Skip to main content
Log in

Infinite dimensional duality and applications

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The usual duality theory cannot be applied to infinite dimensional problems because the underlying constraint set mostly has an empty interior and the constraints are possibly nonlinear. In this paper we present an infinite dimensional nonlinear duality theory obtained by using new separation theorems based on the notion of quasi-relative interior, which, in all the concrete problems considered, is nonempty. We apply this theory to solve the until now unsolved problem of finding, in the infinite dimensional case, the Lagrange multipliers associated to optimization problems or to variational inequalities. As an example, we find the Lagrange multiplier associated to a general elastic–plastic torsion problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borwein J.M., Lewis A.S. (1992). Partially finite convex programming, part I: quasi relative interiors and duality theory. Math. Program. 57: 15–48

    Article  MATH  MathSciNet  Google Scholar 

  2. Brezis H. (1972). Moltiplicateur de Lagrange en Torsion Elasto–Plastique. Arch. Ration. Mech. Anal. 49: 32–40

    Article  MATH  MathSciNet  Google Scholar 

  3. Brezis H. (1972). Problèmes Unilatéraux. J. Math. Pures Appl. 51: 1–168

    MathSciNet  Google Scholar 

  4. Cammaroto F., Di Bella B. (2005). A separation theorem based on the quasi-relative interior and an application to the theory of duality. J. Optim. Theory Appl. 125: 223–229

    Article  MATH  MathSciNet  Google Scholar 

  5. Chiadò–Piat V., Percivale D. (1994). Generalized lagrange multipliers in elastoplastic torsion. J. Differ. Equ. 114: 570–579

    Article  MATH  Google Scholar 

  6. Gwinner J. (2003). Time dependent variational inequalities—some recent trends. In: Daniele, P., Giannessi, F., Maugeri, A. (eds) Equilibrium Problems and Variational Models, pp 225–264. Kluwer, Dordrecht

    Google Scholar 

  7. Idone G., Maugeri A., Vitanza C. (2003). Variational inequalities and the elastic-plastic torsion problem. J. Optim. Theory Appl. 117(3): 489–501

    Article  MATH  MathSciNet  Google Scholar 

  8. Idone G., Maugeri A., Vitanza C. (2004). Topics on variational analysis and applications to equilibrium problems. J. Glob. Optim. 28: 339–346

    Article  MATH  MathSciNet  Google Scholar 

  9. Jahn J. (1996). Introduction to the Theory of Nonlinear Optimization. Springer, Heidelberg

    MATH  Google Scholar 

  10. Reich S. (1975). Minimal displacement of points under weakly inward pseudo-lipschitzian mappings. Atti Accad. Naz. Lincei 59: 40–44

    Google Scholar 

  11. Reich S. (1976). On fixed point theorems obtained from existence theorems for differential equations. J. Math. Anal. Appl. 54: 26–36

    Article  MATH  MathSciNet  Google Scholar 

  12. Rodriguez J.F. (1987). Obstacle Problems in Mathematical Physics. North-Holland, Amsterdam

    Google Scholar 

  13. Rudin W. (1973). Functional Analysis. McGraw-Hill, New York

    MATH  Google Scholar 

  14. Ting T.W. (1969). Elastic–plastic torsion problem. Arch. Ration. Mech. Anal. 34: 228–244

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonino Maugeri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniele, P., Giuffrè, S., Idone, G. et al. Infinite dimensional duality and applications. Math. Ann. 339, 221–239 (2007). https://doi.org/10.1007/s00208-007-0118-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0118-y

Keywords

Navigation