The Theory of Statistical Comparison with Applications in Quantum Information Science

Francesco Buscemi (Nagoya University) buscemi@is.nagoya-u.ac.jp

Tutorial Lecture for AQIS2016 Academia Sinica, Taipei, Taiwan 28 August 2016

these slides are available for download at http://goo.gl/5toR7X

Prerequisites

Prerequisites for the first part (general results):

- basics of probability and information theory: random variables, joint and conditional probabilities, expectation values, etc
- ✓ in particular, noisy channels as probabilistic maps between two sets $w : \mathscr{A} \to \mathscr{B}$: given input $a \in \mathscr{A}$, the probability to have output $b \in \mathscr{B}$ is given by conditional probability w(b|a)
- \checkmark basics of quantum information theory: Hilbert spaces, density operators, ensembles, POVMs, quantum channels \equiv CPTP maps, composite systems and tensor products, etc

Prerequisites for the second part (applications):

- ✓ resource theories, in particular, quantum thermodynamics: idea of the general setting and of the problem treated (in particular, some knowledge of majorization theory is helpful)
- entanglement and quantum nonlocality: general ideas such as Bell inequalities, nonocal games, entangled states, etc
- ✓ open systems dynamics: basic ideas such as reduced dynamics, Markov chains and Markovian evolutions, divisibility, etc (quantum case only sketched, see references)

Part I

Statistical Comparison: General Results

Statistical Games (aka Decision Problems)

- ✓ Definition. A statistical game is a triple $(\Theta, \mathscr{U}, \ell)$, where $\Theta = \{\theta\}$ and $\mathscr{U} = \{u\}$ are finite sets, and ℓ is a function $\ell(\theta, u) \in \mathbb{R}$.
- ✓ Interpretation. We assume that θ is the value of a parameter influencing what we observe, but that cannot be observed "directly." Now imagine that we have to choose an action u, and that this choice will earn or cost us $\ell(\theta, u)$. For example, θ is a possible medical condition, u is the choice of treatment, and $\ell(\theta, u)$ is the overall "efficacy."
- ✓ **Resource.** Before choosing our action, we are allowed "to spy" on θ by performing an experiment (i.e., visiting the patient). Mathematically, an experiment is given as a sample set $\mathscr{X} = \{x\}$ (i.e., observable symptoms) together with a conditional probability $w(x|\theta)$ or, equivalently, a family of distributions $\{w_{\theta}(x)\}_{\theta \in \Theta}$.
- ✓ **Probabilistic decision.** The choice of an action can be probabilistic (i.e., patients with the same symptoms are randomly given different therapies). Hence, a decision is mathematically given as a conditional probability d(u|x).

 \checkmark Example in information theory. Imagine that θ is the input to a noisy channel, x is the output we receive, and u is the message we decode.

Francesco Buscemi

Quantum Statistical Comparison

How much is an experiment worth?

$$\begin{array}{ccccc} \Theta & \stackrel{\text{experiment}}{\longrightarrow} & \mathscr{X} & \stackrel{\text{decision}}{\longrightarrow} & \mathscr{U} \\ \vdots & & \vdots & & \vdots \\ \theta & \stackrel{\rightarrow}{\longrightarrow} & x & \stackrel{\rightarrow}{\longrightarrow} & u \end{array} \rightarrow \ell(\theta, u) \end{array}$$

- experiments help us choosing the action "sensibly." How much would you pay for an experiment?
- ✓ Expected payoff. $\mathbb{E}_{\ell}[w] \triangleq \max_{d(u|x)} \sum_{u,x,\theta} \ell(\theta, u) d(u|x) w(x|\theta) \frac{1}{|\Theta|}$. (Bayesian assumption for simplicity, but this is not necessary.)
- ✓ consider now a different experiment (but about the same unknown parameter θ) with sample set $\mathscr{Y} = \{y\}$ and conditional probability $w'(y|\theta)$. Which is better between $w(x|\theta)$ and $w'(y|\theta)$?
- such questions are considered in the theory of statistical comparison: a very deep field of mathematical statistics, pioneered by Blackwell and greatly developed by Le Cam and Torgersen, among others.
- Today's tutorial. Basic results of statistical comparison, some quantum generalizations, and finally some applications (quantum thermodynamics, quantum nonlocality, open quantum systems dynamics).

Comparison of Experiments: Blackwell's Theorem (1953)

 \checkmark Assumption. We compare experiments about the same unknown parameter θ

Definition (Information Ordering)

We say that $w(x|\theta)$ is more informative than $w'(y|\theta)$, in formula, $w(x|\theta) \succ w'(y|\theta)$, if and only if $\mathbb{E}_{\ell}[w] \ge \mathbb{E}_{\ell}[w']$ for all statistical games $(\Theta, \mathscr{U}, \ell)$.

 ✓ Remark 1. In the above definition, Θ is fixed, while 𝒴 and ℓ vary: the relation E_ℓ[w] ≥ E_ℓ[w'] must hold for all choices of 𝒴 and ℓ.
✓ Remark 2. The ordering ≻ is partial.

Theorem (Blackwell, 1953)

 $w(x|\theta) \succ w'(y|\theta)$ if and only if there exists a conditional probability $\varphi(y|x)$ such that

$$w'(y|\theta) = \sum_{x} \varphi(y|x)w(x|\theta) .$$

✓ as a diagram:

Francesco Buscemi

Quantum Decision Problems (Holevo, 1973)

classical case	quantum case
• statistical game $(\Theta, \mathscr{U}, \ell)$ • sample set \mathscr{X} • experiment $w = \{w_{\theta}(x)\}$ • probabilistic decision $d(u x)$ • $p_c(u, \theta) = \sum_x d(u x)w(x \theta) \frac{1}{ \Theta }$ • $\mathbb{E}_{\ell}[w] = \max_{d(u x)} \sum \ell(\theta, u)p_c(u, \theta)$	• statistical game $(\Theta, \mathscr{U}, \ell)$ • Hilbert space \mathcal{H}_S • ensemble $\mathcal{E} = \{\rho_S^{\theta}\}$ • POVM (measurement) $\{P_S^u\}$ • $p_q(u, \theta) = \operatorname{Tr}[\rho_S^{\theta} P_S^u] \frac{1}{ \Theta }$ • $\mathbb{E}_{\ell}[\mathcal{E}] = \max_{\{P_S^u\}} \sum \ell(\theta, u) p_q(u, \theta)$
$\begin{array}{ccccc} \Theta & \stackrel{\text{experiment}}{\longrightarrow} & \mathscr{X} & \stackrel{\text{decision}}{\longrightarrow} & \mathscr{U} \\ & & & & & \\ & & & & & & \\ \theta & \longrightarrow & x & \longrightarrow & u \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

✓ Remark. The same statistical game (Θ, *U*, *l*) can be played with classical resources (statistical experiments and decisions) or quantum resources (ensembles and POVMs).

Comparison of Quantum Ensembles (Vanilla Version)

✓ consider now another ensemble $\mathcal{E}' = \{\sigma_{S'}^{\theta}\}$ (different Hilbert space $\mathcal{H}_{S'}$, different density operators, but same parameter set Θ)

Definition (Information Ordering)

We say that $\mathcal{E} = \{\rho_S^{\theta}\}$ is more informative than $\mathcal{E}' = \{\sigma_{S'}^{\theta}\}$, in formula, $\mathcal{E} \succ \mathcal{E}'$, if and only if $\mathbb{E}_{\ell}[\mathcal{E}] \ge \mathbb{E}_{\ell}[\mathcal{E}']$ for all statistical games $(\Theta, \mathscr{U}, \ell)$.

✓ given ensemble $\mathcal{E} = \{\rho_S^{\theta}\}$, define the linear subspace $\mathcal{E}_{\mathbb{C}} \triangleq \{\sum_{\theta} c_{\theta} \rho_S^{\theta} : c_{\theta} \in \mathbb{C}\} \subseteq L(\mathcal{H}_S)$

Theorem (Vanilla Quantum Blackwell's Theorem)

 $\mathcal{E} \succ \mathcal{E}'$ if and only if there exists a linear, hermitian-preserving, trace-preserving map $\mathcal{L} : L(\mathcal{H}_S) \rightarrow L(\mathcal{H}_{S'})$ such that: • for all $\theta \in \Theta$, $\mathcal{L}(\rho_s^{\theta}) = \sigma_{s'}^{\theta}$

2 \mathcal{L} is positive on $\mathcal{E}_{\mathbb{C}}$: if $P_S \in \mathcal{E}_{\mathbb{C}}$ is positive semidefinite, i.e., $P_S \ge 0$, then $\mathcal{L}(P_S) \ge 0$

✓ Side remark. In fact, the map \mathcal{L} is somewhat more than just positive on $\mathcal{E}_{\mathbb{C}}$: it is a quantum statistical morphism on $\mathcal{E}_{\mathbb{C}}$. In general:

$$\mathsf{PTP} \text{ on } \mathsf{L}(\mathcal{H}_S) \underset{\notin}{\Longrightarrow} \text{ stat. morph. on } \mathcal{E}_{\mathbb{C}} \underset{\notin}{\Longrightarrow} \mathsf{PTP} \text{ on } \mathcal{E}_{\mathbb{C}}$$

Quantum Ensembles versus Classical Experiments (Semiclassical Version)

- ✓ Reminder. Any statistical game (Θ, U, ℓ) can be played with classical resources (statistical experiments and decisions) or quantum resources (ensembles and POVMs)
- ✓ we can hence compare a quantum ensemble $\mathcal{E} = \{\rho_S^{\theta}\}$ with a classical statistical experiment $w = \{w_{\theta}(x)\}$

Theorem (Semiquantum Blackwell's Theorem)

 $\{\rho_S^{\theta}\} \succ \{w_{\theta}(x)\}\$ if and only if there exists a POVM $\{P_S^x\}\$ such that $w_{\theta}(x) = \operatorname{Tr}\left[P_S^x \ \rho_S^{\theta}\right]$, for all $\theta \in \Theta$ and all $x \in \mathscr{X}$.

Equivalent reformulation

Consider two ensembles $\mathcal{E} = \{\rho_S^{\theta}\}$ and $\mathcal{E}' = \{\sigma_{S'}^{\theta}\}$ and assume that the σ 's all commute. Then, $\mathcal{E} \succ \mathcal{E}'$ if and only if there exists a quantum channel (CPTP map) $\Phi : L(\mathcal{H}_S) \rightarrow L(\mathcal{H}_{S'})$ such that $\Phi(\rho_S^{\theta}) = \sigma_{S'}^{\theta}$, for all $\theta \in \Theta$.

✓ as a diagram:

Compositions of Ensembles

- ✓ consider two parameter sets, $\Theta = \{\theta\}$ and $\Omega = \{\omega\}$, two Hilbert spaces, \mathcal{H}_S and \mathcal{H}_R , and two ensembles, $\mathcal{E} = \{\rho_S^{\theta}\}_{\theta \in \Theta}$ and $\mathcal{F} = \{\tau_R^{\omega}\}_{\omega \in \Omega}$. Then we denote as $\mathcal{F} \otimes \mathcal{E}$ the ensemble $\{\tau_R^{\omega} \otimes \rho_S^{\theta}\}_{\omega \in \Omega, \theta \in \Theta}$
- ✓ clearly, $\mathcal{F} \otimes \mathcal{E}$ is itself an ensemble with parameter set $\Omega \times \Theta$ and Hilbert space $\mathcal{H}_R \otimes \mathcal{H}_S$
- ✓ with $\mathcal{F} \otimes \mathcal{E}$, we can play extended statistical games $(\Omega \times \Theta, \mathscr{U}, \ell)$ with $\ell(\omega, \theta; u) \in \mathbb{R}$; the interpretation does not change
- ✓ we have, for example,

$$\mathbb{E}_{\ell}[\mathcal{F} \otimes \mathcal{E}] = \max_{\{P_{RS}^{u}\}} \sum_{u,\omega,\theta} \ell(\omega,\theta;u) \frac{\operatorname{Tr}\left[\left(\tau_{R}^{\omega} \otimes \rho_{S}^{\theta}\right) P_{RS}^{u}\right]}{|\Omega| \cdot |\Theta|}$$

✓ as a diagram:

Quantum Blackwell's Theorem (Fully Quantum Version)

✓ Extended comparison. Given two ensembles $\mathcal{E} = \{\rho_S^\theta\}$ and $\mathcal{E}' = \{\sigma_{S'}^\theta\}$, we can supplement them both with the same extra ensemble $\mathcal{F} = \{\tau_R^\omega\}$ and play statistical games $(\Omega \times \Theta, \mathscr{U}, \ell)$.

Definition (Extended information ordering)

We say that $\mathcal{E} = \{\rho_S^{\theta}\}$ is completely more informative than $\mathcal{E}' = \{\sigma_{S'}^{\theta}\}$, in formula, $\mathcal{E} \succeq \mathcal{E}'$, if and only if $\mathbb{E}_{\ell}[\mathcal{F} \otimes \mathcal{E}] \ge \mathbb{E}_{\ell}[\mathcal{F} \otimes \mathcal{E}']$ for all extra ensembles $\mathcal{F} = \{\tau_R^{\omega}\}$ and all statistical games $(\Omega \times \Theta, \mathcal{U}, \ell)$.

✓ Remark. In the classical case, ← → >. holds (analogously to "positivity" versus "complete positivity")

Theorem (Fully Quantum Blackwell's Theorem)

 $\mathcal{E} \succeq \mathcal{E}'$ if and only if there exists a quantum channel (CPTP map) $\Phi : \mathsf{L}(\mathcal{H}_S) \to \mathsf{L}(\mathcal{H}_{S'})$ such that $\sigma_{S'}^{\theta} = \Phi(\rho_S^{\theta})$ for all $\theta \in \Theta$.

- ✓ Original. Experiment $w(x|\theta)$ is more informative than experiment $w'(y|\theta)$, i.e., $w(x|\theta) \succ w'(y|\theta)$, if and only if there exists a noisy channel (conditional probability) $\varphi(y|x)$ such that $w'(y|\theta) = \sum_{x} \varphi(y|x)w(x|\theta)$
- ✓ Quantum vanilla. Ensemble $\mathcal{E} = \{\rho_S^{\theta}\}$ is more informative than ensemble $\mathcal{E}' = \{\sigma_{S'}^{\theta}\}$, i.e., $\mathcal{E} \succ \mathcal{E}'$, if and only if there exists a quantum statistical morphism \mathcal{L} on $\mathcal{E}_{\mathbb{C}}$ such that $\mathcal{L}(\rho_S^{\theta}) = \sigma_{S'}^{\theta}$ for all $\theta \in \Theta$
- ✓ Semiquantum. Ensemble $\mathcal{E} = \{\rho_S^{\theta}\}$ is more informative than commuting ensemble $\mathcal{E}' = \{\sigma_{S'}^{\theta}\}$, i.e., $\mathcal{E} \succ \mathcal{E}'$, if and only if there exists a quantum channel (CPTP map) Φ such that $\Phi(\rho_S^{\theta}) = \sigma_{S'}^{\theta}$ for all $\theta \in \Theta$
- ✓ Fully quantum. Ensemble $\mathcal{E} = \{\rho_S^{\theta}\}$ is completely more informative than ensemble $\mathcal{E}' = \{\sigma_{S'}^{\theta}\}$, i.e., $\mathcal{E} \succ \mathcal{E}'$, if and only if there exists a quantum channel (CPTP map) Φ such that $\Phi(\rho_S^{\theta}) = \sigma_{S'}^{\theta}$ for all $\theta \in \Theta$

Part II

Applications to Quantum Information Science

Section 1

Quantum Thermodynamics

The Binary Case, i.e. $\Theta = \{1, 2\}$

✓ assume that the unknown parameter has only two possible values $\Theta = \{\theta_1, \theta_2\} \equiv \{1, 2\}$

✓ in this case, classical statistical experiments become pairs of distributions $\{w_1(x), w_2(x)\}$, called "dichotomies"

✓ Binary statistical game. A statistical game $(\Theta, \mathscr{U}, \ell)$ with $\Theta = \mathscr{U} = \{1, 2\}$

Theorem (Blackwell's Theorem for Dichotomies)

Given two dichotomies $w = \{w_1(x), w_2(x)\}$ and $w' = \{w'_1(y), w'_2(y)\}$, $w \succ w'$ if and only if $\mathbb{E}_{\ell}[w] \ge \mathbb{E}_{\ell}[w']$ for all binary statistical games.

 \checkmark in other words, when $\Theta = \{1, 2\}$, the "value" of a classical statistical experiment can be estimated with binary decisions:

✓ in formula: for classical dichotomies, $w \succ w' \iff w \succ_2 w'$. (The symbol \succ_2 denotes the information ordering restricted to binary statistical games.)

Francesco Buscemi

Graphical Interpretation

✓ given a distribution p(x) denote by p_i[↓] its *i*-th largest entry
✓ given two distributions p(x) and q(x), define L(p,q) to be the piecewise linear curve joining the points (x_k, y_k) = (∑_{i=1}^k q_i[↓], ∑_{i=1}^k p_i[↓]) with the origin (0,0)

✓ Fact. $\{p(x), q(x)\} \succ_2 \{p'(y), q'(y)\}$ if and only if L(p, q) ≥ L(p', q')

Blackwell's theorem for dichotomies (reformulation)

 $L(p,q) \geqslant L(p',q')$ if and only if there exists a conditional probability $\varphi(y|x)$ such that $p'(y) = \sum_x \varphi(y|x) p(x)$ and $q'(y) = \sum_x \varphi(y|x) q(x)$

✓ if q = q' = e uniform distribution: Lorenz curves and majorization ✓ if q = q' = g Gibbs (thermal) distribution: thermomajorization

Francesco Buscemi

Quantum Statistical Comparison

Quantum Lorenz Curve

- \checkmark we saw that the ordering \succ_2 is described by Lorenz curves
- \checkmark how does the ordering \succ_2 look like for quantum dichotomies?

Definition (Quantum Lorenz Curve)

Given a binary ensemble $\mathcal{E} = \{\rho_1, \rho_2\}$, define the curve $L(\rho_1, \rho_2)$ as the upper boundary of the region $\mathcal{R}(\rho_1, \rho_2) \triangleq \{(x, y) = (\operatorname{Tr}[E \ \rho_2], \operatorname{Tr}[E \ \rho_1]) : 0 \leq E \leq \mathbf{1}\}$

✓ Fact 1. Given two quantum dichotomies E = {ρ₁, ρ₂} and E' = {ρ'₁, ρ'₂}, E ≻₂ E' if and only if L(ρ₁, ρ₂) ≥ L(ρ'₁, ρ'₂)
✓ Fact 2. A result by Alberti and Uhlmann (1980) implies that, if both quantum

Fact 2. A result by Alberti and Unimann (1980) implies that, if both quantum ensembles are on \mathbb{C}^2 , then $L(\rho_1, \rho_2) \ge L(\rho'_1, \rho'_2)$ if and only if there exists a CPTP map Φ such that $\Phi(\rho_i) = \rho'_i$ for i = 1, 2

Francesco Buscemi

Quantum Statistical Comparison

Section 2

Entanglement and Quantum Nonlocality

Nonlocal Games

✓ a nonlocal game (Bell inequality) is a bipartite decision problem played "in parallel" by space-like separated players; it is formally given as G = (𝔅,𝔅;𝔅,𝔅,𝔅;ℓ)
✓ Classical source. p_c(a, b|x, y) = ∑_λ d_A(a|x, λ)d_B(b|y, λ)π(λ)

- ✓ Quantum source. $p_q(a, b|x, y) = \text{Tr}\left[\rho_{AB} \left(P_A^{a|x} \otimes Q_B^{b|y}\right)\right]$
- Expected payoff.

$$\mathbb{E}_G[\rho_{AB}] \triangleq \max_{\{P_A^{a|x}\}, \{Q_B^{b|y}\}} \sum_{x,y,a,b} \ell(x,y;a,b) p_q(a,b|x,y) \frac{1}{|\mathscr{X}|} \frac{1}{|\mathscr{Y}|}$$

Classical value.

$$\mathbb{E}_{G}^{cl} \triangleq \max_{d_{A}(a|x), d_{B}(b|y)} \sum_{x, y, a, b} \ell(x, y; a, b) d_{A}(a|x) d_{B}(b|y) \frac{1}{|\mathscr{X}|} \frac{1}{|\mathscr{Y}|}$$

Francesco Buscemi

 \checkmark consider two bipartite density operators: ρ_{AB} on $\mathcal{H}_A \otimes \mathcal{H}_B$ and $\sigma_{A'B'}$ on $\mathcal{H}_{A'} \otimes \mathcal{H}_{B'}$

Definition (Nonlocality Ordering)

We say that ρ_{AB} is more nonlocal than $\sigma_{A'B'}$, in formula, $\rho_{AB} \succ_{nl} \sigma_{A'B'}$, if and only if $\mathbb{E}_G[\rho_{AB}] \ge \mathbb{E}_G[\sigma_{A'B'}]$ for all nonlocal games $G = (\mathscr{X}, \mathscr{Y}; \mathscr{A}, \mathscr{B}; \ell)$.

- \checkmark in other words, ρ_{AB} allows to violate any Bell inequality at least as much as $\sigma_{A'B'}$ does
- ✓ can we prove a Blackwell theorem for bipartite quantum states? what does the condition $\rho_{AB} \succ_{nl} \sigma_{A'B'}$ imply about the existence of a transformation from ρ_{AB} into $\sigma_{A'B'}$?
- ✓ unfortunately not much, because of a phenomenon called...
- Hidden Nonlocality. Werner (1989) showed that there exist entangled bipartite states that do not exceed the classical value, for all possible Bell inequalities

Quantum Nonlocal Games

✓ a quantum nonlocal game is given by $\Gamma = \{\mathscr{X}, \mathscr{Y}, \{\tau_{\tilde{A}}^x\}, \{\omega_{\tilde{B}}^y\}; \mathscr{A}, \mathscr{B}; \ell\}$ ✓ Expected payoff.

$$\mathbb{E}_{\Gamma}[\rho_{AB}] \triangleq \max_{\{P_{\tilde{A}A}^{a}\}, \{Q_{B\tilde{B}}^{b}\}} \sum_{x,y,a,b} \ell(x,y;a,b) \frac{\operatorname{Tr}\left[(\tau_{\tilde{A}}^{x} \otimes \rho_{AB} \otimes \omega_{\tilde{B}}^{y}) \left(P_{\tilde{A}A}^{a} \otimes Q_{B\tilde{B}}^{b}\right)\right]}{|\mathscr{X}| \cdot |\mathscr{Y}|}$$

Theorem (Blackwell's Theorem for Bipartite Quantum States)

 $\mathbb{E}_{\Gamma}[\rho_{AB}] \ge \mathbb{E}_{\Gamma}[\sigma_{A'B'}]$ for all quantum nonlocal games Γ if and only if there exist CPTP maps $\Phi^{i}_{A \to A'}$ and $\Psi^{i}_{B \to B'}$ such that $\sigma_{A'B'} = \sum_{i} p(i)(\Phi^{i}_{A} \otimes \Psi^{i}_{B})(\rho_{AB})$

- Remark. Such transformations are called "local operations with shared randomness" (LORS)
- ✓ application: measurement-device independent entanglement witnesses (MDIEW)

Francesco Buscemi

Section 3

Open Systems Dynamics

Background: Communication Games

✓ recall: a statistical game is as follows

- \checkmark we also interpreted θ as the input to the channel, x as the output, and u as the decoded message
- Iet's add the encoding into the picture:

$$\begin{array}{cccc} \mathscr{U} & \stackrel{\mathrm{encoding}}{\longrightarrow} & \Theta & \stackrel{\mathrm{channel}}{\longrightarrow} & \mathscr{X} & \stackrel{\mathrm{decoding}}{\longrightarrow} & \mathscr{U} \\ & & & & & & \\ \downarrow & & & \downarrow & & & \\ u & \stackrel{\mathrm{decoding}}{\longrightarrow} & \theta & \stackrel{\mathrm{decoding}}{\longrightarrow} & x & \stackrel{\mathrm{decoding}}{\longrightarrow} & \mathscr{U} \\ & & & & \downarrow & & \\ u & \stackrel{\mathrm{decoding}}{\longrightarrow} & \theta & \stackrel{\mathrm{decoding}}{\longrightarrow} & x & \stackrel{\mathrm{decoding}}{\longrightarrow} & \mathscr{U} \\ \end{array}$$

✓ a communication game is a triple $(\mathcal{U}, \Theta, e(\theta|u))$ and the payoff is the probability of guessing the message correctly:

$$P_{\text{guess}}^{e}[w] \triangleq \max_{d(\hat{u}|x)} \sum_{u,\theta,x} d(u|x)w(x|\theta)e(\theta|u) \frac{1}{|\mathscr{U}|}$$

Divisible Evolutions

- ✓ a system S is prepared at time t_0 and put in contact with an external reservoir (i.e., the environment); consider two snapshots at times $t_1 \ge t_0$ and $t_2 \ge t_1$
- \checkmark two channels, w_1 and w_2 , describe the evolution of the system from t_0 to t_1 and from t_0 to t_2 , respectively
- ✓ the evolution from $t_0 \rightarrow t_1 \rightarrow t_2$ is physically divisible (or "memoryless") whenever there exists another channel φ such that $w_2 = \varphi \circ w_1$

Theorem (Blackwell's Theorem for Open Systems Dynamics)

The evolution $t_0 \rightarrow t_1 \rightarrow t_2$ is divisible if and only if $P_{guess}^e[w_1] \ge P_{guess}^e[w_2]$ for all communication games $(\mathscr{U}, \Theta, e(\theta|u))$

 \checkmark for the quantum case, see the references for further details

Essential Bibliography

(this list is not meant to be an exhaustive bibliography, but only a selection of accessible, introductory, mostly self-contained texts on the topics covered in this lecture)

General theory:

- ✓ D. Blackwell and M.A. Girshick, Theory of games and statistical decisions. (Dover Publications, 1979).
- ✓ A.S. Holevo, Statistical decision theory for quantum systems. Journal of Multivariate Analysis 3, 337–394 (1973).
- P.K. Goel and J. Ginebra, When is one experiment 'always better than' another? Journal of the Royal Statistical Society, Series D (The Statistician) 52(4), 515–537 (2003).
- ✓ F. Liese and K.-J. Miescke, Statistical decision theory. (Springer, 2008).
- F. Buscemi, Comparison of quantum statistical models: equivalent conditions for sufficiency. Communications in Mathematical Physics 310(3), 625–647 (2012). arXiv:1004.3794 [quant-ph].

Quantum Lorenz curves:

- ✓ J.M. Renes, Relative submajorization and its use in quantum resource theories. arXiv:1510.03695 [quant-ph].
- F. Buscemi and G. Gour, Quantum relative Lorenz curves. arXiv:1607.05735 [quant-ph].

Quantum nonlocal games:

✓ F. Buscemi, All entangled states are nonlocal. Physical Review Letters 108, 200401 (2012).

Open quantum systems dynamics:

- ✓ F. Petruccione and H.-P. Breuer, The Theory of Open Quantum Systems. (Oxford University Press, Oxford, 2002).
- ✓ A. Rivas, S.F. Huelga, and M. B. Plenio, Quantum non-Markovianity: characterization, quantification and detection. Reports on Progress in Physics 77, 094001 (2014).
- F. Buscemi and N. Datta, Equivalence between divisibility and monotonic decrease of information in classical and quantum stochastic processes. Physical Review A 93, 012101 (2016).
- ✓ F. Buscemi, Reverse data-processing theorems and computational second laws. arXiv:1607.08335 [quant-ph].

Thank You

slides available for download at http://goo.gl/5toR7X