

Data Structure and Algorithmic Thinking with Python Linked Lists

3.1 What is a Linked List? 48

Linked Lists

Chapter

3

3.1 What is a Linked List?

A linked list is a data structure used for storing collections of data. A linked list has the following properties.

 Successive elements are connected by pointers

 The last element points to NULL

 Can grow or shrink in size during execution of a program

 Can be made just as long as required (until systems memory exhausts)

 Does not waste memory space (but takes some extra memory for pointers)

3.2 Linked Lists ADT

The following operations make linked lists an ADT:

Main Linked Lists Operations

 Insert: inserts an element into the list

 Delete: removes and returns the specified position element from the list

Auxiliary Linked Lists Operations

 Delete List: removes all elements of the list (dispose of the list)

 Count: returns the number of elements in the list

 Find 𝑛𝑡ℎ node from the end of the list

3.3 Why Linked Lists?

There are many other data structures that do the same thing as linked lists. Before discussing linked lists it is
important to understand the difference between linked lists and arrays. Both linked lists and arrays are used to
store collections of data, and since both are used for the same purpose, we need to differentiate their usage.
That means in which cases 𝑎𝑟𝑟𝑎𝑦𝑠 are suitable and in which cases 𝑙𝑖𝑛𝑘𝑒𝑑 𝑙𝑖𝑠𝑡𝑠 are suitable.

3.4 Arrays Overview

One memory block is allocated for the entire array to hold the elements of the array. The array elements can be
accessed in constant time by using the index of the particular element as the subscript.

 4 15 7 40 NULL

Head

Data Structure and Algorithmic Thinking with Python Linked Lists

3.4 Arrays Overview 49

Why Constant Time for Accessing Array Elements?

To access an array element, the address of an element is computed as an offset from the base address of the
array and one multiplication is needed to compute what is supposed to be added to the base address to get the
memory address of the element. First the size of an element of that data type is calculated and then it is
multiplied with the index of the element to get the value to be added to the base address.

This process takes one multiplication and one addition. Since these two operations take constant time, we can
say the array access can be performed in constant time.

Advantages of Arrays

 Simple and easy to use

 Faster access to the elements (constant access)

Disadvantages of Arrays

 Fixed size: The size of the array is static (specify the array size before using it).

 One block allocation: To allocate the array itself at the beginning, sometimes it may not be possible to

get the memory for the complete array (if the array size is big).

 Complex position-based insertion: To insert an element at a given position, we may need to shift the
existing elements. This will create a position for us to insert the new element at the desired position. If
the position at which we want to add an element is at the beginning, then the shifting operation is more
expensive.

Dynamic Arrays

Dynamic array (also called 𝑔𝑟𝑜𝑤𝑎𝑏𝑙𝑒 𝑎𝑟𝑟𝑎𝑦, 𝑟𝑒𝑠𝑖𝑧𝑎𝑏𝑙𝑒 𝑎𝑟𝑟𝑎𝑦, 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑡𝑎𝑏𝑙𝑒, or 𝑎𝑟𝑟𝑎𝑦 𝑙𝑖𝑠𝑡) is a random access,

variable-size list data structure that allows elements to be added or removed.

One simple way of implementing dynamic arrays is to initially start with some fixed size array. As soon as that
array becomes full, create the new array double the size of the original array. Similarly, reduce the array size to
half if the elements in the array are less than half.

Note: We will see the implementation for 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑎𝑟𝑟𝑎𝑦𝑠 in the 𝑆𝑡𝑎𝑐𝑘𝑠, 𝑄𝑢𝑒𝑢𝑒𝑠 and 𝐻𝑎𝑠ℎ𝑖𝑛𝑔 chapters.

Advantages of Linked Lists

Linked lists have both advantages and disadvantages. The advantage of linked lists is that they can be 𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑
in constant time. To create an array, we must allocate memory for a certain number of elements. To add more
elements to the array, we must create a new array and copy the old array into the new array. This can take a lot
of time.

We can prevent this by allocating lots of space initially but then we might allocate more than we need and waste

memory. With a linked list, we can start with space for just one allocated element and 𝑎𝑑𝑑 on new elements

easily without the need to do any copying and reallocating.

Issues with Linked Lists (Disadvantages)

There are a number of issues with linked lists. The main disadvantage of linked lists is 𝑎𝑐𝑐𝑒𝑠𝑠 𝑡𝑖𝑚𝑒 to individual

elements. Array is random-access, which means it takes O(1) to access any element in the array. Linked lists
take O(𝑛) for access to an element in the list in the worst case. Another advantage of arrays in access time is

𝑠𝑝𝑎𝑐𝑖𝑎𝑙 𝑙𝑜𝑐𝑎𝑙𝑖𝑡𝑦 in memory. Arrays are defined as contiguous blocks of memory, and so any array element will be

physically near its neighbors. This greatly benefits from modern CPU caching methods.

Although the dynamic allocation of storage is a great advantage, the 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 with storing and retrieving data
can make a big difference. Sometimes linked lists are ℎ𝑎𝑟𝑑 to 𝑚𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑒. If the last item is deleted, the last but

one must then have its pointer changed to hold a NULL reference. This requires that the list is traversed to find
the last but one link, and its pointer set to a NULL reference.

Finally, linked lists waste memory in terms of extra reference points.

 3 2 1 2 2 3

0 1 2 3 4 5 Index

Data Structure and Algorithmic Thinking with Python Linked Lists

3.5 Comparison of Linked Lists with Arrays and Dynamic Arrays 50

3.5 Comparison of Linked Lists with Arrays and Dynamic Arrays

Parameter Linked list Array Dynamic array

Indexing O(𝑛) O(1) O(1)

Insertion/deletion at beginning O(1)
O(𝑛), if array is not full (for

shifting the elements)
O(𝑛)

Insertion at ending O(𝑛) O(1), if array is not full
O(1), if array is not full

O(𝑛), if array is full

Deletion at ending O(𝑛) O(1) O(𝑛)

Insertion in middle O(𝑛)
O(𝑛), if array is not full (for

shifting the elements)
O(𝑛)

Deletion in middle O(𝑛)
O(𝑛), if array is not full (for

shifting the elements)
O(𝑛)

Wasted space O(𝑛) 0 O(𝑛)

3.6 Singly Linked Lists

Generally "linked list" means a singly linked list. This list consists of a number of nodes in which each node has

a 𝑛𝑒𝑥𝑡 pointer to the following element. The link of the last node in the list is NULL, which indicates the end of
the list.

Following is a type declaration for a linked list of integers:

#Node of a Singly Linked List
class Node:
 #constructor
 def __init__(self):
 self.data = None
 self.next = None
 #method for setting the data field of the node
 def setData(self,data):
 self.data = data
 #method for getting the data field of the node
 def getData(self):
 return self.data
 #method for setting the next field of the node
 def setNext(self,next):
 self.next = next
 #method for getting the next field of the node
 def getNext(self):

 return self.next
 #returns true if the node points to another node
 def hasNext(self):
 return self.next != None

Basic Operations on a List

 Traversing the list

 Inserting an item in the list

 Deleting an item from the list

Traversing the Linked List

Let us assume that the ℎ𝑒𝑎𝑑 points to the first node of the list. To traverse the list we do the following.

 Follow the pointers.

 4 15 7 40 NULL

Head

http://en.wikipedia.org/wiki/Array_data_structure
http://en.wikipedia.org/wiki/Dynamic_array

Data Structure and Algorithmic Thinking with Python Linked Lists

3.6 Singly Linked Lists 51

 Display the contents of the nodes (or count) as they are traversed.

 Stop when the next pointer points to NULL.

The ListLength() function takes a linked list as input and counts the number of nodes in the list. The function
given below can be used for printing the list data with extra print function.

def listLength(self):
 current = self.head
 count = 0

 while current != None:

 count = count + 1
 current = current.getNext()

 return count

Time Complexity: O(𝑛), for scanning the list of size 𝑛.

Space Complexity: O(1), for creating a temporary variable.

Singly Linked List Insertion

Insertion into a singly-linked list has three cases:

 Inserting a new node before the head (at the beginning)

 Inserting a new node after the tail (at the end of the list)

 Inserting a new node at the middle of the list (random location)

Note: To insert an element in the linked list at some position 𝑝, assume that after inserting the element the
position of this new node is 𝑝.

Inserting a Node in Singly Linked List at the Beginning

In this case, a new node is inserted before the current head node. 𝑂𝑛𝑙𝑦 𝑜𝑛𝑒 𝑛𝑒𝑥𝑡 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 needs to be modified (new
node’s next pointer) and it can be done in two steps:

 Update the next pointer of new node, to point to the current head.

 Update head pointer to point to the new node.

 #method for inserting a new node at the beginning of the Linked List (at the head)
 def insertAtBeginning(self,data):
 newNode = Node()
 newNode.setData(data)

 if self.length == 0:

 data 15 7 40 NULL

Head

New node

 5 1 17 4 NULL

Head

New node

head

 data 15 7 40 NULL

Data Structure and Algorithmic Thinking with Python Linked Lists

3.6 Singly Linked Lists 52

 self.head = newNode
 else:
 newNode.setNext(self.head)

 self.head = newNode

 self.length += 1

Inserting a Node in Singly Linked List at the Ending

In this case, we need to modify 𝑡𝑤𝑜 𝑛𝑒𝑥𝑡 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑠 (last nodes next pointer and new nodes next pointer).

 New nodes next pointer points to NULL.

 Last nodes next pointer points to the new node.

 #method for inserting a new node at the end of a Linked List
 def insertAtEnd(self,data):
 newNode = Node()

 newNode.setData(data)

 current = self.head

 while current.getNext() != None:
 current = current.getNext()

 current.setNext(newNode)
 self.length += 1

Inserting a Node in Singly Linked List at the Middle

Let us assume that we are given a position where we want to insert the new node. In this case also, we need to
modify two next pointers.

 If we want to add an element at position 3 then we stop at position 2. That means we traverse 2 nodes

and insert the new node. For simplicity let us assume that the second node is called 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 node. The

new node points to the next node of the position where we want to add this node.

 Position nodes next pointer now points to the new node.

 4 15 7 40 NULL

Head

New node

 4 15 7 0 NULL

Head

 data

NULL
New node

 4 15 7 40 NULL

Head
 data

New node

Position node

Data Structure and Algorithmic Thinking with Python Linked Lists

3.6 Singly Linked Lists 53

Let us write the code for all three cases. We must update the first element pointer in the calling function, not
just in the called function. For this reason we need to send a double pointer. The following code inserts a node
in the singly linked list.

#Method for inserting a new node at any position in a Linked List
def insertAtPos(self,pos,data):

 if pos > self.length or pos < 0:
 return None
 else:
 if pos == 0:

 self.insertAtBeg(data)
 else:
 if pos == self.length:
 self.insertAtEnd(data)
 else:
 newNode = Node()
 newNode.setData(data)
 count = 0
 current = self.head
 while count < pos-1:
 count += 1
 current = current.getNext()

 newNode.setNext(current.getNext())
 current.setNext(newNode)
 self.length += 1

Note: We can implement the three variations of the 𝑖𝑛𝑠𝑒𝑟𝑡 operation separately.

Time Complexity: O(𝑛), since, in the worst case, we may need to insert the node at the end of the list.
Space Complexity: O(1), for creating one temporary variable.

Singly Linked List Deletion

Similar to insertion, here we also have three cases.

 Deleting the first node

 Deleting the last node

 Deleting an intermediate node.

Deleting the First Node in Singly Linked List

First node (current head node) is removed from the list. It can be done in two steps:

 Create a temporary node which will point to the same node as that of head.

 Now, move the head nodes pointer to the next node and dispose of the temporary node.

 4 15 7 40 NULL

Head Temp

 4 15 7 40 NULL

Head data

New node

Position node

Data Structure and Algorithmic Thinking with Python Linked Lists

3.6 Singly Linked Lists 54

 #method to delete the first node of the linked list
 def deleteFromBeginning(self):
 if self.length == 0:
 print "The list is empty"
 else:

 self.head = self.head.getNext()
 self.length -= 1

Deleting the Last Node in Singly Linked List

In this case, the last node is removed from the list. This operation is a bit trickier than removing the first node,
because the algorithm should find a node, which is previous to the tail. It can be done in three steps:

 Traverse the list and while traversing maintain the previous node address also. By the time we reach the

end of the list, we will have two pointers, one pointing to the 𝑡𝑎𝑖𝑙 node and the other pointing to the node
𝑏𝑒𝑓𝑜𝑟𝑒 the tail node.

 Update previous nodes next pointer with NULL.

 Dispose of the tail node.

 #Method to delete the last node of the linked list
 def deleteLastNodeFromSinglyLinkedList(self):
 if self.length == 0:
 print "The list is empty"
 else:
 currentnode = self.head
 previousnode = self.head

 while currentnode.getNext() != None:
 previousnode = currentnode
 currentnode = currentnode.getNext()

 previousnode.seNext(None)

 self.length -= 1

 4 15 7 40 NULL

 Temp Head

Tail

 4 15 7 40 NULL

Head
Node previous to tail

Tail

 4 15 7 40 NULL

Head
Node previous to tail

NULL

Tail

 4 15 7 40 NULL

Head
Node previous to tail

NULL

Data Structure and Algorithmic Thinking with Python Linked Lists

3.6 Singly Linked Lists 55

Deleting an Intermediate Node in Singly Linked List

In this case, the node to be removed is 𝑎𝑙𝑤𝑎𝑦𝑠 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 two nodes. Head and tail links are not updated in

this case. Such a removal can be done in two steps:

 Similar to the previous case, maintain the previous node while traversing the list. Once we find the node

to be deleted, change the previous node’s next pointer to the next pointer of the node to be deleted.

 Dispose of the current node to be deleted.

#Delete with node from linked list
def deleteFromLinkedListWithNode(self, node):
 if self.length == 0:
 raise ValueError("List is empty")
 else:
 current = self.head
 previous = None
 found = False

 while not found:
 if current == node:
 found = True
 elif current is None:
 raise ValueError("Node not in Linked List")
 else:

 previous = current
 current = current.getNext()
 if previous is None:
 self.head = current.getNext()
 else:
 previous.seNext(current.getNext())

 self.length -= 1

#Delete with data from linked list

def deleteValue(self,value):
 currentnode = self.head
 previousnode = self.head

 while currentnode.next != None or currentnode.value != value:
 if currentnode.value == value:
 previousnode.next = currentnode.next
 self.length -= 1
 return

 else:
 previousnode = currentnode
 currentnode = currentnode.next

 print "The value provided is not present"

#Method to delete a node at a particular position
def deleteAtPosition(self,pos):
 count = 0

 4 15 7 40 NULL

Head Node to be deleted Previous node

 4 15 7 40 NULL

Head Node to be deleted Previous node

Data Structure and Algorithmic Thinking with Python Linked Lists

3.7 Doubly Linked Lists 56

 currentnode = self.head
 previousnode = self.head

 if pos > self.length or pos < 0:
 print "The position does not exist. Please enter a valid position"
 else:
 while currentnode.next != None or count < pos:
 count = count + 1
 if count == pos:
 previousnode.next = currentnode.next
 self.length -= 1
 return
 else:
 previousnode = currentnode
 currentnode = currentnode.next

Time Complexity: O(𝑛). In the worst case, we may need to delete the node at the end of the list.

Space Complexity: O(1), for one temporary variable.

Deleting Singly Linked List

Python is garbage-collected, so if you reduce the size of your list, it will reclaim memory.

 def clear(self) :

 self.head = None

Time Complexity: O(1). Space Complexity: O(1)

3.7 Doubly Linked Lists

The 𝑎𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒 of a doubly linked list (also called 𝑡𝑤𝑜 − 𝑤𝑎𝑦 𝑙𝑖𝑛𝑘𝑒𝑑 𝑙𝑖𝑠𝑡) is that given a node in the list, we can

navigate in both directions. A node in a singly linked list cannot be removed unless we have the pointer to its
predecessor. But in a doubly linked list, we can delete a node even if we don’t have the previous node’s address
(since each node has a left pointer pointing to the previous node and can move backward).

The primary 𝑑𝑖𝑠𝑎𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒𝑠 of doubly linked lists are:

 Each node requires an extra pointer, requiring more space.

 The insertion or deletion of a node takes a bit longer (more pointer operations).

Similar to a singly linked list, let us implement the operations of a doubly linked list. If you understand the
singly linked list operations, then doubly linked list operations are obvious. Following is a type declaration for a
doubly linked list of integers:

class Node:

 # If data is not given by user,its taken as None

 def __init__(self, data=None, next=None, prev=None):

 self.data = data

 self.next = next

 self.prev = prev

 #method for setting the data field of the node

 def setData(self,data):

 self.data = data

 #method for getting the data field of the node

 def getData(self):

 return self.data

 #method for setting the next field of the node

 def setNext(self,next):

 self.next = next

 #method for getting the next field of the node

 def getNext(self):

 return self.next

 #returns true if the node points to another node

 def hasNext(self):

Data Structure and Algorithmic Thinking with Python Linked Lists

3.7 Doubly Linked Lists 57

 return self.next != None

 #method for setting the next field of the node

 def setPrev(self,prev):

 self.prev = prev

 #method for getting the next field of the node

 def getPrev(self):

 return self.prev

 #returns true if the node points to another node

 def hasPrev(self):

 return self.prev != None

 # __str__ returns string equivalent of Object

 def __str__(self):

 return "Node[Data = %s]" % (self.data,)

Doubly Linked List Insertion

Insertion into a doubly-linked list has three cases (same as a singly linked list):

 Inserting a new node before the head.

 Inserting a new node after the tail (at the end of the list).

 Inserting a new node at the middle of the list.

Inserting a Node in Doubly Linked List at the Beginning

In this case, new node is inserted before the head node. Previous and next pointers need to be modified and it
can be done in two steps:

 Update the right pointer of the new node to point to the current head node (dotted link in below figure)

and also make left pointer of new node as NULL.

 Update head node’s left pointer to point to the new node and make new node as head.

 def insertAtBeginning(self, data):
 newNode = Node(data, None, None)
 if (self.head == None): # To imply that if head == None
 self.head = self.tail = newNode
 else:
 newNode.setPrev(None)
 newNode.setNext(self.head)
 self.head.setPrev(newNode)
 self.head = newNode

Inserting a Node in Doubly Linked List at the Ending

In this case, traverse the list till the end and insert the new node.

 New node right pointer points to NULL and left pointer points to the end of the list.

NULL

Head

 data 15 7 40 NULL

New node

NULL NULL

Head

 data 15 7 40 NULL

Data Structure and Algorithmic Thinking with Python Linked Lists

3.7 Doubly Linked Lists 58

 Update right pointer of last node to point to new node.

 def insertAtEnd(self, data):

 if (self.head == None): # To imply that if head == None
 self.head = Node(data)
 self.tail = self.head
 else:
 current = self.head

 while(current.getNext() != None):
 current = current.getNext()

 current.setNext(Node(data, None, current))
 self.tail = current.getNext()

Inserting a Node in Doubly Linked List at the Middle

As discussed in singly linked lists, traverse the list to the position node and insert the new node.

 𝑁𝑒𝑤 𝑛𝑜𝑑𝑒 right pointer points to the next node of the 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑛𝑜𝑑𝑒 where we want to insert the new

node. Also, 𝑛𝑒𝑤 𝑛𝑜𝑑𝑒 left pointer points to the 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 node.

 Position node right pointer points to the new node and the 𝑛𝑒𝑥𝑡 𝑛𝑜𝑑𝑒 of position node left pointer points
to new node.

Now, let us write the code for all of these three cases. We must update the first element pointer in the calling
function, not just in the called function. For this reason we need to send a double pointer. The following code
inserts a node in the doubly linked list.

4 15 7 40 NULL

Head data

New node

Position node

NULL

4 15 7 data

NULL NULL NULL

New node

List end node

Head

data 4 15 7

NULL NULL

New node

List end node

Head

Position node

4 15 7 40 NULL

Head
data

New node

NULL

Data Structure and Algorithmic Thinking with Python Linked Lists

3.7 Doubly Linked Lists 59

 def getNode(self, index):
 currentNode = self.head
 if currentNode == None:

 return None
 i = 0
 while i < index and currentNode.getNext() is not None::
 currentNode = currentNode.getNext()
 if currentNode == None:
 break
 i += 1
 return currentNode

 def insertAtGivenPosition(self, index, data):
 newNode = Node(data)

 if self.head == None or index == 0:
 self.insertAtBeginning(data)
 elif index > 0:

 temp = self.getNode(index)

 if temp == None or temp.getNext() == None:
 self.insert(data)
 else:
 newNode.setNext(temp.getNext())
 newNode.setPrev(temp)
 temp.getNext().setPrev(newNode)

 temp.setNext(newNode)

Time Complexity: O(𝑛). In the worst case, we may need to insert the node at the end of the list.

Space Complexity: O(1), for a temporary variable.

Doubly Linked List Deletion

Similar to singly linked list deletion, here we have three cases:

 Deleting the first node

 Deleting the last node

 Deleting an intermediate node

Deleting the First Node in Doubly Linked List

In this case, the first node (current head node) is removed from the list. It can be done in two steps:

 Create a temporary node which will point to the same node as that of head.

 Now, move the head nodes pointer to the next node and change the heads left pointer to NULL. Then,

dispose of the temporary node.

4 15 7 40 NULL

Head Temp

NULL

4 15 7 40 NULL

 Temp Head

NULL

NULL

Data Structure and Algorithmic Thinking with Python Linked Lists

3.7 Doubly Linked Lists 60

Deleting the Last Node in Doubly Linked List

This operation is a bit trickier, than removing the first node, because the algorithm should find a node, which is

previous to the tail first. This can be done in three steps:

 Traverse the list and while traversing maintain the previous node address also. By the time we reach the

end of the list, we will have two pointers, one pointing to the tail and the other pointing to the node

before the tail.

 Update the next pointer of previous node to the tail node with NULL.

 Dispose of the tail node.

Deleting an Intermediate Node in Doubly Linked List

In this case, the node to be removed is 𝑎𝑙𝑤𝑎𝑦𝑠 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 two nodes, and the head and tail links are not

updated. The removal can be done in two steps:

 Similar to the previous case, maintain the previous node while also traversing the list. Upon locating the

node to be deleted, change the previous node’s next pointer to the next node of the node to be deleted.

 Dispose of the current node to be deleted.

Tail

4 15 7 40 NULL

Head
Previous node to Tail

NULL

4 15 7 40 NULL

Head Node to be deleted Previous node

Tail

4 15 7 40 NULL

Head
Previous node to Tail

NULL

Tail

4 15 7 40 NULL

Head
Previous node to Tail

NULL
NULL

Data Structure and Algorithmic Thinking with Python Linked Lists

3.8 Circular Linked Lists 61

 #Deleting element at given position
 def getNode(self, index):

 currentNode = self.head
 if currentNode == None:
 return None
 i = 0
 while i <= index:
 currentNode = currentNode.getNext()

 if currentNode == None:
 break
 i += 1
 return currentNode

 def delteAtGivenPosition(self, index):
 temp = self.getNode(index)
 if temp:
 temp.getPrev.setNext(temp.getNext())
 if temp.getNext():
 temp.getNext().setPrev(temp.getPrev())
 temp.setPrev(None)
 temp.setNext(None)

 temp.setData(None)

 #Deleting with given data
 def deleteWithData(self, data):

 temp = self.head
 while temp is not None:
 if temp.getData() == data:
 # if it's not the first element
 if temp.getNext() is not None:
 temp.getNext().setNext(temp.getNext())
 temp.getNext().setPrev(temp.getPrev())
 else:
 # otherwise we have no prev (it's None), head is the next one, and prev becomes None

 self.head = temp.getNext()
 temp.getNext().setPrev(None)

 temp = temp.getNext()

Time Complexity: O(𝑛), for scanning the complete list of size 𝑛.

Space Complexity: O(1), for creating one temporary variable.

3.8 Circular Linked Lists

In singly linked lists and doubly linked lists, the end of lists are indicated with NULL value. But circular linked
lists do not have ends. While traversing the circular linked lists we should be careful; otherwise we will be
traversing the list infinitely. In circular linked lists, each node has a successor. Note that unlike singly linked
lists, there is no node with NULL pointer in a circularly linked list. In some situations, circular linked lists are
useful. There is no difference in the node declaration of circular linked lists compared to singly linked lists.

For example, when several processes are using the same computer resource (CPU) for the same amount of time,
we have to assure that no process accesses the resource before all other processes do (round robin algorithm).
The following is a type declaration for a circular linked list:

#Node of a Circular Linked List

class Node:

 #constructor

 def __init__(self):

4 15 7 40 NULL

Head Node to be deleted Previous node

Data Structure and Algorithmic Thinking with Python Linked Lists

3.8 Circular Linked Lists 62

 self.data = None

 self.next = None

 #method for setting the data field of the node

 def setData(self,data):

 self.data = data

 #method for getting the data field of the node

 def getData(self):

 return self.data

 #method for setting the next field of the node

 def setNext(self,next):

 self.next = next

 #method for getting the next field of the node

 def getNext(self):

 return self.next

 #returns true if the node points to another node

 def hasNext(self):

 return self.next != None

In a circular linked list, we access the elements using the ℎ𝑒𝑎𝑑 node (similar to ℎ𝑒𝑎𝑑 node in singly linked list
and doubly linked lists).

Counting Nodes in a Circular List

The circular list is accessible through the node marked ℎ𝑒𝑎𝑑. To count the nodes, the list has to be traversed
from the node marked ℎ𝑒𝑎𝑑, with the help of a dummy node 𝑐𝑢𝑟𝑟𝑒𝑛𝑡, and stop the counting when 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 reaches

the starting node ℎ𝑒𝑎𝑑. If the list is empty, ℎ𝑒𝑎𝑑 will be NULL, and in that case set 𝑐𝑜𝑢𝑛𝑡 = 0. Otherwise, set the

current pointer to the first node, and keep on counting till the current pointer reaches the starting node.

 #This method would be a member of other class (say, CircularList)

 def circularListLength(self):

 currentNode = self.head

 if currentNode == None:

 return 0

 count = 1

 currentNode = currentNode.getNext()

 while currentNode != self.head:

 currentNode = currentNode.getNext()

 count = count + 1

 retur count

Time Complexity: O(𝑛), for scanning the complete list of size 𝑛. Space Complexity: O(1), for temporary variable.

Printing the Contents of a Circular List

We assume here that the list is being accessed by its ℎ𝑒𝑎𝑑 node. Since all the nodes are arranged in a circular

fashion, the 𝑡𝑎𝑖𝑙 node of the list will be the node previous to the ℎ𝑒𝑎𝑑 node. Let us assume we want to print the

Head

 4 15 7 40

Head

 4 15 7 40

Data Structure and Algorithmic Thinking with Python Linked Lists

3.8 Circular Linked Lists 63

contents of the nodes starting with the ℎ𝑒𝑎𝑑 node. Print its contents, move to the next node and continue

printing till we reach the ℎ𝑒𝑎𝑑 node again.

 def printCircularList(self):

 currentNode = self.head

 if currentNode == None: return 0

 print (currentNode.getData())

 currentNode = currentNode.getNext()

 while currentNode != self.head:

 currentNode = currentNode.getNext()

 print (currentNode.getData())

Time Complexity: O(𝑛), for scanning the complete list of size 𝑛. Space Complexity: O(1), for temporary variable.

Inserting a Node at the End of a Circular Linked List

Let us add a node containing 𝑑𝑎𝑡𝑎, at the end of a list (circular list) headed by ℎ𝑒𝑎𝑑. The new node will be placed
just after the tail node (which is the last node of the list), which means it will have to be inserted in between the
tail node and the first node.

 Create a new node and initially keep its next pointer pointing to itself.

 Update the next pointer of the new node with the head node and also traverse the list to the tail. That
means in a circular list we should stop at the node whose next node is head.

 Update the next pointer of the previous node to point to the new node and we get the list as shown
below.

 def insertAtEndInCLL (self, data):

 current = self.head
 newNode = Node()
 newNode.setData(data)
 while current.getNext != self.head:
 current = current.getNext()
 newNode.setNext(newNode)
 if self.head == None:
 self.head = newNode;
 else:

 4 15 7 40

Head

New node

data

Previous node of head

data

Head

 4 15 17 40

New node

data
Head

 4 15 7 40

Data Structure and Algorithmic Thinking with Python Linked Lists

3.8 Circular Linked Lists 64

 newNode.setNext(self.head)
 current.setNext(newNode)

Time Complexity: O(𝑛), for scanning the complete list of size 𝑛. Space Complexity: O(1), for temporary variable.

Inserting a Node at the Front of a Circular Linked List

The only difference between inserting a node at the beginning and at the end is that, after inserting the new
node, we just need to update the pointer. The steps for doing this are given below:

 Create a new node and initially keep its next pointer pointing to itself.

 Update the next pointer of the new node with the head node and also traverse the list until the tail. That

means in a circular list we should stop at the node which is its previous node in the list.

 Update the previous head node in the list to point to the new node.

 Make the new node as the head.

 def insertAtBeginInCLL (self, data):
 current = self.head
 newNode = Node()
 newNode.setData(data)

 while current.getNext != self.head:
 current = current.getNext()
 newNode.setNext(newNode)
 if self.head == None:
 self.head = newNode;
 else:
 newNode.setNext(self.head)
 current.setNext(newNode)

data

 4 15 7 40

Head

New node

data

New node

 4 15 7 40

Head

Head

 data 4 15 7 40

New node data Head

 4 15 7 40

Data Structure and Algorithmic Thinking with Python Linked Lists

3.8 Circular Linked Lists 65

 self.head = newNode

Time Complexity: O(𝑛), for scanning the complete list of size 𝑛. Space Complexity: O(1), for temporary variable.

Deleting the Last Node in a Circular List

The list has to be traversed to reach the last but one node. This has to be named as the tail node, and its next
field has to point to the first node. Consider the following list. To delete the last node 40, the list has to be

traversed till you reach 7. The next field of 7 has to be changed to point to 60, and this node must be renamed

𝑝𝑇𝑎𝑖𝑙.

 Traverse the list and find the tail node and its previous node.

 Update the tail node’s previous node pointer to point to head.

 Dispose of the tail node.

 def deleteLastNodeFromCLL (self):
 temp = self.head
 current = self.head

 if self.head == None:

 print ("List Empty")
 return
 while current.getNext() != self.head:
 temp = current;
 current = current.getNext()
 temp.setNext(current.getNext())

 return

Time Complexity: O(𝑛), for scanning the complete list of size 𝑛. Space Complexity: O(1)

Deleting the First Node in a Circular List

The first node can be deleted by simply replacing the next field of the tail node with the next field of the first
node.

 Find the tail node of the linked list by traversing the list. Tail node is the previous node to the head node

which we want to delete.

Head

 60 4 15 7 40

Node to be
deleted

Previous node to
deleting node

Head

 60 4 15 7 40

Node to be
deleted

Previous node to
deleting node

Head

 60 4 15 7 40

Node to be

deleted

Previous node to

deleting node

Data Structure and Algorithmic Thinking with Python Linked Lists

3.9 A Memory-efficient Doubly Linked List 66

 Create a temporary node which will point to the head. Also, update the tail nodes next pointer to point

to next node of head (as shown below).

 Now, move the head pointer to next node. Create a temporary node which will point to head. Also,

update the tail nodes next pointer to point to next node of head (as shown below).

def deleteFrontNodeFromCLL (self):
 current = self.head

 if self.head == None:
 print ("List Empty")
 return

 while current.getNext() != self.head:
 current = current.getNext()

 current.setNext(self.head.getNext())
 self.head = self.head.getNext()

 return

Time Complexity: O(𝑛), for scanning the complete list of size 𝑛. Space Complexity: O(1)

Applications of Circular List

Circular linked lists are used in managing the computing resources of a computer. We can use circular lists for
implementing stacks and queues.

3.9 A Memory-efficient Doubly Linked List

In conventional implementation, we need to keep a forward pointer to the next item on the list and a backward
pointer to the previous item. That means elements in doubly linked list implementations consist of data, a
pointer to the next node and a pointer to the previous node in the list as shown below.

Conventional Node Definition

#Node of a Singly Linked List
class Node:
 #constructor
 def __init__(self):
 self.data = None

Head

 60 4 15 7 40

Previous node to
deleting node

Node to be
deleted

Head

 60 4 15 7 40

Previous node to
deleting node

Node to be
deleted

Temp

 60 4 15 7 40

Previous node to
deleting node

Node to be
deleted

Temp

Head

Data Structure and Algorithmic Thinking with Python Linked Lists

3.9 A Memory-efficient Doubly Linked List 67

 self.next = None
 #method for setting the data field of the node
 def setData(self,data):

 self.data = data
 #method for getting the data field of the node
 def getData(self):
 return self.data
 #method for setting the next field of the node
 def setNext(self,next):
 self.next = next
 #method for getting the next field of the node
 def getNext(self):
 return self.next
 #returns true if the node points to another node
 def hasNext(self):
 return self.next != None

Recently a journal (Sinha) presented an alternative implementation of the doubly linked list ADT, with insertion,
traversal and deletion operations. This implementation is based on pointer difference. Each node uses only one
pointer field to traverse the list back and forth.

New Node Definition

class Node:
 #constructor
 def __init__(self):
 self.data = None
 self.ptrdiff = None
 #method for setting the data field of the node

 def setData(self,data):
 self.data = data
 #method for getting the data field of the node
 def getData(self):
 return self.data
 #method for setting the pointer difference field of the node
 def setPtrDiff(self, prev, next):
 self.ptrdiff = prev ^ next
 #method for getting the next field of the node
 def getPtrDiff(self):
 return self.ptrdiff

The 𝑝𝑡𝑟𝑑𝑖𝑓𝑓 pointer field contains the difference between the pointer to the next node and the pointer to the

previous node. The pointer difference is calculated by using exclusive-or (⊕) operation.

𝑝𝑡𝑟𝑑𝑖𝑓𝑓 = 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 𝑡𝑜 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑛𝑜𝑑𝑒 ⊕ 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 𝑡𝑜 𝑛𝑒𝑥𝑡 𝑛𝑜𝑑𝑒.

The 𝑝𝑡𝑟𝑑𝑖𝑓𝑓 of the start node (head node) is the ⊕ of NULL and 𝑛𝑒𝑥𝑡 node (next node to head). Similarly, the

𝑝𝑡𝑟𝑑𝑖𝑓𝑓 of end node is the ⊕ of 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 node (previous to end node) and NULL. As an example, consider the

following linked list.

In the example above,

 The next pointer of A is: NULL ⊕ B

 The next pointer of B is: A ⊕ C

 The next pointer of C is: B ⊕ D

 The next pointer of D is: C ⊕ NULL

Why does it work?

To find the answer to this question let us consider the properties of ⊕:

Pointer differences

 A B C D NULL

Head

Data Structure and Algorithmic Thinking with Python Linked Lists

3.10 Unrolled Linked Lists 68

70 3 45 2 10 1 30 6 91 19 4 17

91 19 4 17 10 1 30 6 70 3 45 2

X ⊕ X = 0

X ⊕ 0 = X

X ⊕ Y = Y ⊕ X (symmetric)

(X ⊕ Y) ⊕ Z = X ⊕ (Y ⊕ Z) (transitive)

For the example above, let us assume that we are at C node and want to move to B. We know that C’s 𝑝𝑡𝑟𝑑𝑖𝑓𝑓 is

defined as B ⊕ D. If we want to move to B, performing ⊕ on C’s 𝑝𝑡𝑟𝑑𝑖𝑓𝑓 with D would give B. This is due to the

fact that

(B ⊕ D) ⊕ D = B (since, D ⊕ D=0)

Similarly, if we want to move to D, then we have to apply ⊕ to C’s 𝑝𝑡𝑟𝑑𝑖𝑓𝑓 with B to give D.

(B ⊕ D) ⊕ B = D (since, B ⊕ B=0)

From the above discussion we can see that just by using a single pointer, we can move back and forth. A

memory-efficient implementation of a doubly linked list is possible with minimal compromising of timing

efficiency.

3.10 Unrolled Linked Lists

One of the biggest advantages of linked lists over arrays is that inserting an element at any location takes only
O(1) time. However, it takes O(𝑛) to search for an element in a linked list. There is a simple variation of the singly
linked list called 𝑢𝑛𝑟𝑜𝑙𝑙𝑒𝑑 𝑙𝑖𝑛𝑘𝑒𝑑 𝑙𝑖𝑠𝑡𝑠. An unrolled linked list stores multiple elements in each node (let us call it

a block for our convenience). In each block, a circular linked list is used to connect all nodes.

Assume that there will be no more than 𝑛 elements in the unrolled linked list at any time. To simplify this

problem, all blocks, except the last one, should contain exactly ⌈√𝑛⌉ elements. Thus, there will be no more than

⌊√𝑛⌋ blocks at any time.

Searching for an element in Unrolled Linked Lists

In unrolled linked lists, we can find the 𝑘𝑡ℎ element in O(√𝑛):

1. Traverse the 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘𝑠 to the one that contains the 𝑘𝑡ℎ node, i.e., the ⌈
𝑘

⌈√𝑛⌉
⌉th block. It takes O(√𝑛) since

we may find it by going through no more than √𝑛 blocks.

2. Find the (𝑘 mod ⌈√𝑛⌉)th node in the circular linked list of this block. It also takes O(√𝑛) since there are no

more than ⌈√𝑛⌉ nodes in a single block.

Inserting an element in Unrolled Linked Lists

When inserting a node, we have to re-arrange the nodes in the unrolled linked list to maintain the properties

previously mentioned, that each block contains ⌈√𝑛⌉ nodes. Suppose that we insert a node 𝑥 after the 𝑖𝑡ℎ node,

and 𝑥 should be placed in the 𝑗𝑡ℎ block. Nodes in the 𝑗𝑡ℎ block and in the blocks after the 𝑗𝑡ℎ block have to be

shifted toward the tail of the list so that each of them still have ⌈√𝑛⌉ nodes. In addition, a new block needs to be

added to the tail if the last block of the list is out of space, i.e., it has more than ⌈√𝑛⌉ nodes.

/

List Head

blockHead blockHead blockHead

List Head

/

blockHead blockHead blockHead

Data Structure and Algorithmic Thinking with Python Linked Lists

3.10 Unrolled Linked Lists 69

6 70 3 45 10 1 22 30 2 19 4 17

6 70 3 45 10 1 22 30 2 19 4 17

70 3 45 19 4 17

70 3 45 19 4 17

70 3

45

19 4 17

70 3

45

19 4 17

70 3 45 19 4 17

Performing Shift Operation

Note that each 𝑠ℎ𝑖𝑓𝑡 operation, which includes removing a node from the tail of the circular linked list in a block
and inserting a node to the head of the circular linked list in the block after, takes only O(1). The total time

complexity of an insertion operation for unrolled linked lists is therefore O(√𝑛); there are at most O(√𝑛) blocks

and therefore at most O(√𝑛) shift operations.

1. A temporary pointer is needed to store the tail of 𝐴.

2. In block 𝐴, move the next pointer of the head node to point to the second-to-last node, so that the

tail node of 𝐴 can be removed.

3. Let the next pointer of the node, which will be shifted (the tail node of 𝐴), point to the tail node of 𝐵.

4. Let the next pointer of the head node of 𝐵 point to the node temp points to.

5. Finally, set the head pointer of 𝐵 to point to the node 𝑡𝑒𝑚𝑝 points to. Now the node temp points to

becomes the new head node of 𝐵.

Shifting element Shifting element

/

List Head

blockHead blockHead blockHead

/

List Head

blockHead blockHead blockHead

A B

temp

A B

A B

temp

temp

A B

temp

A

temp

B

Data Structure and Algorithmic Thinking with Python Linked Lists

3.10 Unrolled Linked Lists 70

70 3 45 19 4 17

6. 𝑡𝑒𝑚𝑝 pointer can be thrown away. We have completed the shift operation to move the original tail

node of 𝐴 to become the new head node of 𝐵.

Performance

With unrolled linked lists, there are a couple of advantages, one in speed and one in space. First, if the number
of elements in each block is appropriately sized (e.g., at most the size of one cache line), we get noticeably better
cache performance from the improved memory locality. Second, since we have O(𝑛/𝑚) links, where 𝑛 is the

number of elements in the unrolled linked list and 𝑚 is the number of elements we can store in any block, we
can also save an appreciable amount of space, which is particularly noticeable if each element is small.

Comparing Doubly Linked Lists and Unrolled Linked Lists

To compare the overhead for an unrolled list, elements in doubly linked list implementations consist of data, a
pointer to the next node, and a pointer to the previous node in the list, as shown below.

class Node:

 # If data is not given by user,its taken as None

 def __init__(self, data=None, next=None, prev=None):

 self.data = data

 self.next = next

 self.prev = prev

Assuming we have 4 byte pointers, each node is going to take 8 bytes. But the allocation overhead for the node
could be anywhere between 8 and 16 bytes. Let’s go with the best case and assume it will be 8 bytes. So, if we
want to store 1K items in this list, we are going to have 16KB of overhead.

Now, let’s think about an unrolled linked list node (let us call it 𝐿𝑖𝑛𝑘𝑒𝑑𝐵𝑙𝑜𝑐𝑘). It will look something like this:

class LinkedBlock:

 def __init__(self, nextBlock=None, blockHead=None):

 self.next = nextBlock

 self.head = blockHead

 self.nodeCount = 0

Therefore, allocating a single node (12 bytes + 8 bytes of overhead) with an array of 100 elements (400 bytes + 8
bytes of overhead) will now cost 428 bytes, or 4.28 bytes per element. Thinking about our 1K items from above,
it would take about 4.2KB of overhead, which is close to 4x better than our original list. Even if the list becomes
severely fragmented and the item arrays are only 1/2 full on average, this is still an improvement. Also, note
that we can tune the array size to whatever gets us the best overhead for our application.

Implementation

#Node of a Singly Linked List

class Node:
 #constructor
 def __init__(self):
 self.value = None
 self.next = None

#Node of a Singly Linked List
class LinkedBlock:
 #constructor

 def __init__(self):
 self.head = None
 self.next = None
 nodeCount = 0

blockSize = 2
blockHead = None

#create an empty block

A B

Data Structure and Algorithmic Thinking with Python Linked Lists

3.10 Unrolled Linked Lists 71

def newLinkedBlock():
 block=LinkedBlock()
 block.next=None

 block.head=None
 block.nodeCount=0
 return block

#create a node
def newNode(value):
 temp=Node()
 temp.next=None
 temp.value=value
 return temp

def searchElements(blockHead, k):
 #find the block
 j=(k+blockSize-1)//blockSize #k-th node is in the j-th block
 p=blockHead

 j -= 1
 while(j):
 p=p.next
 j -= 1

 fLinkedBlock=p

 #find the node
 q=p.head
 k=k%blockSize
 if(k==0):
 k=blockSize
 k = p.nodeCount+1-k
 k -= 1
 while (k):
 q=q.next
 k -= 1

 fNode=q

 return fLinkedBlock, fNode

#start shift operation from block *p
def shift(A):
 B = A
 global blockHead
 while(A.nodeCount > blockSize): #if this block still have to shift
 if(A.next==None): #reach the end. A little different
 A.next=newLinkedBlock()
 B=A.next
 temp=A.head.next
 A.head.next=A.head.next.next
 B.head=temp
 temp.next=temp

 A.nodeCount -= 1
 B.nodeCount += 1
 else:
 B=A.next
 temp=A.head.next
 A.head.next=A.head.next.next
 temp.next=B.head.next
 B.head.next=temp
 B.head=temp
 A.nodeCount -= 1
 B.nodeCount += 1

 A=B

def addElement(k, x):
 global blockHead
 r = newLinkedBlock()

Data Structure and Algorithmic Thinking with Python Linked Lists

3.11 Skip Lists 72

 p = Node()

 if(blockHead == None): #initial, first node and block
 blockHead=newLinkedBlock()
 blockHead.head=newNode(x)
 blockHead.head.next=blockHead.head
 blockHead.nodeCount += 1
 else:
 if(k==0): #special case for k=0.
 p=blockHead.head
 q=p.next
 p.next=newNode(x)
 p.next.next=q
 blockHead.head=p.next
 blockHead.nodeCount += 1
 shift(blockHead)
 else:

 r, p = searchElements(blockHead, k)
 q = p
 while(q.next != p):
 q=q.next

 q.next=newNode(x)
 q.next.next=p
 r.nodeCount += 1
 shift(r)

 return blockHead

def searchElement(blockHead, k):
 q, p = searchElements(blockHead, k)
 return p.value

blockHead = addElement(0,11)
blockHead = addElement(0,21)
blockHead = addElement(1,19)
blockHead = addElement(1,23)
blockHead = addElement(2,16)
blockHead = addElement(2,35)
searchElement(blockHead, 1)

3.11 Skip Lists

Binary trees can be used for representing abstract data types such as dictionaries and ordered lists. They work
well when the elements are inserted in a random order. Some sequences of operations, such as inserting the
elements in order, produce degenerate data structures that give very poor performance. If it were possible to
randomly permute the list of items to be inserted, trees would work well with high probability for any input
sequence. In most cases queries must be answered on-line, so randomly permuting the input is impractical.
Balanced tree algorithms re-arrange the tree as operations are performed to maintain certain balance conditions
and assure good performance.

Skip list is a data structure that can be used as an alternative to balanced binary trees (refer to 𝑇𝑟𝑒𝑒𝑠 chapter).

As compared to a binary tree, skip lists allow quick search, insertion and deletion of elements. This is achieved

by using probabilistic balancing rather than strictly enforce balancing. It is basically a linked list with additional

pointers such that intermediate nodes can be skipped. It uses a random number generator to make some

decisions.

In an ordinary sorted linked list, search, insert, and delete are in O(𝑛) because the list must be scanned node-

by-node from the head to find the relevant node. If somehow we could scan down the list in bigger steps (skip

down, as it were), we would reduce the cost of scanning. This is the fundamental idea behind Skip Lists.

Skip Lists with One Level

3

7

12

19

23

29

43

70

Data Structure and Algorithmic Thinking with Python Linked Lists

3.11 Skip Lists 73

Skip Lists with Two Levels

3

7

12

19

23

29

43

70

Skip Lists with Three Levels

3

7

12

19

23

29

43

70

This section gives algorithms to search for, insert and delete elements in a dictionary or symbol table. The

Search operation returns the contents of the value associated with the desired key or failure if the key is not
present. The Insert operation associates a specified key with a new value (inserting the key if it had not already
been present). The Delete operation deletes the specified key. It is easy to support additional operations such as
“find the minimum key” or “find the next key”.

Each element is represented by a node, the level of which is chosen randomly when the node is inserted without
regard for the number of elements in the data structure. A level i node has i forward pointers, indexed 1 through
i. We do not need to store the level of a node in the node. Levels are capped at some appropriate constant
𝑀𝑎𝑥𝐿𝑒𝑣𝑒𝑙. The level of a list is the maximum level currently in the list (or 1 if the list is empty). The header of a

list has forward pointers at levels one through MaxLevel. The forward pointers of the header at levels higher
than the current maximum level of the list point to NULL.

Initialization

An element NIL is allocated and given a key greater than any legal key. All levels of all skip lists are terminated
with NIL. A new list is initialized so that the level of the list is equal to 1 and all forward pointers of the list’s
header point to NIL.

Search for an element

We search for an element by traversing forward pointers that do not overshoot the node containing the element
being searched for. When no more progress can be made at the current level of forward pointers, the search
moves down to the next level. When we can make no more progress at level 1, we must be immediately in front
of the node that contains the desired element (if it is in the list).

Insertion and Deletion Algorithms

To insert or delete a node, we simply search and splice. A vector update is maintained so that when the search
is complete (and we are ready to perform the splice), update[i] contains a pointer to the rightmost node of level i
or higher that is to the left of the location of the insertion/deletion. If an insertion generates a node with a level
greater than the previous maximum level of the list, we update the maximum level of the list and initialize the
appropriate portions of the update vector. After each deletion, we check if we have deleted the maximum element

of the list and if so, decrease the maximum level of the list.

Choosing a Random Level

Initially, we discussed a probability distribution where half of the nodes that have level i pointers also have level

i+1 pointers. To get away from magic constants, we say that a fraction p of the nodes with level i pointers also
have level i+1 pointers. (for our original discussion, p = 1/2). Levels are generated randomly by an algorithm.
Levels are generated without reference to the number of elements in the list

Performance

In a simple linked list that consists of 𝑛 elements, to perform a search 𝑛 comparisons are required in the worst

case. If a second pointer pointing two nodes ahead is added to every node, the number of comparisons goes
down to 𝑛/2 + 1 in the worst case. Adding one more pointer to every fourth node and making them point to the

fourth node ahead reduces the number of comparisons to ⌈𝑛/2⌉ + 2. If this strategy is continued so that every

Data Structure and Algorithmic Thinking with Python Linked Lists

3.11 Skip Lists 74

node with 𝑖 pointers points to 2 ∗ 𝑖 − 1 nodes ahead, O(𝑙𝑜𝑔𝑛) performance is obtained and the number of pointers

has only doubled (𝑛 + 𝑛/2 + 𝑛/4 + 𝑛/8 + 𝑛/16 + = 2𝑛).

The find, insert, and remove operations on ordinary binary search trees are efficient, O(𝑙𝑜𝑔𝑛), when the input

data is random; but less efficient, O(𝑛), when the input data is ordered. Skip List performance for these same
operations and for any data set is about as good as that of randomly-built binary search trees - namely O(𝑙𝑜𝑔𝑛).

Comparing Skip Lists and Unrolled Linked Lists

In simple terms, Skip Lists are sorted linked lists with two differences:

 The nodes in an ordinary list have one next reference. The nodes in a Skip List have many 𝑛𝑒𝑥𝑡
references (also called 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 references).

 The number of 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 references for a given node is determined probabilistically.

We speak of a Skip List node having levels, one level per forward reference. The number of levels in a node is
called the 𝑠𝑖𝑧𝑒 of the node. In an ordinary sorted list, insert, remove, and find operations require sequential
traversal of the list. This results in O(𝑛) performance per operation. Skip Lists allow intermediate nodes in the

list to be skipped during a traversal - resulting in an expected performance of O(𝑙𝑜𝑔𝑛) per operation.

Implementation

import random
import math
class Node(object):
 def __init__(self, data, level=0):
 self.data = data
 self.next = [None] * level

 def __str__(self):
 return "Node(%s,%s)" % (self.data, len(self.next))
 __repr__ = __str__

class SkipList(object):
 def __init__(self, max_level=8):
 self.max_level = max_level
 n = Node(None, max_level)
 self.head = n
 self.verbose = False

 def randomLevel(self, max_level):
 num = random.randint(1, 2**max_level - 1)
 lognum = math.log(num, 2)
 level = int(math.floor(lognum))
 return max_level - level

 def updateList(self, data):
 update = [None] * (self.max_level)
 n = self.head
 self._n_traverse = 0

 level = self.max_level - 1

 while level >= 0:
 if self.verbose and \
 n.next[level] != None and n.next[level].data >= data:
 print 'DROP down from level', level + 1
 while n.next[level] != None and n.next[level].data < data:
 self._n_traverse += 1
 if self.verbose:
 print 'AT level', level, 'data', n.next[level].data
 n = n.next[level]
 update[level] = n
 level -= 1

 return update

 def find(self, data, update=None):
 if update is None:
 update = self.updateList(data)
 if len(update) > 0:

Data Structure and Algorithmic Thinking with Python Linked Lists

3.12 Linked Lists: Problems & Solutions 75

 candidate = update[0].next[0]
 if candidate != None and candidate.data == data:
 return candidate

 return None

 def insertNode(self, data, level=None):
 if level is None:
 level = self.randomLevel(self.max_level)

 node = Node(data, level)

 update = self.updateList(data)
 if self.find(data, update) == None:
 for i in range(level):
 node.next[i] = update[i].next[i]
 update[i].next[i] = node

def printLevel(sl, level):
 print 'level %d:' % level,

 node = sl.head.next[level]
 while node:
 print node.data, '=>',
 node = node.next[level]
 print 'END'

x = SkipList(4)
for i in range(0, 20, 2):
 x.insertNode(i)

printLevel(x, 0)
printLevel(x, 1)
printLevel(x, 2)

3.12 Linked Lists: Problems & Solutions

Problem-1 Implement Stack using Linked List.

Solution: Refer to 𝑆𝑡𝑎𝑐𝑘𝑠 chapter.

Problem-2 Find 𝑛𝑡ℎ node from the end of a Linked List.

Solution: Brute-Force Method: Start with the first node and count the number of nodes present after that
node. If the number of nodes is < 𝑛 − 1 then return saying “fewer number of nodes in the list”. If the number of
nodes is > 𝑛 − 1 then go to next node. Continue this until the numbers of nodes after current node are 𝑛 − 1.

Time Complexity: O(𝑛2), for scanning the remaining list (from current node) for each node.
Space Complexity: O(1).

Problem-3 Can we improve the complexity of Problem-2?

Solution: Yes, using hash table. As an example consider the following list.

In this approach, create a hash table whose entries are < 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛𝑜𝑑𝑒, 𝑛𝑜𝑑𝑒 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 >. That means, key is the
position of the node in the list and value is the address of that node.

Position in List Address of Node

1 Address of 5 node

2 Address of 1 node

3 Address of 17 node

4 Address of 4 node

By the time we traverse the complete list (for creating the hash table), we can find the list length. Let us say the

list length is 𝑀. To find 𝑛𝑡ℎ from the end of linked list, we can convert this to 𝑀- 𝑛 + 1𝑡ℎ from the beginning.

Since we already know the length of the list, it is just a matter of returning 𝑀- 𝑛 + 1𝑡ℎ key value from the hash

table.

 5 1 17 4 NULL

Head

Data Structure and Algorithmic Thinking with Python Linked Lists

3.12 Linked Lists: Problems & Solutions 76

Time Complexity: Time for creating the hash table, 𝑇(𝑚) = O(𝑚).
Space Complexity: Since we need to create a hash table of size 𝑚, O(𝑚).

Problem-4 Can we use Problem-3 approach for solving Problem-2 without creating the hash table?

Solution: Yes. If we observe the Problem-3 solution, what we are actually doing is finding the size of the linked
list. That means we are using the hash table to find the size of the linked list. We can find the length of the

linked list just by starting at the head node and traversing the list. So, we can find the length of the list without
creating the hash table. After finding the length, compute 𝑀 − 𝑛 + 1 and with one more scan we can get the 𝑀 −

 𝑛 + 1𝑡ℎ node from the beginning. This solution needs two scans: one for finding the length of the list and the

other for finding 𝑀 − 𝑛 + 1𝑡ℎ node from the beginning.

Time Complexity: Time for finding the length + Time for finding the 𝑀- 𝑛 + 1𝑡ℎ node from the beginning.
Therefore, 𝑇(𝑛 = O(𝑛) + O(𝑛) ≈ O(𝑛).

Space Complexity: O(1). Hence, no need to create the hash table.

Problem-5 Can we solve Problem-2 in one scan?

Solution: Yes. Efficient Approach: Use two pointers 𝑝𝑁𝑡ℎ𝑁𝑜𝑑𝑒 and 𝑝𝑇𝑒𝑚𝑝. Initially, both point to head node of

the list. 𝑝𝑁𝑡ℎ𝑁𝑜𝑑𝑒 starts moving only after 𝑝𝑇𝑒𝑚𝑝 has made 𝑛 moves. From there both move forward until 𝑝𝑇𝑒𝑚𝑝

reaches the end of the list. As a result 𝑝𝑁𝑡ℎ𝑁𝑜𝑑𝑒 points to 𝑛𝑡ℎ node from the end of the linked list.

Note: At any point of time both move one node at a time.

 def nthNodeFromEnd(self, n):
 if 0 > n:
 return None

 # count k units from the self.head.
 temp = self.head
 count = 0
 while count < n and None != temp:
 temp = temp.next
 count += 1

 # if the LinkedList does not contain k elements, return None
 if count < n or None == temp:
 return None

 # keeping tab on the nth element from temp, slide temp until
 # temp equals self.tail. Then return the nth element.
 nth = self.head
 while None != temp.next:
 temp = temp.next
 nth = nth.next

 return nth

Time Complexity: O(𝑛). Space Complexity: O(1).

Problem-6 Check whether the given linked list is either NULL-terminated or ends in a cycle (cyclic).

Solution: Brute-Force Approach. As an example, consider the following linked list which has a loop in it. The
difference between this list and the regular list is that, in this list, there are two nodes whose next pointers are

the same. In regular singly linked lists (without a loop) each node’s next pointer is unique. That means the

repetition of next pointers indicates the existence of a loop.

One simple and brute force way of solving this is, start with the first node and see whether there is any node
whose next pointer is the current node’s address. If there is a node with the same address then that indicates
that some other node is pointing to the current node and we can say a loop exists.

Data Structure and Algorithmic Thinking with Python Linked Lists

3.12 Linked Lists: Problems & Solutions 77

Continue this process for all the nodes of the linked list.

Does this method work? As per the algorithm, we are checking for the next pointer addresses, but how do we
find the end of the linked list (otherwise we will end up in an infinite loop)?

Note: If we start with a node in a loop, this method may work depending on the size of the loop.

Problem-7 Can we use the hashing technique for solving Problem-6?

Solution: Yes. Using Hash Tables we can solve this problem.

Algorithm:

 Traverse the linked list nodes one by one.

 Check if the address of the node is available in the hash table or not.

 If it is already available in the hash table, that indicates that we are visiting the node that was already

visited. This is possible only if the given linked list has a loop in it.

 If the address of the node is not available in the hash table, insert that node’s address into the hash

table.

 Continue this process until we reach the end of the linked list 𝑜𝑟 we find the loop.

Time Complexity: O(𝑛) for scanning the linked list. Note that we are doing a scan of only the input.

Space Complexity: O(𝑛) for hash table.

Problem-8 Can we solve Problem-6 using the sorting technique?

Algorithm:

 Traverse the linked list nodes one by one and take all the next pointer values into an array.

 Sort the array that has the next node pointers.

 If there is a loop in the linked list, definitely two next node pointers will be pointing to the same node.

 After sorting if there is a loop in the list, the nodes whose next pointers are the same will end up

adjacent in the sorted list.

 If any such pair exists in the sorted list then we say the linked list has a loop in it.

Time Complexity: O(𝑛𝑙𝑜𝑔𝑛) for sorting the next pointers array.
Space Complexity: O(𝑛) for the next pointers array.

Problem with the above algorithm: The above algorithm works only if we can find the length of the list. But if
the list has a loop then we may end up in an infinite loop. Due to this reason the algorithm fails.

Problem-9 Can we solve the Problem-6 in O(𝑛)?

Solution: Yes. Efficient Approach (Memoryless Approach): This problem was solved by 𝐹𝑙𝑜𝑦𝑑. The solution is

named the Floyd cycle finding algorithm. It uses 𝑡𝑤𝑜 pointers moving at different speeds to walk the linked list.
Once they enter the loop they are expected to meet, which denotes that there is a loop. This works because the
only way a faster moving pointer would point to the same location as a slower moving pointer is if somehow the
entire list or a part of it is circular. Think of a tortoise and a hare running on a track. The faster running hare

will catch up with the tortoise if they are running in a loop.

As an example, consider the following example and trace out the Floyd algorithm. From the diagrams below we
can see that after the final step they are meeting at some point in the loop which may not be the starting point

of the loop.

Note: 𝑠𝑙𝑜𝑤𝑃𝑡𝑟 (𝑡𝑜𝑟𝑡𝑜𝑖𝑠𝑒) moves one pointer at a time and 𝑓𝑎𝑠𝑡𝑃𝑡𝑟 (ℎ𝑎𝑟𝑒) moves two pointers at a time.

slowPtr

fastPtr

slowPtr fastPtr

Data Structure and Algorithmic Thinking with Python Linked Lists

3.12 Linked Lists: Problems & Solutions 78

 def detectCycle(self):
 fastPtr = self.head
 slowPtr = self.head

 while (fastPtr and slowPtr):
 fastPtr = fastPtr.getNext()

 if (fastPtr == slowPtr):
 return True

 if fastPtr == None:
 return False

 fastPtr = fastPtr.getNext()
 if (fastPtr == slowPtr):
 return True

 slowPtr = slowPtr.getNext()

Time Complexity: O(𝑛). Space Complexity: O(1).

Problem-10 We are given a pointer to the first element of a linked list 𝐿. There are two possibilities for 𝐿, it

either ends (snake) or its last element points back to one of the earlier elements in the list (snail). Give an
algorithm that tests whether a given list 𝐿 is a snake or a snail.

Solution: It is the same as Problem-6.

slowPtr

fastPtr

slowPt
r

fastPtr

fastPt
r

slowPtr

slowPtr

fastPtr

slowPtr

fastPt
r

Data Structure and Algorithmic Thinking with Python Linked Lists

3.12 Linked Lists: Problems & Solutions 79

Problem-11 Check whether the given linked list is NULL-terminated or not. If there is a cycle find the start
node of the loop.

Solution: The solution is an extension to the solution in Problem-9. After finding the loop in the linked list, we
initialize the 𝑠𝑙𝑜𝑤𝑃𝑡𝑟 to the head of the linked list. From that point onwards both 𝑠𝑙𝑜𝑤𝑃𝑡𝑟 and 𝑓𝑎𝑠𝑡𝑃𝑡𝑟 move only

one node at a time. The point at which they meet is the start of the loop. Generally we use this method for
removing the loops. Let 𝑥 and y be travelers such that y is walking twice as fast as 𝑥 (i.e. 𝑦 = 2𝑥). Further, let s

be the place where 𝑥 and 𝑦 first started walking at the same time. Then when x and y meet again, the distance
from 𝑠 to the start of the loop is the exact same distance from the present meeting place of 𝑥 and 𝑦 to the start of

the loop.

 def detectCycleStart(self) :
 if None == self.head or None == self.head.next:
 return None

 # slow and fast both started at head after one step,
 # slow is at self.head.next and fast is at self.head.next.next
 slow = self.head.next

 fast = slow.next
 # each keep walking until they meet again.
 while slow != fast:
 slow = slow.next
 try:
 fast = fast.next.next
 except AttributeError:
 return None # no cycle if NoneType reached

 # from self.head to beginning of loop is same as from fast to beginning of loop
 slow = self.head
 while slow != fast:

 slow = slow.next
 fast = fast.next

 return slow # beginning of loop

Time Complexity: O(𝑛). Space Complexity: O(1).

Problem-12 From the previous discussion and problems we understand that the meeting of tortoise and
hare concludes the existence of the loop, but how does moving the tortoise to the beginning of the linked list
while keeping the hare at the meeting place, followed by moving both one step at a time, make them meet at
the starting point of the cycle?

Solution: This problem is at the heart of number theory. In the Floyd cycle finding algorithm, notice that the
tortoise and the hare will meet when they are 𝑛 × 𝐿, where 𝐿 is the loop length. Furthermore, the tortoise is at

the midpoint between the hare and the beginning of the sequence because of the way they move. Therefore the
tortoise is 𝑛 × 𝐿 away from the beginning of the sequence as well.

If we move both one step at a time, from the position of the tortoise and from the start of the sequence, we know
that they will meet as soon as both are in the loop, since they are 𝑛 × 𝐿, a multiple of the loop length, apart.
One of them is already in the loop, so we just move the other one in single step until it enters the loop, keeping
the other 𝑛 × 𝐿 away from it at all times.

Problem-13 In Floyd cycle finding algorithm, does it work if we use steps 2 and 3 instead of 1 and 2?

Solution: Yes, but the complexity might be high. Trace out an example.

Problem-14 Check whether the given linked list is NULL-terminated. If there is a cycle, find the length of the
loop.

Solution: This solution is also an extension of the basic cycle detection problem. After finding the loop in the
linked list, keep the 𝑠𝑙𝑜𝑤𝑃𝑡𝑟 as it is. The 𝑓𝑎𝑠𝑡𝑃𝑡𝑟 keeps on moving until it again comes back to 𝑠𝑙𝑜𝑤𝑃𝑡𝑟. While

moving 𝑓𝑎𝑠𝑡𝑃𝑡𝑟, use a counter variable which increments at the rate of 1.

 def findLoopLength(self):
 if None == self.head or None == self.head.next:
 return 0

 # slow and fast both started at head after one step,
 # slow is at self.head.next and fast is at self.head.next.next
 slow = self.head.next
 fast = slow.next

Data Structure and Algorithmic Thinking with Python Linked Lists

3.12 Linked Lists: Problems & Solutions 80

 # each keep walking until they meet again.
 while slow != fast:
 slow = slow.next

 try:
 fast = fast.next.next
 except AttributeError:
 return 0 # no cycle if NoneType reached

 loopLength = 0
 slow = slow.next
 while slow != fast:
 slow = slow.next
 loopLength = loopLength + 1

 return loopLength

Time Complexity: O(𝑛). Space Complexity: O(1).

Problem-15 Insert a node in a sorted linked list.

Solution: Traverse the list and find a position for the element and insert it.

 def orderedInsert(self,item):
 current = self.head
 previous = None
 stop = False

 while current != None and not stop:
 if current.getData() > item:
 stop = True
 else:

 previous = current
 current = current.getNext()

 temp = Node(item)
 if previous == None:
 temp.setNext(self.head)
 self.head = temp
 else:
 temp.setNext(current)
 previous.setNext(temp)

Time Complexity: O(𝑛). Space Complexity: O(1).

Problem-16 Reverse a singly linked list.

Solution: This algorithm reverses this singly linked list in place, in O(𝑛). The function uses three pointers to

walk the list and reverse link direction between each pair of nodes.

 # Iterative version
 def reverseList(self):
 last = None
 current = self.head

 while(current is not None):
 nextNode = current.getNext()
 current.setNext(last)
 last = current
 current = nextNode

 self.head = last

Time Complexity: O(𝑛). Space Complexity: O(1).

Recursive version: We can find it easier to start from the bottom up, by asking and answering tiny questions
(this is the approach in The Little Lisper):

 What is the reverse of NULL (the empty list)? NULL.

 What is the reverse of a one element list? The element itself.

 What is the reverse of an 𝑛 element list? The reverse of the second element followed by the first element.

 def reverseRecursive(self, n) :
 if None != n:

Data Structure and Algorithmic Thinking with Python Linked Lists

3.12 Linked Lists: Problems & Solutions 81

 right = n.getNext()

 if self.head != n:
 n.setNext(self.head)
 self.head = n
 else:
 n.setNext(None)
 self.reverseRecursive(right)

Time Complexity: O(𝑛). Space Complexity: O(𝑛), for recursive stack.

Problem-17 Suppose there are two singly linked lists both of which intersect at some point and become a
single linked list. The head or start pointers of both the lists are known, but the intersecting node is not

known. Also, the number of nodes in each of the lists before they intersect is unknown and may be different
in each list. 𝐿𝑖𝑠𝑡1 may have 𝑛 nodes before it reaches the intersection point, and 𝐿𝑖𝑠𝑡2 might have 𝑚 nodes
before it reaches the intersection point where 𝑚 and 𝑛 may be 𝑚 = 𝑛, 𝑚 < 𝑛 or 𝑚 > 𝑛. Give an algorithm for

finding the merging point.

Solution: Brute-Force Approach: One easy solution is to compare every node pointer in the first list with every
other node pointer in the second list by which the matching node pointers will lead us to the intersecting node.
But, the time complexity in this case will be O(𝑚𝑛) which will be high.

Time Complexity: O(𝑚𝑛). Space Complexity: O(1).

Problem-18 Can we solve Problem-17 using the sorting technique?

Solution: No. Consider the following algorithm which is based on sorting and see why this algorithm fails.

Algorithm:

 Take first list node pointers and keep them in some array and sort them.

 Take second list node pointers and keep them in some array and sort them.

 After sorting, use two indexes: one for the first sorted array and the other for the second sorted array.

 Start comparing values at the indexes and increment the index according to whichever has the lower

value (increment only if the values are not equal).

 At any point, if we are able to find two indexes whose values are the same, then that indicates that
those two nodes are pointing to the same node and we return that node.

Time Complexity: Time for sorting lists + Time for scanning (for comparing)
 = O(𝑚𝑙𝑜𝑔𝑚) +O(𝑛𝑙𝑜𝑔𝑛) +O(𝑚 + 𝑛) We need to consider the one that gives the maximum value.

Space Complexity: O(1).

Any problem with the above algorithm? Yes. In the algorithm, we are storing all the node pointers of both the

lists and sorting. But we are forgetting the fact that there can be many repeated elements. This is because after

the merging point, all node pointers are the same for both the lists. The algorithm works fine only in one case
and it is when both lists have the ending node at their merge point.

Problem-19 Can we solve Problem-17 using hash tables?

Solution: Yes.

Algorithm:

 Select a list which has less number of nodes (If we do not know the lengths beforehand then select one
list randomly).

 Now, traverse the other list and for each node pointer of this list check whether the same node pointer

exists in the hash table.

 If there is a merge point for the given lists then we will definitely encounter the node pointer in the hash

table.

 def findIntersectingNode(self, list1, list2):
 intersect = {}
 t = list1

 ?

NULL

http://www.doctorinterview.com/A/6A/6A14.html

Data Structure and Algorithmic Thinking with Python Linked Lists

3.12 Linked Lists: Problems & Solutions 82

 while None != t:
 intersect[t] = True
 t = t.getNext()

 # first duplicate is intersection
 t = list2
 while None != t:
 if None != intersect.get(t):
 return t
 t = t.getNext()
 return None

Time Complexity: Time for creating the hash table + Time for scanning the second list = O(𝑚) + O(𝑛) (or O(𝑛) +
 O(𝑚), depending on which list we select for creating the hash table. But in both cases the time complexity is the

same.
Space Complexity: O(𝑛) or O(𝑚).

Problem-20 Can we use stacks for solving Problem-17?

Solution: Yes.

Algorithm:

 Create two stacks: one for the first list and one for the second list.

 Traverse the first list and push all the node addresses onto the first stack.

 Traverse the second list and push all the node addresses onto the second stack.

 Now both stacks contain the node address of the corresponding lists.

 Now compare the top node address of both stacks.

 If they are the same, take the top elements from both the stacks and keep them in some temporary

variable (since both node addresses are node, it is enough if we use one temporary variable).

 Continue this process until the top node addresses of the stacks are not the same.

 This point is the one where the lists merge into a single list.

 Return the value of the temporary variable.

Time Complexity: O(𝑚 + 𝑛), for scanning both the lists.

Space Complexity: O(𝑚 + 𝑛), for creating two stacks for both the lists.

Problem-21 Is there any other way of solving Problem-17?

Solution: Yes. Using “finding the first repeating number” approach in an array (for algorithm refer 𝑆𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔

chapter).

Algorithm:

 Create an array 𝐴 and keep all the next pointers of both the lists in the array.

 In the array find the first repeating element [Refer to 𝑆𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔 chapter for algorithm].

 The first repeating number indicates the merging point of both the lists.

Time Complexity: O(𝑚 + 𝑛). Space Complexity: O(𝑚 + 𝑛).

Problem-22 Can we still think of finding an alternative solution for Problem-17?

Solution: Yes. By combining sorting and search techniques we can reduce the complexity.

Algorithm:

 Create an array 𝐴 and keep all the next pointers of the first list in the array.

 Sort these array elements.

 Then, for each of the second list elements, search in the sorted array (let us assume that we are using

binary search which gives O(𝑙𝑜𝑔𝑛)).
 Since we are scanning the second list one by one, the first repeating element that appears in the array is

nothing but the merging point.

Time Complexity: Time for sorting + Time for searching = O(𝑀𝑎𝑥(𝑚𝑙𝑜𝑔𝑚, 𝑛𝑙𝑜𝑔𝑛)).
Space Complexity: O(𝑀𝑎𝑥(𝑚, 𝑛)).

Problem-23 Can we improve the complexity for Problem-17?

Solution: Yes.

Efficient Approach:

 Find lengths (L1 and L2) of both lists -- O(𝑛) + O(𝑚) = O(𝑚𝑎𝑥(𝑚, 𝑛)).
 Take the difference 𝑑 of the lengths -- O(1).
 Make 𝑑 steps in longer list -- O(𝑑).

http://www.doctorinterview.com/A/6A/6A14.html
http://www.doctorinterview.com/A/6A/6A14.html

Data Structure and Algorithmic Thinking with Python Linked Lists

3.12 Linked Lists: Problems & Solutions 83

 Step in both lists in parallel until links to next node match -- O(𝑚𝑖𝑛(𝑚, 𝑛)).
 Total time complexity = O(𝑚𝑎𝑥(𝑚, 𝑛)).
 Space Complexity = O(1).

 def getIntersectionNode(self, list1, list2):

 currentList1,currentList2 = list1,list2
 list1Len,list2Len = 0,0
 while currentList1 is not None:
 list1Len += 1
 currentList1 = currentList1.next
 while currentList2 is not None:
 list2Len += 1
 currentList2 = currentList2.next
 currentList1,currentList2 = list1,list2
 if list1Len > list2Len:
 for i in range(list1Len-list2Len):
 currentList1 = currentList1.next

 elif list2Len > list1Len:
 for i in range(list2Len-list1Len):
 currentList2 = currentList2.next
 while currentList2 != currentList1:
 currentList2 = currentList2.next
 currentList1 = currentList1.next
 return currentList1

Problem-24 How will you find the middle of the linked list?

Solution: Brute-Force Approach: For each of the node counts how many nodes are there in the list and see
whether it is the middle.

Time Complexity: O(𝑛2). Space Complexity: O(1).

Problem-25 Can we improve the complexity of Problem-24?

Solution: Yes.

Algorithm:

 Traverse the list and find the length of the list.

 After finding the length, again scan the list and locate 𝑛/2 node from the beginning.

Time Complexity: Time for finding the length of the list + Time for locating middle node = O(𝑛) + O(𝑛) ≈ O(𝑛).
Space Complexity: O(1).

Problem-26 Can we use the hash table for solving Problem-24?

Solution: Yes. The reasoning is the same as that of Problem-3.

Time Complexity: Time for creating the hash table. Therefore, 𝑇(𝑛) = O(𝑛).
Space Complexity: O(𝑛). Since we need to create a hash table of size 𝑛.

Problem-27 Can we solve Problem-24 just in one scan?

Solution: Efficient Approach: Use two pointers. Move one pointer at twice the speed of the second. When the

first pointer reaches the end of the list, the second pointer will be pointing to the middle node.

Note: If the list has an even number of nodes, the middle node will be of ⌊𝑛/2⌋.

 def findMiddleNode(self) :
 fastPtr = self.head
 slowPtr = self.head

 while (fastPtr != None):
 fastPtr = fastPtr.getNext()
 if (fastPtr == None):
 return slowPtr

 fastPtr = fastPtr.getNext()
 slowPtr = slowPtr.getNext()
 return slowPtr

Time Complexity: O(𝑛). Space Complexity: O(1).

http://www.doctorinterview.com/A/6A/6A14.html

Data Structure and Algorithmic Thinking with Python Linked Lists

3.12 Linked Lists: Problems & Solutions 84

Problem-28 How will you display a linked list from the end?

Solution: Traverse recursively till the end of the linked list. While coming back, start printing the elements. It is
natural to express many list operations using recursive methods. For example, the following is a recursive
algorithm for printing a list backwards:

1. Separate the list into two pieces: the first node (called the head); and the rest (called the tail).
2. Print the tail backward.
3. Print the head.

Of course, Step 2, the recursive call, assumes that we have a way of printing a list backward.

 def printListFromEnd(self, list) :
 if list == None:

 return
 head = list
 tail = list.getNext()
 self.printListFromEnd(tail)
 print head.getData(),

 if __name__ == "__main__":
 linkedlst = LinkedList()
 linkedlst.insertAtEnd(1)
 linkedlst.insertAtEnd(2)
 linkedlst.insertAtEnd(3)
 linkedlst.insertAtEnd(4)

 linkedlst.printList()
 linkedlst.printListFromEnd(linkedlst.head)

Time Complexity: O(𝑛). Space Complexity: O(𝑛)→ for Stack.

Problem-29 Check whether the given Linked List length is even or odd?

Solution: Use a 2𝑥 pointer. Take a pointer that moves at 2𝑥 [two nodes at a time]. At the end, if the length is

even, then the pointer will be NULL; otherwise it will point to the last node.

 def isLinkedListLengthEven(self):
 current = self.head
 while current != None and current.getNext()!= None:
 current = current.getNext().getNext()
 if current == None:
 return 1
 return 0

Time Complexity: O(⌊𝑛/2⌋) ≈O(𝑛). Space Complexity: O(1).

Problem-30 If the head of a linked list is pointing to 𝑘𝑡ℎ element, then how will you get the elements before

𝑘𝑡ℎ element?

Solution: Use Memory Efficient Linked Lists [XOR Linked Lists].

Problem-31 Given two sorted Linked Lists, how to merge them into the third list in sorted order?

Solution: Assume the sizes of lists are 𝑚 and 𝑛.

 def mergeTwoLists(self, list1, list2):
 temp = Node()
 pointer = temp
 while list1 !=None and list2 !=None:
 if list1.getData()<list2.getData():
 pointer.setNext(list1)
 list1 = list1.getNext()
 else:
 pointer.setNext(list2)
 list2 = list2.getNext()

 pointer = pointer.getNext()
 if list1 == None:
 pointer.setNext(list2)
 else:
 pointer.setNext(list1)
 return temp.getNext()

http://www.doctorinterview.com/A/6A/6A18.html

Data Structure and Algorithmic Thinking with Python Linked Lists

3.12 Linked Lists: Problems & Solutions 85

Time Complexity: O(𝑛 + 𝑚), where 𝑛 and 𝑚 are lengths of two lists.

Problem-32 Reverse the linked list in pairs. If you have a linked list that holds 1 → 2 → 3 → 4 → 𝑋, then

after the function has been called the linked list would hold 2 → 1 → 4 → 3 → 𝑋.

Solution:

 def reverseInPairs(self) :
 temp = self.head
 while None != temp and None != temp.getNext():
 self.swapData(temp, temp.getNext())
 temp = temp.getNext().getNext()

 def swapData(self, a, b):
 tmp = a.getData()
 a.setData(b.getData())
 b.setData(tmp)

Time Complexity – O(𝑛). Space Complexity: O(1).

Problem-33 Given a binary tree convert it to doubly linked list.

Solution: Refer 𝑇𝑟𝑒𝑒𝑠 chapter.

Problem-34 How do we sort the Linked Lists?

Solution: Refer 𝑆𝑜𝑟𝑡𝑖𝑛𝑔 chapter.

Problem-35 Split a Circular Linked List into two equal parts. If the number of nodes in the list are odd then
make first list one node extra than second list.

Solution:

Algorithm:

 Store the mid and last pointers of the linked list using Floyd cycle finding algorithm.

 Set head pointers of the two linked lists.

As an example, consider the following linked list.

After the split, the above list will look like:

 def splitList(head):

 fast = head
 slow = head
 while fast != None and fast.getNext() != None:
 slow = slow.getNext()
 fast = fast.getNext()
 fast = fast.getNext()

 middle = slow.getNext()
 slow.setNext(None)

 return head, middle

Time Complexity: O(𝑛). Space Complexity: O(1).

Problem-36 If we want to concatenate two linked lists, which of the following gives O(1) complexity?
1) Singly linked lists
2) Doubly linked lists
3) Circular doubly linked lists

 4 15 7 40

Head

middle Head

 4 15 7 40

Data Structure and Algorithmic Thinking with Python Linked Lists

3.12 Linked Lists: Problems & Solutions 86

Solution: Circular Doubly Linked Lists. This is because for singly and doubly linked lists, we need to traverse
the first list till the end and append the second list. But in the case of circular doubly linked lists we don’t have
to traverse the lists.

Problem-37 How will you check if the linked list is palindrome or not?

Solution:

Algorithm:

1. Get the middle of the linked list.
2. Reverse the second half of the linked list.
3. Compare the first half and second half.
4. Construct the original linked list by reversing the second half again and attaching it back to the first

half.

Time Complexity: O(𝑛). Space Complexity: O(1).

Problem-38 For a given 𝐾 value (𝐾 > 0) reverse blocks of 𝐾 nodes in a list.
Example: Input: 1 2 3 4 5 6 7 8 9 10. Output for different 𝐾 values:

 For 𝐾 = 2: 2 1 4 3 6 5 8 7 10 9 For 𝐾 = 3: 3 2 1 6 5 4 9 8 7 10 For 𝐾 = 4: 4 3 2 1 8 7 6 5 9 10

Solution:

Algorithm: This is an extension of swapping nodes in a linked list.

1) Check if remaining list has 𝐾 nodes.

a. If yes get the pointer of 𝐾 + 1 𝑡ℎ node.

b. Else return.
2) Reverse first 𝐾 nodes.

3) Set next of last node (after reversal) to 𝐾 + 1 𝑡ℎ node.

4) Move to 𝐾 + 1 𝑡ℎ node.

5) Go to step 1.

6) 𝐾 − 1 𝑡ℎ node of first 𝐾 nodes becomes the new head if available. Otherwise, we can return the head.

 def reverseKBlock(self, head, k):
 temp = Node(0);
 temp.setNext(head)
 previous = temp
 while True:
 begin = previous.getNext()
 end = previous
 for i in range(0,k):
 end = end.getNext()
 if end == None:
 return temp.getNext()
 nextBlock = end.getNext()
 self.reverseList(begin,end)
 previous.setNext(end)
 begin.setNext(nextBlock)
 previous = begin

 def reverseList(self, start, end):
 alreadyReversed = start

 actual = start
 nextNode = start.getNext()
 while actual != end:
 actual = nextNode
 nextNode = nextNode.getNext()
 actual.setNext(alreadyReversed)
 alreadyReversed = actual

Problem-39 Is it possible to get O(1) access time for Linked Lists?

Solution: Yes. Create a linked list and at the same time keep it in a hash table. For 𝑛 elements we have to keep
all the elements in a hash table which gives a preprocessing time of O(𝑛). To read any element we require only

constant time O(1) and to read 𝑛 elements we require 𝑛 ∗ 1 unit of time = 𝑛 units. Hence by using amortized
analysis we can say that element access can be performed within O(1) time.

Time Complexity – O(1) [Amortized]. Space Complexity - O(𝑛) for Hash Table.

http://www.doctorinterview.com/A/6A/6A20.html

Data Structure and Algorithmic Thinking with Python Linked Lists

3.12 Linked Lists: Problems & Solutions 87

Problem-40 Josephus Circle: Flavius Josephus was a famous Jewish historian of the first century, at the
time of the destruction of the Second Temple. According to legend, during the Jewish-Roman war he was
trapped in a cave with a group of forty soldiers surrounded by Romans. Preferring death to capture, the Jews

decided to form a circle and, proceeding around it, to kill every third person remaining until no one was left.
Josephus found the safe spot in the circle and thus stayed alive. Write a function josephus(n,m) that returns

a list of 𝑛 people, numbered from 0 to 𝑛 − 1, in the order in which they are executed, every 𝑚𝑡ℎperson in turn,
with the sole survivor as the last person in the list. That mean, find which person will be the last one

remaining (with rank 1).

Solution: Assume the input is a circular linked list with 𝑛 nodes and each node has a number (range 1 to 𝑛)

associated with it. The head node has number 1 as data.

 def getJosephusPosition(n, m):
 class Node:
 def __init__(self, data = None, next = None):
 self.setData(data)
 self.setNext(next)

 #method for setting the data field of the node
 def setData(self,data):
 self.data = data

 #method for getting the data field of the node
 def getData(self):
 return self.data

 #method for setting the next field of the node
 def setNext(self,next):
 self.next = next

 #method for getting the next field of the node
 def getNext(self):
 return self.next

 #returns true if the node points to another node
 def hasNext(self):
 return self.next != None
 answer = []

 # initialize circular linked list
 head = Node(0)
 prev = head
 for n in range(1, n):
 currentNode = Node(n)
 prev.setNext(currentNode)
 prev = currentNode
 prev.setNext(head) # set the last node to point to the front (circular list)

 # extract items from linked list in proper order
 currentNode = head
 counter = 0

 while currentNode.getNext() != currentNode:
 counter += 1

 if counter == m:
 counter = 0
 prev.setNext(currentNode.next)
 answer.append(currentNode.getData())
 else:
 prev = currentNode
 currentNode = currentNode.getNext()

 answer.append(currentNode.getData())
 return answer

 print str(getJosephusPosition(6, 3))

Problem-41 Given a linked list consists of data, a next pointer and also a random pointer which points to a

random node of the list. Give an algorithm for cloning the list.

Solution: We can use a hash table to associate newly created nodes with the instances of node in the given list.

Data Structure and Algorithmic Thinking with Python Linked Lists

3.12 Linked Lists: Problems & Solutions 88

Algorithm:

 Scan the original list and for each node 𝑋, create a new node 𝑌 with data of 𝑋, then store the pair (𝑋, 𝑌)

in hash table using 𝑋 as a key. Note that during this scan set 𝑌 → 𝑛𝑒𝑥𝑡 and 𝑌 → 𝑟𝑎𝑛𝑑𝑜𝑚 to 𝑁𝑈𝐿𝐿 and we
will fix them in the next scan.

 Now for each node 𝑋 in the original list we have a copy 𝑌 stored in our hash table. We scan the original

list again and set the pointers building the new list.

 class Node:
 def __init__(self, data):
 self.setData(data)
 self.setNext(None)
 self.setRand(None)
 #method for setting the data field of the node
 def setData(self,data):
 self.data = data
 #method for getting the data field of the node
 def getData(self):

 return self.data
 #method for setting the next field of the node
 def setNext(self,next):

 self.next = next
 #method for setting the next field of the node
 def setRand(self,rand):
 self.rand = rand
 #method for getting the next field of the node
 def getRand(self):
 return self.rand
 #method for getting the next field of the node
 def getNext(self):
 return self.next
 #returns true if the node points to another node
 def hasNext(self):
 return self.next != None

 def cloneLinkedList(old):
 if not old:
 return

 old_copy = old
 root = Node(old.getData())
 prev = root
 temp = None

 old = old.getNext()

 mapping = {}

 while old:
 temp = Node(old.getData())
 mapping[old] = temp

 prev.setNext(temp)
 prev = temp
 old = old.getNext()

 old = old_copy
 temp = root

 while old:
 temp.setRand(mapping[old.rand])
 temp = temp.getNext()

 old = old.getNext()

 return root

Time Complexity: O(𝑛). Space Complexity: O(𝑛).

Problem-42 Can we solve Problem-41 without any extra space?

Solution: Yes.

Data Structure and Algorithmic Thinking with Python Linked Lists

3.12 Linked Lists: Problems & Solutions 89

 # Definition for singly-linked list with a random pointer.
 class RandomListNode:
 def __init__(self, data):

 self.data = data
 self.next = None
 self.random = None

 class Solution:
 # @param head, a RandomListNode
 # @return a RandomListNode
 def copyRandomList(self, head):
 if None == head:
 return None
 save_list = []
 p1 = head
 while None != p1:
 save_list.append(p1)

 p1 = p1.next

 new_head = RandomListNode(-1)
 new_head.next = head
 first = new_head
 second = head
 copyHead = RandomListNode(-1)
 copyFirst = copyHead
 copySecond = None

 while None != first:
 copySecond = RandomListNode(second.data) if None != second else None
 copyFirst.next = copySecond
 copyFirst = copyFirst.next
 first = first.next

 if None != second:
 second = second.next

 p1 = head
 p1_tail = head.next
 p2 = copyHead.next
 while None != p1:
 p1_tail = p1.next
 p1.next = p2
 p2.random = p1
 p1 = p1_tail
 p2 = p2.next
 p2 = copyHead.next
 while None != p2:
 p2.random = p2.random.random.next if None != p2.random.random else None
 p2 = p2.next
 len_save_list = len(save_list)
 for i in range(0, len_save_list - 1):

 save_list[i].next = save_list[i + 1]
 save_list[len_save_list - 1].next = None
 return copyHead.next

Time Complexity: O(3𝑛) ≈O(𝑛). Space Complexity: O(1).

Problem-43 Given a linked list with even and odd numbers, create an algorithm for making changes to the
list in such a way that all even numbers appear at the beginning.

Solution: To solve this problem, we can use the splitting logic. While traversing the list, split the linked list into
two: one contains all even nodes and the other contains all odd nodes. Now, to get the final list, we can simply
append the odd node linked list after the even node linked list.

To split the linked list, traverse the original linked list and move all odd nodes to a separate linked list of all odd
nodes. At the end of the loop, the original list will have all the even nodes and the odd node list will have all the
odd nodes. To keep the ordering of all nodes the same, we must insert all the odd nodes at the end of the odd
node list.

Data Structure and Algorithmic Thinking with Python Linked Lists

3.12 Linked Lists: Problems & Solutions 90

Time Complexity: O(𝑛). Space Complexity: O(1).

Problem-44 In a linked list with 𝑛 nodes, the time taken to insert an element after an element pointed by

some pointer is

 (A) O(1) (B) O(𝑙𝑜𝑔𝑛) (C) O(𝑛) (D) O(𝑛1𝑜𝑔𝑛)

Solution: A.

Problem-45 Find modular node: Given a singly linked list, write a function to find the last element from the
beginning whose 𝑛%𝑘 == 0, where 𝑛 is the number of elements in the list and 𝑘 is an integer constant. For

example, if 𝑛 = 19 and 𝑘 = 3 then we should return 18𝑡ℎnode.

Solution: For this problem the value of 𝑛 is not known in advance.

 def modularNodeFromBegin(self, k):
 currentNode = self.head
 modularNode = None
 i = 1

 if k <= 0:
 return None;
 while currentNode != None:
 if i%k == 0:
 modularNode = currentNode

 i = i + 1
 currentNode = currentNode.getNext()
 print (modularNode.getData())

Time Complexity: O(𝑛). Space Complexity: O(1).

Problem-46 Find modular node from the end: Given a singly linked list, write a function to find the first
from the end whose 𝑛%𝑘 == 0, where 𝑛 is the number of elements in the list and 𝑘 is an integer constant.

If 𝑛 = 19 and 𝑘 = 3 then we should return 16𝑡ℎ node.

Solution: For this problem the value of 𝑛 is not known in advance and it is the same as finding the 𝑘𝑡ℎelement

from the end of the the linked list.

 def modularNodeFromEnd(self, k):
 currentNode = self.head

 modularNode = self.head
 i = 0
 if k <= 0:
 return None;

 while i < k and currentNode != None:
 i = i + 1
 currentNode = currentNode.getNext()

 if currentNode == None:

 return
 while currentNode != None:
 modularNode = modularNode.getNext()
 currentNode = currentNode.getNext()

 print (modularNode.getData())

Time Complexity: O(𝑛). Space Complexity: O(1).

Problem-47 Find fractional node: Given a singly linked list, write a function to find the
𝑛

𝑘
𝑡ℎ element, where

𝑛 is the number of elements in the list.

Solution: For this problem the value of 𝑛 is not known in advance.

 def fractionalNode(self, k):
 fractionalNode = None
 currentNode = self.head
 i = 0
 if k <= 0:
 return None;

 while currentNode != None:
 if i%k == 0:

Data Structure and Algorithmic Thinking with Python Linked Lists

3.12 Linked Lists: Problems & Solutions 91

 if fractionalNode == None:
 fractionalNode = self.head
 else:

 fractionalNode = fractionalNode.getNext()
 i = i + 1
 currentNode = currentNode.getNext()

 print (fractionalNode.getData())

Time Complexity: O(𝑛). Space Complexity: O(1).

Problem-48 Find √𝒏
𝒕𝒉

 node: Given a singly linked list, write a function to find the √𝑛
𝑡ℎ

 element, where 𝑛 is
the number of elements in the list. Assume the value of 𝑛 is not known in advance.

Solution: For this problem the value of 𝑛 is not known in advance.

 def sqrtNthNodes(self):
 sqrtNode = None

 currentNode = self.head
 i = j = 1

 while currentNode != None:
 if i == j * j:
 if sqrtNode == None:
 sqrtNode = self.head
 else:
 sqrtNode = sqrtNode.getNext()
 j = j + 1
 i = i + 1
 currentNode = currentNode.getNext()

 print (sqrtNode.getData())

Time Complexity: O(𝑛). Space Complexity: O(1).

Problem-49 Given two lists List1 = {𝐴1, 𝐴2, . . . , 𝐴𝑛} and List2 = {𝐵1, 𝐵2, . . . , 𝐵𝑚} with data (both lists) in

ascending order. Merge them into the third list in ascending order so that the merged list will be:
{𝐴1, 𝐵1, 𝐴2, 𝐵2..... 𝐴𝑚, 𝐵𝑚, 𝐴𝑚+1.... 𝐴𝑛} if 𝑛 >= 𝑚
{𝐴1, 𝐵1, 𝐴2, 𝐵2..... 𝐴𝑛, 𝐵𝑛, 𝐵𝑛+1.... 𝐵𝑚} if 𝑚 >= 𝑛

Solution:

 def mergeTwoSortedLists(self, list1, list2):
 temp = Node(0)
 pointer = temp
 while list1 !=None and list2 !=None:
 if list1.getData()<list2.getData():

 pointer.setNext(list1)
 list1 = list1.getNext()
 else:
 pointer.setNext(list2)
 list2 = list2.getNext()
 pointer = pointer.getNext()

 if list1 == None:
 pointer.setNext(list2)
 else:
 pointer.setNext(list1)
 return temp.getNext()

Time Complexity: The 𝑤ℎ𝑖𝑙𝑒 loop takes O(𝑚𝑖𝑛(𝑛, 𝑚)) time as it will run for 𝑚𝑖𝑛(𝑛, 𝑚) times. The other steps run in
O(1). Therefore the total time complexity is O(𝑚𝑖𝑛(𝑛, 𝑚)).

Space Complexity: O(1).

Problem-50 Median in an infinite series of integers

Solution: Median is the middle number in a sorted list of numbers (if we have an odd number of elements). If we
have an even number of elements, the median is the average of two middle numbers in a sorted list of numbers.

We can solve this problem with linked lists (with both sorted and unsorted linked lists).

Data Structure and Algorithmic Thinking with Python Linked Lists

3.12 Linked Lists: Problems & Solutions 92

𝐹𝑖𝑟𝑠𝑡, let us try with an 𝑢𝑛𝑠𝑜𝑟𝑡𝑒𝑑 linked list. In an unsorted linked list, we can insert the element either at the

head or at the tail. The disadvantage with this approach is that finding the median takes O(𝑛). Also, the

insertion operation takes O(1).

Now, let us try with a 𝑠𝑜𝑟𝑡𝑒𝑑 linked list. We can find the median in O(1) time if we keep track of the middle
elements. Insertion to a particular location is also O(1) in any linked list. But, finding the right location to insert
is not O(𝑙𝑜𝑔𝑛) as in a sorted array, it is instead O(𝑛) because we can’t perform binary search in a linked list even

if it is sorted.

So, using a sorted linked list isn’t worth the effort as insertion is O(𝑛) and finding median is O(1), the same as
the sorted array. In the sorted array the insertion is linear due to shifting, but here it’s linear because we can’t
do a binary search in a linked list.

Note: For an efficient algorithm refer to the 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑄𝑢𝑒𝑢𝑒𝑠 𝑎𝑛𝑑 𝐻𝑒𝑎𝑝𝑠 chapter.

Problem-51 Given a linked list, how do you modify it such that all the even numbers appear before all the
odd numbers in the modified linked list?

Solution:

 def exchangeEvenOddList(head):
 # initializing the odd and even list headers
 oddList = evenList =None

 # creating tail variables for both the list
 oddListEnd = evenListEnd = None
 itr=head

 if(head == None):
 return
 else:
 while(itr != None):
 if(itr.data % 2 == 0):
 if(evenList == NULL):
 # first even node
 evenList = evenListEnd = itr
 else:
 # inserting the node at the end of linked list
 evenListEnd.next = itr
 evenListEnd = itr
 else:
 if(oddList == NULL):
 # first odd node
 oddList = oddListEnd = itr
 else:
 # inserting the node at the end of linked list
 oddListEnd.next = itr
 oddListEnd = itr
 itr = itr.next
 evenListEnd.next = oddList
 return head

Time Complexity: O(𝑛). Space Complexity: O(1).

Problem-52 Given two linked lists, each list node with one integer digit, add these two linked lists. The
result should be stored in the third linked list. Also note that the head node contains the most significant
digit of the number.

Solution: Since the integer addition starts from the least significant digit, we first need to visit the last node of
both lists and add them up, create a new node to store the result, take care of the carry if any, and link the
resulting node to the node which will be added to the second least significant node and continue.

First of all, we need to take into account the difference in the number of digits in the two numbers. So before
starting recursion, we need to do some calculation and move the longer list pointer to the appropriate place so
that we need the last node of both lists at the same time. The other thing we need to take care of is 𝑐𝑎𝑟𝑟𝑦. If two

digits add up to more than 10, we need to forward the 𝑐𝑎𝑟𝑟𝑦 to the next node and add it. If the most significant
digit addition results in a 𝑐𝑎𝑟𝑟𝑦, we need to create an extra node to store the carry.

Data Structure and Algorithmic Thinking with Python Linked Lists

3.12 Linked Lists: Problems & Solutions 93

The function below is actually a wrapper function which does all the housekeeping like calculating lengths of
lists, calling recursive implementation, creating an extra node for the 𝑐𝑎𝑟𝑟𝑦 in the most significant digit, and

adding any remaining nodes left in the longer list.

 class AddingListNumbers:
 def addTwoNumbers(self, list1, list2):
 if list1 == None:
 return list2
 if list2 == None:
 return list1

 len1 = len2 = 0
 head = list1
 while head != None:
 len1 += 1
 head = head.next

 head = list2

 while head != None:
 len2 += 1
 head = head.next

 if len1 >= len2:
 longer = list1
 shorter = list2
 else:
 longer = list2;
 shorter = list1

 sum = None
 carry = 0

 while shorter != None:
 value = longer.data + shorter.data + carry
 carry = value / 10
 value -= carry * 10

 if sum == None:
 sum = Node(value)
 result = sum
 else:
 sum.next = Node(value)
 sum = sum.next

 longer = longer.next
 shorter = shorter.next

 while longer != None:
 value = longer.data + carry
 carry = value / 10
 value -= carry * 10

 sum.next = Node(value)
 sum = sum.next

 longer = longer.next

 if carry != 0:
 sum.next = Node(carry)
 return result

Time Complexity: O(𝑚𝑎𝑥 (𝐿𝑖𝑠𝑡1 𝑙𝑒𝑛𝑔𝑡ℎ, 𝐿𝑖𝑠𝑡2 𝑙𝑒𝑛𝑔𝑡ℎ)).
Space Complexity: O(𝑚𝑖𝑛 (𝐿𝑖𝑠𝑡1 𝑙𝑒𝑛𝑔𝑡ℎ, 𝐿𝑖𝑠𝑡2 𝑙𝑒𝑛𝑔𝑡ℎ)) for recursive stack.

Note:It can also be solved using stacks.

Problem-53 Write code for finding the sum of all data values from linked list with recursion.

Solution: One of the basic operations we perform on linked lists (as we do with lists) is to iterate over them,
processing alst their values. The following function computes the sum of the values in a linked list.

 def linkedListSum(lst):
 sum = 0
 while lst != None:

Data Structure and Algorithmic Thinking with Python Linked Lists

3.12 Linked Lists: Problems & Solutions 94

 sum += lst.
 lst = lst.getNext()
 return sum

Lots of code that traverses (iterates over) linked lists looks similar. In class we will go over (hand simulate) how
this code processes the linked list above, with the call 𝑙𝑖𝑛𝑘𝑒𝑑𝐿𝑖𝑠𝑡𝑆𝑢𝑚(x) and see exactly how it is that we visit
each node in the linked list and stop processing it at the end.

We can also define linked lists recursively and use such a definition to help us write functions that recursively
process linked lists.

1) None is the smallest linked list: it contains no nodes
2) A list node whose next refers to a linked list is also linked list

So None is a linked list (of 0 values); a list node whose next is 𝑁𝑜𝑛𝑒 is a linked list (of 1 value); a list node whose
next is a list node whose next is 𝑁𝑜𝑛𝑒 is a linked list (of 2 values); etc.

So, we can recursively process a linked list by processing its first node and then recursively processing the (one
smaller) linked list they refer to; recursion ends at None (which is the base case: the smallest linked list). We can
recursively compute the sum of linked list by

 def linkedListSum(self, lst):
 if lst == None:
 return 0
 else:
 return lst.getData() + linkedListSum(lst.getNext())

An even simpler traversal of linked lists computes their length. Here are the iterative and recursive methods.

 def listLength(lst):
 count = 0
 while lst != None:
 count += 1
 lst = lst.getNext()
 return count

 def listLengthRecursive(lst):
 if lst == None:
 return 0
 else:
 return 1 + listLengthRecursive(lst.getNext())

These are simpler than the 𝑙𝑖𝑛𝑘𝑒𝑑𝐿𝑖𝑠𝑡𝑆𝑢𝑚 function: rather than adding the value of each list node, these add 1 to
a count for each list node, ultimately computing the number of list nodes in the entire linked list: its length.

Problem-54 Given a sorted linked list, write a program to remove duplicates from it.

Solution: Skip the repeated adjacent elements.

 def deleteLinkedListDuplicates(self):
 current = self.head;

 while current != None and current.next !=None:
 if current.getData() == current.getNext().getData():
 current.setNext(current.getNext().getNext())
 else:
 current = current.getNext()

 return head

Time Complexity: O(𝑛). Space Complexity: O(1).

Problem-55 Given a list, List1 = {𝐴1, 𝐴2, . . . 𝐴𝑛−1, 𝐴𝑛} with data, reorder it to {𝐴1, 𝐴𝑛, 𝐴2, 𝐴𝑛−1..... } without

using any extra space.

Solution: Split the list, reverse the latter half and merge.

 # Definition for singly-linked list.
 class Node:
 def __init__(self, x):
 self.data = x
 self.next = None
 class reorderLists:

 def reverse(self,head):
 dummy = prev = Node(0)
 while head:

Data Structure and Algorithmic Thinking with Python Linked Lists

3.12 Linked Lists: Problems & Solutions 95

 next = head.next
 head.next = prev.next
 prev.next =head

 head = next
 return dummy.next

 def getMiddleNode(self,head):
 slow = fast = head
 while fast.next and fast.next.next:
 fast = fast.next.next
 slow = slow.next
 head = slow.next
 slow.next = None
 return head

 def reorderList(self, head):
 if not head or not head.next:
 return head

 head2 = self.getMiddleNode(head)
 head2 = self.reverse(head2)
 p = head
 q= head2
 while q:
 qnext = q.next # store the next node since q will be moved
 q.next = p.next
 p.next = q
 p = q.next
 q = qnext
 return head

Time Complexity: O(𝑛). Space Complexity: O(1).

Problem-56 Which sorting algorithm is easily adaptable to singly linked lists?

Solution: Simple Insertion sort is easily adabtable to singly linked lists. To insert an element, the linked list is
traversed until the proper position is found, or until the end of the list is reached. It is inserted into the list by

merely adjusting the pointers without shifting any elements, unlike in the array. This reduces the time required
for insertion but not the time required for searching for the proper position.

