The Theory of Statistical Comparison with Applications in Quantum Information Science

Francesco Buscemi (Nagoya University) buscemi@is.nagoya-u.ac.jp

Tutorial Lecture for AQIS2016
Academia Sinica, Taipei, Taiwan 28 August 2016

these slides are available for download at http://goo.gl/5toR7X

Prerequisites

Prerequisites for the first part (general results):
\checkmark basics of probability and information theory: random variables, joint and conditional probabilities, expectation values, etc
\checkmark in particular, noisy channels as probabilistic maps between two sets $w: \mathscr{A} \rightarrow \mathscr{B}$: given input $a \in \mathscr{A}$, the probability to have output $b \in \mathscr{B}$ is given by conditional probability $w(b \mid a)$
\checkmark basics of quantum information theory: Hilbert spaces, density operators, ensembles, POVMs, quantum channels \equiv CPTP maps, composite systems and tensor products, etc

Prerequisites for the second part (applications):
\checkmark resource theories, in particular, quantum thermodynamics: idea of the general setting and of the problem treated (in particular, some knowledge of majorization theory is helpful)
\checkmark entanglement and quantum nonlocality: general ideas such as Bell inequalities, nonocal games, entangled states, etc
\checkmark open systems dynamics: basic ideas such as reduced dynamics, Markov chains and Markovian evolutions, divisibility, etc (quantum case only sketched, see references)

Part I

Statistical Comparison: General Results

Statistical Games (aka Decision Problems)

\checkmark Definition. A statistical game is a triple $(\Theta, \mathscr{U}, \ell)$, where $\Theta=\{\theta\}$ and $\mathscr{U}=\{u\}$ are finite sets, and ℓ is a function $\ell(\theta, u) \in \mathbb{R}$.
\checkmark Interpretation. We assume that θ is the value of a parameter influencing what we observe, but that cannot be observed "directly." Now imagine that we have to choose an action u, and that this choice will earn or cost us $\ell(\theta, u)$. For example, θ is a possible medical condition, u is the choice of treatment, and $\ell(\theta, u)$ is the overall "efficacy."
\checkmark Resource. Before choosing our action, we are allowed "to spy" on θ by performing an experiment (i.e., visiting the patient). Mathematically, an experiment is given as a sample set $\mathscr{X}=\{x\}$ (i.e., observable symptoms) together with a conditional probability $w(x \mid \theta)$ or, equivalently, a family of distributions $\left\{w_{\theta}(x)\right\}_{\theta \in \Theta}$.
\checkmark Probabilistic decision. The choice of an action can be probabilistic (i.e., patients with the same symptoms are randomly given different therapies). Hence, a decision is mathematically given as a conditional probability $d(u \mid x)$.

\checkmark Example in information theory. Imagine that θ is the input to a noisy channel, x is the output we receive, and u is the message we decode.

How much is an experiment worth?

\checkmark experiments help us choosing the action "sensibly." How much would you pay for an experiment?
\checkmark Expected payoff. $\mathbb{E}_{\ell}[w] \triangleq \max _{d(u \mid x)} \sum_{u, x, \theta} \ell(\theta, u) d(u \mid x) w(x \mid \theta) \frac{1}{|\Theta|}$. (Bayesian assumption for simplicity, but this is not necessary.)
\checkmark consider now a different experiment (but about the same unknown parameter θ) with sample set $\mathscr{Y}=\{y\}$ and conditional probability $w^{\prime}(y \mid \theta)$. Which is better between $w(x \mid \theta)$ and $w^{\prime}(y \mid \theta)$?
\checkmark such questions are considered in the theory of statistical comparison: a very deep field of mathematical statistics, pioneered by Blackwell and greatly developed by Le Cam and Torgersen, among others.
\checkmark Today's tutorial. Basic results of statistical comparison, some quantum generalizations, and finally some applications (quantum thermodynamics, quantum nonlocality, open quantum systems dynamics).

Comparison of Experiments: Blackwell's Theorem (1953)

\checkmark Assumption. We compare experiments about the same unknown parameter θ

Definition (Information Ordering)

We say that $w(x \mid \theta)$ is more informative than $w^{\prime}(y \mid \theta)$, in formula, $w(x \mid \theta) \succ w^{\prime}(y \mid \theta)$, if and only if $\mathbb{E}_{\ell}[w] \geqslant \mathbb{E}_{\ell}\left[w^{\prime}\right]$ for all statistical games $(\Theta, \mathscr{U}, \ell)$.
\checkmark Remark 1. In the above definition, Θ is fixed, while \mathscr{U} and ℓ vary: the relation $\mathbb{E}_{\ell}[w] \geqslant \mathbb{E}_{\ell}\left[w^{\prime}\right]$ must hold for all choices of \mathscr{U} and ℓ.
\checkmark Remark 2. The ordering \succ is partial.

Theorem (Blackwell, 1953)

$w(x \mid \theta) \succ w^{\prime}(y \mid \theta)$ if and only if there exists a conditional probability $\varphi(y \mid x)$ such that

$$
w^{\prime}(y \mid \theta)=\sum_{x} \varphi(y \mid x) w(x \mid \theta)
$$

\checkmark as a diagram:

Quantum Decision Problems (Holevo, 1973)

classical case	quantum case
- statistical game $(\Theta, \mathscr{U}, \ell)$ - sample set \mathscr{X} - experiment $w=\left\{w_{\theta}(x)\right\}$ - probabilistic decision $d(u \mid x)$ - $p_{c}(u, \theta)=\sum_{x} d(u \mid x) w(x \mid \theta) \frac{1}{\|\Theta\|}$ - $\mathbb{E}_{\ell}[w]=\max _{d(u \mid x)} \sum \ell(\theta, u) p_{c}(u, \theta)$	- statistical game $(\Theta, \mathscr{U}, \ell)$ - Hilbert space \mathcal{H}_{S} - ensemble $\mathcal{E}=\left\{\rho_{S}^{\theta}\right\}$ - POVM (measurement) $\left\{P_{S}^{u}\right\}$ - $p_{q}(u, \theta)=\operatorname{Tr}\left[\rho_{S}^{\theta} P_{S}^{u}\right] \frac{1}{\|\Theta\|}$ - $\mathbb{E}_{\ell}[\mathcal{E}]=\max _{\left\{P_{S}^{u}\right\}} \sum \ell(\theta, u) p_{q}(u, \theta)$
$\Theta \xrightarrow{\text { experiment }} \mathscr{X}$ (${ }^{\text {checision }} \mathscr{U}$	$\Theta \xrightarrow{\text { ensemble }} \mathcal{H}_{S} \xrightarrow{\text { POVM }} \mathscr{U}$
$\begin{gathered} \vdots \\ \theta \end{gathered} \quad \longrightarrow \quad \begin{aligned} & \vdots \\ & x \end{aligned} \quad \longrightarrow \quad \begin{aligned} & \vdots \\ & u \end{aligned}$	

\checkmark Remark. The same statistical game $(\Theta, \mathscr{U}, \ell)$ can be played with classical resources (statistical experiments and decisions) or quantum resources (ensembles and POVMs).

Comparison of Quantum Ensembles (Vanilla Version)

\checkmark consider now another ensemble $\mathcal{E}^{\prime}=\left\{\sigma_{S^{\prime}}^{\theta}\right\}$ (different Hilbert space $\mathcal{H}_{S^{\prime}}$, different density operators, but same parameter set Θ)

Definition (Information Ordering)

We say that $\mathcal{E}=\left\{\rho_{S}^{\theta}\right\}$ is more informative than $\mathcal{E}^{\prime}=\left\{\sigma_{S^{\prime}}^{\theta}\right\}$, in formula, $\mathcal{E} \succ \mathcal{E}^{\prime}$, if and only if $\mathbb{E}_{\ell}[\mathcal{E}] \geqslant \mathbb{E}_{\ell}\left[\mathcal{E}^{\prime}\right]$ for all statistical games $(\Theta, \mathscr{U}, \ell)$.
\checkmark given ensemble $\mathcal{E}=\left\{\rho_{S}^{\theta}\right\}$, define the linear subspace $\mathcal{E}_{\mathbb{C}} \triangleq\left\{\sum_{\theta} c_{\theta} \rho_{S}^{\theta}: c_{\theta} \in \mathbb{C}\right\} \subseteq \mathrm{L}\left(\mathcal{H}_{S}\right)$

Theorem (Vanilla Quantum Blackwell's Theorem)

$\mathcal{E} \succ \mathcal{E}^{\prime}$ if and only if there exists a linear, hermitian-preserving, trace-preserving map
$\mathcal{L}: \mathrm{L}\left(\mathcal{H}_{S}\right) \rightarrow \mathrm{L}\left(\mathcal{H}_{S^{\prime}}\right)$ such that:
(1) for all $\theta \in \Theta, \mathcal{L}\left(\rho_{S}^{\theta}\right)=\sigma_{S^{\prime}}^{\theta}$
(2) \mathcal{L} is positive on $\mathcal{E}_{\mathbb{C}}$: if $P_{S} \in \mathcal{E}_{\mathbb{C}}$ is positive semidefinite, i.e., $P_{S} \geqslant 0$, then $\mathcal{L}\left(P_{S}\right) \geqslant 0$
\checkmark Side remark. In fact, the map \mathcal{L} is somewhat more than just positive on $\mathcal{E}_{\mathbb{C}}$: it is a quantum statistical morphism on $\mathcal{E}_{\mathbb{C}}$. In general:

$$
\text { PTP on } \mathrm{L}\left(\mathcal{H}_{S}\right) \underset{~ s t a t . ~ m o r p h . ~ o n ~}{\mathcal{E}_{\mathbb{C}}} \underset{\nLeftarrow}{\not \Longrightarrow} \text { PTP on } \mathcal{E}_{\mathbb{C}}
$$

Quantum Ensembles versus Classical Experiments (Semiclassical Version)

\checkmark Reminder. Any statistical game $(\Theta, \mathscr{U}, \ell)$ can be played with classical resources (statistical experiments and decisions) or quantum resources (ensembles and POVMs)
\checkmark we can hence compare a quantum ensemble $\mathcal{E}=\left\{\rho_{S}^{\theta}\right\}$ with a classical statistical experiment $w=\left\{w_{\theta}(x)\right\}$

Theorem (Semiquantum Blackwell's Theorem)

$\left\{\rho_{S}^{\theta}\right\} \succ\left\{w_{\theta}(x)\right\}$ if and only if there exists a POVM $\left\{P_{S}^{x}\right\}$ such that $w_{\theta}(x)=\operatorname{Tr}\left[\begin{array}{ll}P_{S}^{x} & \rho_{S}^{\theta}\end{array}\right]$, for all $\theta \in \Theta$ and all $x \in \mathscr{X}$.

Equivalent reformulation

Consider two ensembles $\mathcal{E}=\left\{\rho_{S}^{\theta}\right\}$ and $\mathcal{E}^{\prime}=\left\{\sigma_{S^{\prime}}^{\theta}\right\}$ and assume that the σ^{\prime} s all commute. Then, $\mathcal{E} \succ \mathcal{E}^{\prime}$ if and only if there exists a quantum channel (CPTP map) $\Phi: \mathrm{L}\left(\mathcal{H}_{S}\right) \rightarrow \mathrm{L}\left(\mathcal{H}_{S^{\prime}}\right)$ such that $\Phi\left(\rho_{S}^{\theta}\right)=\sigma_{S^{\prime}}^{\theta}$, for all $\theta \in \Theta$.
\checkmark as a diagram:

Compositions of Ensembles

\checkmark consider two parameter sets, $\Theta=\{\theta\}$ and $\Omega=\{\omega\}$, two Hilbert spaces, \mathcal{H}_{S} and \mathcal{H}_{R}, and two ensembles, $\mathcal{E}=\left\{\rho_{S}^{\theta}\right\}_{\theta \in \Theta}$ and $\mathcal{F}=\left\{\tau_{R}^{\omega}\right\}_{\omega \in \Omega}$. Then we denote as $\mathcal{F} \otimes \mathcal{E}$ the ensemble $\left\{\tau_{R}^{\omega} \otimes \rho_{S}^{\theta}\right\}_{\omega \in \Omega, \theta \in \Theta}$
\checkmark clearly, $\mathcal{F} \otimes \mathcal{E}$ is itself an ensemble with parameter set $\Omega \times \Theta$ and Hilbert space $\mathcal{H}_{R} \otimes \mathcal{H}_{S}$
\checkmark with $\mathcal{F} \otimes \mathcal{E}$, we can play extended statistical games $(\Omega \times \Theta, \mathscr{U}, \ell)$ with $\ell(\omega, \theta ; u) \in \mathbb{R}$; the interpretation does not change
\checkmark we have, for example,

$$
\mathbb{E}_{\ell}[\mathcal{F} \otimes \mathcal{E}]=\max _{\left\{P_{R S}^{u}\right\}} \sum_{u, \omega, \theta} \ell(\omega, \theta ; u) \frac{\operatorname{Tr}\left[\left(\tau_{R}^{\omega} \otimes \rho_{S}^{\theta}\right) P_{R S}^{u}\right]}{|\Omega| \cdot|\Theta|}
$$

\checkmark as a diagram:

Quantum Blackwell's Theorem (Fully Quantum Version)

\checkmark Extended comparison. Given two ensembles $\mathcal{E}=\left\{\rho_{S}^{\theta}\right\}$ and $\mathcal{E}^{\prime}=\left\{\sigma_{S^{\prime}}^{\theta}\right\}$, we can supplement them both with the same extra ensemble $\mathcal{F}=\left\{\tau_{R}^{\omega}\right\}$ and play statistical games $(\Omega \times \Theta, \mathscr{U}, \ell)$.

Definition (Extended information ordering)

We say that $\mathcal{E}=\left\{\rho_{S}^{\theta}\right\}$ is completely more informative than $\mathcal{E}^{\prime}=\left\{\sigma_{S^{\prime}}^{\theta}\right\}$, in formula, $\mathcal{E} \succ \mathcal{E}^{\prime}$, if and only if $\mathbb{E}_{\ell}[\mathcal{F} \otimes \mathcal{E}] \geqslant \mathbb{E}_{\ell}\left[\mathcal{F} \otimes \mathcal{E}^{\prime}\right]$ for all extra ensembles $\mathcal{F}=\left\{\tau_{R}^{\omega}\right\}$ and all statistical games $(\Omega \times \Theta, \mathscr{U}, \ell)$.
\checkmark Remark. In the classical case, $\succcurlyeq \Longleftrightarrow \succ$. In the quantum case, in general, only $\succ \Longrightarrow \succ$ holds (analogously to "positivity" versus "complete positivity")

Theorem (Fully Quantum Blackwell's Theorem)

$\mathcal{E} \succ \mathcal{E}^{\prime}$ if and only if there exists a quantum channel (CPTP map) $\Phi: \mathrm{L}\left(\mathcal{H}_{S}\right) \rightarrow \mathrm{L}\left(\mathcal{H}_{S^{\prime}}\right)$ such that $\sigma_{S^{\prime}}^{\theta}=\Phi\left(\rho_{S}^{\theta}\right)$ for all $\theta \in \Theta$.

Intermediate Summary

\checkmark Original. Experiment $w(x \mid \theta)$ is more informative than experiment $w^{\prime}(y \mid \theta)$, i.e., $w(x \mid \theta) \succ w^{\prime}(y \mid \theta)$, if and only if there exists a noisy channel (conditional probability) $\varphi(y \mid x)$ such that $w^{\prime}(y \mid \theta)=\sum_{x} \varphi(y \mid x) w(x \mid \theta)$
\checkmark Quantum vanilla. Ensemble $\mathcal{E}=\left\{\rho_{S}^{\theta}\right\}$ is more informative than ensemble $\mathcal{E}^{\prime}=\left\{\sigma_{S^{\prime}}^{\theta}\right\}$, i.e., $\mathcal{E} \succ \mathcal{E}^{\prime}$, if and only if there exists a quantum statistical morphism \mathcal{L} on $\mathcal{E}_{\mathbb{C}}$ such that $\mathcal{L}\left(\rho_{S}^{\theta}\right)=\sigma_{S^{\prime}}^{\theta}$ for all $\theta \in \Theta$
\checkmark Semiquantum. Ensemble $\mathcal{E}=\left\{\rho_{S}^{\theta}\right\}$ is more informative than commuting ensemble $\mathcal{E}^{\prime}=\left\{\sigma_{S^{\prime}}^{\theta}\right\}$, i.e., $\mathcal{E} \succ \mathcal{E}^{\prime}$, if and only if there exists a quantum channel (CPTP map) Φ such that $\Phi\left(\rho_{S}^{\theta}\right)=\sigma_{S^{\prime}}^{\theta}$ for all $\theta \in \Theta$
\checkmark Fully quantum. Ensemble $\mathcal{E}=\left\{\rho_{S}^{\theta}\right\}$ is completely more informative than ensemble $\mathcal{E}^{\prime}=\left\{\sigma_{S^{\prime}}^{\theta}\right\}$, i.e., $\mathcal{E} \succ \mathcal{E}^{\prime}$, if and only if there exists a quantum channel (CPTP map) Φ such that $\Phi\left(\rho_{S}^{\theta}\right)=\sigma_{S^{\prime}}^{\theta}$ for all $\theta \in \Theta$

Part II

Applications to Quantum Information Science

Section 1

Quantum Thermodynamics

The Binary Case, i.e. $\Theta=\{1,2\}$

\checkmark assume that the unknown parameter has only two possible values $\Theta=\left\{\theta_{1}, \theta_{2}\right\} \equiv\{1,2\}$
$\boldsymbol{\checkmark}$ in this case, classical statistical experiments become pairs of distributions $\left\{w_{1}(x), w_{2}(x)\right\}$, called "dichotomies"
\checkmark Binary statistical game. A statistical game $(\Theta, \mathscr{U}, \ell)$ with $\Theta=\mathscr{U}=\{1,2\}$

Theorem (Blackwell's Theorem for Dichotomies)

Given two dichotomies $w=\left\{w_{1}(x), w_{2}(x)\right\}$ and $w^{\prime}=\left\{w_{1}^{\prime}(y), w_{2}^{\prime}(y)\right\}, w \succ w^{\prime}$ if and only if $\mathbb{E}_{\ell}[w] \geqslant \mathbb{E}_{\ell}\left[w^{\prime}\right]$ for all binary statistical games.
\boldsymbol{V} in other words, when $\Theta=\{1,2\}$, the "value" of a classical statistical experiment can be estimated with binary decisions:

\checkmark in formula: for classical dichotomies, $w \succ w^{\prime} \Longleftrightarrow w \succ_{2} w^{\prime}$. (The symbol \succ_{2} denotes the information ordering restricted to binary statistical games.)

Graphical Interpretation

\checkmark given a distribution $p(x)$ denote by p_{i}^{\downarrow} its i-th largest entry
\checkmark given two distributions $p(x)$ and $q(x)$, define $L(p, q)$ to be the piecewise linear curve joining the points $\left(x_{k}, y_{k}\right)=\left(\sum_{i=1}^{k} q_{i}^{\downarrow}, \sum_{i=1}^{k} p_{i}^{\downarrow}\right)$ with the origin $(0,0)$

\checkmark Fact. $\{p(x), q(x)\} \succ_{2}\left\{p^{\prime}(y), q^{\prime}(y)\right\}$ if and only if $L(p, q) \geqslant L\left(p^{\prime}, q^{\prime}\right)$

Blackwell's theorem for dichotomies (reformulation)

$L(p, q) \geqslant L\left(p^{\prime}, q^{\prime}\right)$ if and only if there exists a conditional probability $\varphi(y \mid x)$ such that $p^{\prime}(y)=\sum_{x} \varphi(y \mid x) p(x)$ and $q^{\prime}(y)=\sum_{x} \varphi(y \mid x) q(x)$
\checkmark if $q=q^{\prime}=e$ uniform distribution: Lorenz curves and majorization
\checkmark if $q=q^{\prime}=g$ Gibbs (thermal) distribution: thermomajorization

Quantum Lorenz Curve

\checkmark we saw that the ordering \succ_{2} is described by Lorenz curves
\checkmark how does the ordering \succ_{2} look like for quantum dichotomies?

Definition (Quantum Lorenz Curve)

Given a binary ensemble $\mathcal{E}=\left\{\rho_{1}, \rho_{2}\right\}$, define the curve $L\left(\rho_{1}, \rho_{2}\right)$ as the upper boundary of the region $\mathcal{R}\left(\rho_{1}, \rho_{2}\right) \triangleq\left\{(x, y)=\left(\operatorname{Tr}\left[E \rho_{2}\right], \operatorname{Tr}\left[E \rho_{1}\right]\right): 0 \leqslant E \leqslant \mathbb{1}\right\}$

\checkmark Fact 1. Given two quantum dichotomies $\mathcal{E}=\left\{\rho_{1}, \rho_{2}\right\}$ and $\mathcal{E}^{\prime}=\left\{\rho_{1}^{\prime}, \rho_{2}^{\prime}\right\}, \mathcal{E} \succ_{2} \mathcal{E}^{\prime}$ if and only if $L\left(\rho_{1}, \rho_{2}\right) \geqslant L\left(\rho_{1}^{\prime}, \rho_{2}^{\prime}\right)$
\checkmark Fact 2. A result by Alberti and Uhlmann (1980) implies that, if both quantum ensembles are on \mathbb{C}^{2}, then $L\left(\rho_{1}, \rho_{2}\right) \geqslant L\left(\rho_{1}^{\prime}, \rho_{2}^{\prime}\right)$ if and only if there exists a CPTP map Φ such that $\Phi\left(\rho_{i}\right)=\rho_{i}^{\prime}$ for $i=1,2$

Section 2

Entanglement and Quantum Nonlocality

Nonlocal Games

\checkmark a nonlocal game (Bell inequality) is a bipartite decision problem played "in parallel" by space-like separated players; it is formally given as $G=(\mathscr{X}, \mathscr{Y} ; \mathscr{A}, \mathscr{B} ; \ell)$
\checkmark Classical source. $p_{c}(a, b \mid x, y)=\sum_{\lambda} d_{A}(a \mid x, \lambda) d_{B}(b \mid y, \lambda) \pi(\lambda)$
\checkmark Quantum source. $p_{q}(a, b \mid x, y)=\operatorname{Tr}\left[\rho_{A B}\left(P_{A}^{a \mid x} \otimes Q_{B}^{b \mid y}\right)\right]$
\checkmark Expected payoff.

$$
\mathbb{E}_{G}\left[\rho_{A B}\right] \triangleq \max _{\left\{P_{A}^{a \mid x}\right\},\left\{Q_{B}^{b \mid y}\right\}} \sum_{x, y, a, b} \ell(x, y ; a, b) p_{q}(a, b \mid x, y) \frac{1}{|\mathscr{X}|} \frac{1}{|\mathscr{Y}|}
$$

\checkmark Classical value.

$$
\mathbb{E}_{G}^{c l} \triangleq \max _{d_{A}(a \mid x), d_{B}(b \mid y)} \sum_{x, y, a, b} \ell(x, y ; a, b) d_{A}(a \mid x) d_{B}(b \mid y) \frac{1}{|\mathscr{X}|} \frac{1}{|\mathscr{Y}|}
$$

Comparison of Bipartite Quantum States

\checkmark consider two bipartite density operators: $\rho_{A B}$ on $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ and $\sigma_{A^{\prime} B^{\prime}}$ on $\mathcal{H}_{A^{\prime}} \otimes \mathcal{H}_{B^{\prime}}$

Definition (Nonlocality Ordering)

We say that $\rho_{A B}$ is more nonlocal than $\sigma_{A^{\prime} B^{\prime}}$, in formula, $\rho_{A B} \succ_{n l} \sigma_{A^{\prime} B^{\prime}}$, if and only if $\mathbb{E}_{G}\left[\rho_{A B}\right] \geqslant \mathbb{E}_{G}\left[\sigma_{A^{\prime} B^{\prime}}\right]$ for all nonlocal games $G=(\mathscr{X}, \mathscr{Y} ; \mathscr{A}, \mathscr{B} ; \ell)$.
\checkmark in other words, $\rho_{A B}$ allows to violate any Bell inequality at least as much as $\sigma_{A^{\prime} B^{\prime}}$ does
\checkmark can we prove a Blackwell theorem for bipartite quantum states? what does the condition $\rho_{A B} \succ_{n l} \sigma_{A^{\prime} B^{\prime}}$ imply about the existence of a transformation from $\rho_{A B}$ into $\sigma_{A^{\prime} B^{\prime}}$?
\checkmark unfortunately not much, because of a phenomenon called...
\checkmark Hidden Nonlocality. Werner (1989) showed that there exist entangled bipartite states that do not exceed the classical value, for all possible Bell inequalities

Quantum Nonlocal Games

\checkmark a quantum nonlocal game is given by $\Gamma=\left\{\mathscr{X}, \mathscr{Y},\left\{\tau_{\tilde{A}}^{x}\right\},\left\{\omega_{\tilde{B}}^{y}\right\} ; \mathscr{A}, \mathscr{B} ; \ell\right\}$
\checkmark Expected payoff.

$$
\mathbb{E}_{\Gamma}\left[\rho_{A B}\right] \triangleq \max _{\left\{P_{\tilde{A} A}^{a}\right\},\left\{Q_{B \tilde{B}}^{b}\right\}} \sum_{x, y, a, b} \ell(x, y ; a, b) \frac{\operatorname{Tr}\left[\left(\tau_{\tilde{A}}^{x} \otimes \rho_{A B} \otimes \omega_{\tilde{B}}^{y}\right)\left(P_{\tilde{A} A}^{a} \otimes Q_{B \tilde{B}}^{b}\right)\right]}{|\mathscr{X}| \cdot|\mathscr{Y}|}
$$

Theorem (Blackwell's Theorem for Bipartite Quantum States)

$\mathbb{E}_{\Gamma}\left[\rho_{A B}\right] \geqslant \mathbb{E}_{\Gamma}\left[\sigma_{A^{\prime} B^{\prime}}\right]$ for all quantum nonlocal games Γ if and only if there exist CPTP maps $\Phi_{A \rightarrow A^{\prime}}^{i}$ and $\Psi_{B \rightarrow B^{\prime}}^{i}$ such that $\sigma_{A^{\prime} B^{\prime}}=\sum_{i} p(i)\left(\Phi_{A}^{i} \otimes \Psi_{B}^{i}\right)\left(\rho_{A B}\right)$
\checkmark Remark. Such transformations are called "local operations with shared randomness" (LORS)
\checkmark application: measurement-device independent entanglement witnesses (MDIEW)

Section 3

Open Systems Dynamics

Background: Communication Games

\checkmark recall: a statistical game is as follows

\checkmark we also interpreted θ as the input to the channel, x as the output, and u as the decoded message
\checkmark let's add the encoding into the picture:

\checkmark a communication game is a triple $(\mathscr{U}, \Theta, e(\theta \mid u))$ and the payoff is the probability of guessing the message correctly:

$$
P_{\mathrm{guess}}^{e}[w] \triangleq \max _{d(\hat{u} \mid x)} \sum_{u, \theta, x} d(u \mid x) w(x \mid \theta) e(\theta \mid u) \frac{1}{|\mathscr{U}|}
$$

Divisible Evolutions

\checkmark a system S is prepared at time t_{0} and put in contact with an external reservoir (i.e., the environment); consider two snapshots at times $t_{1} \geqslant t_{0}$ and $t_{2} \geqslant t_{1}$
\checkmark two channels, w_{1} and w_{2}, describe the evolution of the system from t_{0} to t_{1} and from t_{0} to t_{2}, respectively
\checkmark the evolution from $t_{0} \rightarrow t_{1} \rightarrow t_{2}$ is physically divisible (or "memoryless") whenever there exists another channel φ such that $w_{2}=\varphi \circ w_{1}$

Theorem (Blackwell's Theorem for Open Systems Dynamics)

The evolution $t_{0} \rightarrow t_{1} \rightarrow t_{2}$ is divisible if and only if $P_{\text {guess }}^{e}\left[w_{1}\right] \geqslant P_{\text {guess }}^{e}\left[w_{2}\right]$ for all communication games ($\mathscr{U}, \Theta, e(\theta \mid u)$)
\checkmark for the quantum case, see the references for further details

Essential Bibliography

(this list is not meant to be an exhaustive bibliography, but only a selection of accessible, introductory, mostly self-contained texts on the topics covered in this lecture)

General theory:

\checkmark D. Blackwell and M.A. Girshick, Theory of games and statistical decisions. (Dover Publications, 1979).
\checkmark A.S. Holevo, Statistical decision theory for quantum systems. Journal of Multivariate Analysis 3, 337-394 (1973).
\checkmark P.K. Goel and J. Ginebra, When is one experiment 'always better than' another? Journal of the Royal Statistical Society, Series D (The Statistician) 52(4), 515-537 (2003).
\checkmark F. Liese and K.-J. Miescke, Statistical decision theory. (Springer, 2008).
\checkmark F. Buscemi, Comparison of quantum statistical models: equivalent conditions for sufficiency. Communications in Mathematical Physics 310(3), 625-647 (2012). arXiv:1004.3794 [quant-ph].

Quantum Lorenz curves:

\checkmark J.M. Renes, Relative submajorization and its use in quantum resource theories. arXiv:1510.03695 [quant-ph].
\checkmark F. Buscemi and G. Gour, Quantum relative Lorenz curves. arXiv:1607.05735 [quant-ph].

Quantum nonlocal games:

\checkmark F. Buscemi, All entangled states are nonlocal. Physical Review Letters 108, 200401 (2012).

Open quantum systems dynamics:

\checkmark F. Petruccione and H.-P. Breuer, The Theory of Open Quantum Systems. (Oxford University Press, Oxford, 2002).
\checkmark A. Rivas, S.F. Huelga, and M. B. Plenio, Quantum non-Markovianity: characterization, quantification and detection. Reports on Progress in Physics 77, 094001 (2014).
\checkmark F. Buscemi and N. Datta, Equivalence between divisibility and monotonic decrease of information in classical and quantum stochastic processes. Physical Review A 93, 012101 (2016).
\checkmark F. Buscemi, Reverse data-processing theorems and computational second laws. arXiv:1607.08335 [quant-ph].

Thank You

slides available for download at http://goo.gl/5toR7X

