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Prerequisites

Prerequisites for the first part (general results):

4 basics of probability and information theory: random variables, joint and conditional
probabilities, expectation values, etc

4 in particular, noisy channels as probabilistic maps between two sets w : A → B:
given input a ∈ A , the probability to have output b ∈ B is given by conditional
probability w(b|a)

4 basics of quantum information theory: Hilbert spaces, density operators, ensembles,
POVMs, quantum channels ≡ CPTP maps, composite systems and tensor products,
etc

Prerequisites for the second part (applications):

4 resource theories, in particular, quantum thermodynamics: idea of the general
setting and of the problem treated (in particular, some knowledge of majorization
theory is helpful)

4 entanglement and quantum nonlocality: general ideas such as Bell inequalities,
nonocal games, entangled states, etc

4 open systems dynamics: basic ideas such as reduced dynamics, Markov chains and
Markovian evolutions, divisibility, etc (quantum case only sketched, see references)
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Part I

Statistical Comparison: General Results
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Statistical Games (aka Decision Problems)

4 Definition. A statistical game is a triple (Θ,U , `), where Θ = {θ} and U = {u}
are finite sets, and ` is a function `(θ, u) ∈ R.

4 Interpretation. We assume that θ is the value of a parameter influencing what we
observe, but that cannot be observed “directly.” Now imagine that we have to
choose an action u, and that this choice will earn or cost us `(θ, u). For example, θ
is a possible medical condition, u is the choice of treatment, and `(θ, u) is the
overall “efficacy.”

4 Resource. Before choosing our action, we are allowed “to spy” on θ by performing
an experiment (i.e., visiting the patient). Mathematically, an experiment is given as
a sample set X = {x} (i.e., observable symptoms) together with a conditional
probability w(x|θ) or, equivalently, a family of distributions {wθ(x)}θ∈Θ.

4 Probabilistic decision. The choice of an action can be probabilistic (i.e., patients
with the same symptoms are randomly given different therapies). Hence, a decision
is mathematically given as a conditional probability d(u|x).

Θ
experiment−→ X

decision−→ U   

θ −→
w(x|θ)

x −→
d(u|x)

u
=⇒ `(θ, u)

4 Example in information theory. Imagine that θ is the input to a noisy channel, x is
the output we receive, and u is the message we decode.
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How much is an experiment worth?

Θ
experiment−→ X

decision−→ U   

θ −→
w(x|θ)

x −→
d(u|x)

u
=⇒ `(θ, u)

4 experiments help us choosing the action “sensibly.” How much would you pay for an
experiment?

4 Expected payoff. E`[w] , maxd(u|x)

∑
u,x,θ `(θ, u)d(u|x)w(x|θ) 1

|Θ| . (Bayesian

assumption for simplicity, but this is not necessary.)

4 consider now a different experiment (but about the same unknown parameter θ)
with sample set Y = {y} and conditional probability w′(y|θ). Which is better
between w(x|θ) and w′(y|θ)?

4 such questions are considered in the theory of statistical comparison: a very deep
field of mathematical statistics, pioneered by Blackwell and greatly developed by Le
Cam and Torgersen, among others.

4 Today’s tutorial. Basic results of statistical comparison, some quantum
generalizations, and finally some applications (quantum thermodynamics, quantum
nonlocality, open quantum systems dynamics).
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Comparison of Experiments: Blackwell’s Theorem (1953)

4 Assumption. We compare experiments about the same unknown parameter θ

Definition (Information Ordering)

We say that w(x|θ) is more informative than w′(y|θ), in formula, w(x|θ) � w′(y|θ), if
and only if E`[w] > E`[w′] for all statistical games (Θ,U , `).

4 Remark 1. In the above definition, Θ is fixed, while U and ` vary: the relation
E`[w] > E`[w′] must hold for all choices of U and `.

4 Remark 2. The ordering � is partial.

Theorem (Blackwell, 1953)

w(x|θ) � w′(y|θ) if and only if there exists a conditional probability ϕ(y|x) such that

w′(y|θ) =
∑
x

ϕ(y|x)w(x|θ) .

4 as a diagram:

Θ
experiment−→ X

noise−→ Y
decision−→ U    

θ −→
w(x|θ)

x −→
ϕ(y|x)

y −→
d(u|y)

u
=⇒ `(θ, u)
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Quantum Decision Problems (Holevo, 1973)

classical case quantum case

• statistical game (Θ,U , `) • statistical game (Θ,U , `)
• sample set X • Hilbert space HS
• experiment w = {wθ(x)} • ensemble E = {ρθS}
• probabilistic decision d(u|x) • POVM (measurement) {PuS }
• pc(u, θ) =

∑
x d(u|x)w(x|θ) 1

|Θ| • pq(u, θ) = Tr
[
ρθS P

u
S

]
1
|Θ|

• E`[w] = maxd(u|x)

∑
`(θ, u)pc(u, θ) • E`[E ] = max{Pu

S
}
∑
`(θ, u)pq(u, θ)

Θ
experiment−→ X

decision−→ U   

θ −→ x −→ u

Θ
ensemble−→ HS

POVM−→ U   

θ −→ ρθS −→ u

4 Remark. The same statistical game (Θ,U , `) can be played with classical resources
(statistical experiments and decisions) or quantum resources (ensembles and
POVMs).
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Comparison of Quantum Ensembles (Vanilla Version)

4 consider now another ensemble E ′ = {σθS′} (different Hilbert space HS′ , different
density operators, but same parameter set Θ)

Definition (Information Ordering)

We say that E = {ρθS} is more informative than E ′ = {σθS′}, in formula, E � E ′, if and
only if E`[E ] > E`[E ′] for all statistical games (Θ,U , `).

4 given ensemble E = {ρθS}, define the linear subspace
EC , {

∑
θ cθρ

θ
S : cθ ∈ C} ⊆ L(HS)

Theorem (Vanilla Quantum Blackwell’s Theorem)

E � E ′ if and only if there exists a linear, hermitian-preserving, trace-preserving map
L : L(HS)→ L(HS′) such that:

1 for all θ ∈ Θ, L(ρθS) = σθ
S′

2 L is positive on EC: if PS ∈ EC is positive semidefinite, i.e., PS > 0, then L(PS) > 0

4 Side remark. In fact, the map L is somewhat more than just positive on EC: it is a
quantum statistical morphism on EC. In general:

PTP on L(HS) =⇒
6⇐=

stat. morph. on EC =⇒
6⇐=

PTP on EC
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Quantum Ensembles versus Classical Experiments (Semiclassical Version)

4 Reminder. Any statistical game (Θ,U , `) can be played with classical resources
(statistical experiments and decisions) or quantum resources (ensembles and
POVMs)

4 we can hence compare a quantum ensemble E = {ρθS} with a classical statistical
experiment w = {wθ(x)}

Theorem (Semiquantum Blackwell’s Theorem)

{ρθS} � {wθ(x)} if and only if there exists a POVM {P xS } such that wθ(x) = Tr
[
P xS ρθS

]
,

for all θ ∈ Θ and all x ∈ X .

Equivalent reformulation

Consider two ensembles E = {ρθS} and E ′ = {σθS′} and assume that the σ’s all commute.
Then, E � E ′ if and only if there exists a quantum channel (CPTP map)
Φ : L(HS)→ L(HS′) such that Φ(ρθS) = σθS′ , for all θ ∈ Θ.

4 as a diagram:

Θ
ensemble−→ HS

quantum noise−→ HS′
POVM−→ U    

θ −→
E

ρθS −→
Φ

σθS′ −→
{Qu

S′}
u
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Compositions of Ensembles

4 consider two parameter sets, Θ = {θ} and Ω = {ω}, two Hilbert spaces, HS and
HR, and two ensembles, E = {ρθS}θ∈Θ and F = {τωR}ω∈Ω. Then we denote as

F ⊗ E the ensemble {τωR ⊗ ρθS}ω∈Ω,θ∈Θ

4 clearly, F ⊗ E is itself an ensemble with parameter set Ω×Θ and Hilbert space
HR ⊗HS

4 with F ⊗ E , we can play extended statistical games (Ω×Θ,U , `) with
`(ω, θ;u) ∈ R; the interpretation does not change

4 we have, for example,

E`[F ⊗ E ] = max
{Pu

RS
}

∑
u,ω,θ

`(ω, θ;u)
Tr
[
(τωR ⊗ ρθS) PuRS

]
|Ω| · |Θ|

4 as a diagram:

Ω×Θ
ensemble−→ HR ⊗HS

POVM−→ U   

(ω, θ) −→
F⊗E

τωR ⊗ ρθS −→
{Pu

RS
}

u
=⇒ `(ω, θ;u)
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Quantum Blackwell’s Theorem (Fully Quantum Version)

4 Extended comparison. Given two ensembles E = {ρθS} and E ′ = {σθS′}, we can
supplement them both with the same extra ensemble F = {τωR} and play statistical
games (Ω×Θ,U , `).

Definition (Extended information ordering)

We say that E = {ρθS} is completely more informative than E ′ = {σθS′}, in formula,
E 3 E ′, if and only if E`[F ⊗ E ] > E`[F ⊗ E ′] for all extra ensembles F = {τωR} and all
statistical games (Ω×Θ,U , `).

4 Remark. In the classical case, 3⇐⇒ �. In the quantum case, in general, only
3 =⇒ � holds (analogously to “positivity” versus “complete positivity”)

Theorem (Fully Quantum Blackwell’s Theorem)

E 3 E ′ if and only if there exists a quantum channel (CPTP map) Φ : L(HS)→ L(HS′)
such that σθS′ = Φ(ρθS) for all θ ∈ Θ.
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Intermediate Summary

4 Original. Experiment w(x|θ) is more informative than experiment w′(y|θ), i.e.,
w(x|θ) � w′(y|θ), if and only if there exists a noisy channel (conditional probability)
ϕ(y|x) such that w′(y|θ) =

∑
x ϕ(y|x)w(x|θ)

4 Quantum vanilla. Ensemble E = {ρθS} is more informative than ensemble

E ′ = {σθS′}, i.e., E � E ′, if and only if there exists a quantum statistical morphism L
on EC such that L(ρθS) = σθS′ for all θ ∈ Θ

4 Semiquantum. Ensemble E = {ρθS} is more informative than commuting ensemble

E ′ = {σθS′}, i.e., E � E ′, if and only if there exists a quantum channel (CPTP map)

Φ such that Φ(ρθS) = σθS′ for all θ ∈ Θ

4 Fully quantum. Ensemble E = {ρθS} is completely more informative than ensemble

E ′ = {σθS′}, i.e., E 3 E ′, if and only if there exists a quantum channel (CPTP map)

Φ such that Φ(ρθS) = σθS′ for all θ ∈ Θ
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Part II

Applications to Quantum Information Science
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Section 1

Quantum Thermodynamics
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The Binary Case, i.e. Θ = {1, 2}

4 assume that the unknown parameter has only two possible values
Θ = {θ1, θ2} ≡ {1, 2}

4 in this case, classical statistical experiments become pairs of distributions
{w1(x), w2(x)}, called “dichotomies”

4 Binary statistical game. A statistical game (Θ,U , `) with Θ = U = {1, 2}

Theorem (Blackwell’s Theorem for Dichotomies)

Given two dichotomies w = {w1(x), w2(x)} and w′ = {w′1(y), w′2(y)}, w � w′ if and
only if E`[w] > E`[w′] for all binary statistical games.

4 in other words, when Θ = {1, 2}, the “value” of a classical statistical experiment
can be estimated with binary decisions:

{1, 2} experiment−→ X
decision−→ {1, 2}   

θ −→
w(x|θ)

x −→
d(u|x)

u
=⇒ `(θ, u)

4 in formula: for classical dichotomies, w � w′ ⇐⇒ w �2 w
′. (The symbol �2

denotes the information ordering restricted to binary statistical games.)
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Graphical Interpretation

4 given a distribution p(x) denote by p↓i its i-th largest entry
4 given two distributions p(x) and q(x), define L(p, q) to be the piecewise linear curve

joining the points (xk, yk) =
(∑k

i=1 q
↓
i ,
∑k
i=1 p

↓
i

)
with the origin (0, 0)

4 Fact. {p(x), q(x)} �2 {p′(y), q′(y)} if and only if L(p, q) > L(p′, q′)

Blackwell’s theorem for dichotomies (reformulation)

L(p, q) > L(p′, q′) if and only if there exists a conditional probability ϕ(y|x) such that
p′(y) =

∑
x ϕ(y|x)p(x) and q′(y) =

∑
x ϕ(y|x)q(x)

4 if q = q′ = e uniform distribution: Lorenz curves and majorization
4 if q = q′ = g Gibbs (thermal) distribution: thermomajorization
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Quantum Lorenz Curve

4 we saw that the ordering �2 is described by Lorenz curves
4 how does the ordering �2 look like for quantum dichotomies?

Definition (Quantum Lorenz Curve)

Given a binary ensemble E = {ρ1, ρ2}, define the curve L(ρ1, ρ2) as the upper boundary

of the region R(ρ1, ρ2) , {(x, y) = (Tr[E ρ2] ,Tr[E ρ1]) : 0 6 E 6 1}

4 Fact 1. Given two quantum dichotomies E = {ρ1, ρ2} and E ′ = {ρ′1, ρ′2}, E �2 E ′ if
and only if L(ρ1, ρ2) > L(ρ′1, ρ

′
2)

4 Fact 2. A result by Alberti and Uhlmann (1980) implies that, if both quantum
ensembles are on C2, then L(ρ1, ρ2) > L(ρ′1, ρ

′
2) if and only if there exists a CPTP

map Φ such that Φ(ρi) = ρ′i for i = 1, 2
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Section 2

Entanglement and Quantum Nonlocality
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Nonlocal Games

4 a nonlocal game (Bell inequality) is a bipartite decision problem played “in parallel”
by space-like separated players; it is formally given as G = (X ,Y ; A ,B; `)

4 Classical source. pc(a, b|x, y) =
∑
λ dA(a|x, λ)dB(b|y, λ)π(λ)

4 Quantum source. pq(a, b|x, y) = Tr
[
ρAB (P

a|x
A ⊗Qb|yB )

]
4 Expected payoff.

EG[ρAB ] , max
{Pa|x

A
},{Qb|y

B
}

∑
x,y,a,b

`(x, y; a, b)pq(a, b|x, y)
1

|X |
1

|Y |

4 Classical value.

EclG , max
dA(a|x),dB(b|y)

∑
x,y,a,b

`(x, y; a, b)dA(a|x)dB(b|y)
1

|X |
1

|Y |
Francesco Buscemi Quantum Statistical Comparison 28 August 2016 19 / 26



Comparison of Bipartite Quantum States

4 consider two bipartite density operators: ρAB on HA⊗HB and σA′B′ on HA′ ⊗HB′

Definition (Nonlocality Ordering)

We say that ρAB is more nonlocal than σA′B′ , in formula, ρAB �nl σA′B′ , if and only if
EG[ρAB ] > EG[σA′B′ ] for all nonlocal games G = (X ,Y ; A ,B; `).

4 in other words, ρAB allows to violate any Bell inequality at least as much as σA′B′

does

4 can we prove a Blackwell theorem for bipartite quantum states? what does the
condition ρAB �nl σA′B′ imply about the existence of a transformation from ρAB
into σA′B′?

4 unfortunately not much, because of a phenomenon called...

4 Hidden Nonlocality. Werner (1989) showed that there exist entangled bipartite
states that do not exceed the classical value, for all possible Bell inequalities
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Quantum Nonlocal Games

4 a quantum nonlocal game is given by Γ = {X ,Y , {τx
Ã
}, {ωy

B̃
}; A ,B; `}

4 Expected payoff.

EΓ[ρAB ] , max
{Pa

ÃA
},{Qb

BB̃
}

∑
x,y,a,b

`(x, y; a, b)
Tr
[
(τx
Ã
⊗ ρAB ⊗ ωyB̃) (P a

ÃA
⊗Qb

BB̃
)
]

|X | · |Y |

Theorem (Blackwell’s Theorem for Bipartite Quantum States)

EΓ[ρAB ] > EΓ[σA′B′ ] for all quantum nonlocal games Γ if and only if there exist CPTP
maps ΦiA→A′ and Ψi

B→B′ such that σA′B′ =
∑
i p(i)(Φ

i
A ⊗Ψi

B)(ρAB)

4 Remark. Such transformations are called “local operations with shared randomness”
(LORS)

4 application: measurement-device independent entanglement witnesses (MDIEW)
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Section 3

Open Systems Dynamics
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Background: Communication Games

4 recall: a statistical game is as follows

Θ
experiment−→ X

decision−→ U   

θ −→
w(x|θ)

x −→
d(u|x)

u
=⇒ `(θ, u)

4 we also interpreted θ as the input to the channel, x as the output, and u as the
decoded message

4 let’s add the encoding into the picture:

U
encoding−→ Θ

channel−→ X
decoding−→ U    

u −→
e(θ|u)

θ −→
w(x|θ)

x −→
d(û|x)

û

4 a communication game is a triple (U ,Θ, e(θ|u)) and the payoff is the probability of
guessing the message correctly:

P eguess[w] , max
d(û|x)

∑
u,θ,x

d(u|x)w(x|θ)e(θ|u)
1

|U |
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Divisible Evolutions

4 a system S is prepared at time t0 and put in contact with an external reservoir (i.e.,
the environment); consider two snapshots at times t1 > t0 and t2 > t1

4 two channels, w1 and w2, describe the evolution of the system from t0 to t1 and
from t0 to t2, respectively

4 the evolution from t0 → t1 → t2 is physically divisible (or “memoryless”) whenever
there exists another channel ϕ such that w2 = ϕ ◦ w1

Theorem (Blackwell’s Theorem for Open Systems Dynamics)

The evolution t0 → t1 → t2 is divisible if and only if P eguess[w1] > P eguess[w2] for all
communication games (U ,Θ, e(θ|u))

4 for the quantum case, see the references for further details
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Thank You
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