Integration with
Other Tools

In this chapter, we will cover:

» Configuring Eclipse and Maven for Selenium WebDriver test development

» Configuring IntelliJ IDEA and Maven for Selenium WebDriver test development
» Using Ant for Selenium WebDriver test execution

» Configuring Jenkins for continuous integration

» Using Jenkins and Maven for Selenium WebDriver test execution in
continuous integration

» Using Jenkins and Ant for Selenium WebDriver test execution in continuous integration
» Configuring Microsoft Visual Studio for Selenium WebDriver test development
» Automating non-web Ul in Selenium WebDriver with Autolt

» Automating non-web Ul in Selenium WebDriver with Sikuli

Introduction

Selenium WebDriver has been widely used in combination with various tools due to its neat
and clean object-oriented API. We can integrate Selenium WebDriver with other tools easily for
developing testing frameworks.

The initial sections of this chapter explore Selenium WebDriver's integration with development
and build tools such as Eclipse, IntelliJ IDEA, Maven, Ant, Microsoft Visual Studio, and Jenkins
Cl server. These tools provide an easy way to develop test automation frameworks and extend
the capabilities of Selenium WebDriver API. The following recipes will explain how to set up
and configure these tools with Selenium.

Integration with Other Tools

Lastly, we will explore how to automate non-web GUI using tools such as Autolt and Sikuli with
Selenium WebDriver. Both the tools are famous in the free and open source software world for
automating user tasks and provide their own approaches for automating the GUI.

Configuring Eclipse and Maven for Selenium

WebDriver test development

Selenium WebDriver is a simple APl that comes to your help for browser automation. However,
when using it for testing and building a test framework, there is much more needed. You will
need to integrate Selenium WebDriver APl with different libraries, tools, and so on, for test
development. You will need an Integrated Development Environment (IDE) to build your test
project and inject other dependencies to build the framework.

Eclipse is a widely used IDE in the Java world. Eclipse provides a feature-rich environment for
Selenium WebDriver test development.

Along with Eclipse, Apache Maven provides support for managing the entire lifecycle of a test
project. Maven is used to define project structure, dependencies, build, and test management.

You can use Eclipse and Maven for building your Selenium WebDriver test framework from a
single window. Another important benefit of using Maven is that you can get all the Selenium
library files and their dependencies by configuring the pom.xml file. Maven automatically
downloads the necessary files from the repository while building the project.

This recipe will explain how to configure Eclipse and Maven for the Selenium WebDriver test
development. Most of the code in this book has been developed in Eclipse and Maven.

Getting ready

1. Download and set up Maven from http://maven.apache.org/download.html.
Follow the instructions on the Maven download page (see the Installation Instructions
section on the page).

2. Download and set up Eclipse from http://www.eclipse.org/downloads/
packages/eclipse-ide-java-developers/junor.

For this recipe, Eclipse (Juno) IDE for Java Developers is used to set up Selenium
WebDriver Project. This comes with the Maven plugin bundled with other packages.

http://maven.apache.org/download.html

How to do it...

Let's configure Eclipse with Maven for developing Selenium WebDriver tests using the

following steps:

1. Launch the Eclipse IDE.
2. Create a new project by selecting File |[New | Other from Eclipse Main Menu.
3. On the New dialog, select Maven | Maven Project as shown in the following screenshot:

Integration with Other Tools

= New

Select a wizard

Create a haven Project

Wifizards:
type filter text

ERCHES

T

: [General
[CWS
s = Git
s = Java
4 = Maven
i:l‘ Checkout bMaven Projects fram SCh
1% Maven Module
145 Maven Project
o [= Tasks
= WindowBuilder
s = WML
o [= Examples

\
:

@) < Back

Finish

Cancel

Integration with Other Tools

4. Next, the New Maven Project dialog will be displayed. Select the Create a simple
project (skip archetype selection) checkbox and set everything to default and click
on the Next button as shown in the following screenshot:

= Mew Maven Project = || B &
New Maven project R
Select project narme and location M

| Create a simple project (skip archetype selection)

| Use default Warkspace location

| Browwse.., |
Add project(s) to warking set
tare...
» Advanced
< Back ” Mext = l Finish Cancel

5. Onthe New Maven Project dialog box, enter SeleniumCookbook in Group Id: and
Artifact Id: textboxes. You can also add a name and description. Set everything to
default and click on the Finish button as shown in the following screenshot:

= Mew Maven Project o (=3 =
New Maven project L,
Configure project M
Artifact
Group Id: SeleniurnCookboak -
ArtifactId: SeleniumCookbook -
Wersion: 0.0.1-SMAPSHOT -
Packaging: jar -
Marme: -
Description:

Parent Project

Group Id: -
Artifact Id: -
Wersion: - | Erouvse.., | Clear
b Advanced

'/‘? < Back Mesxt > Finish l | Cancel

6. Eclipse will create the SeleniumCookbook project with a structure (in Package
Explorer) similar to the one shown in the following screenshot:

4 ";‘J; SeleniumCookbook
[src/mainfjava
[srofmmainfresources
[sreftestfjava
[sreftestfresources
» B JRE Systern Library [J25E-1.5]
- = src
= target
|| pornxml

[% Package Explorer 52 —| | ¥ = _

Integration with Other Tools

7. Right-click on JRE System Library [J2SE-1.5] and select the Properties option from

8.

the menu.

On the Properties for JRE System Library [J2SE-1.5] dialog box, make sure Workspace
default JRE (jre6) is selected. If this option is not selected by default, select this option.
The JRE version might change based on the Java version installed on your machine.

Click on the OK button to save the change as shown in the following screenshot:

= Properties for JRE Systern Library [J25E-1.5]
Classpath Container JRE System Library
Select IRE for the project build path.

Systemn library
Execution environment: | J25E-1.5 {jred)
Alternate JRE:

@ 'Waorkspace default JRE {jref)

o | E] ER

| Ervironments... |

| nstalled JREs... |

] | Cancel

Integration with Other Tools

9. Select pom.xml from Package Explorer. This will open the pom.xm1l file in the editor

area with the Overview tab open. Select the pom.xml tab instead.

10. Add the WebDriver and JUnit dependencies highlighted in the following code snippet,

to pom.xml in the <project> node:
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupld>SeleniumCookbook</groupIds>
<artifactId>SeleniumCookbook</artifactId>
<version>0.0.1-SNAPSHOT</versions>
<dependencies>
<dependency>
<groupId>org.seleniumhq.selenium</groupId>
<artifactId>selenium-java</artifactId>
<version>2.25.0</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.8.1l</version>
<scope>test</scope>
</dependency>
</dependencies>
</projects>

11. You can get the latest dependency information for Selenium WebDriver and JUnit
from http://seleniumhqg.org/download/maven.html and http://maven.
apache.org/plugins/maven-surefire-plugin/examples/junit.html

respectively.

s TestNG is another widely used unit-testing framework in Java World. If you

Q want to add TestNG support to the project instead of JUnit, you can get its
Maven entry at http://testng.org/doc/maven.html.

12. Select src/test/java in Package Explorer and right-click for the menu.
Select New | Class.

http://seleniumhq.org/download/maven.html
http://maven.apache.org/plugins/maven-surefire-plugin/examples/junit.html
http://maven.apache.org/plugins/maven-surefire-plugin/examples/junit.html
http://testng.org/doc/maven.html

Integration with Other Tools

13. Enter seleniumcookbook .examples. test in the Package: textbox and

GoogleSearchTest in the Name: textbox and click on the Finish button as
shown in the following screenshot:

= MNew Java Class = ([ER
Java Class =
Create a new lava class, \\\ '—'&J
Source folder SeleniumCookbook/srfrestfava Browse..,
Package: seleniumcookbook.examples.test Browwse..,
Enclosing type: Browse..,
MName: GoogleSearchTest
rodifiers: @ public default private protected
abstract final static
Superclass: Javalang.Object Browvse..,
Interfaces: Add..
Rernowe
Which rmethod stubs would wou like to create?
public static void main{3tring[] args)
Constructors from superclass
V|Inherited abstract methods
Do youwant to add comments? (Configure terplates and default value here)
Generate comments
=
'\z;' Finish] | Cancel

Integration with Other Tools

14. This will create the GoogleSearchTest class as shown in the following screenshot:

[% Package Explorer &2 - <.===';>| ¥ =8

4 H SeleniumCookbook
[src/main/java
[srofmainfresources
4 [sroftestfjava
4 f seleniumcookbook.examples.test
4 [J] GoogleSearchTestjava
PRC GoogleSearchTest
& driver
o verificationErrors
@ setlplwoid
@ tearDown(woid
- @ testGoogleSearch() :woid
[sroftestfresources
- B JRE Systern Library [jref]
. B Maven Dependencies
- =% src
= target
) parnsml

15. Add the following code in the GoogleSearchTest class:

package seleniumcookbook.examples.test;

import org.openga.selenium.firefox.FirefoxDriver;

import org.openga.selenium.WebDriver;

import org.openga.selenium.WebElement;

import org.openga.selenium.By;

import org.openga.selenium.support.ui.ExpectedCondition;
import org.openga.selenium.support.ui.WebDriverWait;
import org.junit.*;

import static org.junit.Assert.*;

public class GoogleSearchTest

protected WebDriver driver;

private StringBuffer verificationErrors =
new StringBuffer() ;

@Before

public void setUp() {
driver = new FirefoxDriver () ;
driver.get ("http://www.google.com") ;

Integration with Other Tools

@Test
public void testGoogleSearch() {
try {

// Find the text input element by its name

WebElement element =
driver.findElement (By.name ("qg")) ;

// Enter something to search for

element .sendKeys
("Selenium testing tools cookbook") ;

// Now submit the form. WebDriver will find
//the form for us from the element

element.submit () ;

// Google's search is rendered dynamically
//with JavaScript.

// Wait for the page to load, timeout after
//10 seconds

(new WebDriverWait (driver, 10)) .until

(new ExpectedCondition<Booleans () {

public Boolean apply (WebDriver d) {

return d.getTitle () .toLowerCase() .
startsWith("selenium testing
tools cookbook") ;

3N

// Should see: selenium testing tools
//cookbook - Google Search

assertEquals ("selenium testing tools cookbook
- Google Search", driver.getTitle());

} catch (Error e)
//Capture and append Exceptions/Errors
verificationErrors.append(e.toString()) ;

@After
public void tearDown() throws Exception
//Close the browser

Integration with Other Tools

driver.quit () ;

String verificationErrorString =
verificationErrors.toString() ;

if (!"".equals(verificationErrorString)) ({
fail (verificationErrorString) ;

}

16. To run the tests in the Maven lifecycle, select the SeleniumCookbook project in
Package Explorer. Right-click on the project name and select Run As | Maven test.
Maven will execute all the tests from the project.

Eclipse provides the ability to create Selenium WebDriver test projects easily with its Maven
plugin, taking away the pain of project configurations, directory structure, dependency
management, and so on. It also provides a powerful code editor for writing the test code.

When you set up a project using Maven in Eclipse, it creates the pom.xm1l file, which defines
the configuration of the project and its structure. This file also contains the dependencies
needed for building, testing, and running the code. For example, the following shows
dependency information about Selenium WebDriver that we added in pom. xm1:

<dependencys>
<groupIds>org.seleniumhqg.selenium</groupId>
<artifactIds>selenium-java</artifactIds>
<version>2.25.0</version>

</dependency>

Most of the open source projects publish this information on their website. In this case, you
can check http://seleniumhqg.org/download/maven.html; you can also get this
information from Maven Central at http://search.maven.org/#browse. Maven will
automatically download libraries and support files mentioned for all the dependencies and
add to the project without you needing to find, download, and install these files to the project.
This saves a lot of our time and effort while managing the dependency-related tasks.

Maven also generates a standard directory structure for your code for easier management
and maintenance. In the previous example, it created the src/test/java folder for test
code and the src/test/resources folder to maintain resources needed for testing, such
as test data files, utilities, and so on.

Maven provides lifecycle steps such as building the test code and running the test. If you are
working with the Java development team, then you might find the application code and test
code together in Maven. Here, Maven supports building the application code, then firing the
tests and releasing the software to production.

(]

http://seleniumhq.org/download/maven.html

Integration with Other Tools

There's more...

Maven can also be used to execute the test from the command line. To run tests from the
command line, navigate to the SeleniumCookbook project folder through the command line
and type the following command:

mvn clean test

This command will traverse through all the subdirectories and run the clean command to
delete/remove earlier build files. It will then build the project and run the tests. You will see
the results at the end of execution on command line.

See also

» The Configuring IntelliJ IDEA and Maven for Selenium WebDriver test
development recipe

» The Using Jenkins and Maven for Selenium WebDriver test execution in continuous
integration recipe

Configuring Intellid IDEA and Maven for

Selenium WebDriver test development

IntelliJ IDEA is another very popular IDE available for Java development from JetBrains. Unlike
Eclipse, IntelliJ IDEA is a commercial tool. However, JetBrains offers a community edition with
limited features for free use.

This recipe will describe the steps for configuring Intelli) IDEA and Maven for Selenium
WebDriver test development.

Getting ready

1. Download and install IntelliJ IDEA from http://www.jetbrains.com/idea/
download/index.html.

JetBrains offers IntelliJ IDEA Ultimate and Community editions. The Ultimate Edition is
a commercial version of the product whereas the Community Edition is offered free,
and only supports Java, Groovy, and Scala Projects. In this recipe, the Community
Edition is used to set up the Selenium WebDriver project.

2. Download and install Maven from http://maven.apache.org/download.html.

Follow the instructions on the Maven download page (see the Installation Instructions
section on the page).

s

http://maven.apache.org/download.html

Integration with Other Tools

M If you are using Intelli) IDEA for the first time, please configure JSDK by
Q referring to the steps at http://www.jetbrains.com/idea/webhelp/
configuring-global-project-and-module-sdks.html.

How to do it...

Let's configure IntelliJ IDEA with Maven for developing Selenium WebDriver tests, using the
following steps:
1. Launch the IntelliJ IDEA.

2. Create a new project by selecting File | New Project from the IntelliJ main menu. The
New Project dialog box will be displayed as shown in the following screenshot:

D Mew Praject ==
® Create project from scratch
Create new Intellil IDEA project structure

2 Import project from external model

Create Intelli) IDEA project structure over existing external model (Eclipse, Maven, Gradle)

[Z) Create project from existing sources

|nte"ij IDEA Create Intelli) IDEA project structure over existing sources

NEW

project

Mext Cancel | Help

http://www.jetbrains.com/idea/webhelp/configuring-global-project-and-module-sdks.html
http://www.jetbrains.com/idea/webhelp/configuring-global-project-and-module-sdks.html

Integration with Other Tools

3. Onthe New Project dialog, select the Create project from scratch radio button and
click on the Next button as shown in the following screenshot:

] Mew Project

Intelli] IDEA

NEW

project

Project name: [seteniumceokbaok

Project files location: |C:\Users\Admm\IdeaPruJe:ts\SeIemumCuukbuuk

Project file format: | idea (directory based) >

[¥] Create madule

Module narme: [SeleniumCoskbook

Cantent root: ‘C:\Users\Admm\IdeaPrmects\SeIemumCuokbouk

Module file location: ‘C:\Llsers\Admm\ldeaPrmects\SelemumCuukbuuk

Select type

&a]ava Module

I Plugin Module
@ Griffon Application
5% Maven Module

Cl Andraid Module

Description

Creates a blank Maven module or from Maven archetype

On the New Project dialog, enter SeleniumCookbook in the Project name: textbox.

Select the Maven Module option from the Select type list.

shown in the following screenshot:

Leave the remaining options with their default value and click on the Next button as

P ew Project

Intellij IDEA

module

Groupld [seteniumCookbook

Artifactld [seteniumCookbook

wersion [10

[C] Create fram archetype

|

corm atlassian maven.sichetypesiconfluence-plugin-archetype

&

corm atlassian maven.archetypesiira-plugin-archetype

&l

com e maven srchetypes jpa-maven-archetype
netliftweb lift-archetype-basic
netliftwebilift-archetype-blank

net s maven-harmaven-archetype-har

&8 8 &

netsf maven-sanmaven-archetype-sar

&l

or9.spsche cocoanicacaon-22-archetype-black

El

a19.3p3che cocoancacaan-22-archetype-block-plain

=l

araapache cocoancacaan-22-archetype webapp

&)

org.apache maven aichetypes maven-archetype-jZee-simple

&

org.apache.maven.archet hetype- jo

=

org.apache maven archetypes maven-archetype-mojo

El

a19.3pache maven sichefypes maven-archetype-partlet

El

araapache maven sichefpes maven-archetype-profiles

&)

org.apache maven archetypesimaven-archetype-quickstart

|

rg.apache maven archetypes maven-archetype-site

=

org.apache maven archetypes maven-archetype-site-simple

El

arg.apache maven sicheypes maven-archetype-webapp

Previous

Finish || Cancel H Help

[}

Integration with Other Tools

6. Leave the remaining options to their default value and click on the Finish button.
7. A new project will be created with the pom.xm1 file open in the editor area.
8. Now add the following Selenium WebDriver and JUnit dependency in pom.xml.

<dependencies>
<dependency>
<groupId>org.seleniumhg.selenium</groupId>
<artifactIdsselenium-java</artifactIds>
<version>2.25.0</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.8.1</version>
<scope>test</scope>
</dependency>
</dependencies>

9. Your POM should look as shown in the following screenshot:

4 SeleniumCookbogk *

<7xml version="1.0" encoding="UTF-8" 2>
C<project xmlns="http:/s/maven.apache.org/POMs4.0.0"
xmlns: xsi="http: / fwnr.wi.org/ 2001 MLSchema-instance"
x=i:schemalocation="http: //maven. apache.org/POM/4.0.0 hitp: f/maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion-4. 0.0 /modelVersion-

<groupId:=SeleniumCookbook< /groupId:
<artifactId>SeleniunCookbooks /artifactTd>
<version>1.0</version-

=] <dependencies:

=] <dependency>

<groupId-org. seleniumhg. seleniuns /groupId>
<artifactId-selenium-java< /artifactId>-
<version>2.25.0< /version>

=] </dependency
5] <dependency:
“growpId-junit</groupld-

<artifactId-junit</artifactId-
<version>d.§. 1< /version>

<scopextest/scope>
=] </dependencys
a < /dependencies:

£ /project:

Integration with Other Tools

10. You may optionally get a Maven projects need to be imported message pop up
displayed at the top-right corner as shown in the following screenshot:

"i,' Maven projects need to be imported

Impott Changes Enable Suto-Import

Lorgfxsd/maven—4.0. 0. xsd" >

spaloug uanepy ﬁf}

11. Click on Enable Auto-lmport on the Maven projects need to be imported
message pop up.

12. In Project Explorer, select and right-click on the test/java folder. On the pop up
menu, select New | Package. This will display a New Package dialog box as shown
in the following screenshot:

Qﬂ Mew Package 2

Py I Emter neww package name:

seleniurmcookbook. examples test

| 014 || Cancel |

13. Add a new Java class to this newly created package by right-clicking on the
seleniumcookbook.example.test package, and on the pop up menu select
New |Java Class. This will display the Create New Class dialog as shown
in the following screenshot:

@ﬂ Create Mew Class 3
Marne: |Gnng|e$earchTest | Tl
Kind: | (@ Class -

0K | | Cancel ‘

Integration with Other Tools

14. Enter GoogleSearchTest in the Name: textbox and click on the OK button.
15. The editor will create the GoogleSearchTest class in a new tab.
16. Copy the following code to the GoogleSearchTest class:

import org.openda.selenium.firefox.FirefoxDriver;

import org.openga.selenium.WebDriver;

import org.openda.selenium.WebElement;

import org.openga.selenium.By;

import org.openga.selenium.support.ui.ExpectedCondition;
import org.openda.selenium.support.ui.WebDriverWait;
import org.junit.*;

import static org.junit.Assert.*;

public class GoogleSearchTest
protected WebDriver driver;
private StringBuffer verificationErrors =
new StringBuffer();

@Before

public void setUp () {
driver = new FirefoxDriver() ;
driver.get ("http://www.google.com") ;

@Test
public void testGoogleSearch()
try {

// Find the text input element by its name
WebElement element =
driver.findElement (By.name ("q")) ;

// Enter something to search for
element.sendKeys ("Selenium testing tools
cookbook") ;

// Now submit the form. WebDriver will find
//the form for us from the element

element.submit () ;

// Google's search is rendered dynamically

//with JavaScript.

// Wait for the page to load, timeout after

//10 seconds

(new WebDriverWait (driver, 10)) .until (new
ExpectedCondition<Booleans> () {

Integration with Other Tools

public Boolean apply (WebDriver d) {
return d.getTitle() .toLowerCase() .
startsWith("selenium testing
tools cookbook") ;

3N

// Should see: selenium testing tools
//cookbook - Google Search
assertEquals ("selenium testing tools cookbook
- Google Search", driver.getTitle());
} catch (Error e)
//Capture and append Exceptions/Errors
verificationErrors.append(e.toString()) ;

@After

public void tearDown() throws Exception {
//Close the browser
driver.quit () ;

String verificationErrorString =
verificationErrors.toString() ;

(t"m . equals(verificationErrorString)) ({
fail (verificationErrorString) ;

if

SeleniumCookbook = T Tsrc [test [jawa =1 seleniumcookbook @50 examples = test

10 GoogleSearchTest

1 Project | €3 == - |7 SeleniumCookbook % | (B) GoogleSearchTestjava =
= I% Selenium Cookbook package seleniumcockbook.exauples.test;
a0 idea
5 B e Climport org.openga.selenium. firefox.FirefoxDriver;
5 B main import oryg.openga.selenium,UebDriver;
5 import oryg.openga.selenium. TebElement:
Java import org. openga.selenium.By;
3 resources import org.openga.selenium. support.ui-ExpectedCondition;
B 7 test import oryg.openga.selenium. support.ul.WebDriverWait:
= EJEVE import org.junirc.*;
B 5 seleniumcookbook.camples.test | import static org.junit.Asserc.:
(E) % GoogleSearchTest .
= o public class GoogleiearchTest §
E pomaaml protected WebDriver driver:
T seleniumCookbackirnl private StringBuffer verificationErrors = new StringBuffer();
@ [l External Libraries
BBefore
F public void setlni){
driver = new FirefoxDriwver():;
driver.get("http: /fwnnr. gooyle.com') »
] }

[}

Integration with Other Tools

17. Click on the Maven Projects option in the right sidebar. This will open the Maven
Projects explorer with the SeleniumCookbook project. Select and expand the
project. Select Lifecycle and then the test option to execute the previous test with
Maven as shown in the following screenshot:

Maven Projects £-
R EHE[PFO |
= '-f?-;SeIeniumCookbook
- g Lifecycle
{'ﬁclean
{'ﬁvalidate
i cornpile

spalodd uanep {3}

AIPRIDIIN (wy

& package
& install
& site
& deploy
+ L Dependencies

After Eclipse, IntelliJ IDEA is the widely used IDE available for developing software with Java.
It provides a highly productive environment for test development with its advanced user
interface, code editor, and IntelliSense features.

RWWOD G

It also provides integration with Maven, Ant, and various other tools for project and build
management and SCM tools for version control.

» The Configuring Eclipse and Maven for Selenium WebDriver test development recipe

» The Using Jenkins and Maven for Selenium WebDriver test execution in continuous
integration recipe

Using Ant for Selenium WebDriver test

execution

Apache Ant is a popular build management tool available for Java developers. It is similar to
Apache Maven, but does not support project management and dependency management
features like Maven. It's a pure build tool.

Ant is another choice for running Selenium WebDriver tests from the command line or through
continuous integration (Cl) tools such as Jenkins.

]

Integration with Other Tools

In this recipe, we will add Ant support to the SeleniumCookbook project created in the
Configuring Eclipse and Maven for Selenium WebDriver test development recipe.

Getting ready

You can download and install WinAnt on Windows. WinAnt comes with an installer
that will configure Ant through the installer. The WinAnt installer is available at
http://code.google.com/p/winant/.

You can also download and configure Ant from http://ant.apache.org/bindownload.
cgi for other OS platforms. This recipe uses WinAnt on the Windows OS.

How to do it...

Let's set up the SeleniumCookbook project for Ant with following steps:

1. Create a 1ib folder and copy the JAR files for the dependencies used for this project,
that is, Selenium WebDriver and JUnit.

2. Create the build.xml file in the project folder with the following XML:

<?xml version="1.0" encoding="UTF-8"?>
<project name="test" default="exec" basedir=".">

<property name="src" value="./src" />
<property name="lib" value="./lib" />
<property name="bin" value="./bin" />
<property name="report" value="./report" />
<path id="test.classpath">

<pathelement location="${bin}" />

<fileset dir="${1lib}">

<include name="**/* _jar" />

</fileset>

</path>

<target name="init">
<delete dir="s{bin}" />
<mkdir dir="s${bin}" />
</target>

<target name="compile" depends="init">
<javac source="1.6" srcdir="${src}" fork="true"
destdir="${bin}" >
<classpath>
<pathelement path="${bin}">
</pathelement>

[}

http://code.google.com/p/winant/
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/bindownload.cgi

Integration with Other Tools

<fileset dir="${1lib}">
<include name="**/*_jar" />
</fileset>
</classpath>
</javac>
</target>

<target name="exec" depends="compile">
<delete dir="${report}" />
<mkdir dir="${report}" />
<mkdir dir="${report}/xml" />
<junit printsummary="yes" haltonfailure="no">
<classpath>
<pathelement location="${bin}" />
<fileset dir="${1lib}">
<include name="**/*_jar" />
</fileset>

</classpath>

<test name="seleniumcookbook.
examples.test.GoogleSearchTest"
haltonfailure="no" todir="${report}/xml"
outfile="TEST-result">

<formatter type="xml" />
</test>
</junits>
<junitreport todir="${report}"s
<fileset dir="${report}/xml">
<include name="TEST*.xml" />
</fileset>
<report format="frames"
todir="${report}/html" />
</junitreport>
</target>
</project>

Navigate to the project directory through the command line and type the
following command:

ant
This will trigger the build process. You will see the test running. At the end, Ant will

create a report folder in the project folder. Navigate to the html subfolder in the
report folder and open the index.html file to view the results.

=]

Integration with Other Tools

Ant needs a build.xml file with all configurations and steps that are needed to build the
project. We can add steps for report generation, sending e-mail notification, and so on to
build.xml. Ant provides a very dynamic framework for defining steps in the build process.

Ant also needs the necessary library/JAR files to be copied in the 1ib folder, which are
needed for building the project.

Ant scans for the entire tests in the project and executes these tests in a way similar to Maven.

See also

» The Using Jenkins and Ant for Selenium WebDriver test execution in continuous
integration recipe

Configuring Jenkins for continuous

integration

Jenkins is a popular continuous integration server in the Java development community. It
is derived from the Hudson ClI server. It supports SCM tools including CVS, Subversion, Git,
Mercurial, Perforce, and ClearCase, and can execute Apache Ant and Apache Maven based
projects as well as arbitrary shell scripts and Windows batch commands.

Jenkins can be deployed to set up an automated testing environment where you can run
Selenium WebDriver tests unattended based on a defined schedule, or every time changes
are submitted in SCM.

In this recipe, we will set up Jenkins Server for running Maven and Ant projects. Later recipes
describe how Ant and Maven is used to run Selenium WebDriver tests with Jenkins.

Getting ready

Download and install the Jenkins Cl server from http://jenkins-ci.org/. For this recipe,
the Jenkins Windows installer is used to set up Jenkins on a Windows 7 machine.

s

http://jenkins-ci.org/

Integration with Other Tools

How to do it...

Before using Jenkins, we need to set up the following options in the Jenkins configuration:
1. Navigate to the Jenkins Dashboard (http://localhost:8080 by default) in the
browser window.
2. On Jenkins Dashboard, click on the Manage Jenkins link.
3. Onthe Manage Jenkins page, click on the Configure System link.

Adding JDK
1. Onthe Configure System page, locate the JDK section.
2. Click on the Add JDK button in the JDK section.
3. Specify JDK6 in the Name field and unselect the Install automatically checkbox.
4

In the JAVA_HOME textbox, enter the path of the JDK folder from your system.
In the following screenshot, C: \Program Files\Java\jdk1l.6.0_ 30 has
been specified:

oDK

1Dk installations 1Dk
Marne 10K

JAVA_HOME Ci\Program Files\Javatjdk1.6.0_30

Install automatically 'E'

Delete JD
Add JDK

List of JDK installations on this system

Adding Ant
1. On the Configure System page, locate the Ant section.

2. Click on the Add Ant button in the Ant section.
3. Specify Ant in the Name field and unselect the Install automatically checkbox.

http://localhost:8080

Integration with Other Tools

4. Inthe ANT_HOME textbox, enter the path of the Ant folder from your system. In the
following screenshot, C: \Program Files\WinAnt has been specified for the
WinAnt version:

Ant

ant installations ant
Marme ant

ANT_HOME |~ SPragram Fileshwinant

[1nstall autamatically (7]

Delete Ant

Adding Maven
1. On the Configure System page, locate the Maven section.

2. Click on the Add Maven button in Maven section.
3. Specify Maven in the Name field and unselect the Install automatically checkbox.
4

In the MAVEN_HOME textbox, enter the path of the Maven folder from your system. In
the following screenshot, MAVEN_HOME contains C:\apache-maven:

Mawven

Maven installations Maven

Warne Mawven

MAVEN_HOME Cihapache-mawen

[] 1nstall autornatically (7]

Delete Maven
Add Maven

List of Maven installations an this system

5. Click on the Save button to save the configuration.

There's more...

Jenkins also runs a Selenium standalone server which can be used as a remote web
driver. Using Jenkins master/slave architecture, we can build a distributed build and test
environment for large-scale test automation projects.

Integration with Other Tools

» The Using Jenkins and Maven for Selenium WebDriver test execution in continuous
integration recipe

» The Using Jenkins and Ant for Selenium WebDriver test execution in continuous
integration recipe

Using Jenkins and Maven for Selenium

WebDriver test execution in continuous
integration

Jenkins supports Maven for building and testing a project in continuous integration. In this
recipe, we will set up Jenkins to run tests from a Maven project.

Getting ready

Running tests with Jenkins and Maven needs both the tools installed on the machine. In this
recipe, the SeleniumCookbook project is used from the earlier Configuring Eclipse and
Maven for Selenium WebDriver test development recipe.

This recipe refers to Subversion as Source Code Management (SCM) tool for the
SeleniumCookbook project.

You can use various SCM tools along with Jenkins. If Jenkins does not support a SCM tool that
you are using, please check the Jenkins plugin directory for specific SCM tool plugins.

How to do it...

1. Navigate to the Jenkins Dashboard (http://localhost:8080 by default) in the
browser window.

2. 0On Jenkins Dashboard, click on the New Job link to create a Cl job.

3. Enter Selenium Cookbook in the Job name textbox.

http://localhost:8080

Integration with Other Tools

4. Select the Build a maven2/3 project radio button as shown in the following screenshot:

Job name |cejenium Cookbook

Build a free-style software project

This is the central feature of Jenkins, Jenkins will build your project, combining any SCM with any build
than software build.

Build a mavenz {3 project

Build a mavenZ project. Jenkins takes advantage of your POM files and drastically reduces the configur.
Build multi-configuration project

Suitable for projects that need a large number of different configurations, such as testing on multiple en|
Monitor an external job

This type of job allows you to record the execution of a process run outside Jenkins, even on a remote
dashboard of your existing autornation systermn. See the docurmentation for more details,

Copy existing Job
Copy from

5. Click on OK.
A new job will be created with the specified name.

7. Onthe job configuration page, go to the Source Code Management section and
select the Subversion radio button.

8. Enter the URL of your test code in the Repository URL textbox as shown in the
following screenshot. Optionally, Jenkins will ask for Subversion login details. Provide
user credentials as configured on your SVN server.

Source Code Management

cvs
Mone

9 subversion

Maodul A A 5
odules Repositary URL http:/fadmin-pcidd3/svn/SeleniumCaookboakArunk] (2]
Local maodule directary {optional) K .i;i‘.
Check-out Strategy | Lse 'syn update' as much as possible =]
Use 'sun update’ whenauer possible, making the build faster. But this causes the srtifacts from the preuisus build to remain when a new build starts.
Repository brawser [(a,t0) =] .@.

=]

Integration with Other Tools

9. Go to the Build section. In the Root POM textbox, enter pom.xml and in the Goals
and options textbox, enter clean test as shown in the following screenshot:

Build
Root POM pom.xml |@|
Goals and options clean test .ﬂ.

10. On the Selenium Cookbook project page, click on the Build Now link. Go back to the
Jenkins Dashboard.

11. Maven builds the project and executes tests from the project. Once the build process
is completed, click on the Selenium Cookbook project from the list as shown in the
following screenshot:

[#f2dd description

Al
5 W Name | Last Success Last Failure Last Duration

g Selenium Cookbook 2 min 14 sec (#1) NAA 54 sec ‘!}_)

Ieon: S 01

The Selenium Cookbook project page displays the build history and links to the
results as shown in the following screenshot:

Jenkins eleniurmn Cookbook

L7 Mew Job

Project Selenium

= Build History

@ Seleniom Grid

7 Manage Jenkins » /E! Warkspace
000

® Delete Project

Confi | =% Recent Changes
’ onrgure

Build History {trend)

Latest Test Result {no fail
o *1 27-Sep-2012 22:15:53

F. F i
LRSS for all [RES for failures

Permalinks

e Last build (#1%, 4 min 7 sec ag
e Last stable build {(#1% 4 min 7
e Last successful build (#1), 4 mi

=]

Integration with Other Tools

12. Click on the Latest Test Result link to view the test results as shown in the
following screenshot:

Test Result

0 failures

1 tests
Module Fail (diff) Total (diff)
SeleniurmCookbook: SeleniurmCookbook a 1 +1

Scheduling build for automatic execution
1. Go to the Selenium Cookbook project configuration in Jenkins.
2. Inthe Build Triggers section, select the Build periodically checkbox.

3. Entero 22 * * = inthe Schedule textbox as shown in the following screenshot. This
will trigger the build process every day at 10 p.m. and the test will run unattended.

Build Triggers
Build whenever a SMAPSHOT dependency is built L.L4
Build after other projects are built 'ﬁ'
+| Build periodically 'E'
Schedule 0oz & * -ﬁ-
A
Poll SCM @

4. Click on the Save button to save the configurations.

Using the Build a Maven2/3 Project option, Jenkins supports building and testing
Maven projects.

Jenkins supports various SCM tools such as CVS, and Subversion. To get the source code from
SCM, specify the repository location and check out the strategy. Since Maven is used in this
example, specify the path of root POM and Maven Goal.

While building the project, Jenkins gets the latest source from SCM to the Jenkins project
workspace. It will then call Maven with specified goals. When the build process is complete,
Jenkins gets the test results from Maven and displays these results on the project page.

e

Integration with Other Tools

Scheduling builds

One of the important features of Jenkins is that it automatically triggers the build, based on
defined criteria. Jenkins provides multiple ways to trigger the build process under the Build
Trigger configuration. Build Trigger can be set at a specific time. In the previous example,

it is set to trigger the process every day at 10 p.m. This provides the ability to run tests
unattended, nightly, so that you can see the results the next morning.

Test results

Jenkins provides the ability to display test results by reading the results files generated by unit
test frameworks. It also archives these results, which can be used to generate various metrics
over time.

» The Configuring Jenkins for continuous integration recipe

Using Jenkins and Ant for Selenium

WebDriver test execution in continuous
integration

Ant can also be configured to run tests in continuous integration with Jenkins. In this recipe,
we will set up Jenkins to run tests with Ant.

Getting ready

Running tests with Jenkins and Ant needs both the tools installed on the machine. Refer to
the Using Ant for Selenium WebDriver test execution and Configuring Jenkins for continuous
integration recipes to install and configure Ant and Jenkins.

How to do it...

Let's configure Jenkins and Ant for running tests in Cl:
1. Navigate to the Jenkins Dashboard (http://localhost:8080 by default) in the
browser window.
2. 0On Jenkins Dashboard, click on the New Job link to create a Cl job.

3. Enter Selenium Cookbook in the Job name: textbox.

http://localhost:8080

Integration with Other Tools

4. Select the Build a free-style software project radio button as shown in the
following screenshot:

Job name [geoicnium Cookbook

@ Build a free-style software project

This is the central feature of Jenkins, Jenkins will build your project, combining any SCM with any bui
than software build,

Build a maven2/3 project
Build a mavenZ project, Jenkins takes advantage of your POM files and drastically reduces the config

Build multi-configuration project
Suitable for projects that need a large number of different configurations, such as testing on multiple

Monitor an external job

This type of job allows you to record the execution of & process run outside Jenkins, even on a remo
dashboard of your existing autormnation system. See the docurmentation for more details.

Copy existing Job
Copy from

5. Click on OK.
A new job will be created with the Selenium Cookbook name.

7. On the job configuration page, go to the Source Code Management section and
select the Subversion radio button.

8. Enter the URL of your test code in the Repository URL textbox as shown in the
following screenshot. Optionally, Jenkins will ask for Subversion login details. Provide
user credentials as configured on your SVN server.

Source Code Management

CMS
Mone

@' Subversion

Modul i . .
odules Repository URL http://admin-PC:443/svn/SeleniumCookbook/runk @
Local maodule directory {optional)) .@.
Check-out Strategy [|ise 'syn update' as much as passible [=]

Use 'swn update' whenever possible, making the build faster, But thizs causes the artifacts from the previous build
to remain when a new build starts,

Repository brawser [(ata) [=] 3

s

Integration with Other Tools

9. Go to the Build section. Click on the Add build step button once again and select
Invoke Ant option from the drop-down list.

10. The Ant version textbox will display Default as shown in the following screenshot:

Build

Invoke Ant (2]

Ant Wersion | Dafault

Targets

Add build step =

11. Go to the Post-build Actions section.

12. Click on the Add post-build action button and select Publish JUnit test result report
from the drop-down list.

13. In the Test report XMLs textbox, enter ** /report/*.xml as shown in the
following screenshot:

Post-build Actions

Publish JUnit test result report |ij:|

Test report XMLs w4 feeport* ol

Filezet 'includes’ setting that specifies the generated raw XML report files, such as 'myproject/target/test-reparts/®.xml'. Basedir of the fileset is the workspace
root,

Retain long standard output/errar 'Ej-'

Add postbuild action »

14. Click on the Save button to save the configuration.
15. Go back to the Jenkins Dashboard page.

16. Click on the Schedule a Build button to trigger the build. Ant will execute the test.
Once the build process is completed, click on the Selenium Cookbook project from
the list as shown in the following screenshot:

Zadd description

Al 4
5 w Name | Last Success Last Failure Last Duration
J Selenium Cookboak 2 min 14 sec (#£1) W 54 58 (53]

Integration with Other Tools

The project page displays the build history and links to the results as shown in the
following screenshot:

Jenkins Seleniurm Cookbook

50 New Job

‘ People

= Build History

Project Selenium Cookbd¢

i ; " .
l_)\\ Project Relationship

& Check File Fingerprint E Workspace
@ galeniurn Grid
(RONORGNE

7 Manage Jenkins » | Recent Changes
|t

Modules
0 Latest Test Result {no failures)
Build History {trend)

W #1 D1-Oct-2012 21:57:21
_f:! R=3 for all f:! RSS for failures

Permalinks

e Last build {#13, 21 days ago
« Last stable build (#1%, 21 days ago
e Last successful build (#1321 days ago

17. Click on the Latest Test Result link to view the test results as shown in the
following screenshot:

Test Result
0 failures
|

1 tests
Took 27 sec,
[Zadd description

All Tests
Package Duration Fail (diff) skip (diff)y Total (diff)
seleniumcookbook.examples.test 27 sec]] 1 +1

Scheduling build for automatic execution
1. Go to the Selenium Cookbook project configuration in Jenkins.
2. Inthe Build Triggers section, select the Build periodically checkbox.

Es

Integration with Other Tools

3. Entero 22 * * xinthe Schedule textbox as shown in the following screenshot.
This will trigger the build process every day at 10 p.m.

Build Triggers
[T Build after other projects are built '@'
Build periodically '@'
Schedule 02z %k '@'
e
[l poll scm @

4. Click on the Save button to save the configurations.

The preceding example uses SCM to get the test source code to the Jenkins workspace.
However, if you are not using SCM, you can copy the code from the source folders to the
Jenkins workspace, so that it gets the latest version of test source code. This can be done

by writing a batch or a shell script that will clean the Jenkins project workspace and copy

the latest test code to the workspace. For running this batch file, use the None option in the
Source Code Management section and specify the batch file path in Pre Steps | Execute
Windows batch command or the Execute shell option as shown in the following screenshot:

Pre Steps

Execute Windows batch command (7]

Command

See the list of available environment variables

Add pre-build step »

=

Integration with Other Tools

See also

» The Using Ant for Selenium WebDriver test execution recipe
» The Configuring Jenkins for continuous integration recipe

Configuring Microsoft Visual Studio for

Selenium WebDriver test development

Selenium WebDriver provides .NET bindings for developing Selenium tests with the

.NET platform. For using the Selenium WebDriver API, you need to reference Selenium
WebDriver libraries to the project. Microsoft Visual Studio being the major IDE used in the
.NET world, setting up the Selenium WebDriver support has become easier with NuGet
Package Manager (http://nuget.org/).

This recipe explains setting up Selenium WebDriver in Microsoft Visual Studio 2012
using NuGet.

Getting ready

NuGet comes bundled with Microsoft Visual Studio 2012. However, for Microsoft Visual
Studio 2010, download and install NuGet from nuget . codeplex. com.

How to do it...

Let's configure Microsoft Visual Studio 2012 for developing Selenium WebDriver tests, using
the following steps:

1. Launch the Microsoft Visual Studio.

2. Create a new project by selecting File | New | Project from the main menu.

http://nuget.org/

Integration with Other Tools

3. Onthe New Project dialog box, select Visual C# | Class Library Project. Name
the project as SeleniumCookbook and click on the OK button as shown in the
following screenshot:

Mew Praject =]
P Recent MET Framewvark 4.3 ~ Sorbby: Default - Search Installed Templates (Ctrl +E) P~
4 Tnstalled 2] - .
E] Windaws Forms Application Visual C# Type: Visusl C#
4 Templates - & project far creating a C# class librany
4 Wisual CH# [™] weF application Visual C# Ll
L
Wind ous
s
Web Console Application Visual C#
Cloud
. C#
Reparting g_] ASP.NET Web Farms Spplication Visual C#
Silverlight
it F‘iﬂ Class Libra Visual C#
e isual
W <
o
Workflow: E‘é! Portable Class Library Visual C#
b Other Languages :
"
b Other Project Types E] asp.NETMC 3Web Application Visual C#
Samples L
"
b Online g_] ASPNET MVC 4Web Spplication Visual C#
s
@ Silverlight Spplication Visual C#
o
é!g Silverlight Class Library Visual C#
~C* hd
Mame: SeleniumCoakbask
Location: chusershadmintdocurnentsivizual studio 20124Projects S Browse.. |
Salutian narme: SeleniurConkbook Create directory for solution
[Add b source control
0K | Cancel |

4. Next, add WebDriver and NUnit using NuGet. Right-click on the SeleniumCookbook
solution in Solution Explorer and select Manage NuGet Packages... as shown in the
following screenshot:

ap
o-20adnd R
Search Solution Explorer (Ctrl+) P~

] Solution 'SeleniurmCookbook' (1 project)
4[] SeleniumCookbook

g Build B Properties
Rebuild B References
cl # Classlcs

ean

Run Code Analysis
Scope to This

sapadoly Jaiopdxg wea) Jaio)dxg uoghos

Meww Solution Explorer Wiew

Calculate Code Metrics

Add L
Add Reference..,

Add Service Reference..,

Manage MuGet Packages,.,

Wiewr Class Diagram

62w

Set as StartUp Project

S E

Integration with Other Tools

5. On the SeleniumCookbook.sIn - Manage NuGet Packages dialog box, select
Online and search for the WebDriver package. The search will result in the

following suggestions:

SeleniumCookbook.sln - Manage MuGet Packages

-

Installed packages

n

Online

All
MutGet official package source
Seatch Results

-

Updates

-

Recent packages

Each package is licensed to you by its
owmer, Microsoft is not responsible
fiar, nor does it grant ary licenses to,
third-party packages.

‘ Settings |

Stable Only

¢l

T
L2}

.

o’

.

o”

.

o’]

.

o’]

v Sortby: Most Downloads -

Selenium WebDriver

.MET bindings for the Seleniurm “Web Driver APT nstall

Selenium WebDriver Support Classes
Support classes for the MET bindings of the Selenium
WéebDriver APL

WebDriver-backed Selenium
Implementation of the Selenium Remote Control (RC) AP
using WebDriver technology

SizSelCsZzz
Warigus utility methods for Selenium frorm MNET, (Use jQuery or
Sizzle css selectors, wait on ajax operations, check client-side,.,

Fluent Automation APT for Selenium WebDriver
Fluent Autarnation is a simplified APT for sutomated testing of
web applications built on top of WatiM or Selenium,

Webinator
Wéehinatar is a c# library that provides a wrapper around
Witeb Driver and WatiM, and adds missing functionality such a...

Selenium WebDriverSEd
C# extension thatwastly improves upon the WebDriver, T
includes functions for tables, selectlists and much more, Itis...

1 2

WiebDriver x

Created by: Zelenium Committers
Id: Seleniurn el Driver

Yersion: 2.25.1

Last Updated: 10/2/2012
Downloads: 34308

Wiew License Terrms

Project Information

Report Abuse

Description:

Seleniurm is a set of different softnare
tools each with a different approach to
suppoting browser automation, These
toals are highly flexible, allowing marny:
options for locating and manipulating
elernents within a browser, and one of its
key features is the support for
automating multiple browser platforms,
This package contains the MET bindings
far the newer, mare concise and object-
based Selenium WebDriver AP which
uses hative O5-level events to
rmanipulate the browser, bypassing the
lavaScript sandhox, and does not require
the Selenium Server to autorate the
browser,

Tags: Selenium WebDriver browser
autormation

Dependencies:
Mewndnncnft lnn = 4 5

Close

6. Select Selenium WebDriver from the list and click on the Install button. Repeat this

step for Selenium WebDriver Support Classes.

7. Next, search for the NUnit package on the SeleniumCookbook.sIn - Manage NuGet
Packages dialog box.

8. Select NUnit from the search result and click on the Install button.

9. Close the SeleniumCookbook.sIn - Manage NuGet Packages dialog box.

s

Integration with Other Tools

10. Expand the References tree for SeleniumCookbook solution in Solution Explorer.
References for WebDriver and NUnit is added to the project as shown in the
following screenshot:

fal Solution 'SeleniumCookbook' (1 project)
b & Properties
4] References
=0 Castle.Core
=0 Jonic Zip
=B Microsoft.CSharp
-0 Mewtonsoftlson
=B nunitfrarmework
B System
=0 System.Core
=B Systern.Data
=B 3ystern.Data. DataSetExtensions
u-B System.Drawing
50 SysternXml
=0 System.Xmlling
=0 WebDriver
=0 WehDriverSupport

11. The SeleniumCookbook project is ready for test development. Go on adding new
tests as needed.

NuGet Package Manager adds the external dependencies to Microsoft Visual Studio projects.
It lists all available packages and automatically downloads and configures packages to the
project. It also installs dependencies for the selected packages automatically. This saves a lot
of effort in configuring the projects initially.

Automating non-web Ul in Selenium

WebDriver with Autolt

Selenium WebDriver is a pure browser automation APl and works with HTML/web elements.
It does not support native Ul built with C++, .NET, Java, or any other desktop technologies. It
also does not support Flex, Flash, or Silverlight native controls out of the box.

While testing applications that interact with native Ul, it becomes difficult to automate the
functionality involved. For example, the web application provides a file upload feature that
invokes native OS Ul for selecting a file.

NEQ

Integration with Other Tools

We can use tools such as Autolt to handle native Ul. Autolt is a freeware BASIC-like scripting
language designed for automating the Windows GUI and general scripting. By using Autolt, we
can simulate a combination of keystrokes, mouse movement, and window/control manipulation
in order to automate. It is a very small, self-contained utility. It runs on all versions of Windows
operating system. Autolt scripts can be compiled as self-contained executables.

Autolt has certain limitations in terms of OS support as it is not supported on Linux and Mac
OSX and it will not work with RemoteWebDriver.

In this recipe, we will explore integration of Autolt with Selenium WebDriver for testing the file
upload functionality on a sample page.

Getting ready

Download and install Autolt tools from http://www.autoitscript.com/site/autoit/
downloads/.

How to do it...

For implementing the file upload functionality, there are a number of libraries or plugins
available, which provide a number of additional features for uploading files. We will use the
jQuery File Upload plugin. It offers multiple ways in which users can upload files on the server.
Users can either drag-and-drop a file on the browser or can click on the Add Files button,
which opens the native Open dialog box.

€ Open ==
1 ¥ Libraries » v | +4 [l Search Libranies el
Organize « =~ [i@)
- - -
't Favarites Libraries
B Desktop Open a library to see your files and arrange them by ...
4 Downloads - -
¢ Dropbox L & Documents
. 3 Lib
= Recent Places ~7 forary
- . . ,_\% husic 1
U.\,_lerarles - Library =
j Documents -
Jv' Music e Pictures
| Pictures S Library
? Podcasts
Subwversion 1 Podcasts
- Lib
B videos <7 Y
File name: > [Files -
’ Open] ’ Cancel]

Eis

http://www.autoitscript.com/site/autoit/downloads/
http://www.autoitscript.com/site/autoit/downloads/

Integration with Other Tools

We will automate a test where the user can upload a file by clicking on the Add Files button.
This invokes the Open dialog box as shown in previous screenshot. We will create an Autolt
script to automate interactions on this dialog box.

Creating the Autolt script
Let's create an Autolt script which works with the Open dialog box.

Launch SciTE Script Editor from Start | Autolt.
Create a new script by selecting File | New from the SciTE Script Editor main menu.

Name and save this file as OpenDialogHandler.au3 (Autolt scripts have .au3
extension) and copy the following code to the script, then save the script:

WinWaitActive ("Open","","20")

If WinExists ("Open") Then
ControlSetText ("Open","", "Editl", $CmdLine [1])
ControlClick ("Open","", "&Open")

EndIf

Launch the Compile Script to .exe utility from Start | Autolt. By using
the Compile Script to .exe utility, we will convert the Autolt script into an
executable file.

On the Aut2Exe v3 - Autolt Script to EXE Converter window, enter the path of the
Autolt script in the Source (Autolt .au3 file) textbox and path of executable in the
Destination (.exe/.a3x file) textbox and click on the Convert button as shown in the
following screenshot:

@ AutBxe w3 - Autolt Script to EXE Converter =N
File Compression Help

@15993-2010 J onathan Bennett & &utolt Team

hittpe A A, autoitzcript com/autait 37

Files

Source [Autalt .au3 file] C:\UzershddmintD esktoph O penDialogH andler. au3 Browse
Destination [.exed. a3« file] C:\UtlsA0 penDialogH andler. exe Brawise
Options

Cusgtorn lcon [Lica file] Browse Drefault
Compile far System #64 Conzole?

Caonvert

NED

Using OpenDialogHandler in Selenium WebDriver script

1.

Now create a test where we can click on the Add Files button and then call the
OpenDialogHandler .exe and validate that the specified file is uploaded on

the page.

Create a
import
import
import
import
import

import
import

Integration with Other Tools

new test class named FileUpload and copy the following code in to it:

org
org
org
org
org

org

.openga.selenium.WebDriver;
.openga.selenium.chrome.ChromeDriver;
.openga.selenium.By;

.openga.selenium. support.ui.ExpectedCondition;
.openga.selenium. support.ui.WebDriverWait;

.junit.*;

static org.junit.Assert.*;

public class FileUpload {

protected WebDriver driver;

@Before

public void setUp() {

driver = new ChromeDriver() ;

driver.get ("http://blueimp.github.com/jQuery-

@Test
public void testFileUpload() throws
InterruptedException {

try {

File-Upload/") ;

//Click on Add Files button

driver.findElement (By.className ("fileinput-
button")) .click() ;

//Call the OpenDialogHandler, specify the

//path of the file to be uploaded

Runtime.getRuntime () .exec (new String/[]
{rc:\\Utils\\OpenDialogHandler.exe",
"\"C:\\Users\\Admin\\Desktop\\
Picturel.png\""});

//Wait until file is uploaded

boolean result = (new WebDriverWait
(driver, 30)) .until (new
ExpectedCondition<Booleans () {

s

Integration with Other Tools

public Boolean apply (WebDriver d) {

return d.findElement (By.xpath
("//table[@role="'presentation']"))
.findElements (By.tagName

("tr")) .size() > 0;

P
assertTrue (result) ;

} catch (Exception e) {
e.printStackTrace () ;

}

@After
public void tearDown() {
driver.close() ;

}
}

Autolt provides an API for automating native Windows Ul control. In this example, we used
the winwaitActive () function, which waits for a window. It takes the title of the expected
window, text of the window, and timeout as parameters. We supplied the title as Open and
time out of 20 seconds. The text of the windows is passed as blank, as the title is enough to
identify the window.

WinWaitActive ("Open","","20")

Once the open window is activated, the ControlSetText () function is called to enter the
text in the File name: textbox.

ControlSetText ("Open","","Editl", $CmdLine[1])

This function takes the title of the window, text of the window, control ID, and text that needs
to be entered in the textbox. Similar to locators in Selenium, Autolt identifies controls using
control IDs. You can find control IDs using Autolt V3 Window Info tool installed with Autolt. You
can spy on a window or control using this tool and find out various properties. In this example,
the ControlSetText () function takes the last parameter as $CmdLine [1]. Instead of
hardcoding the path of filename that we want to upload, we will pass the filename to Autolt
script using command line arguments; SCmdLine [1] will hold this value.

For clicking on the Open button, the ControlClick () function is called. This function takes
the title of the window, text of the windows, and control ID as parameters.

ControlClick ("Open","", "&Open")

=)

Integration with Other Tools

You can find more about Autolt API in Autolt help documentation.

Using the Aut2Exe v3 - Autolt Script to EXE Converter utility, Autolt script is compiled as
executable that is OpenDialogHandler . exe.

The Selenium WebDriver test calls this executable file by using the exec () method of the
RunTime class, which allows the Java code to interact with the environment in which the code
is running. The complete path of OpenDialogHandler as well as the path of the file to be
uploaded is passed through the exec () method. Please note that OpenDialogHandler
needs quotes for arguments.

Runtime.getRuntime () .exec (new String[]
{rc:\\Utils\\OpenDialogHandler.exe",
"\"C:\\Users\\Admin\\Desktop\\Picturel.png\""}) ;

There's more...

You can use Autolt scripts with other Selenium WebDriver bindings such as .NET, Ruby, or
Python as long as these languages allow you to call external processes.

Autolt also comes with a lightweight AutoltX COM library that can be used with languages that
support COM (Component Object Model). Using the COM API will save you from writing the
Autolt script and compiling it in to an executable.

You will come across web applications using HTTP authentication which requires users to
authenticate before displaying the application. An HTTP authentication dialog is displayed as
shown in the following screenshot:

Authentication Required |

The server wwanshttpavatch com:80 requires a username and
passward, The sercer says: Login with a user narme of
httpweatch and a different password each time,

User Marme: |

Password:

LogIn] | Cancel

@l

Integration with Other Tools

This dialog box is displayed by using native Ul. In addition, the layout and controls on this
dialog box may change for different browsers. In the following example, AutoltX APl is called
directly in the Ruby script for automating the HTTP authentication dialog box displayed in
Google Chrome:

require

require

require

require

'rubygems'
'selenium-webdriver'
'test/unit’
'win32ole'

class HttpAuthTest < Test::Unit::TestCase

def

end

def

setup

@driver = Selenium::WebDriver.for :chrome

@driver.get 'http://www.httpwatch.com/
httpgallery/authentication'

@verification errors = []

test _http auth window

#Create instance of AutoItX3 control.

#This will provide access to AutoItX COM API
au3 = WIN320LE.new ("AutoItX3.Control")

#Get the Display Image button and

#click on it to invoke the Http Authentication dialog

display image button = @driver.find element :id =>
"displayImage"

display image button.click

#Wait for couple of seconds for Http Authentication
#dialog to appear
sleep(2)

#Check if Http Authentication dialog exists and

#enter login details using send method

result = au3.WinExists ("HTTP Authentication -
Google Chrome")

if result then

au3.WinActivate ("HTTP Authentication -
Google Chrome","")

au3.Send ("httpwatch{TAB}")
au3.Send ("jsdhfkhkhfd{Enter}")
end
assert_equal 1, result

Integration with Other Tools

end

def teardown
@driver.quit
assert _equal [], @verification errors
end
end

In the previous example, Ruby's win32ole module is used to create an instance of AutoltX
COM interface.

au3 = WIN320LE.new ("AutoItX3.Control")

By using this interface, the Autolt methods are called for interacting with non-web Ul.

» The Automating non-web Ul in Selenium WebDriver with Sikuli recipe

Automating non-web Ul in Selenium

WebDriver with Sikuli

Sikuli is another tool that can be used along with Selenium WebDriver for automating
non-web Ul. It uses visual identification technology to automate and test graphical user
interfaces (GUI). The Sikuli script automates anything you see as a user on the screen rather
than an API.

Sikuli is supported on Windows, Linux, and Mac OSX operating systems. Similar to Selenium
IDE, Sikuli provides an IDE for script development and API that can be used within Java.

Sikuli works well for non-web Ul. However, it also has certain limitations as it is not supported
by RemoteWebDriver. The Sikuli script might fail if it does not find a captured image due to
overlapping windows at runtime.

In this recipe, we will explore integration of Sikuli APl with Selenium WebDriver for testing
non-web Ul.

Getting ready

Download and install Sikuli from http://sikuli.org/.

Integration with Other Tools

How to do it...

We will use the HTTP authentication example from the previous recipe to automate the steps
with Sikuli, as follows:

1. Before we automate the steps on the Authentication Required dialog box, we need
to capture images of the User Name: and Password: textboxes and the Log In button:

Authentication Required |

The server wan bttpavatch.cormiB0 requires a usernarme and
password, The server says: Login with a user name of
httpuvatch and a different password each time.,

User Mame: |

Passward:

LogIn l [Cancel I

2. Capture the screenshot of the Authentication Required dialog box and extract
images as shown next for each control:

Control Screenshot
User Name: textbox

dser Mame;
Password: textbox

Password:

Log In button

3. Save these extracted images separately in PNG (Portable Network Graphics) format,
in a folder that can be accessed from tests easily.

4. Addthe sikuli-script.jar file to the test project. You can get this file from the
Sikuli installation folder.

5. Create a new test, name it Ht tpAuthTest and copy the following code to this test:

import org.openga.selenium.WebDriver;
import org.openga.selenium.chrome.ChromeDriver;

import org.openga.selenium.By;

import org.sikuli.script.FindFailed;

=

Integration with Other Tools

import org.sikuli.script.Screen;

import org.junit.*;
import static org.junit.Assert.fail;

public class HttpAuthTest
private WebDriver driver;

private StringBuffer verificationErrors = new
StringBuffer () ;

@Before
public void setUp() {
driver = new ChromeDriver () ;

driver.get ("http://www.httpwatch.com/
httpgallery/authentication/") ;

@Test

public void testHttpAuth() throws
InterruptedException {

driver.findElement (By.id
("displayImage")) .click();

//Get the system screen.
Screen s = new Screen() ;

try {

//Sikuli type command will use the image file
//of the control

//and text that needs to be entered in to the
//control

s.type ("C:\\UserName.png", "httpwatch");
s.type ("C:\\Password.png", "dhjhfj") ;

//Sikuli click command will use the image
//file of the control
s.click("C:\\Login.png") ;

} catch (FindFailed e) ({
//Sikuli raises FindFailed exception it fails
//to locate the image on to the screen
e.printStackTrace() ;

=]

Integration with Other Tools

}

@After
public void tearDown () {
driver.close() ;

String verificationErrorString =
verificationErrors.toString() ;

if (!"".equals(verificationErrorString)) ({
fail (verificationErrorString) ;

}

As Sikuli uses visual identification technology to identify and interact with windows and
controls, it requires images of the controls to perform the action. During the execution, it
locates the regions captured in the image on the screen and performs the specified action.

s.type ("C:\\UserName.png", "httpwatch");

In this example, it searches the screen for a region that matches the image captured in
UserName . png and performs the type () command. Sikuli replays these commands as if a
real user is working on the screen.

Sikuli may fail to interact with the application if the region captured in the image is not
displayed on the screen or overlapped with other windows.

There's more...

By using Sikuli, you can automate RIA technologies such as Flash and Silverlight, along with
the Selenium WebDriver.

See also

» The Automating non-web Ul in Selenium WebDriver with Autolt recipe

