuCash is an open source financial management application. The GnuCash project was
started by developer Rob Clark in 1997, with the goal of providing “an easy to use, yet
powerful utility to help keep your finances in order.” In 1998, developer Linas Vepstas
joined him, and the 1.0 version of Gnucash was released under an open license. As of
version 1.8.4, GnuCash had 138 unique contributors in the credits file.

Abiword23

Abiword is an open source word processing application. It was originally part of an
effort to develop an open source productivity suite, called AbiSuite. The project was
started in 1998 by a firm called AbiSource, which ceased operations one year later.
Thereafter, a team of volunteers took over development. One team member stated in
2008, “We have no policies whatsoever. Everyone is free to work on whatever he or she
loves.” As of version 0.9.1, Abiword had 160 unique contributors in the credits file.

GnuMeric24

Gnumeric is an open source spreadsheet application. It was originally developed by
developer Miguel de Icaza, who released the 1.0 version in December 2001. Note that
Gnumeric’s change log does not contain developer emails, hence we use the “feature log”
for quantitative data reported in the text. As of version 1.4.2, GnuMeric had 19 unique
contributors listed in the credits file.

Linux Kernel25

Linux is an open source operating system. A typical release consists of several hundred
software packages, at the center of which is the “kernel.” The first version of the Linux
kernel was developed by developer Linus Torvalds in 1991, as part of an effort to
develop a “UNIX-like” operating system that ran on Intel-based computers. As of version
2.1.32, Linux had 228 unique contributors in the credits file. As of version 2.6.8, Linux
had 515 unique contributors in the credits file.

MySQL26

22 Source: Clark, R. X-accountant, www.cs.hmc.edu/~rclark/xacc/ accessed September 30th, 2010; Gnucash
developers & contributors, www.gnucash.org/old-website/developers.php3, accessed November 18th, 2010.
23 Source: Sundaram, R. Abiword team interview, Red Hat Magazine, May 8th, 2008.
24 Source: Wikipedia entry, “Gnumeric,” accessed November 18th, 2010.
25 Source: MacCormack, A. and Herman. Red Hat and the Linux Revolution, Harvard Business School
Case, No. 600-009, 1999.
26 Source: Wikipedia entry, “MySQL,” accessed September 30th, 2010.

 30

MySQL is an open source relational database. The development of MYSQL was begun
by developers Michael Widenius and David Axmark in 1994, with the first release
coming in 1995. The source code is released under an open source license. A Swedish
firm called MySQL AB sponsors the project, selling software and services to enterprise
customers. MySQL has no credits file in the source code (a web-based database names
all major developers as of the present day). As of 2006, published reports said that
MySQL involved 60 developers from 25 nations, 70% of whom work from home.27
MySQL AB was bought by Sun Microsystems in 2008, which in turn was bought by
Oracle in 2009.

Tightly-Coupled Organizations

MyBooks

MyBooks is a commercial application for managing a consumer’s personal finances. The
software was introduced in the mid 1980’s. In the 1990s, it was ported to other operating
system platforms, with new versions released every 2-4 years. Early versions of the
software, including the one we analyze from the early 1990s, were developed by a
“handful” of programmers working at a single location.28

StarWriter29

StarWriter is the word processing application from an office productivity suite called
StarOffice. StarOffice was developed by StarDivision, a firm founded in Hamburg,
Germany in 1984. Originally developed for the Microsoft DOS platform, StarOffice was
ported to Windows between 1995-1996. StarDivision was purchased by Sun
Microsystems in 1999 for $73.5 million. At the time, StarDivision had between 150-200
employees. The StarOffice suite was renamed OpenOffice and released under an open
source license. Sun continued to fund development of applications in the suite, using 50
former StarDivision employees, located in Germany.

StarCalc30

StarCalc is the spreadsheet application from StarOffice (see above).

Solaris31

Solaris is a UNIX-based operating system introduced by Sun Microsystems in 1992.
Solaris superseded SunOS, Sun’s earlier operating system, which was developed with

27 Source: The Economist, March 16th, 2006.
28 Source: Personal communication with company developer, 2007.
29 Sources: CNET news, August 20th, 1999; CNET news, August 30th, 1999WindowsITPro, August 31st,
1999; ComputerWorld, 19th April 2005. Wikipedia entry, “Oracle Open Office,” accessed September 29th,
2010.
30 Source: Ditto
31 Sources: Wikipedia entry, “Solaris (operating system),” accessed November 18th, 2010; Kranz, T. The
History of Solaris, content4reprint.com/computers/ operating_systems/ accessed September 30th, 2010.

 31

AT&T. New versions of Solaris were typically released annually, until Solaris 10, the
last version as of November 2010. In 2005, Sun released much of the Solaris source code
under an open source license, and founded the OpenSolaris project to facilitate external
contributions to the product. When Oracle bought Sun in 2009 however, it terminated
the OpenSolaris distribution and project.

XNU32

XNU is an operating system kernel from Apple’s Mac OSX operating system. XNU was
originally developed by a computer company called NeXT in the late 1980s, as part of
the NeXTSTEP operating system. NeXT was founded in 1985, and introduced its first
computer workstation in 1989. XNU combined the “Mach” microkernel, developed at
Carnegie-Mellon University, with software components developed by NeXT. NeXT
withdrew from the hardware business in 1993, shedding 300 of its 540 staff. NeXT was
acquired by Apple in 1996. Apple subsequently released the source code for many
components of its operating system under the name Darwin. XNU is part of Darwin.

Berkeley DB

Berkeley DB is an embedded database. It originated at the University of California,
Berkeley, from code developed by developers Margo Seltzer and Ozan Yigit in 1991.33
In 1996, Netscape requested that the authors improve and extend the software hence
Seltzer and Keith Bostic created a commercial firm called Sleepycat Software, to develop
and commercialize the product.34 While the product was distributed using an open source
license, ongoing development was limited to a handful of developers who worked closely
together.35 Given this method of development, there is no credits file for Berkeley DB.

32 Sources: Wikipedia entries, “XNU” and “NeXT,” accessed November 18th, 2010.
33 Source: Seltzer and Yigit, A New Hashing Package for UNIX, Proceedings of the 1991 Winter Usenix.
34 Source: Wikipedia entry, “Berkeley DB,” accessed September 29th, 2010.
35 Source: Personal communication with company founder, 2007.

 32

APPENDIX B: COMPARISON OF DSMs FOR EACH PRODUCT PAIR

Matched Pair 1: Financial Management Software

Gnucash 1.8.4 MyBooks

Size = 466

Dependency Density = 1.3672%
Propagation Cost = 7.7428%

Size = 574
Dependency Density = 1.8903%
Propagation Cost = 47.1394%

 33

APPENDIX B: COMPARISON OF DSMs FOR EACH PRODUCT PAIR

Matched Pair 2: Word Processing Software

Abiword 0.9.1 OpenOfficeWrite 1.0

Size = 841

Dependency Density = 0.51832%
Propagation Cost = 8.2524%

Size = 790
Dependency Density = 1.0276%
Propagation Cost = 41.7699%

 34

APPENDIX B: COMPARISON OF DSMs FOR EACH PRODUCT PAIR

Matched Pair 3: Spreadsheet Software

GnuMeric 1.4.2 OpenOfficeCalc 1.0

Size = 450

Dependency Density = 1.6119%
Propagation Cost = 23.6222%

Size = 532
Dependency Density = 1.3773%
Propagation Cost = 54.3071%

 35

APPENDIX B: COMPARISON OF DSMs FOR EACH PRODUCT PAIR

Matched Pair 4a: Operating System (Linux versus Solaris)

Linux 2.6.8.1 OpenSolaris 35

Size = 6675

Dependency Density = 0.11118%
Propagation Cost = 7.1827%

Size = 12080
Dependency Density = 0.07714%

Propagation Cost = 22.5903%

 36

APPENDIX B: COMPARISON OF DSMs FOR EACH PRODUCT PAIR

Matched Pair 4b: Operating System (Linux versus XNU)

Linux 2.1.32 XNU 123.5

Size = 1032

Dependency Density = 0.56402%
Propagation Cost = 7.2139%

Size = 994
Dependency Density = 0.69836%

Propagation Cost = 24.8286%

 37

APPENDIX B: COMPARISON OF DSMs FOR EACH PRODUCT PAIR

Pair 5: Database Software

MySQL 3.20.32a BerkeleyDB 4.3.27

Size = 465

Dependency Density = 0.94485%
Propagation Cost = 11.3049%

Size = 344
Dependency Density = 1.8794%
Propagation Cost = 43.2311%

 38

References

Baldwin, Carliss Y. and Kim B. Clark (2000). Design Rules, Volume 1, The Power of Modularity, Cambridge
MA: MIT Press.

Banker, Rajiv D. and Sandra A. Slaughter (2000) "The Moderating Effect of Structure on Volatility and
Complexity in Software Enhancement," Information Systems Research, 11(3):219-240.

Banker, Rajiv D., Srikant Datar, Chris Kemerer, and Dani Zweig (1993) "Software Complexity and Maintenance
Costs," Communications of the ACM, 36(11):81-94.

Brusoni, Stefano and Andrea Prencipe (2001) “Unpacking the Black Box of Modularity: Technologies, Products
and Organizations,” Industrial and Corporate Change, 10(1):179-205.

Brusoni, Stefano, Andrea Prencipe and Keith Pavitt (2001) "Knowledge Specialization, Organizational Coupling
and the Boundaries of the Firm: Why Do Firms Know More Than They Make?" Administrative Science
Quarterly, 46(4):597-621.

Burns, T., and G.M. Stalker (1961) The Management of Innovation, Tavistock Publications, London, England.

Cataldo, Marcelo, Patrick A. Wagstrom, James D. Herbsleb and Kathleen M. Carley (2006) "Identification of
Coordination Requirements: Implications for the design of Collaboration and Awareness Tools," Proc. ACM
Conf. on Computer-Supported Work, Banff Canada, pp. 353-362

Chesbrough, Henry. (2003) Open Innovation, Harvard Business School Press, Boston MA.

Conway, M.E. (1968) "How do Committee's Invent," Datamation, 14 (5): 28-31.

Dellarocas, C.D. (1996) "A Coordination Perspective on Software Architecture: Towards a design Handbook for
Integrating Software Components," Unpublished Doctoral Dissertation, M.I.T.

Dhama, H. (1995) "Quantitative Models of Cohesion and Coupling in Software," Journal of Systems Software,
29:65-74.

Dibona, C., S. Ockman and M. Stone (1999) Open Sources: Voices from the Open Source Revolution, Sebastopol,
CA: O’Reilly and Associates.

Eick, Stephen G., Todd L. Graves, Alan F. Karr, J.S. Marron and Audric Mockus (1999) "Does Code Decay?
Assessing the Evidence from Change Management Data," IEEE Transactions of Software Engineering, 27(1):1-
12.

Eppinger, S. D., D.E. Whitney, R.P. Smith, and D.A. Gebala, (1994). "A Model-Based Method for Organizing
Tasks in Product Development," Research in Engineering Design 6(1):1-13

Fayol, H. (1949) General and Industrial Management, London: Pitman (first published in 1919).

Gokpinar, B., W. Hopp and S.M.R. Iravani (2007) "The Impact of Product Architecture and Organization
Structure on Efficiency and Quality of Complex Product Development," Northwestern University Working Paper.

Halstead, Maurice H. (1977) Elements of Software Science, Operating, and Programming Systems Series Volume
7. New York, NY: Elsevier

Henderson, R., and K.B. Clark (1990) "Architectural Innovation: The Reconfiguration of Existing Product
Technologies and the Failure of Established Firms," Administrative Sciences Quarterly, 35(1): 9-30.

Howison, J. & Crowston K (2004) "The perils and pitfalls of mining SourceForge," Proceedings of Mining
Software Repositories Workshop, International Conference on Software Engineering, May 2004.

Iansiti, M. and R. Levian (2004) The Keystone Advantage, Harvard Business School Press, Boston, MA.

Lawrence, Paul R. and Jay W. Lorsch (1967) Organization and Environment, Harvard Business School Press,
Boston, MA.

Lopes, Cristina V. and Sushil K. Bajracharya (2005) “An Analysis of Modularity in Aspect-oriented Design,” in
AOSD ’05: Proceedings of the 4th International Conference on Aspect-oriented Software Development, ACM

 39

Press, pp. 15-26.

MacCormack, Alan D. (2001). “Product-Development Practices That Work: How Internet Companies Build
Software,” Sloan Management Review 42(2): 75-84.

MacCormack, Alan, John Rusnak and Carliss Baldwin (2006) “Exploring the Structure of Complex Software
Designs: An Empirical Study of Open Source and Proprietary Code,” Management Science, 52(7): 1015-1030.

MacCormack, Alan, John Rusnak and Carliss Baldwin (2007) "The Impact of Component Modularity on Design
Evolution: Evidence from the Software Industry," Harvard Business School Working Paper, 08-038.

MacCormack, Alan, Theodore Forbath, Patrick Kalaher and Peter Brooks (2007) “Innovation through
Collaboration: A New Source of Competitive Advantage,” Harvard Business School Working Paper 07-079.

March, J.G. and H.A. (1958) Simon, Organizations, New York: John Wiley

Mayo, E. (1945) The Social Problems of an Industrial Civilization, Boston, MA: HBS Press

McCabe, T.J. (1976) "A Complexity Measure," IEEE Transactions on Software Engineering, vol. 2, no. 4,
Jul/Aug, pp. 308-320

McGregor, D. (1960) The Human Side of the Enterprise, New York: Macmillan

Mockus, Audris, Roy T. Fielding and James D. Herbsleb (2002) "Two Case Studies of Open Source Software
Development: Apache and Mozilla," ACM Transactions on Software Engineering and Methodology, 11(3):309-
346.

Murphy, G. C., D. Notkin, W. G. Griswold, and E. S. Lan. (1998) An empirical study of static call graph
extractors. ACM Transactions on Software Engineering and Methodology, 7(2):158--191

O'Reilly, T. (1999) Lessons from Open Source Software Development, Comms. ACM 42(4) 33-37.

Orton, J.D. and K.E. Weick, Loosely-Coupled Systems: A Reconceptualization, Academy of Management Review,
15:203-23

Parnas, David L. (1972b) "On the Criteria to Be Used in Decomposing Systems into Modules," Communications
of the ACM 15: 1053-58.

Paulson, James W., Giancarlo Succi and Armin Eberlein (2003) "An Empirical Study of Open-Source and
Closed-Source Software Products," IEEE Transactions on Software Engineering, 30(4):246-256.

Raymond, Eric S. (2001) The Cathedral and the Bazaar O’Reilly & Associates, Inc., Sebastopol, CA.

Rivkin, Jan W. and Nicolaj Siggelkow (2007) "Patterned Interactions in Complex Systems: Implications for
Exploration," Management Science, 53(7):1068-1085.

Rusovan, Srdjan, Mark Lawford and David Lorge Parnas (2005) "Open Source Software Development: Future or
Fad?" Perspectives on Free and Open Source Software, ed. Joseph Feller et al., Cambridge, MA: MIT Press.

Sanchez, Ronald A. and Joseph T. Mahoney (1996). “Modularity, flexibility and knowledge management in
product and organizational design”. Strategic Management Journal, 17: 63-76, reprinted in Managing in the
Modular Age: Architectures, Networks, and Organizations (G. Raghu, A. Kumaraswamy, and R.N. Langlois,
eds.), Blackwell, Oxford/Malden, MA.

Sanderson, S. and M. Uzumeri (1995) "Managing Product Families: The Case of the Sony Walkman," Research
Policy, 24(5):761-782.

Schach, Stephen R., Bo Jin, David R. Wright, Gillian Z. Heller and A. Jefferson Offutt (2002) "Maintainability of
the Linux Kernel," IEE Proc. Software, Vol. 149. IEE, Washington, D.C. 18-23.

Schilling, Melissa A. (2000). “Toward a General Systems Theory and its Application to Interfirm Product
Modularity,” Academy of Management Review 25(2):312-334, reprinted in Managing in the Modular Age:
Architectures, Networks, and Organizations (G. Raghu, A. Kumaraswamy, and R.N. Langlois, eds.), Blackwell,
Oxford/Malden, MA.

Scott, W.R. (1981) Organizations: Rational, Natural and Open Systems, New Jersey: Prentice-Hall, Inc.

 40

Selby, R. and V. Basili (1988) "Analyzing Error-Prone System Coupling and Cohesion," University of Maryland
Computer Science Technical Report UMIACS-TR-88-46, CS-TR-2052, June 1988.

Sharman, D. and A. Yassine (2004) "Characterizing Complex Product Architectures," Systems Engineering
Journal, 7(1).

Shaw, Mary and David Garlan (1996). Software Architecture: An Emerging Discipline, Upper Saddle River, NJ:
Prentice-Hall.

Simon, Herbert A. (1962) “The Architecture of Complexity,” Proceedings of the American Philosophical Society
106: 467-482, repinted in idem. (1981) The Sciences of the Artificial, 2nd ed. MIT Press, Cambridge, MA, 193-
229.

Simon H.A. (1976) Administrative Behavior (3rd Edition), New Yrok: Macmillan (first published in 1945)

Sosa, Manuel, Steven Eppinger and Craig Rowles (2003) "Identifying Modular and Integrative Systems and their
Impact on Design Team Interactions", ASME Journal of Mechanical Design, 125 (June): 240-252.

Sosa, Manuel, Steven Eppinger and Craig Rowles (2004) "The Misalignment of Product Architecture and
Organizational Structure in Complex Product Development," Management Science, 50(December):1674-1689

Sosa, Manuel, Steven Eppinger and Craig Rowles (2007) "A Network Approach to Define Modularity of
Components in Complex Products," Transactions of the ASME Vol 129: 1118-1129

Spear, S. and K.H. Bowen (1999) "Decoding the DNA of the Toyota Production System," Harvard Business
Review, September-October.

Steward, Donald V. (1981) “The Design Structure System: A Method for Managing the Design of Complex
Systems,” IEEE Transactions on Engineering Management EM-28(3): 71-74 (August).

Sullivan, Kevin, William G. Griswold, Yuanfang Cai and Ben Hallen (2001). “The Structure and Value of
Modularity in Software Design,” SIGSOFT Software Engineering Notes, 26(5):99-108.

Taylor, F.W. (1911) The Principles of Scientific Management, New York: Harper.

Teece, David J. (1986) "Profiting from Technological Innovation: Implications for Integration, Collaboration,
Licensing and Public Policy," Research Policy, 15: 285-305.

Ulrich, Karl (1995) “The Role of Product Architecture in the Manufacturing Firm,” Research Policy, 24:419-440,
reprinted in Managing in the Modular Age: Architectures, Networks, and Organizations, (G. Raghu, A.
Kumaraswamy, and R.N. Langlois, eds.) Blackwell, Oxford/Malden, MA.

Utterback, James M (1994). Mastering the Dynamics of Innovation, Harvard Business School Press, Boston, MA.

von Hippel, Eric (1990) "Task Partitioning: An Innovation Process Variable," Research Policy 19: 407-18.

von Hippel, Eric and Georg von Krogh (2003) "Open Source Software and the 'Private Collective' Innovation
Model: Issues for Organization Science," Organization Science, 14(2):209-223.

Warfield, J. N. (1973) "Binary Matricies in System Modeling," IEEE Transactions on Systems, Management, and
Cybernetics, Vol. 3.

Weber, M. (1947) The Theory of Social and Economic Organization, ed. A.H. Henderson and T. Parsons, Illinois:
Free Press (first published in 1924)

Weick, K..E. Educational Organizations as Loosely-Coupled Systems, Administrative Science Quarterly, 21: 1-19

Williamson, Oliver E. (1985). The Economic Institutions of Capitalism, New York, NY: Free Press.

