
Integration with  
Other Tools

In this chapter, we will cover:

ff Configuring Eclipse and Maven for Selenium WebDriver test development

ff Configuring IntelliJ IDEA and Maven for Selenium WebDriver test development

ff Using Ant for Selenium WebDriver test execution

ff Configuring Jenkins for continuous integration

ff Using Jenkins and Maven for Selenium WebDriver test execution in  
continuous integration

ff Using Jenkins and Ant for Selenium WebDriver test execution in continuous integration

ff Configuring Microsoft Visual Studio for Selenium WebDriver test development

ff Automating non-web UI in Selenium WebDriver with AutoIt

ff Automating non-web UI in Selenium WebDriver with Sikuli

Introduction
Selenium WebDriver has been widely used in combination with various tools due to its neat 
and clean object-oriented API. We can integrate Selenium WebDriver with other tools easily for 
developing testing frameworks.

The initial sections of this chapter explore Selenium WebDriver's integration with development 
and build tools such as Eclipse, IntelliJ IDEA, Maven, Ant, Microsoft Visual Studio, and Jenkins 
CI server. These tools provide an easy way to develop test automation frameworks and extend 
the capabilities of Selenium WebDriver API. The following recipes will explain how to set up 
and configure these tools with Selenium.



Integration with Other Tools

2

Lastly, we will explore how to automate non-web GUI using tools such as AutoIt and Sikuli with 
Selenium WebDriver. Both the tools are famous in the free and open source software world for 
automating user tasks and provide their own approaches for automating the GUI.

Configuring Eclipse and Maven for Selenium 
WebDriver test development

Selenium WebDriver is a simple API that comes to your help for browser automation. However, 
when using it for testing and building a test framework, there is much more needed. You will 
need to integrate Selenium WebDriver API with different libraries, tools, and so on, for test 
development. You will need an Integrated Development Environment (IDE) to build your test 
project and inject other dependencies to build the framework.

Eclipse is a widely used IDE in the Java world. Eclipse provides a feature-rich environment for 
Selenium WebDriver test development.

Along with Eclipse, Apache Maven provides support for managing the entire lifecycle of a test 
project. Maven is used to define project structure, dependencies, build, and test management.

You can use Eclipse and Maven for building your Selenium WebDriver test framework from a 
single window. Another important benefit of using Maven is that you can get all the Selenium 
library files and their dependencies by configuring the pom.xml file. Maven automatically 
downloads the necessary files from the repository while building the project.

This recipe will explain how to configure Eclipse and Maven for the Selenium WebDriver test 
development. Most of the code in this book has been developed in Eclipse and Maven.

Getting ready
1.	 Download and set up Maven from http://maven.apache.org/download.html.

Follow the instructions on the Maven download page (see the Installation Instructions 
section on the page).

2.	 Download and set up Eclipse from http://www.eclipse.org/downloads/
packages/eclipse-ide-java-developers/junor.

For this recipe, Eclipse (Juno) IDE for Java Developers is used to set up Selenium 
WebDriver Project. This comes with the Maven plugin bundled with other packages.

http://maven.apache.org/download.html


Integration with Other Tools

3

How to do it...
Let's configure Eclipse with Maven for developing Selenium WebDriver tests using the  
following steps:

1.	 Launch the Eclipse IDE.

2.	 Create a new project by selecting File |New | Other from Eclipse Main Menu.

3.	 On the New dialog, select Maven |Maven Project as shown in the following screenshot:



Integration with Other Tools

4

4.	 Next, the New Maven Project dialog will be displayed. Select the Create a simple 
project (skip archetype selection) checkbox and set everything to default and click 
on the Next button as shown in the following screenshot:

5.	 On the New Maven Project dialog box, enter SeleniumCookbook in Group Id: and 
Artifact Id: textboxes. You can also add a name and description. Set everything to 
default and click on the Finish button as shown in the following screenshot:



Integration with Other Tools

5

6.	 Eclipse will create the SeleniumCookbook project with a structure (in Package 
Explorer) similar to the one shown in the following screenshot:

7.	 Right-click on JRE System Library [J2SE-1.5] and select the Properties option from 
the menu.

8.	 On the Properties for JRE System Library [J2SE-1.5] dialog box, make sure Workspace 
default JRE (jre6) is selected. If this option is not selected by default, select this option. 
The JRE version might change based on the Java version installed on your machine. 
Click on the OK button to save the change as shown in the following screenshot:



Integration with Other Tools

6

9.	 Select pom.xml from Package Explorer. This will open the pom.xml file in the editor 
area with the Overview tab open. Select the pom.xml tab instead.

10.	 Add the WebDriver and JUnit dependencies highlighted in the following code snippet, 
to pom.xml in the <project> node:
<project xmlns="http://maven.apache.org/POM/4.0.0"  
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0  
    http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <groupId>SeleniumCookbook</groupId>
    <artifactId>SeleniumCookbook</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <dependencies>
        <dependency>
            <groupId>org.seleniumhq.selenium</groupId>
            <artifactId>selenium-java</artifactId>
            <version>2.25.0</version>
        </dependency>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.8.1</version>
            <scope>test</scope>
        </dependency>
    </dependencies>
</project>

11.	 You can get the latest dependency information for Selenium WebDriver and JUnit 
from http://seleniumhq.org/download/maven.html and http://maven.
apache.org/plugins/maven-surefire-plugin/examples/junit.html 
respectively.

TestNG is another widely used unit-testing framework in Java World. If you 
want to add TestNG support to the project instead of JUnit, you can get its 
Maven entry at http://testng.org/doc/maven.html.

12.	 Select src/test/java in Package Explorer and right-click for the menu.  
Select New | Class.

http://seleniumhq.org/download/maven.html
http://maven.apache.org/plugins/maven-surefire-plugin/examples/junit.html
http://maven.apache.org/plugins/maven-surefire-plugin/examples/junit.html
http://testng.org/doc/maven.html


Integration with Other Tools

7

13.	 Enter seleniumcookbook.examples.test in the Package: textbox and 
GoogleSearchTest in the Name: textbox and click on the Finish button as  
shown in the following screenshot:



Integration with Other Tools

8

14.	 This will create the GoogleSearchTest class as shown in the following screenshot:

15.	 Add the following code in the GoogleSearchTest class:
package seleniumcookbook.examples.test;

import org.openqa.selenium.firefox.FirefoxDriver;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.By;
import org.openqa.selenium.support.ui.ExpectedCondition;
import org.openqa.selenium.support.ui.WebDriverWait;
import org.junit.*;
import static org.junit.Assert.*;

public class GoogleSearchTest {

    protected WebDriver driver;
    private StringBuffer verificationErrors =  
        new StringBuffer();

    @Before
    public void setUp(){
        driver = new FirefoxDriver();
        driver.get("http://www.google.com");



Integration with Other Tools

9

    }

    @Test
    public void testGoogleSearch() {
        try {

            // Find the text input element by its name
            WebElement element =  
                driver.findElement(By.name("q"));

            // Enter something to search for
            element.sendKeys 
                ("Selenium testing tools cookbook");

            // Now submit the form. WebDriver will find  
            //the form for us from the element
            element.submit();

            // Google's search is rendered dynamically  
            //with JavaScript.
            // Wait for the page to load, timeout after  
            //10 seconds
            (new WebDriverWait(driver, 10)).until 
            (new ExpectedCondition<Boolean>() {
                public Boolean apply(WebDriver d) {
                    return d.getTitle().toLowerCase(). 
                        startsWith("selenium testing  
                        tools cookbook");
                }
            });

            // Should see: selenium testing tools  
            //cookbook - Google Search
            assertEquals("selenium testing tools cookbook  
                - Google Search", driver.getTitle());
        } catch (Error e) {
            //Capture and append Exceptions/Errors
            verificationErrors.append(e.toString());
        }
    }

    @After
    public void tearDown() throws Exception {
        //Close the browser



Integration with Other Tools

10

        driver.quit();

        String verificationErrorString =  
            verificationErrors.toString();
        if (!"".equals(verificationErrorString)) {
            fail(verificationErrorString);
        }
    }
}

16.	 To run the tests in the Maven lifecycle, select the SeleniumCookbook project in 
Package Explorer. Right-click on the project name and select Run As |Maven test. 
Maven will execute all the tests from the project.

How it works...
Eclipse provides the ability to create Selenium WebDriver test projects easily with its Maven 
plugin, taking away the pain of project configurations, directory structure, dependency 
management, and so on. It also provides a powerful code editor for writing the test code.

When you set up a project using Maven in Eclipse, it creates the pom.xml file, which defines 
the configuration of the project and its structure. This file also contains the dependencies 
needed for building, testing, and running the code. For example, the following shows 
dependency information about Selenium WebDriver that we added in pom.xml:

<dependency>
    <groupId>org.seleniumhq.selenium</groupId>
    <artifactId>selenium-java</artifactId>
    <version>2.25.0</version>
</dependency>

Most of the open source projects publish this information on their website. In this case, you 
can check http://seleniumhq.org/download/maven.html; you can also get this 
information from Maven Central at http://search.maven.org/#browse. Maven will 
automatically download libraries and support files mentioned for all the dependencies and 
add to the project without you needing to find, download, and install these files to the project. 
This saves a lot of our time and effort while managing the dependency-related tasks.

Maven also generates a standard directory structure for your code for easier management 
and maintenance. In the previous example, it created the src/test/java folder for test 
code and the src/test/resources folder to maintain resources needed for testing, such 
as test data files, utilities, and so on.

Maven provides lifecycle steps such as building the test code and running the test. If you are 
working with the Java development team, then you might find the application code and test 
code together in Maven. Here, Maven supports building the application code, then firing the 
tests and releasing the software to production.

http://seleniumhq.org/download/maven.html


Integration with Other Tools

11

There's more…
Maven can also be used to execute the test from the command line. To run tests from the 
command line, navigate to the SeleniumCookbook project folder through the command line 
and type the following command:

mvn clean test

This command will traverse through all the subdirectories and run the clean command to 
delete/remove earlier build files. It will then build the project and run the tests. You will see 
the results at the end of execution on command line.

See also
ff The Configuring IntelliJ IDEA and Maven for Selenium WebDriver test  

development recipe

ff The Using Jenkins and Maven for Selenium WebDriver test execution in continuous 
integration recipe

Configuring IntelliJ IDEA and Maven for 
Selenium WebDriver test development

IntelliJ IDEA is another very popular IDE available for Java development from JetBrains. Unlike 
Eclipse, IntelliJ IDEA is a commercial tool. However, JetBrains offers a community edition with 
limited features for free use.

This recipe will describe the steps for configuring IntelliJ IDEA and Maven for Selenium 
WebDriver test development.

Getting ready
1.	 Download and install IntelliJ IDEA from http://www.jetbrains.com/idea/

download/index.html.

JetBrains offers IntelliJ IDEA Ultimate and Community editions. The Ultimate Edition is 
a commercial version of the product whereas the Community Edition is offered free, 
and only supports Java, Groovy, and Scala Projects. In this recipe, the Community 
Edition is used to set up the Selenium WebDriver project.

2.	 Download and install Maven from http://maven.apache.org/download.html.

Follow the instructions on the Maven download page (see the Installation Instructions 
section on the page).

http://maven.apache.org/download.html


Integration with Other Tools

12

If you are using IntelliJ IDEA for the first time, please configure JSDK by 
referring to the steps at http://www.jetbrains.com/idea/webhelp/
configuring-global-project-and-module-sdks.html.

How to do it...
Let's configure IntelliJ IDEA with Maven for developing Selenium WebDriver tests, using the 
following steps:

1.	 Launch the IntelliJ IDEA.

2.	 Create a new project by selecting File |New Project from the IntelliJ main menu. The 
New Project dialog box will be displayed as shown in the following screenshot:

http://www.jetbrains.com/idea/webhelp/configuring-global-project-and-module-sdks.html
http://www.jetbrains.com/idea/webhelp/configuring-global-project-and-module-sdks.html


Integration with Other Tools

13

3.	 On the New Project dialog, select the Create project from scratch radio button and 
click on the Next button as shown in the following screenshot:

4.	 On the New Project dialog, enter SeleniumCookbook in the Project name: textbox. 
Select the Maven Module option from the Select type list.

5.	 Leave the remaining options with their default value and click on the Next button as 
shown in the following screenshot:



Integration with Other Tools

14

6.	 Leave the remaining options to their default value and click on the Finish button.

7.	 A new project will be created with the pom.xml file open in the editor area.

8.	 Now add the following Selenium WebDriver and JUnit dependency in pom.xml.
    <dependencies>
        <dependency>
            <groupId>org.seleniumhq.selenium</groupId>
            <artifactId>selenium-java</artifactId>
            <version>2.25.0</version>
        </dependency>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.8.1</version>
            <scope>test</scope>
        </dependency>
    </dependencies>

9.	 Your POM should look as shown in the following screenshot:



Integration with Other Tools

15

10.	 You may optionally get a Maven projects need to be imported message pop up 
displayed at the top-right corner as shown in the following screenshot:

11.	 Click on Enable Auto-Import on the Maven projects need to be imported  
message pop up.

12.	 In Project Explorer, select and right-click on the test/java folder. On the pop up 
menu, select New | Package. This will display a New Package dialog box as shown 
in the following screenshot:

13.	 Add a new Java class to this newly created package by right-clicking on the 
seleniumcookbook.example.test package, and on the pop up menu select  
New |Java Class. This will display the Create New Class dialog as shown  
in the following screenshot:



Integration with Other Tools

16

14.	 Enter GoogleSearchTest in the Name: textbox and click on the OK button.

15.	 The editor will create the GoogleSearchTest class in a new tab.

16.	 Copy the following code to the GoogleSearchTest class:
import org.openqa.selenium.firefox.FirefoxDriver;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.By;
import org.openqa.selenium.support.ui.ExpectedCondition;
import org.openqa.selenium.support.ui.WebDriverWait;
import org.junit.*;
import static org.junit.Assert.*;

public class GoogleSearchTest {
    protected WebDriver driver;
    private StringBuffer verificationErrors =  
        new StringBuffer();

    @Before
    public void setUp(){
        driver = new FirefoxDriver();
        driver.get("http://www.google.com");
    }

    @Test
    public void testGoogleSearch() {
        try {
            // Find the text input element by its name
            WebElement element =  
                driver.findElement(By.name("q"));

            // Enter something to search for
            element.sendKeys("Selenium testing tools  
                cookbook");

            // Now submit the form. WebDriver will find  
           //the form for us from the element
            element.submit();

            // Google's search is rendered dynamically  
            //with JavaScript.
            // Wait for the page to load, timeout after  
            //10 seconds
            (new WebDriverWait(driver, 10)).until(new  
                ExpectedCondition<Boolean>() {



Integration with Other Tools

17

                public Boolean apply(WebDriver d) {
                    return d.getTitle().toLowerCase(). 
                        startsWith("selenium testing  
                        tools cookbook");
                }
            });

            // Should see: selenium testing tools  
            //cookbook - Google Search
            assertEquals("selenium testing tools cookbook  
                - Google Search", driver.getTitle());
        } catch (Error e) {
            //Capture and append Exceptions/Errors
            verificationErrors.append(e.toString());
        }
    }

    @After
    public void tearDown() throws Exception {
        //Close the browser
        driver.quit();

        String verificationErrorString =  
            verificationErrors.toString();
        if (!"".equals(verificationErrorString)) {
            fail(verificationErrorString);
        }
    }
}



Integration with Other Tools

18

17.	 Click on the Maven Projects option in the right sidebar. This will open the Maven 
Projects explorer with the SeleniumCookbook project. Select and expand the 
project. Select Lifecycle and then the test option to execute the previous test with 
Maven as shown in the following screenshot:

How it works...
After Eclipse, IntelliJ IDEA is the widely used IDE available for developing software with Java. 
It provides a highly productive environment for test development with its advanced user 
interface, code editor, and IntelliSense features.

It also provides integration with Maven, Ant, and various other tools for project and build 
management and SCM tools for version control.

See also
ff The Configuring Eclipse and Maven for Selenium WebDriver test development recipe

ff The Using Jenkins and Maven for Selenium WebDriver test execution in continuous 
integration recipe

Using Ant for Selenium WebDriver test 
execution

Apache Ant is a popular build management tool available for Java developers. It is similar to 
Apache Maven, but does not support project management and dependency management 
features like Maven. It's a pure build tool.

Ant is another choice for running Selenium WebDriver tests from the command line or through 
continuous integration (CI) tools such as Jenkins.



Integration with Other Tools

19

In this recipe, we will add Ant support to the SeleniumCookbook project created in the 
Configuring Eclipse and Maven for Selenium WebDriver test development recipe.

Getting ready
You can download and install WinAnt on Windows. WinAnt comes with an installer  
that will configure Ant through the installer. The WinAnt installer is available at  
http://code.google.com/p/winant/.

You can also download and configure Ant from http://ant.apache.org/bindownload.
cgi for other OS platforms. This recipe uses WinAnt on the Windows OS.

How to do it...
Let's set up the SeleniumCookbook project for Ant with following steps:

1.	 Create a lib folder and copy the JAR files for the dependencies used for this project, 
that is, Selenium WebDriver and JUnit.

2.	 Create the build.xml file in the project folder with the following XML:
<?xml version="1.0" encoding="UTF-8"?>
<project name="test" default="exec" basedir=".">

    <property name="src" value="./src" />
    <property name="lib" value="./lib" />
    <property name="bin" value="./bin" />
    <property name="report" value="./report" />
    <path id="test.classpath">
        <pathelement location="${bin}" />
        <fileset dir="${lib}">
            <include name="**/*.jar" />
        </fileset>
    </path>

    <target name="init">
        <delete dir="${bin}" />
        <mkdir dir="${bin}" />
    </target>

    <target name="compile" depends="init">
        <javac source="1.6" srcdir="${src}" fork="true"  
            destdir="${bin}" >
            <classpath>
                        <pathelement path="${bin}">
                        </pathelement>

http://code.google.com/p/winant/
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/bindownload.cgi


Integration with Other Tools

20

                <fileset dir="${lib}">
                    <include name="**/*.jar" />
                </fileset>
            </classpath>
        </javac>
    </target>

    <target name="exec" depends="compile">
        <delete dir="${report}" />
        <mkdir dir="${report}" />
            <mkdir dir="${report}/xml" />
        <junit printsummary="yes" haltonfailure="no">
            <classpath>
                <pathelement location="${bin}" />
                <fileset dir="${lib}">
                    <include name="**/*.jar" />
                </fileset>
            </classpath>

            <test name="seleniumcookbook. 
                examples.test.GoogleSearchTest"  
                haltonfailure="no" todir="${report}/xml"  
                outfile="TEST-result">
                <formatter type="xml" />
            </test>
        </junit>
        <junitreport todir="${report}">
            <fileset dir="${report}/xml">
                <include name="TEST*.xml" />
            </fileset>
            <report format="frames"  
                todir="${report}/html" />
        </junitreport>
    </target>
</project>

3.	 Navigate to the project directory through the command line and type the  
following command:
ant

This will trigger the build process. You will see the test running. At the end, Ant will 
create a report folder in the project folder. Navigate to the html subfolder in the 
report folder and open the index.html file to view the results.



Integration with Other Tools

21

How it works...
Ant needs a build.xml file with all configurations and steps that are needed to build the 
project. We can add steps for report generation, sending e-mail notification, and so on to 
build.xml. Ant provides a very dynamic framework for defining steps in the build process.

Ant also needs the necessary library/JAR files to be copied in the lib folder, which are 
needed for building the project.

Ant scans for the entire tests in the project and executes these tests in a way similar to Maven.

See also
ff The Using Jenkins and Ant for Selenium WebDriver test execution in continuous 

integration recipe

Configuring Jenkins for continuous 
integration

Jenkins is a popular continuous integration server in the Java development community. It 
is derived from the Hudson CI server. It supports SCM tools including CVS, Subversion, Git, 
Mercurial, Perforce, and ClearCase, and can execute Apache Ant and Apache Maven based 
projects as well as arbitrary shell scripts and Windows batch commands.

Jenkins can be deployed to set up an automated testing environment where you can run 
Selenium WebDriver tests unattended based on a defined schedule, or every time changes 
are submitted in SCM.

In this recipe, we will set up Jenkins Server for running Maven and Ant projects. Later recipes 
describe how Ant and Maven is used to run Selenium WebDriver tests with Jenkins.

Getting ready
Download and install the Jenkins CI server from http://jenkins-ci.org/. For this recipe, 
the Jenkins Windows installer is used to set up Jenkins on a Windows 7 machine.

http://jenkins-ci.org/


Integration with Other Tools

22

How to do it...
Before using Jenkins, we need to set up the following options in the Jenkins configuration:

1.	 Navigate to the Jenkins Dashboard (http://localhost:8080 by default) in the 
browser window.

2.	 On Jenkins Dashboard, click on the Manage Jenkins link.

3.	 On the Manage Jenkins page, click on the Configure System link.

Adding JDK
1.	 On the Configure System page, locate the JDK section.

2.	 Click on the Add JDK button in the JDK section.

3.	 Specify JDK6 in the Name field and unselect the Install automatically checkbox.

4.	 In the JAVA_HOME textbox, enter the path of the JDK folder from your system.  
In the following screenshot, C:\Program Files\Java\jdk1.6.0_30 has  
been specified:

Adding Ant
1.	 On the Configure System page, locate the Ant section.

2.	 Click on the Add Ant button in the Ant section.

3.	 Specify Ant in the Name field and unselect the Install automatically checkbox.

http://localhost:8080


Integration with Other Tools

23

4.	 In the ANT_HOME textbox, enter the path of the Ant folder from your system. In the 
following screenshot, C:\Program Files\WinAnt has been specified for the 
WinAnt version:

Adding Maven
1.	 On the Configure System page, locate the Maven section.

2.	 Click on the Add Maven button in Maven section.

3.	 Specify Maven in the Name field and unselect the Install automatically checkbox.

4.	 In the MAVEN_HOME textbox, enter the path of the Maven folder from your system. In 
the following screenshot, MAVEN_HOME contains C:\apache-maven:

5.	 Click on the Save button to save the configuration.

There's more…
Jenkins also runs a Selenium standalone server which can be used as a remote web 
driver. Using Jenkins master/slave architecture, we can build a distributed build and test 
environment for large-scale test automation projects.



Integration with Other Tools

24

See also
ff The Using Jenkins and Maven for Selenium WebDriver test execution in continuous 

integration recipe

ff The Using Jenkins and Ant for Selenium WebDriver test execution in continuous 
integration recipe

Using Jenkins and Maven for Selenium 
WebDriver test execution in continuous 
integration

Jenkins supports Maven for building and testing a project in continuous integration. In this 
recipe, we will set up Jenkins to run tests from a Maven project.

Getting ready
Running tests with Jenkins and Maven needs both the tools installed on the machine. In this 
recipe, the SeleniumCookbook project is used from the earlier Configuring Eclipse and 
Maven for Selenium WebDriver test development recipe.

This recipe refers to Subversion as Source Code Management (SCM) tool for the 
SeleniumCookbook project.

You can use various SCM tools along with Jenkins. If Jenkins does not support a SCM tool that 
you are using, please check the Jenkins plugin directory for specific SCM tool plugins.

How to do it...
1.	 Navigate to the Jenkins Dashboard (http://localhost:8080 by default) in the 

browser window.

2.	 On Jenkins Dashboard, click on the New Job link to create a CI job.

3.	 Enter Selenium Cookbook in the Job name textbox.

http://localhost:8080


Integration with Other Tools

25

4.	 Select the Build a maven2/3 project radio button as shown in the following screenshot:

5.	 Click on OK.

6.	 A new job will be created with the specified name.

7.	 On the job configuration page, go to the Source Code Management section and 
select the Subversion radio button.

8.	 Enter the URL of your test code in the Repository URL textbox as shown in the 
following screenshot. Optionally, Jenkins will ask for Subversion login details. Provide 
user credentials as configured on your SVN server.



Integration with Other Tools

26

9.	 Go to the Build section. In the Root POM textbox, enter pom.xml and in the Goals 
and options textbox, enter clean test as shown in the following screenshot:

10.	 On the Selenium Cookbook project page, click on the Build Now link. Go back to the 
Jenkins Dashboard.

11.	 Maven builds the project and executes tests from the project. Once the build process 
is completed, click on the Selenium Cookbook project from the list as shown in the 
following screenshot:

The Selenium Cookbook project page displays the build history and links to the 
results as shown in the following screenshot:



Integration with Other Tools

27

12.	 Click on the Latest Test Result link to view the test results as shown in the  
following screenshot:

Scheduling build for automatic execution
1.	 Go to the Selenium Cookbook project configuration in Jenkins.

2.	 In the Build Triggers section, select the Build periodically checkbox.

3.	 Enter 0 22 * * * in the Schedule textbox as shown in the following screenshot. This 
will trigger the build process every day at 10 p.m. and the test will run unattended.

4.	 Click on the Save button to save the configurations.

How it works...
Using the Build a Maven2/3 Project option, Jenkins supports building and testing  
Maven projects.

Jenkins supports various SCM tools such as CVS, and Subversion. To get the source code from 
SCM, specify the repository location and check out the strategy. Since Maven is used in this 
example, specify the path of root POM and Maven Goal.

While building the project, Jenkins gets the latest source from SCM to the Jenkins project 
workspace. It will then call Maven with specified goals. When the build process is complete, 
Jenkins gets the test results from Maven and displays these results on the project page.



Integration with Other Tools

28

Scheduling builds
One of the important features of Jenkins is that it automatically triggers the build, based on 
defined criteria. Jenkins provides multiple ways to trigger the build process under the Build 
Trigger configuration. Build Trigger can be set at a specific time. In the previous example, 
it is set to trigger the process every day at 10 p.m. This provides the ability to run tests 
unattended, nightly, so that you can see the results the next morning.

Test results
Jenkins provides the ability to display test results by reading the results files generated by unit 
test frameworks. It also archives these results, which can be used to generate various metrics 
over time.

See also
ff The Configuring Jenkins for continuous integration recipe

Using Jenkins and Ant for Selenium 
WebDriver test execution in continuous 
integration

Ant can also be configured to run tests in continuous integration with Jenkins. In this recipe, 
we will set up Jenkins to run tests with Ant.

Getting ready
Running tests with Jenkins and Ant needs both the tools installed on the machine. Refer to 
the Using Ant for Selenium WebDriver test execution and Configuring Jenkins for continuous 
integration recipes to install and configure Ant and Jenkins.

How to do it...
Let's configure Jenkins and Ant for running tests in CI:

1.	 Navigate to the Jenkins Dashboard (http://localhost:8080 by default) in the 
browser window.

2.	 On Jenkins Dashboard, click on the New Job link to create a CI job.

3.	 Enter Selenium Cookbook in the Job name: textbox.

http://localhost:8080


Integration with Other Tools

29

4.	 Select the Build a free-style software project radio button as shown in the  
following screenshot:

5.	 Click on OK.

6.	 A new job will be created with the Selenium Cookbook name.

7.	 On the job configuration page, go to the Source Code Management section and 
select the Subversion radio button.

8.	 Enter the URL of your test code in the Repository URL textbox as shown in the 
following screenshot. Optionally, Jenkins will ask for Subversion login details. Provide 
user credentials as configured on your SVN server.



Integration with Other Tools

30

9.	 Go to the Build section. Click on the Add build step button once again and select 
Invoke Ant option from the drop-down list.

10.	 The Ant version textbox will display Default as shown in the following screenshot:

11.	 Go to the Post-build Actions section.

12.	 Click on the Add post-build action button and select Publish JUnit test result report 
from the drop-down list.

13.	 In the Test report XMLs textbox, enter **/report/*.xml as shown in the  
following screenshot:

14.	 Click on the Save button to save the configuration.

15.	 Go back to the Jenkins Dashboard page.

16.	 Click on the Schedule a Build button to trigger the build. Ant will execute the test. 
Once the build process is completed, click on the Selenium Cookbook project from 
the list as shown in the following screenshot:



Integration with Other Tools

31

The project page displays the build history and links to the results as shown in the 
following screenshot:

17.	 Click on the Latest Test Result link to view the test results as shown in the  
following screenshot:

Scheduling build for automatic execution
1.	 Go to the Selenium Cookbook project configuration in Jenkins.

2.	 In the Build Triggers section, select the Build periodically checkbox.



Integration with Other Tools

32

3.	 Enter 0 22 * * * in the Schedule textbox as shown in the following screenshot. 
This will trigger the build process every day at 10 p.m.

4.	 Click on the Save button to save the configurations.

There's more…
The preceding example uses SCM to get the test source code to the Jenkins workspace. 
However, if you are not using SCM, you can copy the code from the source folders to the 
Jenkins workspace, so that it gets the latest version of test source code. This can be done 
by writing a batch or a shell script that will clean the Jenkins project workspace and copy 
the latest test code to the workspace. For running this batch file, use the None option in the 
Source Code Management section and specify the batch file path in Pre Steps | Execute 
Windows batch command or the Execute shell option as shown in the following screenshot:



Integration with Other Tools

33

See also
ff The Using Ant for Selenium WebDriver test execution recipe

ff The Configuring Jenkins for continuous integration recipe

Configuring Microsoft Visual Studio for 
Selenium WebDriver test development

Selenium WebDriver provides .NET bindings for developing Selenium tests with the  
.NET platform. For using the Selenium WebDriver API, you need to reference Selenium 
WebDriver libraries to the project. Microsoft Visual Studio being the major IDE used in the 
.NET world, setting up the Selenium WebDriver support has become easier with NuGet 
Package Manager (http://nuget.org/).

This recipe explains setting up Selenium WebDriver in Microsoft Visual Studio 2012  
using NuGet.

Getting ready
NuGet comes bundled with Microsoft Visual Studio 2012. However, for Microsoft Visual  
Studio 2010, download and install NuGet from nuget.codeplex.com.

How to do it...
Let's configure Microsoft Visual Studio 2012 for developing Selenium WebDriver tests, using 
the following steps:

1.	 Launch the Microsoft Visual Studio.

2.	 Create a new project by selecting File |New | Project from the main menu.

http://nuget.org/


Integration with Other Tools

34

3.	 On the New Project dialog box, select Visual C# | Class Library Project. Name  
the project as SeleniumCookbook and click on the OK button as shown in the 
following screenshot:

4.	 Next, add WebDriver and NUnit using NuGet. Right-click on the SeleniumCookbook 
solution in Solution Explorer and select Manage NuGet Packages… as shown in the 
following screenshot:



Integration with Other Tools

35

5.	 On the SeleniumCookbook.sln - Manage NuGet Packages dialog box, select  
Online and search for the WebDriver package. The search will result in the  
following suggestions:

6.	 Select Selenium WebDriver from the list and click on the Install button. Repeat this 
step for Selenium WebDriver Support Classes.

7.	 Next, search for the NUnit package on the SeleniumCookbook.sln - Manage NuGet 
Packages dialog box.

8.	 Select NUnit from the search result and click on the Install button.

9.	 Close the SeleniumCookbook.sln - Manage NuGet Packages dialog box.



Integration with Other Tools

36

10.	 Expand the References tree for SeleniumCookbook solution in Solution Explorer. 
References for WebDriver and NUnit is added to the project as shown in the  
following screenshot:

11.	 The SeleniumCookbook project is ready for test development. Go on adding new 
tests as needed.

How it works...
NuGet Package Manager adds the external dependencies to Microsoft Visual Studio projects. 
It lists all available packages and automatically downloads and configures packages to the 
project. It also installs dependencies for the selected packages automatically. This saves a lot 
of effort in configuring the projects initially.

Automating non-web UI in Selenium 
WebDriver with AutoIt

Selenium WebDriver is a pure browser automation API and works with HTML/web elements. 
It does not support native UI built with C++, .NET, Java, or any other desktop technologies. It 
also does not support Flex, Flash, or Silverlight native controls out of the box.

While testing applications that interact with native UI, it becomes difficult to automate the 
functionality involved. For example, the web application provides a file upload feature that 
invokes native OS UI for selecting a file.



Integration with Other Tools

37

We can use tools such as AutoIt to handle native UI. AutoIt is a freeware BASIC-like scripting 
language designed for automating the Windows GUI and general scripting. By using AutoIt, we 
can simulate a combination of keystrokes, mouse movement, and window/control manipulation 
in order to automate. It is a very small, self-contained utility. It runs on all versions of Windows 
operating system. AutoIt scripts can be compiled as self-contained executables.

AutoIt has certain limitations in terms of OS support as it is not supported on Linux and Mac 
OSX and it will not work with RemoteWebDriver.

In this recipe, we will explore integration of AutoIt with Selenium WebDriver for testing the file 
upload functionality on a sample page.

Getting ready
Download and install AutoIt tools from http://www.autoitscript.com/site/autoit/
downloads/.

How to do it...
For implementing the file upload functionality, there are a number of libraries or plugins 
available, which provide a number of additional features for uploading files. We will use the 
jQuery File Upload plugin. It offers multiple ways in which users can upload files on the server. 
Users can either drag-and-drop a file on the browser or can click on the Add Files button, 
which opens the native Open dialog box.

http://www.autoitscript.com/site/autoit/downloads/
http://www.autoitscript.com/site/autoit/downloads/


Integration with Other Tools

38

We will automate a test where the user can upload a file by clicking on the Add Files button. 
This invokes the Open dialog box as shown in previous screenshot. We will create an AutoIt 
script to automate interactions on this dialog box.

Creating the AutoIt script
Let's create an AutoIt script which works with the Open dialog box.

1.	 Launch SciTE Script Editor from Start | AutoIt.

2.	 Create a new script by selecting File |New from the SciTE Script Editor main menu.

3.	 Name and save this file as OpenDialogHandler.au3 (AutoIt scripts have .au3 
extension) and copy the following code to the script, then save the script:
WinWaitActive("Open","","20")
If WinExists("Open") Then
    ControlSetText("Open","","Edit1",$CmdLine[1])
    ControlClick("Open","","&Open")
EndIf

4.	 Launch the Compile Script to .exe utility from Start | AutoIt. By using 
the Compile Script to .exe utility, we will convert the AutoIt script into an 
executable file.

5.	 On the Aut2Exe v3 - AutoIt Script to EXE Converter window, enter the path of the 
AutoIt script in the Source (AutoIt .au3 file) textbox and path of executable in the 
Destination (.exe/.a3x file) textbox and click on the Convert button as shown in the 
following screenshot:



Integration with Other Tools

39

Using OpenDialogHandler in Selenium WebDriver script
1.	 Now create a test where we can click on the Add Files button and then call the 

OpenDialogHandler.exe and validate that the specified file is uploaded on  
the page. 

2.	 Create a new test class named FileUpload and copy the following code in to it:
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.chrome.ChromeDriver;
import org.openqa.selenium.By;
import org.openqa.selenium.support.ui.ExpectedCondition;
import org.openqa.selenium.support.ui.WebDriverWait;

import org.junit.*;
import static org.junit.Assert.*;

public class FileUpload {
    protected WebDriver driver;
    
    @Before
    public void setUp() {
        driver = new ChromeDriver();
        driver.get("http://blueimp.github.com/jQuery- 
            File-Upload/");
    }
    
    @Test
    public void testFileUpload() throws  
        InterruptedException {
        try {

            //Click on Add Files button
            driver.findElement(By.className("fileinput- 
                button")).click();
            
            //Call the OpenDialogHandler, specify the  
            //path of the file to be uploaded
            Runtime.getRuntime().exec(new String[]  
                {"C:\\Utils\\OpenDialogHandler.exe",  
                "\"C:\\Users\\Admin\\Desktop\\ 
                Picture1.png\""});
            
            //Wait until file is uploaded
            boolean result = (new WebDriverWait 
                (driver, 30)).until(new  
                ExpectedCondition<Boolean>() {



Integration with Other Tools

40

                public Boolean apply(WebDriver d) {
                    return d.findElement(By.xpath 
                    ("//table[@role='presentation']")) 
                    .findElements(By.tagName 
                     ("tr")).size() > 0;
            }});
            
            assertTrue(result);
            
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
    
    @After
    public void tearDown() {
        driver.close();
    }
}

How it works...
AutoIt provides an API for automating native Windows UI control. In this example, we used 
the WinWaitActive() function, which waits for a window. It takes the title of the expected 
window, text of the window, and timeout as parameters. We supplied the title as Open and 
time out of 20 seconds. The text of the windows is passed as blank, as the title is enough to 
identify the window.

WinWaitActive("Open","","20")

Once the open window is activated, the ControlSetText() function is called to enter the 
text in the File name: textbox.

ControlSetText("Open","","Edit1",$CmdLine[1])

This function takes the title of the window, text of the window, control ID, and text that needs 
to be entered in the textbox. Similar to locators in Selenium, AutoIt identifies controls using 
control IDs. You can find control IDs using AutoIt V3 Window Info tool installed with AutoIt. You 
can spy on a window or control using this tool and find out various properties. In this example, 
the ControlSetText() function takes the last parameter as $CmdLine[1]. Instead of 
hardcoding the path of filename that we want to upload, we will pass the filename to AutoIt 
script using command line arguments; $CmdLine[1] will hold this value.

For clicking on the Open button, the ControlClick() function is called. This function takes 
the title of the window, text of the windows, and control ID as parameters.

ControlClick("Open","","&Open")



Integration with Other Tools

41

You can find more about AutoIt API in AutoIt help documentation.

Using the Aut2Exe v3 - AutoIt Script to EXE Converter utility, AutoIt script is compiled as 
executable that is OpenDialogHandler.exe.

The Selenium WebDriver test calls this executable file by using the exec() method of the 
RunTime class, which allows the Java code to interact with the environment in which the code 
is running. The complete path of OpenDialogHandler as well as the path of the file to be 
uploaded is passed through the exec() method. Please note that OpenDialogHandler 
needs quotes for arguments.

Runtime.getRuntime().exec(new String[]  
    {"C:\\Utils\\OpenDialogHandler.exe",  
    "\"C:\\Users\\Admin\\Desktop\\Picture1.png\""});

There's more…
You can use AutoIt scripts with other Selenium WebDriver bindings such as .NET, Ruby, or 
Python as long as these languages allow you to call external processes.

AutoIt also comes with a lightweight AutoItX COM library that can be used with languages that 
support COM (Component Object Model). Using the COM API will save you from writing the 
AutoIt script and compiling it in to an executable.

You will come across web applications using HTTP authentication which requires users to 
authenticate before displaying the application. An HTTP authentication dialog is displayed as 
shown in the following screenshot:



Integration with Other Tools

42

This dialog box is displayed by using native UI. In addition, the layout and controls on this 
dialog box may change for different browsers. In the following example, AutoItX API is called 
directly in the Ruby script for automating the HTTP authentication dialog box displayed in 
Google Chrome:

require 'rubygems'
require 'selenium-webdriver'
require 'test/unit'
require 'win32ole'

class HttpAuthTest < Test::Unit::TestCase
    def setup
        @driver = Selenium::WebDriver.for :chrome
        @driver.get 'http://www.httpwatch.com/ 
            httpgallery/authentication'
        @verification_errors = []
    end
    
    def test_http_auth_window
        #Create instance of AutoItX3 control. 
        #This will provide access to AutoItX COM API
        au3 = WIN32OLE.new("AutoItX3.Control")
        
        #Get the Display Image button and 
        #click on it to invoke the Http Authentication dialog
        display_image_button = @driver.find_element :id =>  
            "displayImage"
        display_image_button.click
        
        #Wait for couple of seconds for Http Authentication 
        #dialog to appear
        sleep(2)
        
        #Check if Http Authentication dialog exists and 
        #enter login details using send method
        result = au3.WinExists("HTTP Authentication -  
            Google Chrome")  
        if result then
            au3.WinActivate("HTTP Authentication -  
                Google Chrome","")
            au3.Send("httpwatch{TAB}")
            au3.Send("jsdhfkhkhfd{Enter}")
        end
        assert_equal 1, result



Integration with Other Tools

43

    end
    
    def teardown
        @driver.quit
        assert_equal [], @verification_errors
    end
end

In the previous example, Ruby's win32ole module is used to create an instance of AutoItX 
COM interface.

au3 = WIN32OLE.new("AutoItX3.Control")

By using this interface, the AutoIt methods are called for interacting with non-web UI.

See also
ff The Automating non-web UI in Selenium WebDriver with Sikuli recipe

Automating non-web UI in Selenium 
WebDriver with Sikuli

Sikuli is another tool that can be used along with Selenium WebDriver for automating  
non-web UI. It uses visual identification technology to automate and test graphical user 
interfaces (GUI). The Sikuli script automates anything you see as a user on the screen rather 
than an API.

Sikuli is supported on Windows, Linux, and Mac OSX operating systems. Similar to Selenium 
IDE, Sikuli provides an IDE for script development and API that can be used within Java.

Sikuli works well for non-web UI. However, it also has certain limitations as it is not supported 
by RemoteWebDriver. The Sikuli script might fail if it does not find a captured image due to 
overlapping windows at runtime.

In this recipe, we will explore integration of Sikuli API with Selenium WebDriver for testing  
non-web UI.

Getting ready
Download and install Sikuli from http://sikuli.org/.



Integration with Other Tools

44

How to do it...
We will use the HTTP authentication example from the previous recipe to automate the steps 
with Sikuli, as follows:

1.	 Before we automate the steps on the Authentication Required dialog box, we need 
to capture images of the User Name: and Password: textboxes and the Log In button:

2.	 Capture the screenshot of the Authentication Required dialog box and extract 
images as shown next for each control:

Control Screenshot
User Name: textbox

Password: textbox

Log In button

3.	 Save these extracted images separately in PNG (Portable Network Graphics) format, 
in a folder that can be accessed from tests easily.

4.	 Add the Sikuli-script.jar file to the test project. You can get this file from the 
Sikuli installation folder.

5.	 Create a new test, name it HttpAuthTest and copy the following code to this test:
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.chrome.ChromeDriver;
import org.openqa.selenium.By;

import org.sikuli.script.FindFailed;



Integration with Other Tools

45

import org.sikuli.script.Screen;

import org.junit.*;
import static org.junit.Assert.fail;

public class HttpAuthTest {
    private WebDriver driver;
    private StringBuffer verificationErrors = new  
        StringBuffer();
    
    @Before
    public void setUp() {
        driver = new ChromeDriver();
        driver.get("http://www.httpwatch.com/ 
            httpgallery/authentication/");
    }
    
    @Test
    public void testHttpAuth() throws  
        InterruptedException {
        driver.findElement(By.id 
        ("displayImage")).click();
        
        //Get the system screen.
        Screen s = new Screen();
        
        try {

            //Sikuli type command will use the image file  
            //of the control
            //and text that needs to be entered in to the  
            //control
            s.type("C:\\UserName.png", "httpwatch");
            s.type("C:\\Password.png","dhjhfj");
            
            //Sikuli click command will use the image  
            //file of the control
            s.click("C:\\Login.png");
            
        } catch (FindFailed e) {
            //Sikuli raises FindFailed exception it fails
            //to locate the image on to the screen 
            e.printStackTrace();
        }



Integration with Other Tools

46

    }
    
    @After
    public void tearDown() {
        driver.close();
        String verificationErrorString =  
            verificationErrors.toString();
        if (!"".equals(verificationErrorString)) {
            fail(verificationErrorString);
        }
    }
}

How it works...
As Sikuli uses visual identification technology to identify and interact with windows and 
controls, it requires images of the controls to perform the action. During the execution, it 
locates the regions captured in the image on the screen and performs the specified action.

s.type("C:\\UserName.png", "httpwatch");

In this example, it searches the screen for a region that matches the image captured in 
UserName.png and performs the type () command. Sikuli replays these commands as if a 
real user is working on the screen.

Sikuli may fail to interact with the application if the region captured in the image is not 
displayed on the screen or overlapped with other windows. 

There's more…
By using Sikuli, you can automate RIA technologies such as Flash and Silverlight, along with 
the Selenium WebDriver.

See also
ff The Automating non-web UI in Selenium WebDriver with AutoIt recipe


